
TRALE Definite Clauses
Grammar Engineering, SS 2006

Georgiana Dinu

TRALE Definite Clauses – p. 1/31

Overview
• Definite clauses: Overview

TRALE Definite Clauses – p. 2/31

Overview
• Definite clauses: Overview

• Clauses in Prolog Language

TRALE Definite Clauses – p. 2/31

Overview
• Definite clauses: Overview

• Clauses in Prolog Language

• TRALE Definite Clauses
• Defining a clause
• Relational Attachments

TRALE Definite Clauses – p. 2/31

Definite Clauses
• (1) φ1 ∧ ... ∧ φn → φ0

φ0 : − φ1, ..., φn

head : − body

(2) φ0

• TRALE syntax

<clause> ::= <literal> if <goal>.

<literal> ::= <pred_sym>

| <pred_sym>(<seq(desc)>)

• member2 as a definite clause in TRALE:

member(X, hd:X) if true.

member(X, tl:Xs) if member(X, Xs).

TRALE Definite Clauses – p. 3/31

Definite Clauses in Prolog: Declarative
Semantics

• concatenate([], L, L).

concatenate([X|L1], L2, [X|L3]) :- concatenate(L1, L2, L3).

?- concatenate([a], [b], [a,b]).

concatenate([a], [b], [a,b]) :- concatenate([], [b], [b]) .

• A goal is true if it is the head of some clause instance and each of the goals (if
any) in the body of that clause instance is true, where an instance of a clause (or
term) is obtained by substituting, for each of zero or more of its variables, a new
term for all occurrences of the variable.

TRALE Definite Clauses – p. 4/31

Definite Clauses in Prolog: Declarative
Semantics

• concatenate([], L, L).

concatenate([X|L1], L2, [X|L3]) :- concatenate(L1, L2, L3).

?- concatenate([a], [b], [a,b]).

concatenate([a], [b], [a,b]) :- concatenate([], [b], [b]) .

• A goal is true if it is the head of some clause instance and each of the goals (if
any) in the body of that clause instance is true, where an instance of a clause (or
term) is obtained by substituting, for each of zero or more of its variables, a new
term for all occurrences of the variable.

TRALE Definite Clauses – p. 5/31

Definite Clauses in Prolog: Procedural
Semantics

• Query

?- concatenate(X, Y, [a,b]).

• Instantiated queries

?- concatenate(X1, Y, [b]).

?- concatenate(X2, Y, []).

• Solutions

X = [a,b] Y = []

X = [a] Y = [b]

X = [] Y = [a,b]

• If there is no matching head for a goal, the execution backtracks to the most recent
successful match.

TRALE Definite Clauses – p. 6/31

The Cut Symbol
• The cut operation commits the system to all choices made since the parent goal

was invoked, and causes other alternatives to be discarded.

• member(X, [X|_]).

member(X, [_|L]) :- member(X, L).

| ?- member(X, [d,e,f]).

Solution: d, e, f.

• member(X, [X|_]) :- !.

member(X, [_|L]) :- member(X, L).

| ?- member(X, [d,e,f]).

Solution: d

• ?- member(e, [d, e, f]) .

Yes

TRALE Definite Clauses – p. 7/31

If then else
• P -> Q ; R

Analogous to if P then Q else R and defined as if by

(P -> Q; R) :- P, !, Q.

(P -> Q; R) :- R.

• Only explores the first solution to the goal P (removes all choice-points created by
P and executes Q.)

• P -> Q

When occurring as a goal, this construction is read as equivalent to:

(P -> Q; fail)

• Example

add(X,L1,L2) :- member(X,L1) -> L2 = L1 ; L2 = [X|L1].

1 ?- add(a, [b,c], [a,b,c]) .

Yes

2 ?- add(X, [b,c], [a,b,c]) .

No

TRALE Definite Clauses – p. 8/31

Negation by failure
• Fails if the goal P has a solution, and succeeds otherwise. This is not real negation

("P is false"), but a kind of pseudo-negation meaning "P is not provable". It is
defined as:

\+(P) :- P, !, fail.

\+(_).

• The only time we get something like the desired result if there is no existentially
quantified variable in the goal.

• Example

p(a).

p(b).

q(c).

?-q(X), \+p(X). % succeeds with X=c

?-\+p(X), q(X). % fails

TRALE Definite Clauses – p. 9/31

TRALE Definite Clauses
• Terms: TRALE Descriptions

• Evaluation of a definite clause query
• Solution to Queries: Satisfiers of the entire query as most general solutions
• Example

| ?- query member(X, [noun, verb]).

• Solution 1:

member([0] noun

CASE case,

ne_list

HD [0]

TL ne_list

HD verb

VFORM vform

TL e_list)

TRALE Definite Clauses – p. 10/31

TRALE Definite Clauses
• Terms: TRALE Descriptions

• Evaluation of a definite clause query
• Solution to Queries: Satisfiers of the entire query as most general solutions
• Example

| ?- query member(X, [noun, verb]).

• Solution 2:

member([0] verb

VFORM vform,

ne_list

HD noun

CASE case

TL ne_list

HD [0]

TL e_list)

TRALE Definite Clauses – p. 11/31

TRALE Definite Clauses: Syntax

<goal> ::= true
| <literal>
| prolog(<prolog_goal>)
| (<goal>,<goal>)
| (<goal>;<goal>)
| (<desc> =@ <desc>)
| (<cut_free_goal> -> <goal>)
| (<cut_free_goal> -> <goal> ; <goal>)
| !
| (\+ <goal>)
| when(cond, <goal>)

TRALE Definite Clauses – p. 12/31

TRALE Definite Clauses: Syntax
<goal> ::= true

| <literal>
| prolog(<prolog_goal>)
| (<goal>,<goal>)
| (<goal>;<goal>)
| (<desc> =@ <desc>)
| (<cut_free_goal> -> <goal>)
| (<cut_free_goal> -> <goal> ; <goal>)
| !
| (\+ <goal>)
| when(cond, <goal>)

TRALE Definite Clauses – p. 13/31

TRALE Definite Clauses: Syntax
<goal> ::= true

| <literal>
| prolog(<prolog_goal>)
| (<goal>,<goal>)
| (<goal>;<goal>)
| (<desc> =@ <desc>)
| (<cut_free_goal> -> <goal>)
| (<cut_free_goal> -> <goal> ; <goal>)
| !
| (\+ <goal>)
| when(cond, <goal>)

TRALE Definite Clauses – p. 14/31

TRALE Definite Clauses: Syntax
<goal> ::= true

| <literal>
| prolog(<prolog_goal>)

| (<goal>,<goal>)
| (<goal>;<goal>)
| (<desc> =@ <desc>)
| (<cut_free_goal> -> <goal>)
| (<cut_free_goal> -> <goal> ; <goal>)
| !
| (\+ <goal>)
| when(cond, <goal>)

TRALE Definite Clauses – p. 15/31

TRALE Definite Clauses: Syntax
<goal> ::= true

| <literal>
| prolog(<prolog_goal>)
| (<goal>,<goal>)

| (<goal>;<goal>)
| (<desc> =@ <desc>)
| (<cut_free_goal> -> <goal>)
| (<cut_free_goal> -> <goal> ; <goal>)
| !
| (\+ <goal>)
| when(cond, <goal>)

TRALE Definite Clauses – p. 16/31

TRALE Definite Clauses: Syntax
<goal> ::= true

| <literal>
| prolog(<prolog_goal>)
| (<goal>,<goal>)
| (<goal>;<goal>)

| (<desc> =@ <desc>)
| (<cut_free_goal> -> <goal>)
| (<cut_free_goal> -> <goal> ; <goal>)
| !
| (\+ <goal>)
| when(cond, <goal>)

TRALE Definite Clauses – p. 17/31

TRALE Definite Clauses: Syntax
<goal> ::= true

| <literal>
| prolog(<prolog_goal>)
| (<goal>,<goal>)
| (<goal>;<goal>)
| (<desc> =@ <desc>)

| (<cut_free_goal> -> <goal>)
| (<cut_free_goal> -> <goal> ; <goal>)
| !
| (\+ <goal>)
| when(cond, <goal>)

TRALE Definite Clauses – p. 18/31

TRALE Definite Clauses: Syntax
<goal> ::= true

| <literal>
| prolog(<prolog_goal>)
| (<goal>,<goal>)
| (<goal>;<goal>)
| (<desc> =@ <desc>)
| (<cut_free_goal> -> <goal>)

| (<cut_free_goal> -> <goal> ; <goal>)
| !
| (\+ <goal>)
| when(cond, <goal>)

TRALE Definite Clauses – p. 19/31

TRALE Definite Clauses: Syntax
<goal> ::= true

| <literal>
| prolog(<prolog_goal>)
| (<goal>,<goal>)
| (<goal>;<goal>)
| (<desc> =@ <desc>)
| (<cut_free_goal> -> <goal>)
| (<cut_free_goal> -> <goal> ; <goal>)

| !
| (\+ <goal>)
| when(cond, <goal>)

TRALE Definite Clauses – p. 20/31

TRALE Definite Clauses: Syntax
<goal> ::= true

| <literal>
| prolog(<prolog_goal>)
| (<goal>,<goal>)
| (<goal>;<goal>)
| (<desc> =@ <desc>)
| (<cut_free_goal> -> <goal>)
| (<cut_free_goal> -> <goal> ; <goal>)
| !
| (\+ <goal>)
| when(cond, <goal>)

TRALE Definite Clauses – p. 21/31

TRALE Definite Clauses: Syntax
<goal> ::= true

| <literal>
| prolog(<prolog_goal>)
| (<goal>,<goal>)
| (<goal>;<goal>)
| (<desc> =@ <desc>)
| (<cut_free_goal> -> <goal>)
| (<cut_free_goal> -> <goal> ; <goal>)
| !
| (\+ <goal>)

| when(cond, <goal>)

TRALE Definite Clauses – p. 22/31

Co-routining 1
• Syntax

| when(<cond>,<goal>)

• when/2 delays execution until some event is witnessed.

• Example:

append(X,Y,Z) if

when((X=(e_list;ne_list)

; Y=e_list

; Z=(e_list;ne_list)

),

undelayed_append(X,Y,Z)).

undelayed_append(L,[],L) if true.

undelayed_append([],(L,ne_list),L) if true.

undelayed_append([H|T1],(L,ne_list),[H|T2]) if

append(T1,L,T2).

TRALE Definite Clauses – p. 23/31

Co-routining 2
• Conditional descriptions syntax

<cond> ::= <variable>ˆ(<cond>)

| <quantified_cond>

<quantified_cond> ::= <quantified_cond>,<quantified_c ond>

| <quantified_cond>;<quantified_cond>

| <variable>=<cond_desc>

<cond_desc> ::= <variable>

| <type>

| max(<type>)

| <feat>:<cond_desc>

| <path> == <path>

| <cond_desc>, <cond_desc>

| <cond_desc> ;<cond_desc>

TRALE Definite Clauses – p. 24/31

Co-routining 3
• Shared variables in conditionals

when(X=([f]==[g]),bar(X))

when(X=(f:Y,g:Y),bar(X))

• Narrow scope

when(Yˆ(X=(f:Y,g:Y)),bar(X))

foo(X) if

Z = f:Y,

when(Yˆ(X=(f:Y,g:Y)),bar(Y,Z))

TRALE Definite Clauses – p. 25/31

Attaching Definite Relations: Con-
straints

• Syntax

CondDesc * > Desc goal Goal.

• If a goal is specified in a constraint, the constraint is satisfied only if the goal
succeeds.

• Variables occuring in the consequent are bound with scope that extends over the
consequent and over the relation attachments.

• Example

phrase * > (synsem:category:subcat:PhrSubcat,

dtr1:synsem:Synsem,

dtr2:synsem:category:subcat:HeadSubcat)

goal

append(PhrSubcat,[Synsem],HeadSubcat).

TRALE Definite Clauses – p. 26/31

Attaching Definite Relations: Phrase
Structure Rules 1

• Syntax

<rule_clause> ::= cat> <desc>

|cats> <desc>

|goal <goal>

• Example

backward_application rule #

(synsem:..., qstore:Qs)

===>

cat> (synsem:..., qstore:Qs1),

cat> (synsem:..., qstore:Qs2),

goal> append(Qs1,Qs2,Qs).

TRALE Definite Clauses – p. 27/31

Attaching Definite Relations: Phrase
Structure Rules 2
Evaluation

• evaluated in the order they are specified

• all possible solutions are found and the resulting instantiations are carried over to
the rule

Example

schema2 rule #

(cat:(head:Head,subcat:[SubjSyn]))

goal> three_or_less(Comps),

cats> Comps,

cat> (cat:(head:Head,

subcat:[Subj|Comps])).

three_or_less([]) if true.

three_or_less([_]) if true.

three_or_less([_,_]) if true.

three_or_less([_,_,_]) if true.

TRALE Definite Clauses – p. 28/31

Attaching Definite Relations: Lexical
Rules

• Syntax:

<lex_rewrite> ::= <desc> ** > <desc> if <goal>

• passive_lex_rule ##

(word,

synsem:...,

arg_st:[(loc:(cat:...,

cont:Cont2)), Synsem1|List])

** >

(word,

synsem:...,

arg_st:([Synsem1|List];Result))

if append(([Synsem1|List]),[(loc:(cat:...,

cont:Cont2))],Result)

morphs

X becomes X.

TRALE Definite Clauses – p. 29/31

Summary
• TRALE’s definite clause extension provides a way of encoding HPSG relations

TRALE Definite Clauses – p. 30/31

Summary
• TRALE’s definite clause extension provides a way of encoding HPSG relations

• Various computational aspects become important in:
• Formulating definite clauses
• Attaching them as relational constraints

TRALE Definite Clauses – p. 30/31

Summary
• TRALE’s definite clause extension provides a way of encoding HPSG relations

• Various computational aspects become important in:
• Formulating definite clauses
• Attaching them as relational constraints

• Further reading:
• On Prolog definite clauses: Sicstus Prolog Manual

• Prolog Language:
http://www.sics.se/sicstus/docs/latest/html/sicstus.html/Prolog-
Intro.html#Prolog%20Intro

• Predicate Index:
http://www.sics.se/sicstus/docs/latest/html/sicstus.html/Predicate-
Index.html#Predicate%20Index

TRALE Definite Clauses – p. 30/31

Summary
• On defining TRALE clauses: TRALE User Manual Chapter 5

http://www.ale.cs.toronto.edu/docs/man/ale_trale_man/index.html
Co-routining: 5.2
Shared variables in conditionals: 5.2.1

• On attaching goals: TRALE User Manual Chapters 4,6
Constraints: T4.3
Phrase structure rules: 6.4.1
Lexical Rules: 6.3

• On evaluating definite clause queries: Trale User Manual Appendix B, Section 2.4

• On source level debugger: Trale User Manual Appendix B, Section 2.10

TRALE Definite Clauses – p. 31/31

	Overview
	Overview
	Overview

	Definite Clauses
	Definite Clauses in Prolog: Declarative Semantics
	Definite Clauses in Prolog: Declarative Semantics
	Definite Clauses in Prolog: Procedural Semantics
	The Cut Symbol
	If then else
	Negation by failure
	TRALE Definite Clauses
	TRALE Definite Clauses
	TRALE Definite Clauses: Syntax
	TRALE Definite Clauses: Syntax
	TRALE Definite Clauses: Syntax
	TRALE Definite Clauses: Syntax
	TRALE Definite Clauses: Syntax
	TRALE Definite Clauses: Syntax
	TRALE Definite Clauses: Syntax
	TRALE Definite Clauses: Syntax
	TRALE Definite Clauses: Syntax
	TRALE Definite Clauses: Syntax
	TRALE Definite Clauses: Syntax
	Co-routining 1
	Co-routining 2
	Co-routining 3
	Attaching Definite Relations: Constraints
	Attaching Definite Relations: Phrase Structure Rules 1
	Attaching Definite Relations: Phrase Structure Rules 2
	Attaching Definite Relations: Lexical Rules
	Summary
	Summary
	Summary

	Summary

