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Definite Clauses
• (1) φ1 ∧ ... ∧ φn → φ0

φ0 : − φ1, ..., φn

head : − body

(2) φ0

• TRALE syntax

<clause> ::= <literal> if <goal>.

<literal> ::= <pred_sym>

| <pred_sym>(<seq(desc)>)

• member2 as a definite clause in TRALE:

member(X, hd:X) if true.

member(X, tl:Xs) if member(X, Xs).
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Definite Clauses in Prolog: Declarative
Semantics

• concatenate([], L, L).

concatenate([X|L1], L2, [X|L3]) :- concatenate(L1, L2, L3 ).

?- concatenate([a], [b], [a,b]).

concatenate([a], [b], [a,b]) :- concatenate([], [b], [b]) .

• A goal is true if it is the head of some clause instance and each of the goals (if
any) in the body of that clause instance is true, where an instance of a clause (or
term) is obtained by substituting, for each of zero or more of its variables, a new
term for all occurrences of the variable.
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Definite Clauses in Prolog: Procedural
Semantics

• Query

?- concatenate(X, Y, [a,b]).

• Instantiated queries

?- concatenate(X1, Y, [b]).

?- concatenate(X2, Y, []).

• Solutions

X = [a,b] Y = []

X = [a] Y = [b]

X = [] Y = [a,b]

• If there is no matching head for a goal, the execution backtracks to the most recent
successful match.
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The Cut Symbol
• The cut operation commits the system to all choices made since the parent goal

was invoked, and causes other alternatives to be discarded.

• member(X, [X|_]).

member(X, [_|L]) :- member(X, L).

| ?- member(X, [d,e,f]).

Solution: d, e, f.

• member(X, [X|_]) :- !.

member(X, [_|L]) :- member(X, L).

| ?- member(X, [d,e,f]).

Solution: d

• ?- member(e, [d, e, f]) .

Yes
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If then else
• P -> Q ; R

Analogous to if P then Q else R and defined as if by

(P -> Q; R) :- P, !, Q.

(P -> Q; R) :- R.

• Only explores the first solution to the goal P (removes all choice-points created by
P and executes Q.)

• P -> Q

When occurring as a goal, this construction is read as equivalent to:

(P -> Q; fail)

• Example

add(X,L1,L2) :- member(X,L1) -> L2 = L1 ; L2 = [X|L1].

1 ?- add(a, [b,c], [a,b,c]) .

Yes

2 ?- add(X, [b,c], [a,b,c]) .

No
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Negation by failure
• Fails if the goal P has a solution, and succeeds otherwise. This is not real negation

("P is false"), but a kind of pseudo-negation meaning "P is not provable". It is
defined as:

\+(P) :- P, !, fail.

\+(_).

• The only time we get something like the desired result if there is no existentially
quantified variable in the goal.

• Example

p(a).

p(b).

q(c).

?-q(X), \+p(X). % succeeds with X=c

?-\+p(X), q(X). % fails
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TRALE Definite Clauses
• Terms: TRALE Descriptions

• Evaluation of a definite clause query
• Solution to Queries: Satisfiers of the entire query as most general solutions
• Example

| ?- query member(X, [noun, verb]).

• Solution 1:

member([0] noun

CASE case,

ne_list

HD [0]

TL ne_list

HD verb

VFORM vform

TL e_list)
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TRALE Definite Clauses
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• Evaluation of a definite clause query
• Solution to Queries: Satisfiers of the entire query as most general solutions
• Example

| ?- query member(X, [noun, verb]).

• Solution 2:

member([0] verb

VFORM vform,

ne_list

HD noun

CASE case

TL ne_list

HD [0]

TL e_list)
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TRALE Definite Clauses: Syntax

<goal> ::= true
| <literal>
| prolog(<prolog_goal>)
| (<goal>,<goal>)
| (<goal>;<goal>)
| (<desc> =@ <desc>)
| (<cut_free_goal> -> <goal>)
| (<cut_free_goal> -> <goal> ; <goal>)
| !
| (\+ <goal>)
| when(cond, <goal>)
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Co-routining 1
• Syntax

| when(<cond>,<goal>)

• when/2 delays execution until some event is witnessed.

• Example:

append(X,Y,Z) if

when( ( X=(e_list;ne_list)

; Y=e_list

; Z=(e_list;ne_list)

),

undelayed_append(X,Y,Z)).

undelayed_append(L,[],L) if true.

undelayed_append([],(L,ne_list),L) if true.

undelayed_append([H|T1],(L,ne_list),[H|T2]) if

append(T1,L,T2).
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Co-routining 2
• Conditional descriptions syntax

<cond> ::= <variable>ˆ(<cond>)

| <quantified_cond>

<quantified_cond> ::= <quantified_cond>,<quantified_c ond>

| <quantified_cond>;<quantified_cond>

| <variable>=<cond_desc>

<cond_desc> ::= <variable>

| <type>

| max(<type>)

| <feat>:<cond_desc>

| <path> == <path>

| <cond_desc>, <cond_desc>

| <cond_desc> ;<cond_desc>
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Co-routining 3
• Shared variables in conditionals

when(X=([f]==[g]),bar(X))

when(X=(f:Y,g:Y),bar(X))

• Narrow scope

when(Yˆ(X=(f:Y,g:Y)),bar(X))

foo(X) if

Z = f:Y,

when(Yˆ(X=(f:Y,g:Y)),bar(Y,Z))
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Attaching Definite Relations: Con-
straints

• Syntax

CondDesc * > Desc goal Goal.

• If a goal is specified in a constraint, the constraint is satisfied only if the goal
succeeds.

• Variables occuring in the consequent are bound with scope that extends over the
consequent and over the relation attachments.

• Example

phrase * > (synsem:category:subcat:PhrSubcat,

dtr1:synsem:Synsem,

dtr2:synsem:category:subcat:HeadSubcat)

goal

append(PhrSubcat,[Synsem],HeadSubcat).
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Attaching Definite Relations: Phrase
Structure Rules 1

• Syntax

<rule_clause> ::= cat> <desc>

|cats> <desc>

|goal <goal>

• Example

backward_application rule #

(synsem:..., qstore:Qs)

===>

cat> (synsem:..., qstore:Qs1),

cat> (synsem:..., qstore:Qs2),

goal> append(Qs1,Qs2,Qs).
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Attaching Definite Relations: Phrase
Structure Rules 2
Evaluation

• evaluated in the order they are specified

• all possible solutions are found and the resulting instantiations are carried over to
the rule

Example

schema2 rule #

(cat:(head:Head,subcat:[SubjSyn]))

goal> three_or_less(Comps),

cats> Comps,

cat> (cat:(head:Head,

subcat:[Subj|Comps])).

three_or_less([]) if true.

three_or_less([_]) if true.

three_or_less([_,_]) if true.

three_or_less([_,_,_]) if true.
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Attaching Definite Relations: Lexical
Rules

• Syntax:

<lex_rewrite> ::= <desc> ** > <desc> if <goal>

• passive_lex_rule ##

(word,

synsem:...,

arg_st:[(loc:(cat:...,

cont:Cont2)), Synsem1|List])

** >

(word,

synsem:...,

arg_st:([Synsem1|List];Result))

if append(([Synsem1|List]),[(loc:(cat:...,

cont:Cont2))],Result)

morphs

X becomes X.
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Summary
• TRALE’s definite clause extension provides a way of encoding HPSG relations
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Summary
• TRALE’s definite clause extension provides a way of encoding HPSG relations

• Various computational aspects become important in:
• Formulating definite clauses
• Attaching them as relational constraints

• Further reading:
• On Prolog definite clauses: Sicstus Prolog Manual

• Prolog Language:
http://www.sics.se/sicstus/docs/latest/html/sicstus.html/Prolog-
Intro.html#Prolog%20Intro

• Predicate Index:
http://www.sics.se/sicstus/docs/latest/html/sicstus.html/Predicate-
Index.html#Predicate%20Index
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Summary
• On defining TRALE clauses: TRALE User Manual Chapter 5

http://www.ale.cs.toronto.edu/docs/man/ale_trale_man/index.html
Co-routining: 5.2
Shared variables in conditionals: 5.2.1

• On attaching goals: TRALE User Manual Chapters 4,6
Constraints: T4.3
Phrase structure rules: 6.4.1
Lexical Rules: 6.3

• On evaluating definite clause queries: Trale User Manual Appendix B, Section 2.4

• On source level debugger: Trale User Manual Appendix B, Section 2.10
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