
Kahina: A Hybrid Trace-Based and Chart-Based
Debugging System for Grammar Engineering

Johannes Dellert1, Kilian Evang2, and Frank Richter1

1 University of Tübingen
2 University of Groningen

Abstract. This paper provides an overview of the debugging framework
Kahina, discussing its architecture as well as its application to debug-
ging in different constraint-based grammar engineering environments.
The exposition focuses on and motivates the hybrid nature of the sys-
tem between source-level debugging by means of a tracer and high-level
analysis by means of graphical tools.

1 Introduction

Several decades after their inception, the design, implementation and debugging
of symbolic, constraint-based grammars is still a considerable challenge. Despite
all efforts to modularize grammars, declarative constraints can have far-reaching
unexpected side effects at runtime. The original grammar writers are often lin-
guists with little experience in software development, meaning that in practice
their declarative designs must be optimized for the algorithmic environment by
iterative refinement. It is a major challenge in this scenario that the execution
of even relatively simple grammars tends to result in many thousand computa-
tion steps. To make debugging of such grammars feasible at all, innovative and
carefully designed debugging tools are needed.

In this paper, we present central aspects of the Kahina debugging framework,
which was created to address these issues. We discuss its general architecture as
well as its application to grammar debugging in two implementation platforms
for constraint-based grammars, TRALE [3] and QType [15]. Unlike other gram-
mar engineering environments, Kahina emphasizes the analysis of the execution
model of declaratively designed grammars, with the goal of making the proce-
dural effects of constraint systems more transparent. Developers can spot more
easily where constraints have adverse side effects, and where an implementation
can be optimized for efficiency. The main challenge in creating such a debugging
system is to find appropriate ways to project functionally meaningful intervals
from large sequences of computations onto intuitively comprehensible graphical
displays. Within the overall display, the close connections between the differ-
ent perceptual units need to be highlighted, while at the same time avoiding to
produce redundant information that could easily overwhelm the user. A highly
configurable selection of various perspectives on grammar execution is offered to
make its contingencies explorable in a balanced fashion.



Kahina was initially developed as a graphical front end for TRALE’s source-
level debugger. TRALE is an interesting target, as it is explicitly designed for the
implementation of grammatical constraints that stay close to the specification of
theoretical HPSG grammars. As Melnik [13] finds in her comparison of the LKB
[4] and TRALE for HPSG grammar implementation, the latter system requires
fewer initial adjustments of theoretical grammars, at the price of a possibly
stronger deviation of the processing model from non-technical user expectations.
At the same time, the LKB traditionally provided more graphical debugging
support and guidance to users, similar to the facilities featured by XLE [11],
an implementation environment for LFG. Kahina aims at graphical debugging
support for complex implementation systems such as TRALE, especially to help
novice linguist users understand the underlying procedural model. It is designed
to bridge the considerable gap between detailed but low-level, command-line
based debugging for expert users, and the high-level view of chart-based tools,
which (deliberately) hide many potentially relevant procedural details.

Beyond support for grammar implementation platforms, Kahina provides ad-
vanced general debugging facilities for logic programming. The system expands
on earlier ideas for graphical Prolog debugging presented by e.g. Dewar & Cleary
[8] and Eisenstadt [9], and is also inspired by SWI-Prolog’s GUI tracer [16], the
most mature visualization tool for Prolog processes currently available.3

Section 2 gives a bird’s-eye view of the Kahina architecture, also outlining the
process of implementing a debugging system. Sections 3–5 focus on the central
features and functions of a debugging system for TRALE. Section 6 discusses
chart displays as a central component of many grammar development systems,
and provides a case study of how demands of different systems are accommo-
dated. Section 7 critically evaluates Kahina’s approach to grammar debugging,
before Section 8 summarizes prominent features and points to open issues.

2 The Kahina Architecture

Kahina is written in Java and distributed under the GPL.4 Core components
are a GUI framework based on Swing, a State class for storing large amounts
of step data, a message passing system (Controller) for communication among
components, and a control agent system for automatization of user interactions.

Kahina is designed as a general framework for implementing debugging sys-
tems, by which we mean integrated graphical environments for analyzing com-
putations consisting of hierarchically related steps, where each step may be as-
sociated with a source code location and other detail information for visual
display. A debugging system is built by implementing specialized components
using Kahina’s classes and interfaces. The architecture of the TRALE debugger
is shown in Fig. 1; a similar architecture has been used to implement graphical
debuggers for different client systems, including SICStus and SWI Prolog.

3 An earlier version of Kahina for TRALE was previously presented in a poster session
at the HPSG conference 2010 [7].

4 http://www.kahina.org



Fig. 1: Architecture of the Kahina-based TRALE debugger

On the Prolog side, the existing source-level debugger was extended by a control
loop that interleaves with TRALE’s execution process and communicates with
Kahina to transmit step details and obtain tracing commands for controlling exe-
cution. Communication with Kahina is done via SICStus Prolog’s Jasper library,
which uses the Java Native Interface. On the Java side it is handled by a special-
ized bridge which translates low-level TRALE tracing information into Kahina’s
data model for storage and visualization. Another important application-specific
Java component is a step class used by the State component, defining the data
attributes associated with each step. Finally, a customizable configuration of
view components defines how the step data are visualized.

3 Visualizing Parsing Processes

In this and the next two sections, we focus on the TRALE debugger and the
features it offers to grammar engineers. In TRALE, a chart parser steps through
the input from right to left, building all possible chart edges starting at each
position before proceeding. Its principal operations or steps are:

– rule close: A failure-driven loop over all phrase-structure rules in the gram-
mar, takes a chart edge as input and recursively builds all edges that can be
built with the selected edge as the leftmost child.

– rule: Tries to apply a phrase-structure rule with the input edge as leftmost
daughter. Existing chart edges are used for covering the other daughters.
Success leads to a new edge on which rule close is called recursively.

– retrieve edge: Retrieves a passive edge from the chart for use as a non-
leftmost daughter in a rule application.

– cat: Applies a daughter description as part of a rule application.
– goal: Executes a procedural attachment as part of a rule application.
– mother: Applies a mother description as part of a rule application.



Fig. 2: Control flow tree of a parsing process with three levels of detail

TRALE comes with a command-line based tracer which treats these steps as
procedure boxes following the Prolog tracing model of [1]. Kahina builds upon
this notion and visualizes parsing processes as trees with goals as nodes and
subgoals as child nodes. The resulting control flow tree is a central element of
Kahina’s GUI and is used to retrieve details on individual steps (see Section 4)
by mouseclick. Each node is labeled with a numeric ID and a short description
of the step, and is color-coded for status (Call, Exit, DetExit, Redo or Fail).

Since a single huge tree with thousands of parse steps cannot be navigated,
the tree is split into three subviews that show different levels of detail (Fig. 2).
The first subview shows a thinned-out version of the tree in which only the
cornerstones are displayed, i.e. the rule close and rule steps. Selection of
cornerstone nodes controls which part of the tree occupies the second subview:
it contains the descendants of the selected cornerstone down to the next corner-
stones, displayed as leaves. Descendants of cat, goal and mother nodes are in
turn displayed in the third subview when the respective step is selected.

Apart from their size, TRALE parsing processes are challenging to visualize
due to their complex structure. Steps can be arranged in at least two meaningful
tree structures. The call tree, in which goals have their subgoals as children,
is visualized in the control flow tree through indentation. This tree roughly
corresponds to the structure of clauses and subclauses in a logic program. The
search tree is used in backtracking. Without backtracking, a search tree would
be a long unary branch in which each step is the child of the step invoked before
it, visualized by the top-to-bottom arrangement of steps in the control flow tree.
When Prolog backtracks, the step that is the last active choicepoint is copied
to represent the new invocation. The copy becomes a sibling of the original,
starting a new branch. Kahina shows only one branch of the search tree at a
time, focusing on visualizing the call tree, but at each choicepoint two arrow
buttons permit browsing through siblings in the search tree. Access to earlier,
“failed” branches is important because TRALE makes extensive use of failure-
driven loops for exhausting the search space of possible edges. The user can flip
through the different rules that were applied to any particular edge.

One way to inspect parsing processes is to trace them interactively, watching
the tree grow step by step or in larger chunks. The available tracing commands
are similar to those of a classical Prolog tracer (e.g. SICStus Prolog [2]). They



Fig. 3: Kahina’s GUI showing tracing buttons, the chart, and all step detail views

are exposed as clickable buttons, shown in Fig. 3: creep advances to the next
step. fail forces a not-yet-completed step to fail, making it possible to explore
otherwise inaccessible parts of the search space. auto-complete completes the
current step without interaction at substeps, but saves all information about the
substeps for later inspection. skip does the same without collecting any tracing
information. In effect it prunes parts of the process currently not of interest.
leap proceeds without interaction up to the next breakpoint (see Section 5)
or the end of the parsing process. Additional buttons pause or stop leap and
auto-complete actions, or step through a history of recently selected steps. Since
Kahina keeps old backtracking branches available – a feature that sets it apart
from other graphical Prolog tracers such as that of SWI-Prolog [16] – it also
supports full post-mortem analysis of a completed parsing process.

The message console complements the control flow tree as a navigation tool
by displaying a timeline of tracing events. Events include step ports just like in
a console-based Prolog tracer, but also user-generated and automatized tracing
events: forced fails, auto-completes, skips, and leaps. All events associated with
the currently selected step are highlighted, such as the Call port and the DetExit
port of the selected unify step in Fig. 3.



4 Step Detail Views

Kahina’s GUI contains different views for displaying details of the currently
selected step. Steps are selected dynamically according to the context, in most
cases through direct user interaction with either the control flow tree or the
chart display, a graphical representation of the parse chart (Section 6).

The source code editor reacts to the selection of a step that corresponds
to an element in the grammar (a rule application, a description, a constraint
or a procedure) by marking the corresponding source code line. Computation
steps are thus connected to the underlying grammar code. Fig. 3 shows the
step details of a unification step within a constraint application (HPSG’s Head
Feature Principle) that fires during the application of a description of a rule to
the mother feature structure. The defining source code line is colored. Syntax
highlighting and basic editing are also supported.

While the source code view shows the reasons for what is happening, the
feature structure view shows the structures that are being built as a result.
For this view, Kahina draws on the Gralej5 library. For steps that belong to rule
applications, it shows the corresponding local tree, with feature structures for all
daughters that have been or are being processed, and also the mother structure
once it is being processed. The substructure that is being modified in each step is
highlighted in yellow. For steps that belong to procedural attachments, the active
goal is displayed with embedded graphical representations for feature structure
arguments. A separate bindings view analogously shows feature structures
associated with variables in the TRALE description language at every point
during the application of a rule, constraint, or procedure.

In Fig. 3, the head complement rule is being applied to the input substring
“likes mary”, as shown by the local tree in the feature structure view. The current
constraint binds the mother’s synsem:loc:cat:head to a variable. The effect is
seen in the bindings view, which compares the state before and after execution
of the step. Before, the Head variable is still unbound, defaulting to mgsat (most
general satisfier). Afterwards, it contains the value of the head feature.

5 Automatization via Control Agents

Stepping through a parsing process manually and skipping or auto-completing ir-
relevant sections is error-prone and tiring. The leap command completes a parse
without interaction for later post-mortem analysis, but may preserve too much
information if only a certain part of the grammar should be debugged. Classic
Prolog tracers, and also TRALE’s console-based debugger, offer automatization
via leashing and breakpoints. The user determines that certain types of steps
should be unleashed, i.e. the tracer will simply proceed (creep) at them with-
out asking what to do. Thus, the user can step through the parse faster, without
having to issue a creep command at every step. Breakpoints single out a class

5 http://code.google.com/p/gralej/



of steps of interest and then use the leap command to immediately jump to the
next occurrence of that kind of step in the trace without further interaction.

Kahina generalizes leashing and breakpoints to the more powerful concept
of control agents. A control agent is best seen as a simple autonomous agent
consisting of a sensor which detects a pattern in individual steps or in a step tree,
and an actuator which reacts to pattern matches by issuing tracing commands.
Control agents are a method of describing and implementing intelligent behavior
with the purpose of automatizing parts of the tracing and thereby of the grammar
debugging process.

Fig. 4: The control agent editor

The control agent editor (Fig. 4) serves to define, activate and deactivate con-
trol agents. Control agents are grouped according to their tracing command, and
are accordingly called creep agents, skip agents, etc. While creep agents typically
effect unleashing behavior, skip agents and complete agents complete steps with-
out interaction, including all descendant steps, making these steps atomic for the
purposes of tracing. Break agents act like breakpoints by exiting leap mode when
their sensors fire. Fail agents let certain steps fail immediately, which is useful
e.g. for temporarily deactivating some phrase-structure rule. Warn agents have
actuators which not only stop a leap but also display a warning. Their sensor
counts the pattern matches, and only fires after reaching a predefined threshold.
Warn points detect infinite recursion or inefficiencies, e.g. when a procedural
attachment predicate is called too often.

Due to the flexibility in their actuators, control agents are more powerful
than traditional debugging mechanisms. Since they build on the existing tracing
commands rather than introducing completely new concepts6, we believe they
are more intuitive to learn after a short exposure to manual tracing. The central
technique for defining basic control agents is the creation of sensors by defining
step patterns. Usually a simple substring check suffices to identify the relevant
step class, but users can also build complex conditions with logical connectives
and a range of elementary step tests, as exemplified in Fig. 4. Additionally,
source code sensors that fire at steps associated with a code location can be
created by opening the source code view’s context menu for the line of interest

6 In fact, Kahina sees the manually-tracing user as just another, external control agent
with especially complex behavior.



(such as the line containing the name of a phrase structure rule, in order to catch
rule application steps) and selecting the desired actuator. In sum, control agents
provide an expressive yet accessible tool for automatization, which is crucial for
efficient tracing of parse processes.

6 Specialized Charts for TRALE and QType

Apart from storing partial results in parsing algorithms based on dynamic pro-
gramming, a chart summarizes the parsing process by storing successfully parsed
constituents, including those which do not become part of a complete parse. The
spans covered by constituents are usually symbolized as edges over the input
string. By default, Kahina’s chart display shows currently active edges (gray)
and successfully built passive edges (green). Dependencies between chart edges
are optionally displayed by highlighting the edges the selected edge is composed
of, and the edges that it is part of. An unexpected parse can often be narrowed
down to an unwanted edge for a substructure, while a missing parse is often due
to an unrecognized constituent. This has made chart displays a central top-level
parse inspection tool in the LKB and XLE. Practical grammar engineering in
TRALE has heavily relied on a third-party chart display. While parsing algo-
rithms usually only require storage of positive intermediate results, a grammar
engineer often needs to find out why an expected substructure is missing. Kahina
recognizes the equal importance of successful and failed edges: A failed attempt
to build an edge can be displayed as a failed edge which is linked to the step
where the respective failure occurred. A chart that does not contain failed edges,
such as the LKB chart, does not provide direct access to such information.

As the chart display is fully integrated with the basic tracing functionality,
the number of edges on the chart grows as a parse progresses. Every chart edge
constitutes a link into the step tree, giving quick access to the step where the
respective attempt to establish a constituent failed or succeeded.

Fig. 5: Examples of the chart displays for TRALE and QType

Kahina’s view components are designed for flexible customization to different
grammar engineering systems, as demonstrated by two very different chart vari-



ants tailored to TRALE and QType, respectively. On the left side of Figure 5, we
see a chart from a TRALE implementation of the English grammar by Pollard
& Sag [14]. After recognizing all the input tokens, the right-to-left bottom-up
parser has established an edge for the constituent “likes him” by means of the
head complement schema. The chart also contains failed edges for several other
schemas. The red edges below the successful edge represent failed attempts to
form constituents by means of the respective lexicon edge. The edges above it
represent failed attempts to build larger constituents from the successful edge.
The lexicon edge for the input symbol “she” is currently being closed. The active
application of the head subject schema will eventually lead to a successful parse.

Unlike TRALE, QType does not use dynamic programming. To still provide
the functionality of a chart for analyzing left-corner parses, we defined a bridge
that constructs a left-corner (LC) chart from the incoming step information.
An intermediate stage of this chart for a parse process is displayed on the right
side of Figure 5. The top-down prediction steps of the LC parser are visualized
by inverted L-shaped prediction edges which wrap around the edges that were
generated while attempting to complete the prediction. In the example, the
active prediction edge labeled s -> np vpc ranging over the entire sentence
indicates that QType is working on a parse based on the corresponding rule
at the root level. The required np constituent has already been recognized by
successful unification with the feature structure derived from the lexical entry
for “uther”, and QType is now trying to complete the expected vpc constituent.
The feature structure for the next token “storms” is of category tv. Attempts
to interpret it directly as a vpc, or to once again apply the rule s -> np vpc to
integrate it, have failed. The unary rule vp -> v was more successful, resulting
in a feature structure of type vp. Its unification with the vpc specification in
the rule definition will fail due to the mismatch between the subcat lists of
the transitive verb and the postulated vpc structure, causing the correct phrase
structure rule for verbs with one complement to be predicted next.

7 Discussion

One of the main contributions of Kahina to symbolic grammar engineering con-
sists in the integration of two very different debugging paradigms of previous
grammar debugging environments. We first compare Kahina to the old console-
based source level debugger (SLD) for TRALE, and then to LKB and XLE
as the two most popular environments which rely on a graphical interface and
high-level representations.

During unifications and applications of descriptions, TRALE’s SLD displays
feature structures only on demand, and for one step at a time. This makes it hard
to recognize these operations as processes and to understand them. Kahina’s
GUI makes it easy to go back and forth between steps and to quickly compare
different points in time. Neither does the old SLD provide explicit information
on how and when constraints and procedural attachments are executed. Given
the complexities of TRALE’s constraint formalism, this is a severe problem,



since goals are often suspended until some preconditions are fulfilled, and are
only then executed in a delayed fashion. In larger parses, this behavior makes it
virtually impossible to infer the current state of execution from a linear trace.
Kahina’s two-dimensional step tree with specialized nodes for representing sus-
pended goals makes these aspects much more transparent.

In a classical tracer, decisions are always made locally, without any possibil-
ity to correct errors. A single erroneous skip command or a small mistake in a
breakpoint definition may force the user to abort and restart a long tracing pro-
cess. This necessarily leads to defensive behavior to prevent the loss of relevant
information. As a result, traces tend to take longer than they would if infor-
mation on past steps remained accessible. Kahina improves the accessibility of
non-local information by its support for post-mortem inspection, but also with
the simultaneous graphical display of multiple types of information.

The other major debugging paradigm of grammar engineering is character-
ized by chart-based high-level debugging (LKB and XLE). The LKB is the most
relevant point of comparison for a TRALE debugger, since both systems are pri-
marily designed for HPSG implementations. The LKB excels at detailed error
messages for violations of formal conditions, whereas for more complex debug-
ging tasks, especially those involving rule interactions, its tools are a lot less
developed. It is standard debugging procedure to find a short sentence that
exhibits the relevant problem, and then to inspect the parse chart in a time-
consuming process which may require substantial intuition about the grammar.
Once the problem is isolated in a small set of phrases, LKB’s mechanism for
interactive unification checks comes into play. Any two structures in the feature
structure visualization can be tested for unifiability. If unification fails, the user
receives explicit feedback on the reasons for failure. To trace the interaction
between multiple constraints, intermediate results of successful unifications are
used to chain together unification checks.

While Kahina also supports high-level parse chart inspection in the spirit
of the LKB, interactive unification is only supported experimentally. Kahina
compensates for this by its much more direct support for locating sources of
error. Since every single unification or retrieval step is fully exposed by the
source-level debugger, the inefficient process of narrowing down a problem only
by means of the chart and test parses can in most cases be avoided. This reduces
the importance of interactive unification, since the relevant failure can already
be observed in the full context of the original problematic parse.

The LFG parser of XLE consists of a c-structure parsing component, and a
constraint system that subsequently enforces f-structure constraints. A display
of legal c-structures for which no valid f-structures could be found provides more
fine-grained feedback about the reasons for structure invalidity than in the LKB.
The XLE chart shows edges for partial matches of c-structure rules. While this
provides some of the desired information on failed edges, compared to Kahina
it still lacks information on rules that fail to apply because already the first
constituent cannot be established. For the failed edges that are shown, XLE
provides advanced analysis tools, also for finding out why no valid f-structure



for a given c-structure could be found. All views offer options for extending the
displayed information by invalid or incomplete structures, and selecting such a
structure will highlight the parts which were missing in a c-structure rule or
which violated some f-structure constraint. The exact way in which f-structure
constraints are enforced still remains intransparent. This means that XLE lacks
Kahina’s support for grammar optimization, because the order in which the
individual constraints are enforced is not exposed and cannot be manipulated.

To sum up the discussion, Kahina combines desirable properties of both the
chart-based and the tracer-based grammar debugging paradigms. The main ad-
vantage of its hybrid approach lies in providing support for high-level parse
inspection via the chart interface, while still making it possible to find out and
to visualize on demand how exactly a parse is computed, effectively giving di-
rect and fine-grained access to sources of undesirable behavior. The procedural
orientation also supports the application of profiling techniques for grammar
optimization, which is not possible if access is limited to high-level abstractions.

A downside of Kahina’s hybrid nature may be that it could take longer for the
beginner to develop an efficient grammar debugging workflow than in other en-
vironments, mainly because heavy use of control agents is necessary to keep step
data extraction efficient and manageable. Moreover, the high-level components
do not provide very advanced functionality in the area of interactive error diag-
nostics by default. Users must dig a little deeper in search of error diagnosis, but
the explanations they obtain along the way are very detailed and complete. Fi-
nally, Kahina’s layered system architecture makes it straightforward to integrate
further high-level error diagnosis modules tailored to the user requirements. The
prototype of a grammar workbench presented in [5] gives a glimpse of related
ongoing developments. Recent extensions are not yet completely integrated, and
need to be evaluated by grammar developers before they can become part of a
release.

8 Conclusion

Kahina is a framework for building debugging environments for different gram-
mar implementation systems. Its debuggers can take advantage of a modular
system architecture, predefined bridges for communication with Prolog systems,
a variety of view components, and external software modules. An implementa-
tion time of less than 500 person hours for the most recent debugger, compared
with an estimated 3,000 person hours for the first, demonstrates the effective-
ness of the framework in facilitating the development of interactive graphical
debuggers for additional grammar engineering systems. In the present paper, we
emphasized the application to TRALE in our discussion of Kahina’s strategies
for breaking up traces into conceptually meaningful chunks of information. The
amount of information presented to the user, and the strategies by which it is
gathered (in small steps, forcing shortcuts, leaping with or without recording
information) can be customized by means of control agents that offer a very
powerful abstraction layer for modifying tracing behavior.



The design of Kahina is tailored to a hybrid approach to grammar debugging
which attempts to combine the advantages of a high-level chart-based view of
parsing processes with the usefulness of a Prolog tracer for understanding every
aspect of computational behavior and system performance. Initial experiences
with the new TRALE debugger indicate that its low-level components especially
help novice users to gain better insight into controlling parsing behavior within
the system. The needs of expert users are currently catered for by a flexible chart
display with high interactivity. This aspect of the system will be strengthened
in future work through the development of tools that go beyond the analysis of
parses.

References

1. Byrd, L.: Understanding the control flow of Prolog programs. In: Tamlund, S.A.
(ed.) Proceedings of the 1980 Logic Programming Workshop. pp. 127–138 (1980)

2. Carlsson, M., et al.: SICStus Prolog User’s Manual, Release 4.1.1. Tech. rep.,
Swedish Institute of Computer Science (December 2009)

3. Carpenter, B., Penn, G.: ALE 3.2 User’s Guide. Technical Memo CMU-LTI-99-
MEMO, Carnegie Mellon Language Technologies Institute (1999)

4. Copestake, A.: Implementing Typed Feature Structure Grammars. CSLI Publica-
tions, Stanford, CA (2002)

5. Dellert, J.: Extending the Kahina Debugging Environment by a Feature Workbench
for TRALE. Diplomarbeit, Universität Tübingen (February 2012)

6. Dellert, J.: Interactive Extraction of Minimal Unsatisfiable Cores Enhanced By
Meta Learning. Diplomarbeit, Universität Tübingen (January 2013)

7. Dellert, J., Evang, K., Richter, F.: Kahina, a Debugging Framework for Logic
Programs and TRALE. The 17th International Conference on Head-Driven Phrase
Structure Grammar (2010)

8. Dewar, A.D., Cleary, J.G.: Graphical display of complex information within a
Prolog debugger. International Journal of Man-Machine Studies 25, 503–521 (1986)

9. Eisenstadt, M., Brayshaw, M., Paine, J.: The Transparent Prolog Machine. Intel-
lect Books (1991)

10. Evang, K., Dellert, J.: Kahina. Web site (2013), access date: 2013-03-04.
http://www.kahina.org/

11. Kaplan, R., Maxwell, J.T.: LFG grammar writer’s workbench. Technical report,
Xerox PARC (1996), ftp://ftp.parc.xerox.com/pub/lfg/lfgmanual.ps

12. Lazarov, M.: Gralej. Web site (2012), access date: 2013-03-05.
http://code.google.com/p/gralej/

13. Melnik, N.: From “hand-written” to computationally implemented HPSG theories.
Research on Language and Computation 5(2), 199–236 (2007)

14. Pollard, C., Sag, I.A.: Head-Driven Phrase Structure Grammar. The University of
Chicago Press, Chicago (1994)

15. Rumpf, C.: Offline-Compilierung relationaler Constraints in QType.
Online slides (2002), access date: 2013-03-07. http://user.phil-fak.uni-
duesseldorf.de/ rumpf/talks/Offline-Compilierung.pdf

16. Wielemaker, J.: An overview of the SWI-Prolog programming environment. In:
Mesnard, F., Serebenik, A. (eds.) Proceedings of the 13th International Workshop
on Logic Programming Environments. pp. 1–16. Katholieke Universiteit Leuven,
Heverlee, Belgium (2003)


