
Foundations of Lexical Resource Semantics

Frank Richter

Seminar für Sprachwissenschaft
Abteilung Computerlinguistik

Eberhard-Karls Universität Tübingen

Habilitationsschrift

2004



ii



Contents

Introduction 1

I The Mathematical and the Linguistic Framework 3
Model-Theoretic Grammar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1 The Mathematical Framework: RSRL 13
1.1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.2 Meaning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
1.3 RSRL without Relational Monsters . . . . . . . . . . . . . . . . . . . . . . 51

2 The Linguistic Framework: HPSG 59
2.1 Structural Hypotheses in Syntax . . . . . . . . . . . . . . . . . . . . . . . . 62

2.1.1 The Standard Hypotheses . . . . . . . . . . . . . . . . . . . . . . . 63
2.1.2 Unembedded Signs . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
2.1.3 Summary: A Grammar and an Intended Model . . . . . . . . . . . 78

2.2 Toward Normal Form Grammars . . . . . . . . . . . . . . . . . . . . . . . 82
2.2.1 Three Types of Problems . . . . . . . . . . . . . . . . . . . . . . . . 84
2.2.2 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
2.2.3 A Symbolization of the Results . . . . . . . . . . . . . . . . . . . . 105

2.3 A Normal Form Grammar with Exhaustive Model . . . . . . . . . . . . . . 111
2.4 Alternative Notions of Meaning . . . . . . . . . . . . . . . . . . . . . . . . 117

2.4.1 Linguistic Types as Abstract Feature Structures . . . . . . . . . . . 118
2.4.2 Canonical Representatives as Singly Generated Models . . . . . . . 123
2.4.3 The Third Way: Unique Unembedded Sign Configurations . . . . . 128

3 Technicalities 137
3.1 Notational Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
3.2 Equivalence Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

II Semantics 151
Model-Theoretic Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

iii



iv CONTENTS

4 Logical Languages as Object Languages of RSRL 163
4.1 Ty2 in RSRL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164
4.2 Ty2 in Normal Form HPSG Grammars . . . . . . . . . . . . . . . . . . . . 179

5 Lexicalized Flexible Ty2 185
5.1 Semantic Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
5.2 Lexicalized Flexible Ty2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

6 Lexical Resource Semantics 211
6.1 Empirical Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
6.2 The Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
6.3 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

Bibliography 231



Chapter 4

Logical Languages as Object
Languages of RSRL Grammars

In this chapter I will introduce the type-theoretic logical language which forms the basis
of the combination of the model-theoretic syntactic framework with model-theoretic se-
mantics. The integration will proceed in two steps. In Section 4.1 I will present an RSRL
grammar, ΓTy2 and show that its exhaustive models are good representations of the in-
tended type-theoretic language. In Section 4.2 the grammar ΓTy2 will be combined with the
normal form HPSG grammars from Part I of this thesis. In this way I will obtain a very
general characterization of HPSG grammars which can employ the given type-theoretic
language for assigning meaning to the unembedded sign configurations in their (minimal)
exhaustive models. It will become clear that the method which is applied to integrate
our particular type-theoretic language with HPSG grammars can also be used to integrate
other classes of logical languages with HPSG grammars.

The type-theoretic language I choose is the language of two-sorted type theory, Ty2.
Ty2 was introduced by [Gallin, 1975]. It is a generalization of Montague’s Intensional
Logic, and this has certain technical advantages [Zimmermann, 1989]. The two logical
representations for the two readings which I will assign to the sentence (29a) illustrate
Ty2:

(29) a. Every student reads some book.

b. ∀xse[student′s〈et〉(@, xse(@)) → ∃yse[book′s〈et〉(@, yse(@))∧read′s〈e〈et〉〉(@, xse(@), yse(@))]]

c. ∃yse[book′s〈et〉(@, yse(@))∧∀xse[student′s〈et〉(@, xse(@)) → read′s〈e〈et〉〉(@, xse(@), yse(@))]]

The most salient difference between the logical expressions in Ty2 and the expressions
of Intensional Logic is the syntactic occurrence of a world variable. By convention, I write
@ for the first variable of type s, where s is the type for world indices.1 The typing of the
non-logical constants follows the system in [Sailer, 2003], which is a translation into Ty2

1With the convention of choosing the first variable of type s as the unbound world variable in Ty2
representations for the meaning of sentences I follow [Groenendijk and Stokhof, 1982].

163



164 CHAPTER 4. LOGICAL LANGUAGES AS OBJECT LANGUAGES OF RSRL

of the type system in [Hendriks, 1993]. A more thorough analysis of the sentence (29a)
might also include event variables in the tradition of [Davidson, 1980]. More details about
the formulae will be explained when I introduce Ty2 in Section 4.1.

Ty2 is chosen for theoretical as well as for pragmatic reasons. Although some linguists
argue that the weak intensionality of the system is insufficient for the description of nat-
ural language semantics, this system is still very widespread among formal semanticists
in linguistics. For this reason analyses couched in Ty2 will be understood by most se-
manticists. Its close relationship to Intensional Logic makes Ty2 analyses compatible with
Montague Grammar. Moreover, Ty2 is the type-theory behind the theory of Transpar-
ent Logical Form, an important research direction in the tradition of Chomskian syntactic
theory [von Stechow, 1993]. Hence the use of Ty2 guarantees maximal compatibility of
the semantic analyses with alternative frameworks and functions as a bridge to Montague
Grammar. Analyses can draw on the experience with the system and with many analytical
suggestions which have been formulated in other linguistic frameworks. Investigations of
the new framework of normal form HPSG grammars with Ty2 can thus take advantage of
a rich research tradition. Last but not least I hope that the choice of Ty2 makes semantic
research in HPSG more attractive to formal semanticists.

A combination of Ty2 with HPSG was first suggested in a study of negative concord and
sentential negation in French in combination with a collocation theory by
[Richter and Sailer, 1999a]. Most of the formal results concerning the RSRL grammar
of Ty2 come from [Sailer, 2003]. However, in contrast to earlier work, the present study
systematically separates the integration of Ty2 in HPSG from the possible systems of se-
mantic compositions which can be defined based on the general architecture of a normal
form grammar with Ty2.

4.1 Two-sorted Type Theory in RSRL

In this section I will lay the foundations for the integration of a truth-conditional semantics
in the tradition of the semantics for English given in [Montague, 1974b] with normal form
grammars. For this purpose, I will first introduce the syntax of two-sorted type theory.
The syntax of the formal language is then the target for our RSRL theory of two-sorted
type theory. I will present an RSRL grammar ΓTy2 which has an exhaustive model which
contains Ty2. The aptness of the grammar ΓTy2 for our purposes will be shown with results
from [Sailer, 2003].

My presentation follows [Richter, 2004a, Section 5.4.1] with a number of modifications
assimilating the definitions syntactically to the version of Ty2 in [Sailer, 2003], since I
will rely on the results in that work concerning ΓTy2. However, my generalized treatment
of logical constants stays closer to the exposition of Ty2 in [Zimmermann, 1989] than to
Sailer’s. Sailer’s encoding of constants in ΓTy2 presupposes a finite set of logical constants.
My view on type theory, the relationship between the typed lambda calculus and logical
languages and their function within various linguistic research programs in model-theoretic
semantics is inspired by the very rewarding overview in [Hamm, 1999].



4.1. TY2 IN RSRL 165

Assume that e, s and t are distinct objects, none of which is an ordered pair. The set
of types, Types, is defined as the smallest set which contains these three objects and is
closed under pairs:

Definition 29 Types is the smallest set such that

e ∈ Types,

t ∈ Types,

s ∈ Types,

for each τ1 ∈ Types, for each τ2 ∈ Types, 〈τ1, τ2〉 ∈ Types.

The type e will be used for entities, t for the truth values True and False, and s for
possible worlds.

In the following definitions, I write IN0 for the set of positive integers and zero.

Definition 30 V ar is the smallest set such that for each τ ∈ Types, for each n ∈ IN0,
vτ,n ∈ V ar.

Definition 31 Const is the smallest set such that for each τ ∈ Types, for each n ∈ IN0,
constτ,n ∈ Const.

Variables and constants are typed. With the Definitions 30 and 31 we obtain a denumer-
ably infinite supply of variables and constants for every type. V arτ is the set of variables
of type τ . Analogously, Constτ is the set of constants of type τ .

The meaningful expressions of Ty2 are defined with all the logical connectives which
are typically needed in discussions of basic linguistic examples.

Definition 32 The meaningful expressions of Ty2 are the smallest family (Ty2τ )τ∈Types

such that

for each τ ∈ Types, V arτ ∪ Constτ ⊂ Ty2τ ,

for each τ ∈ Types, for each τ ′ ∈ Types,

if α〈τ ′,τ〉 ∈ Ty2〈τ ′,τ〉 and βτ ′ ∈ Ty2τ ′ , then
(
α〈τ ′,τ〉(βτ ′)

)
τ
∈ Ty2τ ,

for each τ ∈ Types, for each τ ′ ∈ Types, for each n ∈ IN0, for each vn,τ ′ ∈ V arτ ′ ,
for each ατ ∈ Ty2τ ,

(λvn,τ ′.ατ )〈τ ′,τ〉 ∈ Ty2〈τ ′,τ〉,

for each τ ∈ Types, for each ατ ∈ Ty2τ , for each βτ ∈ Ty2τ ,

(ατ = βτ )t ∈ Ty2t,



166 CHAPTER 4. LOGICAL LANGUAGES AS OBJECT LANGUAGES OF RSRL

for each αt ∈ Ty2t,

(¬αt)t ∈ Ty2t,

for each αt ∈ Ty2t, for each βt ∈ Ty2t,

(αt ∧ βt)t ∈ Ty2t, and (analogously for ∨,→, ↔)

for each τ ∈ Types, for each n ∈ IN0, for each vn,τ ∈ V arτ , for each αt ∈ Ty2t,

(∃vn,ταt)t
∈ Ty2t. (and analogously for ∀)

Standard definitions of the expressions of Ty2 typically only include variables and constants
as atomic expressions and applications,

(
α〈τ ′,τ〉(βτ ′)

)
τ
, abstractions, (λvn,τ ′.ατ )〈τ ′,τ〉, and

equations, (ατ = βτ )t as complex expressions. They proceed with ontologies Dτ for all
types τ , in which Dt is the set comprising True and False, De is a set of entities, Ds is
a set of world indices and the complex types 〈τ1, τ2〉 induce functions, D〈τ1,τ2〉, with the
domain Dτ1 and the range Dτ2 . Models of Ty2 are pairs of the family of ontologies Dτ and
an interpretation function I which assigns an element of the appropriate set Dτ ′ to each
non-logical constant of type τ ′ from Constτ ′ . A variable assignment function g maps each
element of V arτ ′ to an entity in Dτ ′. Using these constructs, the non-logical constants
and variables can be interpreted with I and g, equations are interpreted as equality in the
domain of interpreting structures, and applications and abstraction receive their standard
interpretation in the given domain of entities. I omit the details here, since none of this will
be needed in my foundational grammar-theoretic investigations, which only concern the
syntactic side of Ty2. A thorough exposition of the topic can be found in [Gallin, 1975].2

Equipped with models of the meaningful expressions of Ty2 it is possible to demonstrate
that applications, abstractions and equations are sufficient to define the logical connectives
and the quantifiers which I already included in Definition32.3 For this reason, they are
often omitted in the basic syntax to facilitate the definition of the semantics.

For the notation of logical expressions I will follow a few abbreviatory conventions
to minimize the size of the expressions and to make them more readable. Compare the
expressions in (30), corresponding to the two readings of the sentence in (30a), to their
more explicit renderings in (29):

(30) a. Every student reads some book.

b. ∀xse[student′@(x@) → ∃yse[book′@(y@) ∧ read′
@(x@, y@)]]

2For an introductory and more general overview, the reader might want to consult the comprehensive
textbook [Hindley and Seldin, 1986], which contains an introduction to the lambda calculus and to com-
binatory logic, including models of the typed and untyped lambda calculus and a discussion of different
type theories.

3A summary and very careful explanation for each one can be found in [Sailer, 2003, pp. 40–41].



4.1. TY2 IN RSRL 167

c. ∃yse[book′@(y@) ∧ ∀xse[student′@(x@) → read′@(x@, y@)]]

The reserved world variable vs,0, notated as @, is written as a subscript to its functors
for the sake of perspicuity. The type subscripts of the constants, variables and complex
expressions are often omitted, unless they are important for the discussion or to help read
the expression. The notation of complex types is simplified by omitting commata and un-
necessary brackets. For example, 〈s, e〉 becomes se, and the type of the constant student′,
〈s, 〈e, t〉〉, is written s〈et〉. Following the usual conventions, I also prefer a suggestive sym-
bolization of the non-logical constants over neutral symbols with number subscripts. For
example, I might thus write student′s〈et〉 (or even simply student′) for the second constant
of type 〈s, 〈e, t〉〉, more strictly written in the form cs〈et〉,1.

4

When we now combine RSRL and Ty2, we have to be careful with the symbols which
occur in both classes of languages, such as the universal and existential quantifiers and the
logical connectives. Fortunately, no harm can be done, since the context of an expression
will always disambiguate which logical language each symbol belongs to. As soon as we
have seen examples, it will become clear how the meta-language (RSRL) can always safely
be distinguished from the object language (Ty2).

Definition 32 gives us the object language which will be specified by the grammar
of Ty2, ΓTy2. For our purposes, we first need a signature ΣTy2 which provides a class of
interpretations with an appropriate ontology for a specification of Ty2 expressions. ΣTy2

is shown in Figure 4.1.
The sort hierarchy of ΣTy2 distinguishes three major classes of entities. The sorts in

whose denotation we will find them are immediate subsorts of the top sort, ty2. For the
intended standard exhaustive model of the grammar, the following properties are expected.
In the denotation of integer we will find the elements of IN0, type will denote the elements
of Types, and me the set of meaningful expressions of Ty2. The sort integer is partitioned
into zero and non-zero, with the attribute pre(decessor) appropriate for non-zero. The
immediate subsorts of type distinguish between the atomic types (entity, truth and w-index,
corresponding to e, t and s respectively) and complex-types. Entities of sort complex-type
have an in and an out attribute. The two attributes have values of sort type. The sort hi-
erarchy and appropriateness specification under type will generate a space of configurations
which stand in an obvious relationship to the type system of Ty2.

The expressions of Ty2 are typed, which is reflected by the fact that the type valued
attribute type is appropriate for all subsorts of the sort me. Variables (variable) and
constants (constant) are also indexed by an element of IN0, which is located under the
attribute num-index. Entities of sort application consist of two meaningful expressions, a
functor under the attribute functor and an argument under the attribute arg. Similarly,
an abstraction needs a variable under the attribute var and a meaningful expression under
the attribute arg. Equations as well as logical negation, the binary logical connectives
and the existential and universal quantifiers are similarly provided in the ontology of ΣTy2

with species with the necessary number of attributes and the attribute values required to
mirror Definition 32.

4The first constant of type 〈s, 〈e, t〉〉 is cs〈et〉,0.



168 CHAPTER 4. LOGICAL LANGUAGES AS OBJECT LANGUAGES OF RSRL

ty2

me type type

variable num-index integer

constant num-index integer

application functor me
arg me

abstraction var variable
arg me

equation arg1 me
arg2 me

negation arg me

l-const arg1 me
arg2 me

disjunction

conjunction

implication

bi-implication

quantifiers var variable
scope me

universal

existential

type

atomic-type

entity

truth

w-index

complex-type in type
out type

integer

zero

non-zero pre integer

Relations

member/2

ty2-component/2

copy/2

Figure 4.1: The signature ΣTy2 for a grammar of Ty2 expressions



4.1. TY2 IN RSRL 169

The three relation symbols member, ty2-component and copy will be needed in the
theory of Ty2 expressions to guarantee that each configuration under a ty2 entity is well-
formed. I will write 〈GTy2,vTy2,STy2,ATy2,FTy2,RTy2,ARTy2〉 for the septuple ΣTy2 and
I will use these symbols whenever I need to refer to a constituent of ΣTy2.

Before I start explaining the grammar of the meaningful expressions of Ty2, it is nec-
essary to become familiar with their representations in ΣTy2 models. The choices which
we face in this context are reminiscent of the choices we faced in the discussion of the
intensionality and (weak) extensionality of lists in Chapter 2. A first possibility is shown
in Figure 4.2.

Figure 4.2: A tree-shaped representation of cet,1(ve,0)

Figure 4.2 shows a configuration of entities under an application entity which corre-
sponds to the Ty2 expression cet,1(ve,0). An important design feature in this representation
is the decision to treat the entities in the configuration as intensional entities. For exam-
ple, there are two entities of sort truth and two entities of sort entity in this configuration.
Since these entities are atomic, the trivial configurations under each pair of entity and
truth entities are isomorphic. Figure 4.2 illustrates that the resulting representation can
be nicely depicted as a tree and is very readable. In the latter respect it corresponds to the



170 CHAPTER 4. LOGICAL LANGUAGES AS OBJECT LANGUAGES OF RSRL

intensional representation of lists in Chapter 2. Note that in order to avoid ambiguities in
the possible representation of terms, the principles of the grammar of Ty2 must enforce
the non-identity of entities throughout all possible ty2 configurations if we choose this rep-
resentation. If it is not enforced, there could be a second configuration for the expression
cet,1(ve,0) in models of the grammar which is just like the one depicted in Figure 4.2, except
that there is only one truth entity to which the type arc originating from the application
entity and the out arc originating from the complex-type entity point. This is, of course,
just one arbitrary example for many ambiguities which would arise.

An alternative design decision is illustrated in Figure 4.3, which shows another conceiv-
able configuration corresponding to the same expression, cet,1(ve,0).

Figure 4.3: A minimized representation of cet,1(ve,0)

The configuration in Figure 4.3 follows a minimality principle. It is minimal in the
sense that each possible configuration under any entity in it occurs at most once. The
idea behind this strategy corresponds to the weak extensionality of elist configurations in
Chapter 2, generalized to complex term representations. The special case of atomic entities
is the easiest case for illustrating the weak extensionality in terms. As a consequence of
weak extensionality, each atomic entity may only occur once in a connected configuration:
there is only one truth entity, one zero entity and one entity of sort entity. Depictions



4.1. TY2 IN RSRL 171

of this kind of configurations are harder to read, but their minimized size is technically
very attractive, in particular if we consider the use of relations over ty2 configurations in
grammatical principles.

To appreciate the compactness of this representation in the general case, consider a
slightly more complex expression. If we extend the expression in our example by lambda
abstraction to the new expression (λve,0.cet,1(ve,0))e,t

, the size of the configuration increases
by only one entity: there is an additional abstraction entity, which is the topmost entity in
the configuration. Three arcs originate from it: a type arc, pointing to the complex-type
entity; a var arc, pointing to the variable entity; and an arg arc, pointing to the appli-
cation entity. The weakly extensional configuration corresponding to the Ty2 expression
λve,0.cet,1(ve,0) is depicted in Figure 4.4.

Figure 4.4: A minimized representation of λve,0.cet,1(ve,0)

Because of the technical advantages of weakly extensional term representations, the
structure of ty2 configurations illustrated in Figure 4.3 and Figure 4.4 is the one which I
will choose. The grammar of Ty2 will thus not be modeled by the representation illustrated
in Figure 4.2. The proofs which will show that the grammar successfully encodes the syntax
of Ty2 will rely on the weak extensionality of the ty2 configurations.

While the configurations of semantic representations in grammar models are the crucial
level of representation for model-theoretic semantics in HPSG, it is also important to keep



172 CHAPTER 4. LOGICAL LANGUAGES AS OBJECT LANGUAGES OF RSRL

the description level in mind. After all, grammatical principles will be formulated on the
description level, and matters of notation are important for the convenience of a grammar
framework. From this perspective, the ΣTy2 formulae for the description of Ty2 expression
look quite awkward at first, as the example in (31) readily demonstrates.

(31) A description that denotes the term λxe.constet(xe):


abstraction

type 0



c-type

in 1 entity

out 2 truth




var 3

[
var

type 1

]

arg




application

func




constant

num-index pre zero

type 0



c-type

in 1

out 2







arg 3







The abstraction configuration in Figure 4.4 is in the denotation of the description in (31).
Note that all tags in (31) could be omitted, and the abstraction configuration would still
be in its denotation.

Fortunately it will be possible to define a much more perspicuous notation for the
description of representations of ty2 configurations. We will be able to show that in HPSG
grammars with Ty2 we may simply write a Ty2 expression instead of its description, due
to the properties of the grammar of Ty2. To see why this is the case, I will now introduce
ΓTy2 and study its properties.

All necessary restrictions on types are already given by the signature ΣTy2. In order
to characterize the elements of the set IN0, we only need a simple Natural Numbers
Principle which prevents infinite configurations in the denotation of integer:

(32) The Natural Numbers Principle:

integer → ∃x
x[

zero
]

An integer configuration in models of ΓTy2 consists of either a zero entity or a non-zero
entity on which a term consisting of a finite sequence of pre attributes is defined whose
interpretation on the non-zero entity yields an entity of sort zero. The number of pre
attributes in this term corresponds to the natural number represented by the configuration
under the non-zero entity.

In contrast to the simple integer configurations, configurations under me and types
entities require a complex theory lest we permit configurations in models which do not
correspond to expressions of Ty2. The Ty2 principles must enforce basic well-formedness
conditions such as the proper typing of complex expressions and the finiteness of each



4.1. TY2 IN RSRL 173

expression. They must also prevent oddities which become possible by the encoding of
terms and complex types as configurations of entities. An oddity which can occur unless
explicitly prevented is expressions or types which are a component of themselves because a
ΣTy2 term defined on their topmost entity has this entity as its value. Such a cyclic term is,
of course, not a possible term of Ty2 according to Definition 32. Finally, the principles
of Ty2 must enforce the decision that isomorphic configurations in a ty2 configuration must
be identical.

The principles which impose the necessary type restrictions on the constituent expres-
sions of logical operators and on the resulting expression are straightforward. All necessary
restrictions are summarized in the Complex Term Principles in (33).

(33) Complex Term Principles:

a. application →




type 2

functor type

[
in 1

out 2

]

arg type 1




b. abstraction →




type

[
in 1

out 2

]

var type 1

arg type 2




c. equation →



type truth
arg1 type 1

arg2 type 1




d. negation →
[
type truth
arg type truth

]

e. l-const →



type truth
arg1 type truth
arg2 type truth




f. quantifiers →
[
type truth
scope type truth

]

In an application the type of the overall expression is the out value type of the functor,
and the in value type of the functor is the type of the argument (33a). In abstractions the
type of the variable is the in type of the overall expression, and the out type of the overall
expression equals the type of the argument (33b). Equations are of type truth, because they
are either true or false, and the two arguments of the equation must be of the same type
(33c). Negations are of type truth, and the argument of a negation must also be of type truth
(33d). While it is necessary to list all the previous cases separately, the potential benefits
of using a description logic for the specification of a logical object language first become
apparent with the binary logical connectives. Using the common immediate supersort
of disjunction, conjunction, implication and bi-implication, one principle is enough for



174 CHAPTER 4. LOGICAL LANGUAGES AS OBJECT LANGUAGES OF RSRL

specifying that both arguments and the overall expression are of type truth in all four cases
(33e). Similarly, all quantificational expressions are of type truth, and so is the expression
in the scope of the quantifiers (33f).

The remaining three principles of θTy2 are more complex than the ones we have seen
so far. They rely on auxiliary relations to express the desired shape of ty2 configurations
in models of ΓTy2. I will now present them in turn together with the relation principles
which guarantee the necessary meaning of the relation symbols in ΓTy2 models.

The first principle, the Ty2 Non-Cyclicity Principle, will exclude cyclic terms
from models. Cyclic terms are terms which contain themselves as a component. A ty2
configuration constitutes a cyclic term if there is an entity u in it such that there is a ΣTy2

term of the form ‘: α1 . . . αn’, 1 ≤ n, defined on it which yields u as its value. Cyclic terms
in this sense will be excluded because it is not clear what they should correspond to in the
domain of Ty2 expressions.

To express the Ty2 Non-Cyclicity Principle, I define a binary relation ty2-

component between each ty2 entity in a ΓTy2 model and its components:

(34) The Ty2-component Principle:5

∀x∀y




ty2-component(x, y) ↔(
x = y ∨
∨{

∃ 1

(
y[

α 1
]
∧ ty2-component(x, 1 )

) ∣∣∣α ∈ ATy2

}
)



According to (34), x is in the ty2-component relation with y just in case x equals y or
there is an attribute α defined on y which leads to an entity 1 , and x and 1 are in the
ty2-component relation. In other words, the first element, x, in each pair in the relation
is a component of the second, y.

The Ty2 Non-Cyclicity Principle requires for each ty2 entity u in a ΓTy2 model
that there be no attribute value 1 for any attribute α defined on u such that u is a
component of 1 . In short, u is not a component of any of its attribute values:

(35) The Ty2 Non-Cyclicity Principle:6

ty2 → ∀ 1

((∨{[
α 1

] ∣∣∣α ∈ ATy2

})
→ ¬ ty2-component(:, 1 )

)

The ty2-component relation is also used in the Ty2 Finiteness Principle which
guarantees that all configurations which represent Ty2 expressions are finite. It is clear
that a configuration is finite in case it has finitely many components. Therefore, we want to

5The relation ty2-component is obviously a close relative of the general component relation which was
used in the u-sign Component Condition of Section 2.2.3 in Part I to give substance to the requirement
that each entity be a component of a u-sign entity. The difference will become important below: component
is defined for all entities in normal form grammars; ty2-component is a relation between entities which
belong to ty2 configurations.

6The expression ty2-component(:, 1 ) is a legitimate abbreviation of a formula in the description lan-
guage due to the Relation Argument Convention (Convention 8, page 141), which permits the use of the
reserved symbol ‘:’ in the argument slots of relational expressions.



4.1. TY2 IN RSRL 175

say that each ty2 entity in a ΓTy2 model has finitely many components. Besides a relation
which gives us access to all components of an entity, we then need a construct which ensures
that the set of components is finite.

A convenient construct of RSRL for this purpose are chains, because chains are finite
by definition.7 If there is a chain which contains all components of an entity, it follows that
the set of components of that entity is finite. All that is left to do is to require that there
be a chain with all its components for each ty2 entity in each ΓTy2 model.

First of all, we need a member relation between entities and chains of entities which
allows us to state that an entity is a member of a chain. The Chain Member Principle
in (36) is, of course, just a slight variant of the Member Principle for a member relation
between entities and lists of entities employed throughout Part I of this study.

(36) A Chain Member Principle for Ty2:

∀ 1∀ 2

(
member( 1 , 2 ) ↔

(
2 ‖ 1 | chain ‖ ∨
∃ 3 ( 2 ‖ty2 | 3 ‖ ∧ member( 1 , 3 ))

))

An entity 1 is a member of chain 2 just in case it is the first element of the chain, or it is in
the membership relation with the tail of the chain. The notation of the Chain Member
Principle uses the Chain Convention (Convention 6, page 140) for a simplified notation
in the descriptions of chains.

The Chain Member Principle defines the meaning of member in a very idiosyncratic
way. This is not a problem in the grammar ΓTy2, in which member is only used in the Ty2
Finiteness Principle. However, the membership principle will have to be generalized
when we characterize the general integration of ΓTy2 with normal form HPSG grammars
in Section 4.2, since grammarians will want to use the member relation as a relation be-
tween entities and lists of entities as well. For the purposes of ΓTy2 the Chain Member
Principle is sufficient.

The finiteness of Ty2 expressions is now very simple to express. We require that for
each ty2 entity u in a ΓTy2 model, there be a chain, 1 , such that each component of u is a
member of the chain 1 . Note that for each finite configuration there will be infinitely many
chains which fulfill this requirement, because any element may occur any (finite) number
of times on the chain. For the present purposes, however, it is sufficient to require the
existence of an appropriate chain, uniqueness is not necessary.

(37) The Ty2 Finiteness Principle:

ty2 → ∃ 1 ∀ 2

(
ty2-component( 2 , :) → member

(
2 , 1

[
chain

]))

The last principle of Ty2 for the well-formedness of ty2 configurations is the Ty2
Identity Principle, (39). With the Ty2 Identity Principle maximal token identity
in ty2 expressions is guaranteed in order to obtain a unique shape of each configuration
which represents a given Ty2 expression. There are no isomorphic copies of any sub-
configuration in any ty2 configuration.

7See page 22 for a brief discussion of chains in the RSRL formalism.



176 CHAPTER 4. LOGICAL LANGUAGES AS OBJECT LANGUAGES OF RSRL

As for the previous principles, an auxiliary relation is necessary to formulate this last
principle. The binary copy relation is a relation between entities u1 and u2 such that the
configurations under u1 and u2 are isomorphic. The relevant conditions are formulated in
the Copy Principle.

(38) The Copy Principle:

∀x∀y




copy(x, y) ↔

∨{x[

σ
]
∧ y[

σ
] ∣∣∣σ ∈ STy2

}
∧

∧{
∀ 1

(
x[

α 1
]
→ ∃ 2

(
y[

α 2
]
∧ copy( 1 , 2 )

)) ∣∣∣α ∈ ATy2

}






y is a copy of x if x and y have the same species (second line), and if an attribute α with
value 1 is defined on x, then α is also defined on y, and 1 and the value of α on y, 2 , are
in the copy relation (third line). Note that the copy relation is formulated with respect to
the sorts and attributes of ΣTy2. This restriction will remain in place when we integrate
ΓTy2 with normal form grammars in the next section. The copy relation will then remain
a relation which only considers those entities in ty2 configurations which belong to the
Ty2 signature. Although unembedded sign entities will become components of ty2 entities
under the embedded attribute of normal form grammars, they will not enter into the copy
relation.

In the Ty2 Identity Principle, we require that all pairs of entities which stand in the
copy relation to each other be identical. There are no isomorphic copies of configurations
in representations of Ty2 terms:

(39) The Ty2 Identity Principle:

ty2 → ∀ 1∀ 2 (copy( 1 , 2 ) → 1 = 2 )

With the presentation and discussion of the principles of Ty2 completed, I can now
be precise about the terminology which I have used throughout this section and say what
the RSRL grammar of Ty2, ΓTy2, is. Let θTy2 be the set of ΣTy2 descriptions shown in
(32)–(39). Then I call the grammar ΓTy2 = 〈ΣTy2, θTy2〉 the grammar of Ty2.

[Sailer, 2003] proves the properties of the relationship between exhaustive ΓTy2 models
and expressions of Ty2 which we will rely on throughout the rest of this study. First of all,
there is a special exhaustive ΓTy2 model whose universe consists of the natural numbers
(including zero), the set of types of Ty2 and the meaningful expressions of Ty2:

Proposition 10 [Sailer, 2003, p. 117] There is an exhaustive ΓTy2 model ITy2 =
〈UTy2, STy2, ATy2, RTy2〉 such that

UTy2 = IN0 ∪ Types ∪
⋃

τ∈Types
Ty2τ .



4.1. TY2 IN RSRL 177

Sailer proves Proposition 10 by constructing a ΓTy2 model with the required universe
and proving that it is an exhaustive ΓTy2 model.8 Proposition 10 assures us that ΓTy2 is
on the right track. Given Sailer’s result and the properties of exhaustive models, we know
that all exhaustive ΓTy2 models may only contain configurations which are descriptively
indistinguishable from Sailer’s standard model, except for the number of isomorphic copies
of configurations corresponding to the numbers, types, and Ty2 expressions. In any case,
there will always be at least one configuration in each exhaustive model which corresponds
to any given element in IN0 ∪ Types∪

⋃
τ∈Types

Ty2τ . Each exhaustive ΓTy2 model functions

as a model of Ty2.
The remaining results are important for the practical use of ΓTy2 in grammar writing.

First of all, descriptions of expressions of Ty2 are not very convenient to work with. Even
if we assume for the moment that—as we will show—each Ty2 expression can be described
with a description in

����� ΣTy2

0 , we know already from the example in (31) that these
descriptions can be very cumbersome and are certainly hard to read. Is there a way
to simplify the notation to make grammars more perspicuous? The result reported in
Lemma 5 will eventually give us the desired simplification by allowing us to work with
the standard notation of Ty2 expressions in grammatical descriptions just as if they were
����� ΣTy2

0 descriptions. It gives us a function which maps each Ty2 expression φ to a ΣTy2

AVM description which denotes an indiscernibility class of entities in any exhaustive ΓTy2

model. We will see in a moment that it in fact denotes the indiscernibility class to which
φ belongs.

Lemma 5 is an important step toward the crucial result in Proposition 11. For an
encoding of Ty2 in HPSG grammars to be useful, it is necessary that a linguist can refer to
any expression of Ty2 in grammatical descriptions. If this were not possible, it could happen
that certain lexical entries or principles could not be written, because of a descriptive gap
in the description language relative to the expressions of Ty2 in the denotation of ΓTy2.

Proposition 11 guarantees that there are no descriptive gaps in
����� ΣTy2

0 relative to the
expressions of Ty2. For any expression there is a way to refer to it (and to nothing else).

But the situation is even better. Sailer’s function, symbolized as ‘∗’, from numbers,
types and Ty2 expressions to ΣTy2 descriptions, produces an element of

����� ΣTy2

0 for each
natural number, type and expression of Ty2 such that the description denotes this natural
number, type or expression of Ty2 in the standard exhaustive ΓTy2 model.9 With Lemma 5

8Sailer’s proof initially only considers a definition of the syntax of Ty2 without negation, the binary
logical connectives and quantifiers, since these can be defined on the basis of application, abstraction and
equation alone, as I have already pointed out above. However, Sailer later shows that a syntactic extension
of ΓTy2 which includes these constructs does not change the results [Sailer, 2003, Section 3.5]. Hence it
is justified to refer to Sailer’s result in connection with our definition of the meaningful expression of Ty2
and the properties of ΓTy2.

9My characterization of Sailer’s function ‘∗’ is actually not entirely accurate, since he uses the RSRL
formalism of [Richter, 2004a] instead of the new version of RSRL which I proposed in Part I. However,
Theorem 3 (page 149) tells us that the old and the new version of RSRL are equivalent. Whatever can be
done with the descriptions of one can be done with the descriptions of the other. We can thus rest assured
that ‘∗’ can be modified to produce appropriate ΣTy2 AVM descriptions instead of ΣTy2 descriptions.



178 CHAPTER 4. LOGICAL LANGUAGES AS OBJECT LANGUAGES OF RSRL

we can see the relevance of this result. For any number, type or expression of Ty2, the
description produced by ‘∗’ denotes the elements of the equivalence class of configurations
in each exhaustive ΓTy2 model which contains the entities which are indistinguishable from
the number, type or expression of Ty2 which ‘∗’ started with. The practical value of this
result is very high. If we want to refer to the expressions in grammatical descriptions,
we may simply use the standard symbols for a Ty2 expression, natural number or type
instead of a complicated AVM formula describing it.. We can do so, because we know that
an appropriate description exists and can be determined by the function ‘∗’.

Let us now take a look at some of the mathematical details. The function ‘∗’ from(
IN0 ∪ Types ∪

⋃
τ∈Types

Ty2τ

)
to

��� � ΣTy2

0 establishes a connection between the natural

numbers, the set of types and the set of Ty2 expressions to ΣTy2 AVM descriptions which we
need for descriptive convenience in grammars. The function assigns a ΣTy2 AVM description
to each element in its domain. [Sailer, 2003, p. 128] points out that the finiteness, acyclicity
and the maximal token identities which ΓTy2 requires in the configurations of exhaustive
ΓTy2 models are crucial for allowing a definition of the function ‘∗’ which delivers the result
cited in Lemma 5. Sailer writes ‘∗’ in postfix notation, and I follow his convention.

According to Lemma 5, the description which ‘∗’ assigns to each natural number, type
and Ty2 expression denotes an equivalence class of entities in each ΓTy2 model.

Lemma 5 [Sailer, 2003, p. 132] For each exhaustive ΓTy2 model I = 〈U, S, A, R〉, for

each φ ∈

(
IN0 ∪ Types ∪

⋃
τ∈Types

Ty2τ

)
, for each u1 ∈ U, for each u2 ∈ U,

if u1 ∈ ∆I(φ
∗) and u2 ∈ ∆I(φ

∗),

then 〈u1, I〉 and 〈u2, I〉 are congruent.

To understand Proposition 11, we must first introduce an auxiliary function, SRI.
For each exhaustive ΓTy2 model 〈U, S, A, R〉, SR〈U,S,A,R〉 is a function from the powerset of

U to

(
IN0 ∪ Types ∪

⋃
τ∈Types

Ty2τ

)
which assigns to each indiscernibility class of objects

[u] in U the natural number, type or expression of Ty2 to which the objects in the class

[u] correspond. Proposition 11 guarantees that there is a formula in
����� ΣTy2

0 which can
pick out precisely the equivalence class of objects [u] in U which corresponds to any given
Ty2 expression φ.

Proposition 11 [Sailer, 2003, p. 127] For each exhaustive ΓTy2 model I = 〈U, S, A, R〉,

for each τ ∈ Types, for each φ ∈ Ty2τ , for some κ ∈
����� ΣTy2

0 ,

∆I(κ) =
{
u ∈ U

∣∣∣SRI([u]) = φ
}
.

The complete picture we obtain from this is as follows: For each natural number, type
or expression of Ty2, the function ‘∗’ hands us a ΣTy2 AVM description which singles out



4.2. TY2 IN NORMAL FORM HPSG GRAMMARS 179

the indiscernibility class of entities [u] in each exhaustive ΓTy2 model I which the function
SRI maps to the number, type or expression we started from. In other words, there is a
syntactic equivalence between the indiscernibility classes of entities in each exhaustive ΓTy2

model and the corresponding elements in the sets of natural numbers, types and expressions
of Ty2.

Since we can exchange equivalence classes of descriptively indiscernible configurations
in exhaustive ΓTy2 models and their corresponding elements in the sets of natural numbers,
types and Ty2 expressions syntactically, we can assign them the same meaning in models
of Ty2. This is the way in which [Sailer, 2003, Section 3.3] defines the meaning of the me
entities in ΓTy2 models. Instead of the entire equivalence classes, we may also take the
members of the indiscernibility classes of me entities in exhaustive ΓTy2 models as good
syntactic representations of Ty2 expressions and define the semantics of Ty2 for them. No
matter which way one prefers to look at it, ΓTy2 is obviously an adequate specification of
Ty2.

It is also clear from the results of this section that the method which was used to encode
the syntax of Ty2 as configurations of entities in exhaustive models of an RSRL grammar
could be applied to any logic with a recursively defined formal language with expressions
of finite length and finitely many logical operators and connectives. It opens the door to
integrating any model-theoretic semantics of natural languages using this kind of formal
language with normal form HPSG grammars. How this integration proceeds will be shown
in the next section for the grammar of Ty2, ΓTy2.

4.2 Two-sorted Type Theory in Normal Form HPSG

Grammars

In the previous section we specified an RSRL grammar of connected configurations in
exhaustive models which were—or corresponded to—the expressions of the languages of
two-sorted type theory. So far this has only been a logical specification of the syntax
of a formal language with no immediate significance for grammars of natural languages.
The linguistically interesting step comes when we combine ΓTy2 with normal form HPSG
grammars in order to symbolize the truth-conditional semantics which we intend to assign
to linguistic expressions in accordance with a linguistic theory about their meaning. As we
will see, there are different conceivable ways to use Ty2 for this purpose in HPSG. In the
present section, we will specify the general architecture which all of them have in common.

Assume that Γ = 〈Σ, θ〉 is an arbitrary normal form HPSG grammar in the sense of
Chapter 2 with Σ = 〈G,v,S,A,F ,R,AR〉. Further assume that Σ is a signature with lists
as described on page 139 above, and the sort hierarchy, 〈G,v〉, has a top sort subsuming
all other sorts. I will refer to the top sort with the symbol top. We will now characterize
in general terms normal form HPSG grammars with Ty2, or simply HPSG grammars with
Ty2.

First of all, recall that normal form signatures obey the restrictions of Section 2.2.3.



180 CHAPTER 4. LOGICAL LANGUAGES AS OBJECT LANGUAGES OF RSRL

Normal form signatures include sort symbols and a hierarchy for unembedded signs, and
the attribute embedded is required to be appropriate to all sorts in the sort hierarchy.
In addition the signature of HPSG grammars with Ty2 shall incorporate the Ty2 signa-
ture ΣTy2 = 〈GTy2,vTy2,STy2,ATy2,FTy2,RTy2,ARTy2〉 of Figure 4.1. This incorporation
must obey the following rules. The sort top immediately subsumes the top sort ty2 of
〈GTy2,vTy2〉, and no other sort in the hierarchy which is not in GTy2 subsumes ty2 or any
subsorts of it. The species in STy2 are species in S. Moreover, with the exception of the
sort me, which we will turn to below, no sort in GTy2 is appropriate for any attribute in A
except as specified by FTy2. Finally, no additional attribute is appropriate to any of the
sorts in GTy2 besides the attribute embedded and the attributes specified appropriate to
the sorts in GTy2 by FTy2.

Informally we may characterize the incorporation of ΣTy2 into a normal form signature
Σ as the insertion of a signature module ΣTy2 which exhibits only a minimal interaction
with the rest of the signature. The sort hierarchy of the grammar of Ty2 is inserted under
the top element in the sort hierarchy of the HPSG grammar with Ty2, and there is no
interaction between the Ty2 part of the sort hierarchy and the other parts of it in terms
of the appropriateness function, except for the connection established by the attribute
embedded and the sort me. The attribute embedded will serve as the anchor of the
Ty2 terms in the unembedded sign to which they will belong, and entities of sort me will
be reachable by the interpretation of some Σ term defined on signs. In typical HPSG
grammars in the tradition of the grammar of English in [Pollard and Sag, 1994], it is the
attribute content for which we will declare the sort me appropriate. Terms of Ty2
then replace the uninterpreted semantic representations of traditional HPSG grammars as
content values. This property of an HPSG grammar with Ty2 deserves to be recorded
as a separate statement:

(40) For each HPSG grammar 〈〈G,v,S,A,F ,R,AR〉, θ〉 with Ty2, for some sort σ ∈
(G\GTy2), for some attribute α ∈ (A\ATy2),

F (σ, α) = me.

The theory θ of an HPSG grammar with Ty2, 〈Σ, θ〉, must include the RSRL theory of
the natural numbers, of the type system and of the meaningful expressions of Ty2 which
we formulated in the theory θTy2. Essentially this means that I will require that θTy2 ⊂ θ.
However, there is one minor modification in the theory θTy2 when it is combined with
a normal form grammar with lists. The Ty2 Finiteness Principle in the theory of
meaningful expressions refers to a binary member relation. The Member Principle of
θTy2 defines member as a relation between entities and chains. HPSG grammars with lists
use the same member relation simultaneously as a relation between entities and lists. To
accommodate this twofold usage of the member relation, the version of the Member Prin-
ciple in (41g) below uses the Tape Convention (Convention 7, page 141) for defining it
between entities and tapes. A tape is either a chain or a list.10

10Some grammars additionally use member as a relation between entities and sets. The grammar of



4.2. TY2 IN NORMAL FORM HPSG GRAMMARS 181

The theory of the Ty2 module in HPSG grammars with Ty2 is summarized in (41).
(41a) is the theory of natural numbers. The principles (41b)–(41e) guarantee that, in
models of the grammar, all configurations of entities under an entity which are in the
denotation of the sort type and me are well-formed types and expressions of Ty2. (41f)–
(41h) are three relation principles for the three relations necessary in the theory of well-
formed types and Ty2 terms, ty2-component, member and copy.

(41) a. The Natural Numbers Principle:

integer → ∃x
x[

zero
]

b. The Complex Term Principles:

application →




type 2

functor type

[
in 1

out 2

]

arg type 1




abstraction →




type

[
in 1

out 2

]

var type 1

arg type 2




equation →



type truth

arg1 type 1

arg2 type 1




negation →
[
type truth
arg type truth

]

l-const →



type truth

arg1 type truth
arg2 type truth




quantifiers →
[
type truth
scope type truth

]

c. The Ty2 Non-Cyclicity Principle:

ty2 → ∀ 1

((∨{[
α 1

] ∣∣∣α ∈ ATy2

})
→ ¬ ty2-component(:, 1 )

)

d. The Ty2 Finiteness Principle:

ty2 → ∃ 1 ∀ 2

(
ty2-component( 2 , :) → member

(
2 , 1

[
chain

]))

e. The Ty2 Identity Principle:

ty2 → ∀ 1∀ 2 (copy( 1 , 2 ) → 1 = 2 )

English in [Pollard and Sag, 1994] is a prominent example for this practice. It requires a Member Prin-
ciple which defines member as a binary relation between entities and tapes or sets. In those grammars
(41g) must be replaced by a Member Principle such as the one presented in [Richter, 2004a, p. 283].



182 CHAPTER 4. LOGICAL LANGUAGES AS OBJECT LANGUAGES OF RSRL

f. The Ty2-component Principle:

∀x∀y




ty2-component(x, y) ↔(
x = y ∨
∨{

∃ 1

(
y[

α 1
]
∧ ty2-component(x, 1 )

) ∣∣∣α ∈ ATy2

}
)



g. The Member Principle for grammars with lists:

∀ 1∀ 2

(
member( 1 , 2 ) ↔

(
2 � 1 | chain � ∨
∃ 3 ( 2 � top | 3 � ∧ member( 1 , 3 ))

))

h. The Copy Principle:

∀x∀y




copy(x, y) ↔

∨{x[

σ
]
∧ y[

σ
] ∣∣∣σ ∈ STy2

}
∧

∧{
∀ 1

(
x[

α 1
]
→ ∃ 2

(
y[

α 2
]
∧ copy( 1 , 2 )

)) ∣∣∣α ∈ ATy2

}






Note that the Ty2 Non-Cyclicity Principle, Ty2 Finiteness Principle and the
Ty2 Identity Principle are blind to the fact that the expressions of Ty2 are now
embedded in u-sign configurations in grammar models. The ty2-component relation and
the copy relation take into account only attributes and sorts in ATy2 and STy2. This means
that non-cyclicity is only enforced for the expressions of Ty2 and not for the unembedded
sign in which they occur. Analogously, it is only the terms that must be finite, not the
complete u-sign configuration. Finally, maximal token identity is only required in the ty2
configurations within unembedded sign configurations. It does not affect the other parts
of the configurations.

HPSG grammars with Ty2 are no longer neutral with respect to certain fundamental
assumptions in a theory of natural language semantics. With the choice of Ty2 we adopt
the position that expressions of natural languages can be assigned a truth-conditional
semantics in the tradition of Montague Semantics. At the same time, however, the first
potential differences to Montague’s semiotic program [Montague, 1974c] appear. According
to the theory of normal form grammars developed in Part I, the empirical subject of
linguistic research are unembedded sign configurations. Unembedded sign configurations
comprise tectogrammatical structure, the local syntactic structure of signs and phonological
structure. Words have morphological structure. With the Ty2 component of signs we add
meaning to the properties of signs. In a given context of use, unembedded signs have a
truth-conditional denotation which is given by expressions of Ty2 which are part of them.

Crucially, this general architecture does not say anything yet about the relationship
between the syntactic structure of unembedded signs and their semantic structure. Disre-
garding for a moment the possibility that the general architecture permits several meaning-
defining Ty2 expressions in a given sign, there is no guarantee that there is a homomorphism
from syntactic structure to semantic structure. In particular, there might be an arbitrary
number of unembedded sign configurations in a minimal exhaustive model of a grammar
which have isomorphic syntactic structures and differ only with respect to their Ty2 terms.
In other words, although they have the same syntactic structure, they have distinct deno-
tations in the same contexts. The idea of regarding meaning specifications as a property



4.2. TY2 IN NORMAL FORM HPSG GRAMMARS 183

of unembedded sign configurations is clearly different from the position which Montague
adopts in his theory of universal grammar [Montague, 1974c]. In the architecture of univer-
sal grammar the interpretation of a syntactic expression of a natural language is obtained
directly and does not depend on logical representations, which only occur for convenience
as optional translations of syntactic expressions.

Alternatively, one might adopt a different perspective on unembedded sign configura-
tions and say that unembedded sign configurations as a whole are the syntactic level of
representation. In this case, one would view the terms of Ty2 in unembedded signs as
part of their syntactic form, in analogy to logical form semantics in the GB tradition. In
Montagovian terms, unembedded signs with terms of Ty2 then constitute a disambiguated
syntactic structure. The terms of Ty2 are not the result of a translation of the syntax into
a (dispensable) logical language. The interpretation of the disambiguated unembedded
signs is given by the Ty2 expressions which are a component of them. While this seems to
be a position which is defendable on technical grounds, it is not in the spirit of Montague’s
conception of universal grammar, in which a categorial syntax is mapped by a homomor-
phic function to the structures in the interpreting domain and, optionally, to the algebra
of a logical representation language such as Intensional Logic or Ty2.

What these conceptual differences mean for actual grammars is a different question.
For theoretical reasons one might decide to specify an HPSG grammar with Ty2 in such
a way that the Montagovian relationship between syntax and semantics is respected. One
would then write grammars with a disambiguated syntax of syntactic structures, and there
would be no pair of unembedded sign configurations with isomorphic syntax in a minimal
exhaustive model with distinct Ty2 terms. This would preserve the translation from the
syntactic base to the intermediary logical terms of Ty2. Whether or not this is a prefer-
able strategy can ultimately only be determined by the success or failure of the resulting
grammars relative to their predictions in the empirical domain of natural languages. It is
one of the virtues of HPSG to provide a framework which is at the same time explicit and
expressive enough to develop precise grammars with competing architectures and to test
concrete alternative theories of the relationship between syntactic and semantic structures
and alternative theories of semantic composition.

In the next two chapters, we will see two significantly different ways of defining semantic
composition in the present framework. The first is inspired by the Flexible Montague
Grammar of [Hendriks, 1993] and is thus a reconstruction of a theory which stands directly
in the tradition of Montague Grammar. The properties of the resulting system, LF-Ty2,
motivate the revisions in the mechanisms of semantic composition which lead to LRS in
Chapter 6. In contrast to LF-Ty2, LRS exploits the specific descriptive means of a model-
theoretic grammar framework in an effort to develop an empirically and conceptually more
satisfactory architecture of semantics.



184 CHAPTER 4. LOGICAL LANGUAGES AS OBJECT LANGUAGES OF RSRL



Chapter 5

Lexicalized Flexible Ty2

Based on the normal form HPSG grammars with Ty2 introduced in the previous chapter,
I will now explain a first general framework which combines an HPSG syntax with a
model-theoretic semantics and can assign meaning to an infinite collection of utterances.
The framework is called Lexicalized Flexible Ty2 (LF-Ty2) and was first presented at an
early stage of its development in [Richter and Sailer, 1999a] in an analysis of sentential
negation and negative concord in French. With the present version of LF-Ty2 I will largely
follow [Sailer, 2003] with only minor revisions. Sailer developed earlier versions of LF-Ty2
into a framework which translated large portions of Flexible Montague Grammar (FMG)
of [Hendriks, 1993] faithfully into an HPSG grammar. Sailer’s version of LF-Ty2 pairs
semantic representations with expressions of a fragment of English in such a way that
they correspond directly to the predictions of FMG. Sailer explores several varieties of
the LF-Ty2 system, each one adopting conceptually slightly different design options for
the technical realization of the semantic composition mechanisms of FMG in HPSG. I will
choose a version of LF-Ty2 which I consider well suited for a brief and informal presentation
of the system. My choice should not be taken as an indication of my preferences among
the various possible realizations of LF-Ty2.1 The crucial aspect of the present discussion of
LF-Ty2 is not the precise specification of the relevant composition structures; the crucial
aspect is the investigation of a classical Montague Semantics as part of a model-theoretic
syntactic grammar framework. In particular, I am interested in the relationship between
syntax and semantics which emerges when the ontology of abstract syntactic and semantic
linguistic entities is observed from the perspective of model-theoretic syntax.

FMG uses Intensional Logic (IL) as the translation language of the syntactic algebra. It
differs from Montague Grammar in not postulating the same semantic type for the trans-
lation of every expression in a given lexical category. The strategy of choosing a uniform
semantic type for the translations of all words in each syntactic category in Montague
Grammar leads to the strategy of generalizing to the worst case. This term describes the

1Quite to the contrary, I am very sympathetic with Sailer’s chain encoding of Ty2 expressions, which
eschews a reification of beta reduction and alpha conversion in components of utterances [Sailer, 2003,
Section 4.2.2]. However, an explanation of this inspired exercise in logic programming in RSRL would take
us much too far afield. The reader is encouraged to read the original work.

185



186 CHAPTER 5. LEXICALIZED FLEXIBLE TY2

fact that for each syntactic category C a type must be chosen for the basic translation of
each word of category C which is adequate for those members of category C which require
the highest typing. The higher types of some members of the syntactic category are nec-
essary to obtain the right combinatorial properties of these elements to describe the full
range of their combinatorial potential. It has been observed in this context that the higher
types of one category often also infect other categories with which they need to combine.
The strategy of generalizing to the worst case is thus very visible in the typing of the basic
translations of classical Montague Grammars. To quote a prominent example (in form of
the Ty2 counterpart of the IL term originally used), this strategy leads to a situation in
which a proper name such as Uther is assigned the translation λPs((se)t).P@(λ@.uthere) in-
stead of the much simpler translation uthere, because noun phrases are uniformly analyzed
as generalized quantifiers, and proper names must thus receive a translation of the type of
a generalized quantifier. The term λPs((se)t).P@(λ@.uthere) has the type of a generalized
quantifier, whereas the simple and more intuitive term uthere does not.

In FMG, each expression is assigned a basic translation of a minimal type. Proper names
such as Uther receive a basic translation of type e such as the non-logical constant uthere. In
order to obtain all necessary combinatorial possibilities in semantics, FMG introduces the
new mechanism of type shifting. By means of the application of a small set of type shifting
rules, the type of all expressions in each family of expressions of type τ can be raised or
lowered, and we obtain systematically related expressions of a higher or lower type τ ′. This
means that each word is associated with a basic translation and with an infinite family of
systematically related expressions which are obtained through the iterated application of
type shifting rules to the basic translation. Starting from this collection of terms associated
with words, the term associated with each phrase is obtained by intensional functional
application of the term of one syntactic daughter to the term of another syntactic daughter.
Whether intensional functional application with two given terms is possible is determined,
of course, by the types of the two constituents. The resulting combinatorial system stands
in the tradition of the type-driven approach first advocated by [Klein and Sag, 1985] in the
context of Generalized Phrase Structure Grammar (GPSG). In GPSG it was introduced to
avoid the alternative solution of a much more complicated individual pairing of syntactic
structures licensed by general ID rules with semantic translation rules. In a very graphic
formulation Hendriks calls the principle guiding the combinatorics of functional application
in type-driven systems the “survival of the fitting”.

The type-driven architecture of FMG is particularly well suited for an integration with a
linguistic syntax which does not mirror semantic ambiguities in its syntactic tree structures.
In this sense, FMG is reminiscent of the strategy of [Cooper, 1975], which introduced a
storage mechanism in a transformational syntax to treat scope ambiguities without the
syntactic ambiguities necessary in Montague’s technique of quantifying in the generalized
quantifiers. However, FMG does not even need a storage mechanism, since it captures the
ambiguities through type shifting of logical expressions. The sparseness of the adopted
syntactic tree structures facilitates the integration of the compositional semantic system of
FMG with the syntactically motivated phrase structure-like tectogrammatical structures
of normal form HPSG grammars with Ty2. The conformity of FMG with the syntactic



187

tectogrammatical base of HPSG grammars was originally the main motivation for choosing
FMG as the first system for a model-theoretic semantics in HPSG.

There are a few notable differences between FMG and its HPSG relative, the system
LF-Ty2. The most obvious difference is the choice of the logical language. In contrast to
FMG, which uses IL, LF-Ty2 uses Ty2. Since the translation of expressions from IL into
Ty2 is straightforward, this is unproblematic. Secondly, LF-Ty2 imposes a restriction on
the type shifting mechanism. Whereas FMG allows type shifting to apply to basic trans-
lations and to expressions derived by intensional functional application, LF-Ty2 restricts
type shifting to basic translations. This means that type shifting occurs only in words or
at the lexical level in LF-Ty2. A result from [Hendriks, 1993] guarantees that this is not a
restriction on the logical expressions which can be derived by the system. The reason for
the restriction on type shifting in LF-Ty2 is that unrestricted type shifting at the level of
phrases would introduce spurious ambiguities in the unembedded sign configurations pre-
dicted by the grammars. We would obtain unembedded sign configurations with identical
syntactic structures and semantic interpretation which would differ structurally in their re-
lational structures, in which the application of type shifting is represented. There would be
no possible empirical criterion to distinguish between these non-isomorphic configurations.
Hence they are undesirable for methodological reasons. Finally, the fragment of LF-Ty2
presented below does not incorporate all the type shifting rules of Hendriks. However,
there is no principled reason for omitting some of them, and LF-Ty2 could be extended to
capture larger portions of FMG.

In this chapter I will precede as follows. In Section 5.1 I will introduce the mechanisms
of semantic composition in LF-Ty2. They are directly taken over from FMG. They consist
of basic translations of the words in the fragment and of type shifting rules which can
freely apply to the basic translations and to the expressions resulting from intensional
functional application of one basic or derived expression to another. Intensional functional
application is the general mechanism of semantic composition throughout. The system
will be illustrated without reference to a syntactic component, since the syntax will later
be provided by normal form grammars. The syntax will come into play in Section 5.2, in
which I present an RSRL encoding of the composition mechanism and combine the HPSG
counterpart of the mechanisms of Section 5.1 with the syntax of a normal form grammar
with Ty2. This will give us the opportunity to inspect a Montagovian Semantics in HPSG.
The final section of this chapter, Section 5.3, is devoted to an investigation of the properties
of LF-Ty2. I will highlight some of the encoding techniques and discuss the structure
and properties of natural languages which emerge from studying the unembedded sign
configurations in exhaustive models of LF-Ty2 grammars. The relationship of unembedded
signs to model-theoretic semantic interpretation will give rise to an investigation of their
relationship to Montague’s architecture of universal grammar and of the function which
the lambda calculus plays in the two systems. I will outline the reasons why the lambda
calculus might not be an optimal technique of semantic composition in the framework of
normal form grammars with Ty2. In addition to the conceptual and technical arguments,
there are even more important empirical arguments for abandoning the mechanisms of
semantic composition of LF-Ty2. In addition to the grammar-theoretic considerations in



188 CHAPTER 5. LEXICALIZED FLEXIBLE TY2

this chapter I will cite data from Polish and from German in Chapter 6 which suggest
in combination with certain assumptions about syntax inherent to the HPSG framework
that a more adequate description of the data can be achieved by exploring composition
mechanisms familiar from model-theoretic syntax.

My focus in this chapter will be on a conceptual level. I am ultimately interested in
the question of which kind of architecture of semantic composition best fits the ontological
assumptions underlying the framework of normal form grammars about the unembedded
sign configurations which represent their predictions. What are the consequences of the
mechanisms for semantic composition of LF-Ty2 for the structure of unembedded sign
configurations? The meta-theory of normal form grammars postulates that unembedded
sign configurations embody the empirical predictions of grammars. Structurally different
unembedded sign configurations in a minimal exhaustive model of a grammar typically
reflect different predictions of the grammar. How well does the architecture of semantic
composition in LF-Ty2 respect this postulate? What do the results entail for how we can
interpret the meaning of LF-Ty2 grammars as predictions about the empirical domain of
utterances of a natural language? How satisfactory are the minimal exhaustive models of
LF-Ty2 grammars in this respect? In light of the answers to these questions, I will then
investigate what kinds of techniques LF-Ty2 uses to specify the meaning of signs, and how
they compare to the specification techniques we generally find in constraint-based grammar
frameworks.

The main contribution of this chapter will thus be the critical discussion of the archi-
tecture of LF-Ty2 in Section 5.3. Following up on the inclusion of Ty2 in HPSG grammars
in Chapter 4, I will investigate a successful technique of compositional semantics which I
import into HPSG in order to observe the behavior of the resulting system in the new,
model-theoretic syntactic environment. Independent of the results of this investigation,
LF-Ty2 marks an important improvement on our previous normal form grammars and on
HPSG grammars with uninterpreted semantic representations. LF-Ty2 grammars have a
distinguished attribute value in each sign which is a Ty2 expression. The model-theoretic
interpretation of this expression is the meaning of the sign. In this way each unembedded
sign receives a precise meaning specification which can be subjected to empirical tests.
Nothing like this can be done with uninterpreted syntactic representations.

Throughout the discussion I will presuppose familiarity with Montague Semantics and
the mathematical concepts it uses. References to the literature will serve as guides to those
basic definitions which are not repeated here. For our purposes it will not be necessary to
illustrate all details of LF-Ty2. Complex relation principles will occasionally be skipped,
since their exact form is of no consequence for the overall architecture of the system. All
of these omissions will be duly indicated.

5.1 Semantic Composition

In this section I will present the basic architecture of semantic composition in Hendriks’s
Lexicalized Flexible Montague Grammar to the extent in which I need it for integrating an



5.1. SEMANTIC COMPOSITION 189

adaptation of FMG into normal form grammars with Ty2 in Section 5.2. The presentation
presupposes familiarity with the basics of the typed lambda calculus such as beta reduc-
tion and alpha conversion. Beta reduction is also known as beta contraction or lambda
conversion. Alpha conversion is sometimes called the renaming of bound variables.2 Ex-
tensive examples with complete computations for all constructions which I will discuss can
be found in [Sailer, 2003, pp. 46–56].3

The architecture of semantic composition comprises the following three main features:

• There is a basic translation for every word in the grammar.

• A small number of type shifting rules can freely and iteratively apply to the basic
translation of words.4

• The logical form of each phrase is obtained by intensional functional application of
the logical forms of its daughters.

For simplicity I assume that all structures are binary branching. Intensional functional
application means that the functor remains as given by the daughter which contributes
the functor, and the argument expression is obtained by lambda abstracting over the
distinguished world variable, @. The expression contributed by the second daughter is
the argument of the abstraction. To give a concrete example, assume the semantic functor
daughter contributes the term α and the semantic argument daughter contributes the term
β. Then the intensional functional application of α to β is α(λ@.β). This means that the
type of the functor is generally of the form 〈〈s, τ2〉, τ1〉, with τ2 the type of the semantic
argument daughter.

In (42) I enumerate the basic translations of a few words in a small fragment of English.
There are intransitive verbs, (42a); different kinds of transitive verbs, (42b)–(42c); count
nouns, (42d)–(42e); proper names, (42f); quantifiers, (42g)–(42h); and the complementizer
that, (42i).

(42) a. walks ; λxse.walk′@(x@)

b. reads ; λyseλxse.read
′
@(x@, y@)

c. believes ; λpstλxse.believe′@(x@, p)

d. book ; λyse.book′@(y@)

e. student ; λyse.student′@(y@)

2All definitions which I will use can be found in [Hindley and Seldin, 1986, pp. 1–7]. Here they are
specialized to the typed lambda calculus.

3A few errors in Sailer’s Figure 1.12 [Sailer, 2003, p. 50] are corrected in the corresponding Figure 5.2
below. Many thanks are due to Manfred for giving me the tex sources of his dissertation so I could copy
the layout of his trees for my figures in this section.

4Recall that this is a restriction LF-Ty2 introduces without loss of generality, as known from a result
by [Hendriks, 1993, p. 126].



190 CHAPTER 5. LEXICALIZED FLEXIBLE TY2

f. mary ; marye

g. some ; λPs((se)t)λQs((se)t).∃xse[P@(x) ∧ Q@(x)]

h. every ; λPs((se)t)λQs((se)t).∀yse[P@(y) → Q@(y)]

i. that ; λpst.p@

On the basis of the basic translations, we can already derive very simple sentences.
Figure 5.1 shows how the reading of the familiar sentence Uther walks is obtained from
intensional functional application of the basic translation of walks to the basic translation
of Uther. The tree in the figure can be read as a tectogrammatical tree whose nodes are
annotated with the logical expressions indicating the meaning of the corresponding signs.
The category symbols NP, V, S, as well as VP in later figures, give an intuitive description
of the appropriate syntactic categories of the signs at the nodes. In addition, I will follow
[Sailer, 2003] in recording term manipulations at each node. In Figure 5.1 there is only
one. At the sentence node, S, the top expression is derived from the term indicating the
intensional functional application by a sequence of beta reductions. This sequence of term
manipulations is indicated by the arrow symbol followed by a lambda, ‘↑ λ’. Another
possible term manipulation indicated by the same symbols is alpha conversion.

NP
uthere
Uther

V
λxse.walk′@(x@)

walks

S
walk′@ (uthere)

↑ λ

[λx.walk′@(x@)](λ@.uthere)

Figure 5.1: The expression Uther walks

Figure 5.1 also illustrates how the meaning of a phrase is derived by type-driven func-
tional application rather than by an individual translation rule for each syntactic rule as in
[Montague, 1974b]. The only possible functional application is the one in the figure. The
term uthere cannot apply to λ@λx.walk′@(x@) because of a type mismatch: an expression
of type e cannot be the functor of an expression of type 〈s, 〈〈se〉, t〉〉.

In order to capture sentences with transitive verbs and two quantificational expressions,
we need to introduce a type shifting rule.

The argument raising rule, AR, in Definition 33 is cited after [Sailer, 2003, p. 147].
It is actually a set of rules, because each rule ARi allows type raising of the ith argument
which undergoes the rule:



5.1. SEMANTIC COMPOSITION 191

Definition 33 For each i ∈ IN, ARi is a relation between two expressions α and β such
that

if α is of type (a1(. . . ((sai)(. . . (anb) . . .))))),

then β is an expression of the form

λxa1,1 . . . λXs((s((sai)b))b),i . . . λxan,n.X(@)(λ@λxsai,i.α(x1) . . . (xi) . . . (xn)).

Argument raising relates two expressions of different types, which means that it is not
meaning preserving. Intuitively, it raises the type of the argument of a functor so that the
functor can combine with an argument which would otherwise be of a higher type than the
argument slot permits. How this works can best be understood by considering examples.
Figures 5.2 (page 192) and 5.3 (page 193) illustrate the derivation of the two readings of
the sentence Every student reads some book. The two readings differ with respect to the
scope of the two quantifiers. Both readings involve argument raising.

Figure 5.2 illustrates the reading in which the universal quantifier takes scope over
the existential quantifier. I call this reading the ∀∃ reading. For each student, there is a
potentially different book such that the student reads it. As can be seen in Figure 5.2,
the reading can be derived by the application of argument raising to the first argument
(λy) of the basic translation of verb reads.5 The symbol ‘↑ AR1’ indicates application of
argument raising to the first argument. There are also lambda conversions involved in this
step to reduce the expression resulting from argument raising to the equivalent minimal
expression. These conversion steps are never indicated separately in the figures when a
type shifting rule is applied.

In the second reading of the sentence, depicted in Figure 5.3, the existential quantifier
takes scope over the universal quantifier (∃∀ reading). There is one particular book such
that every student reads it. To derive this reading, it is necessary to apply argument
raising to the second argument of the basic translation of reads first (application to the
logical subject), immediately followed by an application of argument raising to the first
argument (the logical object). As can be seen in the figure, this yields an expression of
a type which allows first intensional functional application to the expression specifying
the meaning of the quantifier some book and then intensional functional application of the
resulting expression to the expression specifying the meaning of the subject, every student.

The second type shifting rule is value raising, cited here again from [Sailer, 2003, p.
144] in a version compatible with Ty2:

Definition 34 For each type τ ∈ Types, V Rτ is a relation between two expressions α and
β such that

if α is of a type a1(. . . (anb) . . .),

then β is an expression λxa1,1 . . . λxan,nλus((sb)τ).u(@)(λ@.α(x1) . . . (xn)).

5Note that the logical object of the verb is its first semantic argument, and its logical subject is its
second argument.



192
C

H
A

P
T

E
R

5
.

L
E

X
IC

A
L
IZ

E
D

F
L
E

X
IB

L
E

T
Y

2

NP
λQ.∀xse[student′@(x@) → Q@(x)]

∆
every student

V
λY λx.Y@(λ@λy.read′

@(x@, y@))

↑ AR1
λyλx.read′

@(x@, y@)
reads

NP
λP.∃yse[book′@(y@) ∧ P@(y)]

∆
some book

VP
λx.∃yse[book′@(y@) ∧ read′

@(x@, y@)]

↑ λ

[λY λx.Y@(λ@λy.read′
@(x@, y@))](λ@λP.∃yse[book′@(y@) ∧ P@(y)])

S
∀xse[student′@(x@) → ∃yse[book′@(y@) ∧ read′

@(x@, y@)]]

↑ λ

[λQ.∀xse[student′@(x@) → Q@(x)]](λ@λx.∃yse[book′@(y@) ∧ read′
@(x@, y@)])

F
igu

re
5.2:

T
h
e
∀
∃

read
in

g
of

th
e

sen
ten

ce
E
very

stu
d
en

t
rea

d
s

so
m

e
boo

k



5
.1

.
S
E

M
A

N
T

IC
C

O
M

P
O

S
IT

IO
N

193

NP
λQ.∀xse[student′@(x@) → Q@(x)]

∆
every student

V
λY λX.Y@(λ@λy.X@(λ@λx.read′

@(x@, y@)))

↑ AR1

λyλX.X@(λ@λx.read′
@(x@, y@))

↑ AR2

λyseλxse.read
′
@(x@, y@)

reads

NP
λP.∃yse[book′@(y@) ∧ P@(y)]

∆
some book

VP
λX.∃yse[book′@(y@) ∧ X@(λ@λxse.read

′
@(x@, y@))]

↑ λ

[λY λX.Y@(λ@λy.X@(λx.read′
@(x@, y@)))](λ@λP.∃yse[book′@(y@) ∧ P@(y)])

S
∃yse[book′@(y@) ∧ ∀xse[student′@(x@) → read′

@(x@, y@)]]

↑ λ

[λX.∃yse[book′@(y) ∧ X@(λ@λx.read′
@(x@, y@))]](λ@λQ.∀xse[student′@(x@) → Q@(x)])

F
igu

re
5.3:

T
h
e
∃
∀

read
in

g
of

th
e

sen
ten

ce
E
very

stu
d
en

t
rea

d
s

so
m

e
boo

k



194 CHAPTER 5. LEXICALIZED FLEXIBLE TY2

Value raising is again a name for a collection of relations. Whereas argument raising
raises the type of an argument of a logical functor, value raising adds an argument to an
expression. The simplest example can be given for non-logical constants of type e. The
constant uthere becomes λPs((se)t).P@(λ@.uthere) by value raising with VRt. The second
expression is, of course, the Ty2 counterpart to Montague’s translation of proper names as
generalized quantifiers. Consequently the application of value raising to the basic transla-
tion of Uther gives us an expression which allows an alternative derivation of the meaning
of the sentence Uther walks. It is depicted in Figure 5.4.

NP
λP.P@(λ@.uthere)

↑ VR
uthere
Uther

V
λxse.walk′@(x@)

walks

S
walk′@ (uthere)

↑ λ

[λP.P@(λ@.uthere)](λ@λx.walk′@(x@))

Figure 5.4: Illustration of value raising with the sentence Uther walks

After value raising, indicated in the figure by the symbol ‘↑ VR’, the raised meaning
contribution of Uther is the functor of the intension of the basic translation of walks.
Subsequent lambda conversion leads to the expected reading of the utterance Uther walks.

Value raising is, of course, not necessary in order to obtain this reading for Uther walks,
as we know from Figure 5.1. With the two derivations of one reading of an utterance
we observe a general property of FMG and of its HPSG counterpart LF-Ty2 of the next
section. Through the (iterated) application of type shifting rules it is possible to derive
identical readings in infinitely many ways. In particular, argument raising of a functor can
be countered by corresponding argument raising of its arguments. I will have to say more
about this below.

In (43) I list a number of constructions which can be analyzed with the basic transla-
tions and the two type shifting rules introduced so far. In addition to constructions whose
derivations were exemplified in figures above, the list also contains a new kind of con-
struction involving de re/de dicto ambiguities with quantifiers embedded under intensional
predicates in (43d).

(43) a. Uther walks.

walk′@(uthere)



5.1. SEMANTIC COMPOSITION 195

b. Every student walks.

∀xse[student′@(x@) → walk′(x@)]

c. Every student reads some book.

∀∃-reading:
∀xse[student′@(x@) → ∃yse[book′@(x@) ∧ read′

@(x@, y@)]]

∃∀-reading:
∃yse[book′@(x@) ∧ ∀xse[student′@(x@) → read′

@(x@, y@)]]

d. Every student believes that some president sucks.

de dicto reading:
∀xse[student′@(x@) → believe′@(x@, λ@.∃yse[president′@(y@) ∧ suck′@(y@)])]

∀∃ de re reading:
∀xse[student′@(x@) → ∃yse[president′@(y@) ∧ believe′(x@, λ@.suck′@(y@))]]

∃∀ de re reading:
∃yse[president′@(y@) ∧ ∀xse[student′@(x@) → believe′(x@, λ@.suck′@(y@))]]

In the de dicto reading of Every student believes that some president sucks it is not
guaranteed that a president exists at all. The students might hold beliefs about an entity
which does not even exist in their world. In the ∀∃ de re reading, the quantifier of the
embedded clause takes scope over the clause. In this reading, there exists at least one
president, but the beliefs held by the students might be about different presidents. Every
student might believe that an actual but possibly different president sucks. In the ∃∀ de
re reading, finally, we are in the peculiar situation in which one single president is such
that every student believes that he sucks, although there might be other presidents in
the same world and at least some of the students might believe that they suck as well.
All of these readings can be obtained by appropriate applications of value raising and of
argument raising to the basic translations of the words in the sentence. Since the details
of the derivations are of no importance for our discussion, they are omitted here.6

Before we turn to an integration of the mechanisms above with normal form grammars
with Ty2, let me briefly return to the observation that the same reading of utterances can
be derived in several different ways through different applications of type shifting rules.
Given the theoretical framework in which Hendriks works, this is not a problem for him
as long as the system is capable of deriving all empirically correct readings. There are no
empirical claims about different derivations. However, one might at first think that there
is a potential computational problem. As [Bouma, 1994] has shown, this is not the case.
Assuming that the computational system only tries to compute readings of type t for an
input expression, Bouma uses results by Hendriks to design an algorithm which reduces

6Corresponding utterances are analyzed in [Sailer, 2003, pp. 53–56] and [Hendriks, 1993, Section 5.1].
A third argument shifting rule, argument lowering, which Hendriks introduces together with argument
raising and value raising, is omitted here [Hendriks, 1993, p. 75].



196 CHAPTER 5. LEXICALIZED FLEXIBLE TY2

the infinite number of possible derivations to a finite subset. With the exception of one
construction, the algorithm even succeeds in considering only one derivation per sentence.
I conclude that the system proves to be tractable from a computational point of view.

One final result about FMG should be mentioned before we proceed, because it is
not obvious considering the fact that the system of FMG is capable of analyzing scope
ambiguities with and without opaque predicates without requiring distinct syntactic tree
structures for the different readings. [Hendriks, 1993, Chapter 2] proves that FMG is
strictly compositional in the algebraic sense if type shifting is recorded in some appropriate
way in the syntactic category structure.

5.2 Lexicalized Flexible Ty2

When I now discuss LF-Ty2, I presuppose that we are working in the class of normal form
grammars with Ty2. These normal form grammars comprise, among many other things,
the specification of a tectogrammatical structure on the basis of daughters attributes of
phrases as described in Section 2.1.1. The tectogrammatical structure is important for us,
because it provides the syntactic combinatorics to which semantic composition corresponds.

In this section I will make additional assumptions to simplify the exposition of LF-
Ty2. Two sign-valued tectogrammatical daughters attributes, h-dtr for the syntactic
head daughter and nh-dtr for the syntactic non-head daughter, are appropriate to phrases.
This means that all syntactic structures induce a binary branching tectogrammatical tree
with these two daughters attributes. These assumptions are not necessary for LF-Ty2 in
general. A binary branching structure makes the specification of intensional functional
application simpler, and adopting specific names and the given appropriateness function
for the daughters attributes allows me to formulate concrete examples.

I will also adopt convenient notational conventions for Ty2 expressions in AVM descrip-
tions. Following the usual logical conventions I will use names for variables in the same
way in which I use names for non-logical constants. I will write x and y for the first and
second variable of type se, vse,0 and vse,1, P and Q for the first and second variable of
type s((se)t), vs((se)t),0 and vs((se)t),1, etc. Occasionally I will add the type subscripts to the
variable names to remind the reader of the type conventions which I follow.

The basic architectural requirements of LF-Ty2 are obvious. We need sorts, attributes,
appropriateness specifications and relations which provide enough and the right kind of
structure in interpretations to specify lambda conversion, including alpha conversion, and
the type shifting mechanisms for argument raising and value raising. Furthermore, we need
a Semantics Principle for phrases which demands that the value of an appropriate
attribute in phrases be the intensional functional application of the Ty2 expressions in two
attribute values of their tectogrammatical daughters.

(44) Requirements for LF-Ty2:

a. Lexical entries appropriate for specifying basic translations and derived transla-
tions



5.2. LEXICALIZED FLEXIBLE TY2 197

b. A Semantics Principle which ensures that the value of a particular attribute in
phrases is the intensional functional application of corresponding attribute values
of their tectogrammatical daughters

c. A type shifting mechanism for argument raising and value raising

d. A mechanism for lambda conversion, including alpha conversion

The goal of LF-Ty2 can be seen in the description in (45). The idea is that LF-Ty2
must be specified in such a way that the grammar predicts the described value of the path
lf expr of the unembedded phrase Uther walks on the basis of the lexical specification
of the two words in it. The lexical specifications must be such that they predict the lf
expr values of the words described in (45) as their basic translation. A specification of
these specific expressions in the lexical entries of the two words is trivial, since we know
from the results of Chapter 4 that any Ty2 expression can be singled out with an exact
description. The task of the specification of LF-Ty2, however, is more demanding. Together
with the basic translation for each word in the grammar, the specification must foresee the
possibility of type shifting and lambda conversion. For this reason the signature of LF-Ty2
must provide sufficiently rich structures to permit type shifting and lambda conversion,
including alpha conversion.

(45)




u-phrase

phon
〈
uther, walks

〉

synsem loc cat

[
head verb

subcat
〈〉

]

lf expr walk′@ (uthere)

nh-dtr




e-word

phon
〈
uther

〉

synsem 1

[
loc cat

[
head noun

subcat
〈〉

]]

lf expr uthere




h-dtr




e-word

phon
〈
walks

〉

synsem loc cat

[
head verb

subcat
〈

1
〉
]

lf expr λxse.walk′@(x@)







Example (45) already reveals the first decisions regarding the signature of LF-Ty2.
In contrast to [Sailer, 2003], which locates semantic composition under Pollard and Sag’s
content attribute, I introduce a new attribute logical-form, usually to be written
as lf, at all signs. lf does not have Ty2 expressions as its value. Ty2 expressions are
located under one more attribute called expression, abbreviated as expr. As we will see,
the reason for this architecture is that lf values are complex configurations which might



198 CHAPTER 5. LEXICALIZED FLEXIBLE TY2

comprise configurations which encode beta conversion steps and alpha conversion steps.
These conversions lead to the expressions which occur as lf expr values.

The signature ΣLF−Ty2 contains a signature ΣTy2 and the sorts, sort hierarchy, at-
tributes, appropriateness specifications and relation symbols which are illustrated in (46).
The only exceptions are the sort top, which is not obligatory, and the sort sign, for which
there might be a different symbol in a legitimate LF-Ty2 signature.

(46) top

sign logical-form complex-lf

complex-lf expression me
reduction reduction

reduction term me
aux me

no-reduction

β-contraction rec reduction

change-bound-variable rec reduction

Relations

argument-raising/2

ar-aux/4

value-raising/2

shifting/2

intensional-functional-application/3

subterm/2

free-variable/2

replace/4

replace1/4

Apart from the abbreviations which I have already introduced, I will abbreviate the at-
tribute reduction as red. There is no further interaction through appropriateness be-
tween the new sorts in the sort hierarchy above and other sorts in normal form grammars
with Ty2. The new species only occur as labels of entities in configurations under lf
values.7

The lf expr value specifies the truth-conditional meaning of each sign in an unembed-
ded sign configuration of LF-Ty2 grammar models. The lf expr value of an unembedded
sign yields its meaning when the sign is interpreted in a context. Entities of sort complex-
lf occur as values of lf at signs. Besides the attribute expr, a second attribute called
red(uction) is appropriate to complex-lf. The reduction configurations under red de-
termine beta reduction and alpha conversion steps which might occur between the Ty2
expression under red aux and the Ty2 term in expr. This means that the red aux and
the expr values are either the same Ty2 expression, or the expression in expr is obtained
from the expression in red aux by finitely many conversion steps. Beta conversion and

7In this remark I ignore, of course, the effect of the embedded attribute, which is appropriate to all
new sorts. If we take the effect of the embedded attribute on LF-Ty2 models into account, each entity
has as its components all entities in the entire unembedded sign configuration to which it belongs.



5.2. LEXICALIZED FLEXIBLE TY2 199

alpha conversion cannot be defined directly as relations between Ty2 expressions which
occur as attribute values in a configuration. The reason for this is that a term which is
related to another term by beta reduction or alpha conversion does not contain the other
term as a component configuration, or vice versa. The conversion steps must, therefore,
be represented as separate configurations under attributes.8

The signature ΣLF−Ty2 introduces nine new relation symbols. The relations
argument-raising, ar-aux and value-raising will be used to specify the type shift-
ing relationship between Ty2 expressions which occur as attribute values.9 The shift-

ing relation will specify a closure over argument raising and value raising. The relation
intensional-functional-application between three entities will specify the intensional
functional application mechanism in the Semantics Principle. The remaining four re-
lations, finally, will serve to encode lambda conversion and alpha conversion. Besides their
function in the specification of lambda conversion, the subterm relation between Ty2 ex-
pressions and the free-variable relation are very valuable relations for principles at the
syntax-semantics interface. Moreover, the subterm relation will be fundamental in the
LRS framework in Chapter 6.

The basic translations of words are specified in the lexicon of LF-Ty2 grammars. In
HPSG grammars the term lexicon normally refers to the set of disjuncts in the consequent
of the Word Principle. These disjuncts are descriptions of words which occur in the
grammar. The lexical entries in (47) illustrate what they look like in an LF-Ty2 gram-
mar. For illustration I assume a normal form signature with Ty2 which closely follows the
signature of Pollard and Sag’s grammar of English in those parts of the signature which
are not related to semantic representations. The symbols ‘NP’ and ‘DetP’ are convenient
abbreviations for descriptions of appropriate synsem entities on subcat lists.

The lexical entries in (47) correspond to some of the basic translations in (42), and
it should be obvious how the remaining basic translations must be specified. In each
lexical entry there is a description of the basic translation. The entity which is assigned
to the variable 1 is the basic translation. However, what we find as value of lf red
aux might be a type shifted variant 2 of the expression 1 , since 1 and 2 stand in the
shifting relation. This specification works in the intended way because the expression

1 is a component configuration of each type shifted expression 2 which can be derived
from it. The expression 2 is specified as the lf red aux value, not as the lf expr value,
which contains the final reading of the word. The reason is that the expression 2 might not
be fully beta reduced. The principles which govern the shape of complex-lf and reduction
entities in models of LF-Ty2 grammars will guarantee that the lf expr value of each sign
is the term which is obtained by fully beta reducing the term in lf red aux.

The interaction of these components of the theory of LF-Ty2 achieves the desired effect.
The lf expr value of each word is either the Ty2 expression directly specified in the lexical

8To avoid these additional configurations under attributes, [Sailer, 2003, Section 4.2.2] proposes an
encoding of lambda conversion and alpha conversion in chain arguments of conversion relations.

9Note that this can only be done with relations because a type-shifted expression always contains the
‘original’ expression as its proper subpart. The reason that this is hardly visible in my examples is that I
maximally beta reduce the type-shifted expression in examples to make them more readable.



200 CHAPTER 5. LEXICALIZED FLEXIBLE TY2

entry (its basic translation), or a fully beta reduced type shifted variant thereof. We will
take a closer look at the theories of type shifting and lambda conversion below, without
going into all details.

(47) a.




word

phon
〈
reads

〉

syns loc cat



head verb

subcat
〈
NP, NP

〉

marking unmarked




lf red aux 2




∧ 1 [λyseλxse.read
′
@(x@, y@)]

∧ shifting( 1 , 2 )

b.




word

phon
〈
walks

〉

syns loc cat



head verb

subcat
〈
NP
〉

marking unmarked




lf red aux 2




∧ 1 [λxse.walk′@(x@)]
∧ shifting( 1 , 2 )

c.




word

phon
〈
student

〉

syns loc cat



head noun

subcat
〈
DetP

〉

marking unmarked




lf red aux 2




∧ 1 [λxse.student′@(x@)]
∧ shifting( 1 , 2 )

d.




word

phon
〈
book

〉

syns loc cat



head noun

subcat
〈
DetP

〉

marking unmarked




lf red aux 2




∧ 1 [λxse.book′@(x@)]
∧ shifting( 1 , 2 )

e.




word

phon
〈
mary

〉

syns loc cat



head noun

subcat
〈〉

marking unmarked




lf red aux 2




∧ 1 [marye]
∧ shifting( 1 , 2 )

f.




word

phon
〈
every

〉

syns loc cat



head det

subcat
〈〉

marking unmarked




lf red aux 2




∧ 1

[
λPs((se)t)λQs((se)t)∀xse [P@(x) → Q@(x)]

]

∧ shifting( 1 , 2 )



5.2. LEXICALIZED FLEXIBLE TY2 201

g.




word

phon
〈
every

〉

syns loc cat



head det

subcat
〈〉

marking unmarked




lf red aux 2




∧ 1

[
λPs((se)t)λQs((se)t)∃xse [P@(x) ∧ Q@(x)]

]

∧ shifting( 1 , 2 )

Supposing that the theories of type shifting and lambda conversion are correct, the
lexical component of LF-Ty2 is completed with the specification of the lexical entries. The
semantic composition at phrases is subject to the Semantics Principle, (48a). It relies
on the Intensional Functional Application Principle, (48b), which determines
the meaning of the crucial ternary relation intensional-functional-application.10

(48) a. Semantics Principle

phrase →






lf 1

h-dtr lf 2

nh-dtr lf 3




∧ intensional-functional-application( 1 , 2 , 3 )




b. Intensional Functional Application Principle

∀ 1 ∀ 2 ∀ 3



intensional-functional-application( 1 , 2 , 3 ) ↔

∃ 4 ∃ 5





1



red aux




application
functor 4

arg



abstraction
variable @
arg 5









∧ 2

[
expr 4

]
∧ 3

[
expr 5

]



∨




1



red aux




application

functor 5

arg



abstraction

variable @
arg 4









∧ 2

[
expr 4

]
∧ 3

[
expr 5

]










According to the Semantics Principle, the lf value of each phrase stands in the
intensional-functional-application relation to the lf values of its two daughters.
According to the Intensional Functional Application Principle, this means one
of two things:

10Note the difference in notation for the description of Ty2 expressions in the Intensional Func-
tional Application Principle, (48b), and in the exemplary lexical entries. According to the results
of Chapter 4, we may simply write expressions of Ty2 instead of their descriptions. But this does not
exclude the use of AVM formulae if this is more transparent, such as in the Intensional Functional
Application Principle.



202 CHAPTER 5. LEXICALIZED FLEXIBLE TY2

(1) the lf expr value of the head daughter is the functor of an application whose
argument is the lf expr value of the non-head daughter, with lambda abstraction over
the designated world variable added; and this application is the lf red aux value of the
phrase. According to the theories of reduction entities and of complex-lf entities to be
discussed below, this means that the lf expr value of the phrase is the expression which
we obtain by fully beta reducing the application expression in lf red aux.

(2) the lf expr value of the non-head daughter is the functor of an application whose
argument is the lf expr value of the head daughter, with lambda abstraction over the
designated world variable @ added; and this application is the lf red aux value of the
phrase. Again, just as in the first case, the theories of reduction entities and of complex-lf
entities guarantee that the lf expr value of the phrase is the expression which we obtain
by fully beta reducing the application expression in lf red aux.

In short, the lf expr value of each phrase is the result of intensional functional ap-
plication of the lf expr value of one of its daughters to the lf expr value of the other
daughter.

With this result, all that is left to do is to make sure that the type shifting relation
works according to the definitions of argument raising and value raising cited above (Def-
inition 33 and Definition 34), and that lambda conversion and alpha conversion behave
according to their standard definitions. This is the case if the theory of the configurations
under reduction entities is a correct theory of lambda and alpha conversion. Moreover,
there must be a principle which requires that lf expr values be fully beta reduced, as I
have presupposed throughout. I will not present all of these principles in detail. Instead, I
rely on Sailer’s results about them. In the remainder of this section I give a quick overview
of all the parts of these theories. The overview will suffice to give the reader an impression
of the complexity of the specification of LF-Ty2. First we will take a look at the theory of
the shifting relations, followed by the principles governing lambda and alpha conversions.
We finish with principles about the admissible form of Ty2 expressions which may occur
as lf expr values.

The relation shifting is needed to write lexical entries which specify the basic trans-
lation and the possible type shiftings of the basic translations simultaneously. Suppose
that the relation principles for argument-raising and value-raising are correct. Then
the Shifting Principle, (49), specifies the reflexive transitive closure over the possible
shifting operations on a Ty2 expression 1 .

(49) The Shifting Principle

∀ 1 ∀ 2

shifting( 1 , 2 ) ↔




1 = 2 ∨
∃ 3 (argument-raising( 1 , 3 ) ∧ shifting( 3 , 2 )) ∨
∃ 3 (value-raising( 1 , 3 ) ∧ shifting( 3 , 2 ))







The Value Raising Principle, (50), states that the relation value-raising holds
between two Ty2 expressions, 1 and 2 , in a configuration if and only if 1 stands in the value



5.2. LEXICALIZED FLEXIBLE TY2 203

raising relation according to Definition 34 with 2 , i.e., 2 results from 1 by iteratively
adding arguments according to Definition 34.

(50) The Value Raising Principle

∀ 1 ∀ 2



value-raising( 1 , 2 ) ↔




∃ 3




2




abstraction
variable 3

arg




application

functor



application
functor 3

arg @




arg



abstraction
variable @

arg 1













∨

∃ 3 ∃ 4 ∃ 5


3



application
functor 1

arg 4


∧ 2



abstraction
variable 4

arg 5




∧ value-raising( 3 , 5 )










The first disjunct to the right of the bi-implication in the Value Raising Principle
licenses the simple cases of value raising. Definition 34 indicates the type of the input
expression as a1(. . . (anb) . . .). In the first disjunct, n is zero. It can easily be seen that
this case puts uthere and λP.P@(λ@.uthere) in the value-raising relation in each config-
uration (P is the variable referred to by tag 3 ). The reader might want to check that the
second disjunct licenses more complex cases such as the value raising relationship between
λxse.walk′@(x@) and λyseλus((st)t).u@(λ@[(λxse.walk′@(x@))(y)]).

I omit the Argument Raising Principle and the auxiliary principle for the relation
ar-aux. They can be found in [Sailer, 2003, p. 148]. According to Sailer’s principles,
argument-raising holds between two Ty2 expressions in a configuration if and only if
they stand in the argument raising relation according to Definition 33.

With the LF-Ty2 theory of type shifting completed, I turn to the theory of lambda con-
version and alpha conversion. It is expressed in conditions on the admissible configurations
under the three kinds of reduction entities which occur as lf red values of signs.

The theory of no-reduction entities is the non-recursive base case of the conversions.
The No Reduction Principle [Sailer, 2003, p. 174] is illustrated in (51):

(51) The No Reduction Principle

no-reduction →
[
term 1

aux 1

]

In this simple case, the aux value and the term value are identical. The No Reduction
Principle is immediately responsible for the fact that the lexical entries in (47)—as
disjuncts in the consequent of a Word Principle—license word configurations with basic



204 CHAPTER 5. LEXICALIZED FLEXIBLE TY2

translations as lf expr value. This is the case because, due to the reflexivity of the
shifting relation, the lexical entries allow the lf red aux value of words to be the basic
translation. The No Reduction Principle permits the basic translation to appear as
the lf red term value. Furthermore, a principle to be introduced below, the Complex
lf Principle, which governs the configurations under complex-lf entities, guarantees that
the lf red term and lf expr values are always the same Ty2 expression.

The theories of the other two kinds of reduction entities, change-bound-variable and β-
contraction, are parallel to the No Reduction Principle, except that their conditions
are much more complex, because they involve relations and change-bound-variable and β-
contraction configurations are recursively structured due to their rec attribute. Each rec
attribute of reduction entities of these two species has another reduction entity as its value.

The Change Bound Variable Principle [Sailer, 2003, p. 174] needs the relations
subterm, free-variable, replace and replace1. I ignore the two relations replace and
replace1. They encode relationships between four expressions which help to state that
every free occurrence of a variable in a term is replaced by another variable and thus yields
a fourth expression. The relation free-variable holds between two Ty2 expressions in a
configuration if and only if the first is a variable entity which occurs free in the second. The
subterm relation between two Ty2 expressions will become important below. Therefore, I
illustrate it here:

(52) The Subterm Principle

∀ 1 ∀ 2

(
subterm( 1 , 2 ) ↔

(
1
[
me
]
∧ 1

[
me
]
∧

ty2-component( 1 , 2 )

))

The Subterm Principle uses the relation ty2-component, whose meaning in models is
determined by the Ty2-Component Principle in (34) on page 174. For simplicity, I
will later use an infix notation with the symbol ‘/’ for the subterm relation. I will write
‘ 1 / 2 ’ for ‘subterm( 1 , 2 )’. Two expressions 1 and 2 in a configuration are in the subterm

relation if the first is a subterm of the second, and in no other case.
Based on the relations subterm, free-variable, replace and replace1 and on the

four corresponding relation principles,11 the Change Bound Variable Principle states
about change-bound-variable entities in models of LF-Ty2 grammars that (a) the configu-
rations under them do not contain a β-contraction entity (ignoring configurations reached
by following an embedded attribute) and that (b) the aux value and the term value
stand in the relationship of alpha conversion.

The Beta Contraction Principle [Sailer, 2003, p. 176] uses the relations subterm,
replace and replace1. It specifies the relationship between the aux value and the term
value of β-contraction entities as a relationship of a (nonempty) sequence of beta reductions.

With the No Reduction Principle, the Change Bound Variable Principle
and the Beta Contraction Principle, the following picture about configurations un-
der reduction entities in models of LF-Ty2 grammars emerges: the relationship between

11See [Sailer, 2003, pp. 171–176] for these relation principles.



5.2. LEXICALIZED FLEXIBLE TY2 205

their aux expression and their term expression is a relationship of finitely many beta
contractions and alpha conversions from aux value to term value.

The Complex lf Principle presupposes this result and imposes the crucial condition
on the properties of the lf expr value of all signs. The expr value and the red term
value of all complex-lf entities are identical, and there is no unreduced β redex left in this
expression. In effect, this means that the lf expr value of each sign equals its lf red
aux value, which is specified either lexically or by the Semantics Principle, except that
the expression in lf expr is redex free. All possible lambda conversions are performed.

(53) Complex lf Principle

complex-lf →




[
expr 1

red term 1

]

∧ ¬∃ 2 subterm

(
2

[
application
functor abstraction

]
, 1

)




Finally, I impose a type restriction on the expressions which may occur as the readings
of an unembedded sign configuration. The present version of LF-Ty2 is a theory of sentence
semantics. I assume that the readings of sentences are always of type t. The U-sign Type
Restriction Principle excludes readings of a higher type. Although they are undesired,
they could in principle be derived by the unrestricted application of type shifting to the
basic translation of words.

(54) U-sign Type Restriction Principle

u-sign →
[
lf expr type truth

]

Summary With the U-sign Type Restriction Principle I have completed the
overview of the framework of LF-Ty2, and I can now characterize the general form of
LF-Ty2 grammars. An LF-Ty2 grammar ΓLF−Ty2 = 〈ΣLF−Ty2, θLF−Ty2〉 is a grammar
which obeys the following conditions:

ΣLF−Ty2 is a normal form signature with Ty2 which also includes the specifications
in (46). θLF−Ty2 is the theory of a normal form grammar with Ty2. In addition it contains
the nine relation principles for the new relations enumerated in (46); the lexical entries in
its Word Principle specify the lf red aux values of words according to the examples
given in (47); and it contains the Semantics Principle (48a), the Complex lf Prin-
ciple (53), the U-sign Restriction Principle (54), the No Reduction Principle
(51) and the Change Bound Variable Principle and Beta Contraction Princi-
ple as specified in [Sailer, 2003, p. 174 and 176]. The U-sign Restriction Principle
may be refined for grammars with semantic theories which include more than a sentential
semantics and thus might allow utterances whose readings are not specified by an expres-
sion of type t. The Semantics Principle may be modified with respect to the particular
attribute symbols which a grammar uses for the tectogrammatical structure. It can also
be generalized to non-binary branching tectogrammatical structures.



206 CHAPTER 5. LEXICALIZED FLEXIBLE TY2

As mentioned earlier already, LF-Ty2 has already been employed in empirical studies.
It was first presented in a [Richter and Sailer, 1999a], a study of sentential negation and
negative concord in French. The study [Richter and Sailer, 1999b] analyzes similar data
in Polish and reveals typological differences in the negation system of French and Polish
on the basis of the common semantic system of the two studies. [Sailer, 2003] gives the
most comprehensive account of LF-Ty2 and investigates various possibilities to modify the
system. In the second part of [Sailer, 2003], LF-Ty2 provides the theoretical foundation
for an analyses of idiomatic expressions. [Trawiński et al., 2004] is the latest study to
employ LF-Ty2. The purpose of LF-Ty2 in this study is to demonstrate how Trawiński’s
HPSG analysis of collocational prepositional phrases can be augmented by a compositional
semantics.

5.3 Discussion

The advantages of LF-Ty2 compared to the uninterpreted semantic representations of
[Pollard and Sag, 1994] and other HPSG theories which employ some form of uninterpreted
semantic representations are clear. They range from practical aspects such as direct access
to the results of theories formulated outside of the HPSG framework to abstract consider-
ations such as the compatibility with theories of compositional semantics. Extending a list
compiled in [Sailer, 2003, p. 383–384] and adapting it to the more comprehensive grammar
theory of normal form HPSG grammars, the following points deserve to be noted:

The semantic representations of LF-Ty2 belong to the standard repertoire of formal
semantics. Using them builds a bridge across the boundaries of linguistic frameworks, no
matter whether the boundary is due to different underlying syntactic frameworks or to
the distinction between a model-theoretic and a generative-enumerative framework. On
the basis of Ty2 any semantic theory about a certain empirical domain in LF-Ty2 can be
compared to alternative theories and their predictions. This should be in the best interest
of all parties concerned.

Ty2 is, of course, a well defined representation language. This imposes clear restrictions
on what kinds of extensions of the semantic theory are possible or make sense in the
given framework. As long as one works with representations which are only given by
example, both aspects remain unclear. To be more specific, the weak intensionality of
Ty2 is accompanied by well known problems in the analysis of the semantics of necessary
truths under opaque predicates. Anybody interested in this problem and solutions to
it knows about these limitations of Ty2 in advance and may want to choose a different
logical language from the start. The example set by the integration of Ty2 with normal
form grammars indicates for a large class of logical languages how their integration with
normal form HPSG grammars can proceed. It is simple to follow this example if one would
like to work with a different logical language for semantic representations in HPSG.

LF-Ty2 establishes a direct link between the logical form of an unembedded sign and
the model-theoretic meaning of the sign. Among other things, this allows us to express
restrictions on meanings by formulating restrictions on admissible logical forms. In LF-Ty2



5.3. DISCUSSION 207

this is particularly simple since syntactic structures and semantic structures are uniformly
specified in the language of the same description logic. The formulation of constraints such
as scope island constraints at the syntax-semantics interface can thus be explored quite
easily. The empirical value of the theories can be tested by considering the model-theoretic
meaning of the unembedded signs in minimal exhaustive models of the grammar.

LF-Ty2 accounts for scope ambiguities on the basis of the sparse syntactic structures
which are typical for the HPSG framework. The theory of scope ambiguities does not need
tree-geometric operations such as quantifier raising. It can even avoid a Cooper store.

The fact that no Cooper store is necessary to analyze scope ambiguities without postu-
lating a (tectogrammatical) syntactic ambiguity leads to a framework-internal improvement
in the architecture of semantic representations. In Pollard and Sag’s architecture of signs,
semantic representations are distributed over several attribute values. In LF-Ty2 every-
thing is contained under the lf attribute. The configurations under the lf attribute may
even be reduced further to just one Ty2 expression if one adopts Sailer’s chain encoding of
beta conversion and alpha conversion, which eliminates the reduction configurations of the
version of LF-Ty2 presented in Section 5.2.

LF-Ty2 also gives a clear answer to questions about the ontological status of the lf
value. All lf expr values are logical forms. Since they are logical forms and they consist of
configurations of abstract entities, it is conceivable that principles of grammar exist which
restrict logical forms in certain syntactic configurations, or vice versa.

As a system with logical forms and the potential for interaction between syntax and
logical form, LF-Ty2 differs from Montague Grammar. In Montague Grammar syntax is
the basis for interpretation, and a level of semantic representations is dispensable. As long
as there are no grammatical principles which interfere with semantic composition along
tectogrammatical trees, LF-Ty2 is still a strictly compositional semantics according to the
results of [Hendriks, 1993, Chapter 2] about FMG. However, semantic composition in LF-
Ty2 is embedded in an environment of unembedded sign configurations. In unembedded
sign configurations there is no ontological distinction between syntactic entities and the en-
tities in logical forms. Since all components in these configurations are specified as models
of a theory in a description logic, it is not even clear what we gain by keeping to a rela-
tionship between syntactic and semantic configurations that preserves the homomorphism
condition of compositionality. It seems as if the principle of compositionality, valuable as
a strategy and guiding idea in other syntactic frameworks, looses at least some of its value
in a model-theoretic syntactic framework.

Traditionally the lambda calculus ensures that semantic composition goes hand in hand
with the syntactic combinatorics to derive the readings for utterances. This is true in Mon-
tague Grammar, in Hendriks’s Flexible Montague Grammar, in von Stechow’s theory of
Transparent Logical Form, and in systems which combine a Transformational Grammar
with a Montague Semantics such as [Cooper, 1975]. But in a model-theoretic syntax the
syntactic combinatorics do not have the same status as in these frameworks. What appears
as the syntactic combinatorics in u-sign configurations is ultimately a reflection of how lin-
guists interpret these configurations. Linguists recognize tectogrammatical patterns which
are reminiscent of the phrase structure rule systems or of the categorial syntax in the other



208 CHAPTER 5. LEXICALIZED FLEXIBLE TY2

frameworks. But these patterns emerge from the model-theoretic interpretation of a set
of grammar principles. They are not a direct reflection of a generative mechanism. As a
result, there is no obvious need to specify the Ty2 expressions in unembedded sign config-
urations by an encoding of the lambda calculus which implements the derivation steps for
readings at each phrase in the configuration. In particular, compositionality as a major
motivation for using the lambda calculus in the aforementioned systems does not have the
same importance in normal form grammars with Ty2.

Although LF-Ty2 restricts the different ways in which the combinatorial system of
FMG can derive the same readings of a given sentence, it does not eliminate the possi-
bility of infinitely many derivations. The additional restriction in LF-Ty2 comes from the
lexicalization of type shifting. The remaining issue is the iterated application of the type
shifting rules to functors and their arguments which cancels out the higher types of functors
and arguments. The example of the two derivations for the reading of the sentence Uther
walks in Figure 5.1 and Figure 5.4 is only a very simple example of this situation. While
this is not a problem from the perspective of FMG, it is a problem in the model-theoretic
syntactic framework. Our meta-theory of normal form grammars states that two distinct
unembedded sign configurations in a minimal exhaustive grammar model should constitute
distinct predictions of the grammar. Since the derivational history of the lf expr value of
each unembedded sign is an intrinsic part of the structure of the sign, different derivations
lead to distinct unembedded sign configurations. However, the structural differences do
not constitute an empirical difference.

Viewed from the level of unembedded sign configurations in a minimal exhaustive gram-
mar model, we obtain the following picture. There are infinitely many u-sign configurations
with isomorphic syntax and differently configured lf values. Although the lf values of the
unembedded signs with isomorphic syntax are differently configured, the lf expr values
of infinitely many of them are pairwise isomorphic, indicating that these different u-sign
configurations have the same linguistic meaning. In other words, the infinitely many u-
sign configurations with isomorphic syntax fall into classes with infinitely many members.
Each class of configurations has members with isomorphic lf expr values and different lf
configurations in at least some signs. For example, we obtain two such infinite classes of
configurations for the utterance Every student reads some book, one class for each reading
of the sentence. This is not what we intuitively expect in our linguistic framework. The
situation is methodologically problematic, because there does not seem to be any way to
distinguish empirically between these different u-sign configurations with isomorphic lf
expr values and non-isomorphic lf configurations in at least some of their signs. What
our linguistic framework suggests is that, as far as syntactic and semantic structure are
concerned, there should be exactly one unembedded sign configuration in a minimal ex-
haustive model for each expression with a certain syntactic configuration and a certain lf
expr value.

There might be ways to fix this problem. For example, we could use the insights from
computational work on FMG in [Bouma, 1994] and build restrictions on the number of pos-
sible derivations into LF-Ty2. Or we could characterize equivalence classes of derivations
and treat classes of unembedded sign configurations which fall into the same derivation



5.3. DISCUSSION 209

class as empirically equivalent. However, the fact remains that something fundamental
in the architecture of LF-Ty2 is at odds with the model-theoretic perspective on the de-
scription of language. This suspicion can be confirmed upon closer inspection. There are
differences in the approach to grammar specifications between LF-Ty2 and ‘normal’ HPSG
specifications.

First of all, the specification of Ty2 expressions in the lexical entries for words is sys-
tematically specific up to isomorphism classes of expressions. From a formal point of view,
the Ty2 terms are specified by large, unambiguous descriptions. As we know, these de-
scriptions can even be determined by a function from Ty2 models to descriptions. This
form of description rarely occurs in HPSG principles. HPSG principles typically use very
general descriptions of large classes of configurations in order to state generalizations over
large classes of data. Maximal specificity of descriptions is not suitable for doing this.

There is, of course, a reason for the specificity of the Ty2 descriptions in LF-Ty2. The
basic translations feed the type shifting rules, and the type shifting rules act on the form
of expressions. Since the exact form of the expressions determines their type and their
interpretation, it is essential. It is ultimately a reflection of what Partee calls one of the
great achievements of working with the lambda calculus in semantics: “lambdas provide a
particularly perspicuous tool for representing and working with function-argument struc-
tures explicitly and compositionally” [Partee, 1996, p. 24]. An integration of the lambda
calculus in the grammar models as configurations of entities lifts the importance of form
to the level of the description language. Form is typically not important at the description
level of HPSG grammars.

The type shifting mechanism exhibits another property which is alien to traditional
HPSG grammars. It encodes a derivational history in the linguistic configurations of en-
tities. The standard perspective of HPSG emphasizes a direct description of the intended
structures, and this emphasis includes the view that all specified structures have empir-
ical significance. This is not the case for the type shifting mechanism and the lambda
conversion mechanism of LF-Ty2.

It would probably be misguided to overestimate the HPSG strategy of only specifying
structures with empirical significance. After all, classical HPSG grammars use relations
such as append and member whose immediate empirical significance is questionable at best.
However, these relations are employed to specify structures of immediate significance such
as the order of phonological entities on phon lists, and they do not introduce structural
ambiguities in the configurations. They are auxiliary constructions used for making precise
predictions. As far as their basic function is concerned, the same is true for the type shifting
and the lambda conversion mechanism. They are supposed to specify the right readings of
phrases as a consequence of the readings of their parts. However, in contrast to the append

relation, the type shifting mechanism has structural consequences beyond its immediate
empirical purpose of specifying each possible reading in a particular way. From the model-
theoretic perspective, it is not a good technique for the purpose of uniquely specifying a
particular intended unembedded sign configuration. It fails to fulfill the requirement that
it make only empirically relevant structural distinctions.

Type shifting, lambda conversion and alpha conversion have another property which



210 CHAPTER 5. LEXICALIZED FLEXIBLE TY2

usually does not enter into HPSG grammar specifications. They can be viewed as a compu-
tational processes. The configurations which express them in LF-Ty2 models are in a sense
structural counterparts to computations. The declarative perspective of constraint-based
grammar, on the other hand, is typically concerned with seeking principles which do not
have any computational implications. They are thought of as declarative characterizations
of empirical structures. Computing with these structures (or with their descriptions) should
be a completely independent issue. Computing with type shifting and lambda conversion,
however, is clearly not independent of the configurations specified by LF-Ty2.

None of these arguments against the architecture of LF-Ty2 is completely devastating
or poses an insurmountable obstacle for a pragmatic perspective on LF-Ty2 or an elaborate
abstract construction which can save the underlying meta-theoretic conception. Despite
all differences from common practice in HPSG, LF-Ty2 is a viable framework for working
with model-theoretic semantics in HPSG. However, our observations beg the question
of whether there is an alternative way to model-theoretic semantics with a type theory in
model-theoretic syntax, a way whose architecture and strategies stay closer to the standards
of grammar specification in this framework.

This question might find an answer if we consider the potential which the techniques
of model-theoretic syntax have for developing new approaches to old problems in a system
of semantic composition based on the lambda calculus. An alternative system of semantic
composition could take advantage of the techniques developed for the combinatorics of the
uninterpreted semantic representations in [Kasper, 1996] or in MRS [Copestake et al., 2003]
and of the mechanism of structural identities which is a central feature of many syntac-
tic HPSG principles. It could use methods of underspecification which are natural in the
HPSG framework and have been successfully applied in theoretical and computational
semantic theories. It could approach difficult empirical problems in the syntax and se-
mantics of negative concord phenomena from a new angle by taking a resource sensitive
position and envisaging structural identities in semantic representations as an additional
analytical possibility not formerly available. And, finally, such an alternative system could
take seriously the meta-theory of the constraint-based framework and target unembed-
ded sign configurations comprising syntactic and semantic subconfigurations which stand
in one-to-one correspondence to the empirical predictions of the grammar. Instead of a
combinatorial system which produces the readings, it could be a combinatorial system
which emerges from an accumulation of restrictions which are tied to certain syntactic and
semantic environments. With these ideas in mind, we will now turn to LRS.



Bibliography

[Asudeh and Crouch, 2002] Asudeh, Ash and Crouch, Richard 2002. Glue semantics for
HPSG. In Dorothee Beermann Frank van Eynde, Lars Hellan (ed), Proceedings of the
8th International Conference on Head-Driven Phrase Structure Grammar , 1–19. CSLI
Publications.

[Barwise and Perry, 1983] Barwise, Jon and Perry, John 1983. Situations and Attitudes.
Cambridge, Mass.: The MIT Press.

[Bouma, 1994] Bouma, Gosse 1994. Calculated flexibility. In Harry Bunt, Reinhart
Muskens, and Gerrit Rentier (eds), Proceedings of the International Workshop on Com-
putational Semantics, 32–40. Katholieke Universiteit Brabant.

[Bouma, 2003] Bouma, Gosse 2003. Verb clusters and the scope of adjuncts in Dutch.
In Pieter A. M. Seuren and Gerard Kempen (eds), Verb Constructions in German and
Dutch, 5–42. Amsterdam and Philadelphia: Benjamins.

[Carnap, 1956] Carnap, Rudolf 1956. Meaning and Necessity . The University of Chicago
Press, Chicago.

[Carpenter, 1992] Carpenter, Bob 1992. The Logic of Typed Feature Structures. Cambridge
University Press. Cambridge, Massachusetts, USA.

[Chomsky, 1965] Chomsky, Noam 1965. Aspects of the Theory of Syntax . The M.I.T.
Press.

[Cooper, 1983] Cooper, Robin 1983. Quantification and Syntactic Theory . D. Reidel Pub-
lishing Company, Dordrecht.

[Cooper, 1975] Cooper, Robin H. 1975. Montague’s Semantic Theory and Transforma-
tional Syntax . PhD thesis, University of Massachusetts at Amherst.

[Copestake, 2002] Copestake, Ann 2002. Implementing Typed Feature Structure Gram-
mars, (= CSLI Lecture Notes, 110). Stanford: CSLI Publications.

[Copestake et al., 2003] Copestake, Ann, Flickinger, Dan, Pollard, Carl, and Sag, Ivan A.
2003. Minimal Recursion Semantics: An introduction. Note: Journal submission,
November 2003.

231



232 BIBLIOGRAPHY

[Corblin and Tovena, 2001] Corblin, Francis and Tovena, Lucia M. 2001. On the multiple
expression of negation in Romance. In Yves D’Hulst, Johan Rooryck, and Jan Schroten
(eds), Romance Languages and Linguistic Theory 1999 , 87–115. John Benjamins, Ams-
terdam.

[Curry, 1961] Curry, Haskell B. 1961. Some logical aspects of grammatical structure. In
Jacobson (ed), Structure of Language and its Mathematical Aspects: Proceedings of the
Twelfth Symposium in Applied Mathematics, 56–68. American Mathematical Society.

[Dalrymple, 1999] Dalrymple, Mary (ed) 1999. Semantics and syntax in lexical functional
grammar: the resource logic approach. MIT Press.

[Daniels and Meurers, 2002] Daniels, Mike and Meurers, W. Detmar 2002. Improving the
efficiency of parsing with discontinuous constituents. In Shuly Wintner (ed), Proceedings
of NLULP’02: The 7th International Workshop on Natural Language Understanding
and Logic Programming , (= Datalogiske Skrifter , 92), 49–68, Copenhagen: Roskilde
Universitetscenter.

[Davidson, 1980] Davidson, Donald 1980. Essays on Actions and Events. Clarendon Press,
Oxford.

[Dowty et al., 1981] Dowty, David R., Wall, Robert E., and Peters, Stanley 1981. Intro-
duction to Montague Semantics. D. Reidel Publishing Company.

[Ebert, 2003] Ebert, Christian 2003. On the expressive completeness of underspecified
representations. In Proceedings of the 14th Amsterdam Colloquium, Amsterdam.

[Egg, 1998] Egg, Markus 1998. Wh-questions in Underspecified Minimal Recursion Seman-
tics. Journal of Semantics, 15:37–82.

[Egg et al., 2001] Egg, Markus, Koller, Alexander, and Niehren, Joachim 2001. The Con-
straint Language for Lambda Structures. Journal of Logic, Language and Information,
10.4:457–485.

[Frank and Reyle, 1995] Frank, Anette and Reyle, Uwe 1995. Principle based semantics
for HPSG. In Proceedings of the Seventh Conference of the European Chapter of the
Association for Computational Linguistics, 9–16. Association for Computational Lin-
guistics.

[Gallin, 1975] Gallin, Daniel 1975. Intensional and Higher-Order Modal Logic. North-
Holland, Amsterdam.

[Gazdar et al., 1985] Gazdar, Gerald, Klein, Ewan, Pullum, Geoffrey K., and Sag, Ivan A.
1985. Generalized Phrase Structure Grammar . Harvard University Press. Cambridge
Massachusetts.



BIBLIOGRAPHY 233

[Ginzburg and Sag, 2000] Ginzburg, Jonathan and Sag, Ivan A. 2000. Interrogative Inves-
tigations. The Form, Meaning, and Use of English Interrogatives. CSLI Publications.

[Groenendijk and Stokhof, 1982] Groenendijk, Jeroen and Stokhof, Martin 1982. Semantic
analysis of wh-complements. Linguistics and Philosophy , 5:175–233.

[Haegeman and Zanuttini, 1991] Haegeman, Liliane and Zanuttini, Raffaella 1991. Nega-
tive Heads and the Neg Criterion. The Linguistic Review , 8:233–251.

[Halvorsen and Ladusaw, 1979] Halvorsen, Per-Kristian and Ladusaw, William A. 1979.
Montague’s ‘Universal Grammar’: An introduction for the linguist. Linguistics and
Philosophy , 3:185–223.

[Hamm, 1999] Hamm, Fritz 1999. Modelltheoretische Untersuchungen zur Semantik von
Nominalisierungen. SfS–Report–01–00, Seminar für Sprachwissenschaft der Universität
Tübingen. Note: Habilitationsschrift.

[Hendriks, 1993] Hendriks, Herman 1993. Studied Flexibility , (= ILLC Dissertation Series
1995-5 ). Institute for Logic, Language and Computation, Amsterdam.

[Hindley and Seldin, 1986] Hindley, J. Roger and Seldin, Jonathan P. 1986. Introduction
to Combinators and the lambda-Calculus. Cambridge University Press.

[Höhle, 1999] Höhle, Tilman N. 1999. An architecture for phonology. In Robert D. Borsley
and Adam Przepiórkowski (eds), Slavic in Head-Driven Phrase Structure Grammar , 61–
90. Stanford: CSLI Publications.

[Janssen, 1983] Janssen, Theodoor Maria Victor 1983. Foundations and Applications of
Montague Grammar . PhD thesis, University of Amsterdam.

[Janssen, 1997] Janssen, Theo M. V. 1997. Compositionality. In Johan van Benthem and
Alice ter Meulen (eds), Handbook of Logic and Language, 417–473. Elsevier Science B.V.

[Johnson, 1988] Johnson, Mark 1988. Attribute-Value Logic and the Theory of Grammar .
CSLI Publications.

[Kasper, 1996] Kasper, Robert T. 1996. Semantics of recursive modification. Note: Un-
published Manuscript, September 11th, 1996. The Ohio State University.

[Kathol, 1995] Kathol, Andreas 1995. Linearization-Based German Syntax . PhD thesis,
Ohio State University.

[Kathol, 2000] Kathol, Andreas 2000. Linear Syntax . Oxford University Press.

[Kathol and Pollard, 1995] Kathol, Andreas and Pollard, Carl 1995. Extraposition via
complex domain formation. In Proceedings of the 33rd Annual Meeting of the Association
for Computational Linguistics, 174–180.



234 BIBLIOGRAPHY

[Kepser, 2004] Kepser, Stephan 2004. On the complexity of RSRL. In Lawrence S. Moss
and Richard T. Oehrle (eds), Electronic Notes in Theoretical Computer Science. Elsevier.

[Kepser and Mönnich, 2003] Kepser, Stephan and Mönnich, Uwe 2003. Graph properties
of HPSG feature structures. In Gerhard Jäger, Paola Monachesi, Gerald Penn, and
Shuly Wintner (eds), Proceedings of Formal Grammar 2003 , 115–124.

[King, 1989] King, Paul J. 1989. A logical Formalism for Head-Driven Phrase Structure
Grammar . PhD thesis, University of Manchester.

[King, 1999] King, Paul J. 1999. Towards Truth in Head-driven Phrase Structure Gram-
mar. In Valia Kordoni (ed), Tübingen Studies in Head-Driven Phrase Structure Gram-
mar , (= Arbeitspapiere des SFB 340, Nr. 132, Volume 2 ), 301–352. Eberhard-Karls
Universität Tübingen.

[Klein and Sag, 1985] Klein, Ewan and Sag, Ivan A. 1985. Type-driven translation. Lin-
guistics and Philosophy , 8:163–201.

[Meurers, 2000] Meurers, Walt Detmar 2000. Lexical Generalizations in the Syntax of Ger-
man Non-Finite Constructions. Phil. dissertation, Eberhard-Karls Universität Tübin-
gen. Note: Published as: Arbeitspapiere des SFB 340, Nr. 145.

[Meurers et al., 2002] Meurers, W. Detmar, Penn, Gerald, and Richter, Frank 2002. A
web-based instructional platform for constraint-based grammar formalisms and pars-
ing. In Dragomir Radev and Chris Brew (eds), Effective Tools and Methodologies for
Teaching NLP and CL, 18–25, New Brunswick, NJ: The Association for Computational
Linguistics. Note: Proceedings of the Workshop held at the 40th Annual Meeting of the
Association for Computational Linguistics. 7.–12. July 2002. Philadelphia, PA.

[Montague, 1974a] Montague, Richard 1974a. English as a formal language. In Rich-
mond H. Thomason (ed), Formal Philosophy. Selected Papers of Richard Montague,
188–221. Yale University Press.

[Montague, 1974b] Montague, Richard 1974b. The proper treatment of quantification in
ordinary English. In Richmond H. Thomason (ed), Formal Philosophy. Selected Papers
of Richard Montague, 247–270. Yale University Press.

[Montague, 1974c] Montague, Richard 1974c. Universal grammar. In Richmond H. Thoma-
son (ed), Formal Philosophy. Selected Papers of Richard Montague, 222–246. Yale Uni-
versity Press.

[Moshier, 1988] Moshier, Michael Andrew 1988. Extensions to Unification Grammar for
the Description of Programming Languages. PhD thesis, University of Michigan.

[Müller, 1999] Müller, Stefan 1999. Deutsche Syntax deklarativ. Head-Driven Phrase Struc-
ture Grammar für das Deutsche, (= Linguistische Arbeiten, 394). Max Niemeyer Verlag,
Tübingen.



BIBLIOGRAPHY 235

[Müller, 2004] Müller, Stefan 2004. Continuous or discontinuous constituents? A com-
parison between syntactic analyses for constituent order and their processing systems.
Research on Language and Computation, 2:209–257.

[Muskens, 2001] Muskens, Reinhard 2001. Talking about trees and truth-conditions. Jour-
nal of Logic, Language and Information, 10.4:417–455.

[Nerbonne, 1992] Nerbonne, John 1992. Constraint-based semantics. In Paul Dekker and
Martin Stokhof (eds), Proceedings of the Eighth Amsterdam Colloquium, 425–444. Insti-
tute for Logic, Language and Information.

[Partee, 1975] Partee, Barbara 1975. Montague grammar and transformational grammar.
Linguistic Inquiry , 6.2:203–300.

[Partee, 1976] Partee, Barbara H. 1976. Montague Grammar . Academic Press, New York.

[Partee, 1996] Partee, Barbara H. 1996. The development of formal semantics in linguistic
theory. In Shalom Lappin (ed), The Handbook of Contemporary Semantic Theory , 11–38.
Blackwell Publishers.

[Partee, 2004a] Partee, Barbara H. 2004a. Compositionality. In Compositionality in For-
mal Semantics, 153–181. Blackwell Publishing Ltd.

[Partee, 2004b] Partee, Barbara H. 2004b. Compositionality in Formal Semantics. Black-
well Publishing Ltd.

[Partee and Hendriks, 1997] Partee, Barbara H. and Hendriks, Herman L. W. 1997. Mon-
tague grammar. In Johan van Benthem and Alice ter Meulen (eds), Handbook of Logic
and Language, 5–91. Elsevier Science B.V.

[Penka and von Stechow, 2001] Penka, Doris and von Stechow, Arnim 2001. Negative In-
definita unter Modalverben. In Reimar Müller and Marga Reis (eds), Modalität und
Modalverben im Deutschen, (= Linguistische Berichte. Sonderheft 9 ), 263–286. Helmut
Buske Verlag, Hamburg.

[Penn, 1999a] Penn, Gerald 1999a. A Generalized-Domain-Based Approach to Serbo-
Croation Second Position Clitic Placement. In Gosse Bouma, Erhard Hinrichs, Geert-
Jan M. Kruijff, and Richard T. Oehrle (eds), Constraints and Resources in Natural
Language Syntax and Semantics, 119–136. CSLI Publications.

[Penn, 1999b] Penn, Gerald 1999b. Linearization and WH-Extraction in HPSG: Evidence
from Serbo-Croatian. In Robert D. Borsley and Adam Przepiórkowski (eds), Slavic in
Head-Driven Phrase Structure Grammar , 149–182. CSLI Publications.

[Penn, 2004] Penn, Gerald 2004. Balancing clarity and efficiency in typed feature logic
through delaying. In Proceedings of the 42nd Annual Meeting of the Association for
Computational Linguistics, 240–247.



236 BIBLIOGRAPHY

[Penn and Haji-Abdolhosseini, 2003a] Penn, Gerald and Haji-Abdolhosseini, Mohammad
2003a. ALE. The Attribute Logic Engine User’s Guide with TRALE extensions. Note:
Version 4.0 Beta. With contributions by other authors.

[Penn and Haji-Abdolhosseini, 2003b] Penn, Gerald and Haji-Abdolhosseini, Mohammad
2003b. Topological parsing. In Proceedings of the 10th Conference of the European
Chapter of the Association for Computational Linguistics, April 12–17, 2003, Budapest,
Hungary , 283–290.

[Penn and Richter, 2004] Penn, Gerald and Richter, Frank 2004. Lexical Resource Se-
mantics: From theory to implementation. In The 11th International Conference on
Head-driven Phrase Structure Grammar. Abstracts, 10–14. University of Leuven. Centre
for Computational Linguistics.

[Pollard and Sag, 1987] Pollard, Carl and Sag, Ivan A. 1987. Information-Based Syntax
and Semantics. Vol.1: Fundamentals. CSLI Lecture Notes 13.

[Pollard and Sag, 1994] Pollard, Carl and Sag, Ivan A. 1994. Head-Driven Phrase Structure
Grammar . University of Chicago Press.

[Pollard, 1999] Pollard, Carl J. 1999. Strong generative capacity in HPSG. In Gert Webel-
huth, Jean-Pierre Koenig, and Andreas Kathol (eds), Lexical and Constructional Aspects
of Linguistic Explanation, 281–297. CSLI Publications.

[Pollard and Yoo, 1998] Pollard, Carl J. and Yoo, Eun Jung 1998. A unified theory of
scope for quantifiers and wh-phrases. Journal of Linguistics, 34:415–445.

[Przepiórkowski, 1998] Przepiórkowski, Adam 1998. ‘A unified theory of scope’ revisited.
Quantifier retrieval without spurious ambiguities. In Gosse Bouma, Geert-Jan M. Krui-
jff, and Richard T. Oehrle (eds), Proceedings of the FHCG-98, 14–16 August 1998,
Saarbrücken, 185–195.

[Pullum and Scholz, 2001] Pullum, Geoffrey K. and Scholz, Barbara C. 2001. On the dis-
tinction between model-theoretic and generative-enumerative syntactic frameworks. In
Philippe de Groote, Glyn Morrill, and Christian Retoré (eds), Logical Aspects of Com-
putational Linguistics: 4th International Conference, 17–43. Berlin: Springer-Verlag.

[Reape, 1989] Reape, Mike 1989. A logical treatment of semi-free word order and bounded
discontinuous constituency. In Proceedings of the 4th Conference of the European Chapter
of the Association for Computational Linguistics, 103–110.

[Reape, 1990] Reape, Mike 1990. Getting things in order. In Proceedings of the Sympo-
sium on Discontinuous Constituency . Institute for Language Technology and Artificial
Intelligence.

[Reape, 1992] Reape, Mike 1992. A Formal Theory of Word Order: A Case Study of West
Germanic. PhD thesis, University of Edinburgh.



BIBLIOGRAPHY 237

[Reape, 1994] Reape, Mike 1994. Domain Union and Word Order Variation in German. In
John Nerbonne, Klaus Netter, and Carl Pollard (eds), German in Head-Driven Phrase
Structure Grammar , 151–197. CSLI Publications.

[Reinhard, 2001] Reinhard, Sabine 2001. Deverbale Komposita an der Morphologie-Syntax-
Semantik-Schnittstelle: ein HPSG-Ansatz . Phil. dissertation, Eberhard-Karls Univer-
sität Tübingen.

[Reyle, 1993] Reyle, Uwe 1993. Dealing with ambiguities by underspecification: Construc-
tion, representation and deduction. Journal of Semantics, 10.2:123–179.

[Richter, 1997] Richter, Frank 1997. Die Satzstruktur des Deutschen und die Behandlung
langer Abhängigkeiten in einer Linearisierungsgrammatik. Formale Grundlagen und Im-
plementierung in einem HPSG-Fragment. In Erhard Hinrichs, Detmar Meurers, Frank
Richter, Manfred Sailer, and Heike Winhart (eds), Ein HPSG-Fragment des Deutschen,
Teil 1: Theorie, 13–187. Eberhard-Karls Universität Tübingen.

[Richter, 2004a] Richter, Frank 2004a. A Mathematical Formalism for Linguistic Theo-
ries with an Application in Head-Driven Phrase Structure Grammar . Phil. dissertation
(2000), Eberhard-Karls Universität Tübingen.

[Richter, 2004b] Richter, Frank 2004b. A web-based course in grammar formalisms and
parsing. Note: Electronic textbook distributed over the e-learning platform ILIAS at
the Seminar für Sprachwissenschaft of the Eberhard-Karls Universität Tübingen.

[Richter et al., 2002] Richter, Frank, Ovchinnikova, Ekaterina, Trawiński, Beata, and
Meurers, W. Detmar 2002. Interactive graphical software for teaching the formal foun-
dations of Head-Driven Phrase Structure Grammar. In Gerhard Jäger, Paola Monachesi,
Gerald Penn, and Shuly Wintner (eds), Proceedings of Formal Grammar 2002 , 137–148.

[Richter and Sailer, 1999a] Richter, Frank and Sailer, Manfred 1999a. A lexicalist colloca-
tion analysis of sentential negation and negative concord in French. In Valia Kordoni
(ed), Tübingen Studies in Head-driven Phrase Structure Grammar , 231–300. Eberhard-
Karls Universität Tübingen.

[Richter and Sailer, 1999b] Richter, Frank and Sailer, Manfred 1999b. LF conditions on
expressions of Ty2: An HPSG analysis of negative concord in Polish. In Robert D. Bors-
ley and Adam Przepiórkowski (eds), Slavic in Head-Driven Phrase Structure Grammar ,
247–282. Stanford: CSLI Publications.

[Richter and Sailer, 1999c] Richter, Frank and Sailer, Manfred 1999c. Underspecified se-
mantics in HPSG. In Harry C. Blunt and Reinhard Muskens (eds), Computing Meaning ,
95–112. Dordrecht: Kluwer Academic Publishers.

[Richter and Sailer, 2001] Richter, Frank and Sailer, Manfred 2001. On the left periphery
of German finite sentences. In W. Detmar Meurers and Tibor Kiss (eds), Constraint-
Based Approaches to Germanic Syntax , 257–300. Stanford: CSLI Publications.



238 BIBLIOGRAPHY

[Richter and Sailer, 2003] Richter, Frank and Sailer, Manfred 2003. Cranberry words in
formal grammar. In Claire Beyssade, Olivier Bonami, Patricia Cabredo Hofherr, and
Francis Corblin (eds), Empirical Issues in Formal Syntax and Semantics 4 , 155–171.
Presses de l’Université de Paris-Sorbonne.

[Richter and Sailer, 2004a] Richter, Frank and Sailer, Manfred 2004a. Basic concepts of
Lexical Resource Semantics. In Arnold Beckmann and Norbert Preining (eds), ESSLLI
2003 – Course Material I , (= Collegium Logicum, 5), 87–143. Kurt Gödel Society Wien.

[Richter and Sailer, 2004b] Richter, Frank and Sailer, Manfred 2004b. Polish negation and
lexical resource semantics. In Lawrence S. Moss and Richard T. Oehrle (eds), Electronic
Notes in Theoretical Computer Science. Elsevier.

[Richter et al., 1999] Richter, Frank, Sailer, Manfred, and Penn, Gerald 1999. A formal in-
terpretation of relations and quantification in HPSG. In Gosse Bouma, Erhard Hinrichs,
Geert-Jan M. Kruijff, and Richard Oehrle (eds), Constraints and Resources in Natural
Language Syntax and Semantics, 281–298. Stanford: CSLI Publications.

[Sailer, 2003] Sailer, Manfred 2003. Combinatorial semantics and idiomatic expressions in
Head-Driven Phrase Structure Grammar. Phil. Dissertation (2000). Arbeitspapiere des
SFB 340. 161, Eberhard-Karls Universität Tübingen.

[Sailer, 2004] Sailer, Manfred 2004. Propositional relative clauses in German. In The
11th International Conference on Head-driven Phrase Structure Grammar. Abstracts,
155–159. University of Leuven. Centre for Computational Linguistics.

[Sailer and Richter, 2002a] Sailer, Manfred and Richter, Frank 2002a. Collocations and
the representation of polarity. In Gábor Alberti, Kata Balogh, and Paul Dekker (eds),
Proceedings of the Seventh Symposium on Logic and Language, 129–138, Pécs.

[Sailer and Richter, 2002b] Sailer, Manfred and Richter, Frank 2002b. Not for love or
money: Collocations! In Gerhard Jäger, Paola Monachesi, Gerald Penn, and Shuly
Wintner (eds), Proceedings of Formal Grammar 2002 , 149–160.

[Smolka, 1992] Smolka, Gert 1992. Feature-constraint logics for unification grammars.
Journal of Logic Programming , 12:51–87.

[Soehn, 2004] Soehn, Jan-Philipp 2004. Über Bärendienste und erstaunte Bauklötze.
Idiome ohne freie Lesart in der HPSG . PhD thesis, Friedrich-Schiller-Universität Jena.
Note: In preparation. Version of July 27th, 2004.

[Soehn and Sailer, 2003] Soehn, Jan-Philipp and Sailer, Manfred 2003. At first blush on
tenterhooks. About selectional restrictions imposed by nonheads. In Gerhard Jäger,
Paola Monachesi, Gerald Penn, and Shuly Wintner (eds), Proceedings of Formal Gram-
mar 2003 , 149–161.



BIBLIOGRAPHY 239

[Suhre, 2000] Suhre, Oliver 2000. Computational aspects of a grammar formalism for
languages with freer word order. Diplomarbeit, Eberhard-Karls Universität Tübingen.
Note: Published in Arbeitspapiere des SFB 340, Nr. 154.

[Thomason, 1974] Thomason, Richmond H. (ed) 1974. Formal Philosophy. Selected Papers
of Richard Montague. Yale University Press.

[Trawiński et al., 2004] Trawiński, Beata, Sailer, Manfred, and Soehn, Jan-Philipp 2004.
Combinatorial aspects of collocational prepositional phrases. In Patrick Sain-Dizier (ed),
Computational Linguistics Dimensions of Syntax and Semantics of Prepositions. Kluwer
Academic Press. Note: To appear.

[van Deemter and Peters, 1996] van Deemter, Kees and Peters, Stanley (eds) 1996. Se-
mantic Ambiguity and Underspecification. CSLI Publications.

[von Stechow, 1991] Stechow, Arnim von 1991. Theorie der Satzsemantik. In Arnin von
Stechow and Dieter Wunderlich (eds), Semantik: Ein internationales Handbuch der zeit-
genössischen Forschung , 90–148. Walter de Gruyter.

[von Stechow, 1993] Stechow, Arnim von 1993. Die Aufgaben der Syntax. In Joachim
Jacobs, Arnim von Stechow, Wolfgang Sternefeld, and Theo Vennemann (eds), Syntax.
Ein internationales Handbuch zeitgenössischer Forschung , 1–88. Walter de Gruyter.

[Zimmermann, 1989] Zimmermann, Thomas Ede 1989. Intensional logic and two-sorted
type theory. The Journal of Symbolic Logic, 54:65–77.


