Frank Richter Negative Polarity Items

Syntax and Semantics of a Higher Order Logic

Types All expressions of our higher-order language, $\mathcal{L}_{\mathsf{Type}}$, will be typed. To keep the language simple, we will only use two basic types, e (for the basic entities in the domain) and t (for the truth values 0 and 1).

Definition 1 Types

Type is the smallest set such that

- *i.*) $e \in \mathsf{Type}$,
- *ii.*) $t \in \mathsf{Type}$,
- *iii.)* for each $\tau_1 \in \mathsf{Type}$, for each $\tau_2 \in \mathsf{Type}$, $\langle \tau_1, \tau_2 \rangle \in \mathsf{Type}$.

Syntax The basic expressions of $\mathcal{L}_{\mathsf{Type}}$ consist only of variables and constants. In contrast to first order logic there is no distinction between terms and formulae.

Definition 2 Basic Expressions

- *i.)* For each $\tau \in \mathsf{Type}$, Var_{τ} is the smallest set such that for each $n \in \mathbb{N}_0$, $v_{n,\tau} \in \mathsf{Var}_{\tau}$.
- *ii.)* For each $\tau \in \mathsf{Type}$, Const_{τ} is the smallest set such that for each $n \in \mathbb{N}_0$, $c_{n,\tau} \in \mathsf{Const.}$

We write Var for the set of all variables, $\bigcup_{\tau \in \mathsf{Type}} \mathsf{Var}_{\tau}$, and Const for the set of all

constants, $\bigcup_{\tau \in \mathsf{Type}} \mathsf{Const}_{\tau}$.

The set of *basic expressions* of our language is the union of the set of variables and the set of constants.

Definition 3 Meaningful Expressions

The meaningful expressions of $\mathcal{L}_{\mathsf{Type}}$ are the smallest familiy $(\mathsf{ME}_{\tau})_{\tau \in \mathsf{Type}}$ such that

- *i.)* for each $\tau \in \mathsf{Type}$, for each $n \in \mathbb{N}_0$, for each variable $v_{n,\tau} \in \mathsf{Var}_{\tau}$, $v_{n,\tau} \in \mathsf{ME}_{\tau}$;
- *ii.)* for each $\tau \in \mathsf{Type}$, for each $n \in \mathbb{N}_0$, for each constant $c_{n,\tau} \in \mathsf{Const}_{\tau}$, $c_{n,\tau} \in \mathsf{ME}_{\tau}$;

- *iii.)* for each $\tau \in \mathsf{Type}$, for each $\phi_{\tau} \in \mathsf{ME}_{\tau}$, for each $\psi_{\tau} \in \mathsf{ME}_{\tau}$, $(\phi_{\tau} \equiv \psi_{\tau})_t \in \mathsf{ME}_t;$
- iv.) for each $\phi_{\langle \tau_2, \tau_1 \rangle} \in \mathsf{ME}_{\langle \tau_2, \tau_1 \rangle}$, for each $\psi_{\tau_2} \in \mathsf{ME}_{\tau_2}$, $\left(\phi_{\langle \tau_2, \tau_1 \rangle} \left(\psi_{\tau_2}\right)\right)_{\tau_1} \in \mathsf{ME}_{\tau_1};$
- v.) for each $\phi_t \in \mathsf{ME}_t$, $(\neg \phi_t)_t \in \mathsf{ME}_t;$
- vi.) for each $\phi_t \in \mathsf{ME}_t$, for each $\psi_t \in \mathsf{ME}_t$, $(\phi_t \wedge \psi_t)_t \in \mathsf{ME}_t;$
- *vii.*) for each $\phi_t \in \mathsf{ME}_t$, for each $\psi_t \in \mathsf{ME}_t$, $(\phi_t \lor \psi_t)_t \in \mathsf{ME}_t;$
- *viii.)* for each $\phi_t \in \mathsf{ME}_t$, for each $\psi_t \in \mathsf{ME}_t$, $(\phi_t \to \psi_t)_t \in \mathsf{ME}_t;$
- *ix.*) for each $\phi_t \in \mathsf{ME}_t$, for each $\psi_t \in \mathsf{ME}_t$, $(\phi_t \leftrightarrow \psi_t)_t \in \mathsf{ME}_t;$
- x.) for each $\tau_1 \in \mathsf{Type}$, for each $\tau_2 \in \mathsf{Type}$, for each $n \in \mathbb{N}_0$, for each $v_{n,\tau_2} \in \mathbb{N}_0$ Var, for each $\phi_{\tau_1} \in \mathsf{ME}_{\tau_1}$, $(\lambda v_{n,\tau_2}.\phi_{\tau_1})_{\langle \tau_2,\tau_1 \rangle} \in \mathsf{ME}_{\langle \tau_2,\tau_1 \rangle};$
- *xi.*) for each $\tau \in \mathsf{Type}$, for each $n \in \mathbb{N}_0$, for each $v_{n,\tau} \in \mathsf{Var}$, for each $\phi_t \in \mathsf{Var}$ ME_t ,

 $(\forall v_{n,\tau} \phi_t)_t \in \mathsf{ME}_t;$

xii.) for each $\tau \in \mathsf{Type}$, for each $n \in \mathbb{N}_0$, for each $v_{n,\tau} \in \mathsf{Var}$, for each $\phi_t \in \mathsf{Var}$ ME_t ,

 $(\exists v_{n,\tau} \phi_t)_t \in \mathsf{ME}_t.$

Semantics D_e is a set of entities, and $D_t = \{0, 1\}$. For each $\tau_1 \in \mathsf{Type}$, for each $\tau_2 \in \mathsf{Type}, \, \mathsf{D}_{\langle \tau_1, \tau_2 \rangle} = \mathsf{D}_{\tau_2} \overset{\mathsf{D}_{\tau_1}}{\operatorname{the set of all functions from }} \mathsf{D}_{\tau_1} \text{ to } \mathsf{D}_{\tau_2}).$ Let I be a function assigning a denotation to each non-logical constant, $c_{n,\tau}$, of $\mathcal{L}_{\mathsf{Type}}$ from the set D_{τ} .

Let $M = \langle D_e, I \rangle$. We will call each M a *model*.

Let g be a function in $\bigcup_{\tau \in \mathsf{Type}} \begin{pmatrix} \mathsf{Var}_{\tau} \\ \mathsf{D}_{\tau} \end{pmatrix}$ which assigns an object (of the appropriate type) in the domain $\bigcup_{\tau \in \mathsf{Type}} \mathsf{D}_{\tau}$ to each variable in Var. We call each g an assignment function assignment function.

Assume that v is a variable of type τ and d is an element of D_{τ} . We will use the notation q_v^d for the assignment function q' which differs from the assignment function q in the following way:

For each $\tau \in \mathsf{Type}$, for each $v \in \mathsf{Var}_{\tau}$, for each $x \in \mathsf{Var}_{\tau}$, for each $d \in \mathsf{D}_{\tau}$, $g_v^d(x) = \begin{cases} d & \text{if } x = v, \text{ a} \\ g(x) & \text{otherwise.} \end{cases}$ if x = v, and

Definition 4 Denotation

Let M be a model and g an assignment function.

- *i.)* For each $\tau \in \mathsf{Type}$, for each $n \in \mathbb{N}_0$, for each variable $v_{n,\tau} \in \mathsf{Var}_{\tau}$, $\llbracket v_{n,\tau} \rrbracket^{\mathsf{M},g} = g(v_{n,\tau}).$
- ii.) For each $\tau \in \mathsf{Type}$, for each $n \in \mathbb{N}_0$, for each constant $c_{n,\tau} \in \mathsf{Const}_{\tau}$, $[\![c_{n,\tau}]\!]^{\mathsf{M},g} = \mathsf{I}(c_{n,\tau}).$
- *iii.)* For each $\tau \in \text{Type}$, for each $\phi_{\tau} \in \text{ME}_{\tau}$, for each $\psi_{\tau} \in \text{ME}_{\tau}$, $\llbracket (\phi_{\tau} \equiv \psi_{\tau})_t \rrbracket^{\text{M},g} = 1$ iff $\llbracket \phi_{\tau} \rrbracket^{\text{M},g} = \llbracket \psi_{\tau} \rrbracket^{\text{M},g}$.
- $$\begin{split} iv.) \ \ For \ each \ \phi_{\langle \tau_2, \tau_1 \rangle} \in \mathsf{ME}_{\langle \tau_2, \tau_1 \rangle}, \ for \ each \ \psi_{\tau_2} \in \mathsf{ME}_{\tau_2}, \\ & \\ \mathbb{I}\left(\phi_{\langle \tau_2, \tau_1 \rangle} \left(\psi_{\tau_2}\right)\right)_{\tau_1} \mathbb{I}^{\mathsf{M},g} = \mathbb{I}\phi_{\langle \tau_2, \tau_1 \rangle} \mathbb{I}^{\mathsf{M},g} \left(\mathbb{I}\psi_{\tau_2}\mathbb{I}^{\mathsf{M},g}\right). \end{split}$$
- v.) For each $\phi_t \in \mathsf{ME}_t$, $\llbracket (\neg \phi_t)_t \rrbracket^{\mathsf{M},g} = 1 \text{ iff } \llbracket (\phi_t)_t \rrbracket^{\mathsf{M},g} = 0$
- vi.) For each $\phi_t \in \mathsf{ME}_t$, for each $\psi_t \in \mathsf{ME}_t$, $\llbracket (\phi_t \wedge \psi_t)_t \rrbracket^{\mathsf{M},g} = 1$ iff $\llbracket \phi_t \rrbracket^{\mathsf{M},g} = 1$ and $\llbracket \psi_t \rrbracket^{\mathsf{M},g} = 1$.
- vii.) For each $\phi_t \in \mathsf{ME}_t$, for each $\psi_t \in \mathsf{ME}_t$, $\llbracket (\phi_t \lor \psi_t)_t \rrbracket^{\mathsf{M},g} = 1$ iff $\llbracket \phi_t \rrbracket^{\mathsf{M},g} = 1$ or $\llbracket \psi_t \rrbracket^{\mathsf{M},g} = 1$.
- viii.) For each $\phi_t \in \mathsf{ME}_t$, for each $\psi_t \in \mathsf{ME}_t$, $\llbracket (\phi_t \to \psi_t)_t \rrbracket^{\mathsf{M},g} = 1$ iff $\llbracket \phi_t \rrbracket^{\mathsf{M},g} = 0$ or $\llbracket \psi_t \rrbracket^{\mathsf{M},g} = 1$.
- ix.) For each $\phi_t \in \mathsf{ME}_t$, for each $\psi_t \in \mathsf{ME}_t$, $\llbracket (\phi_t \leftrightarrow \psi_t)_t \rrbracket^{\mathsf{M},g} = 1 \text{ iff } \llbracket \phi_t \rrbracket^{\mathsf{M},g} = \llbracket \psi_t \rrbracket^{\mathsf{M},g}.$
- x.) For each $\tau_1 \in \text{Type}$, for each $\tau_2 \in \text{Type}$, for each $n \in \mathbb{N}_0$, for each $v_{n,\tau_2} \in \text{Var}$, for each $\phi_{\tau_1} \in \text{ME}_{\tau_1}$,

 $\left[\left(\lambda v_{n,\tau_2} . \phi_{\tau_1} \right)_{\langle \tau_2, \tau_1 \rangle} \right]^{\mathsf{M},g} \text{ is that function } h \text{ from } \mathsf{D}_{\tau_2} \text{ to } \mathsf{D}_{\tau_1} \text{ such that for } each \ o \in \mathsf{D}_{\tau_2}, \ h(o) = \left[\phi_{\tau_1} \right]^{\mathsf{M},g \overset{o}{v}_{n,\tau_2}}.$

xi.) For each $\tau \in \text{Type}$, for each $n \in \mathbb{N}_0$, for each $v_{n,\tau} \in \text{Var}$, for each $\phi_t \in \text{ME}_t$,

$$\left[\left(\forall v_{n,\tau} \ \phi_t\right)_t\right]^{\mathsf{M},g} = 1 \text{ iff for each } o \in \mathsf{D}_{\tau}, \ \left[\!\left[\phi_t\right]\!\right]^{\mathsf{M},g} \overset{o^{\circ}_{n,\tau}}{\overset{\circ}{=}} 1$$

xii.) For each $\tau \in \text{Type}$, for each $n \in \mathbb{N}_0$, for each $v_{n,\tau} \in \text{Var}$, for each $\phi_t \in \text{ME}_t$,

$$\left[\left(\exists v_{n,\tau} \phi_t\right)_t\right]^{\mathsf{M},g} = 1 \text{ iff for at least one } o \in \mathsf{D}_{\tau}, \left[\!\left[\phi_t\right]\!\right]^{\mathsf{M},g_{v_{n,\tau}}^o} = 1.$$

Standard results tell us that the entire language $\mathcal{L}_{\mathsf{Type}}$ can be given in terms of the clauses *i.*)-*iv.*) and *x.*) of our syntax and semantics. This means that the logical connectives in *v.*)-*ix.*) and the quantifiers in *xi.*) and *xii.*) can be defined using these five clauses.