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Negative Polarity Items

Syntax and Semantics of a Higher Order Logic

Types All expressions of our higher-order language, LType, will be typed. To
keep the language simple, we will only use two basic types, e (for the basic
entities in the domain) and t (for the truth values 0 and 1).

Definition 1 Types

Type is the smallest set such that

i.) e ∈ Type,

ii.) t ∈ Type,

iii.) for each τ1 ∈ Type, for each τ2 ∈ Type, 〈τ1, τ2〉 ∈ Type.

Syntax The basic expressions of LType consist only of variables and constants.
In contrast to first order logic there is no distinction between terms and formulae.

Definition 2 Basic Expressions

i.) For each τ ∈ Type, Varτ is the smallest set such that for each n ∈ IN0,

vn,τ ∈ Varτ .

ii.) For each τ ∈ Type, Constτ is the smallest set such that for each n ∈ IN0,

cn,τ ∈ Const.

We write Var for the set of all variables,
⋃

τ∈Type

Varτ , and Const for the set of all

constants,
⋃

τ∈Type

Constτ .

The set of basic expressions of our language is the union of the set of variables
and the set of constants.

Definition 3 Meaningful Expressions

The meaningful expressions of LType are the smallest familiy (MEτ)τ∈Type such
that

i.) for each τ ∈ Type, for each n ∈ IN0, for each variable vn,τ ∈ Varτ ,

vn,τ ∈ MEτ ;

ii.) for each τ ∈ Type, for each n ∈ IN0, for each constant cn,τ ∈ Constτ ,

cn,τ ∈ MEτ ;
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iii.) for each τ ∈ Type, for each φτ ∈ MEτ , for each ψτ ∈ MEτ ,

(φτ ≡ ψτ )t ∈ MEt;

iv.) for each φ〈τ2,τ1〉 ∈ ME〈τ2,τ1〉, for each ψτ2
∈ MEτ2

,
(

φ〈τ2,τ1〉 (ψτ2
)
)

τ1

∈ MEτ1
;

v.) for each φt ∈ MEt,

(¬φt)t ∈ MEt;

vi.) for each φt ∈ MEt, for each ψt ∈ MEt,

(φt ∧ ψt)t ∈ MEt;

vii.) for each φt ∈ MEt, for each ψt ∈ MEt,

(φt ∨ ψt)t ∈ MEt;

viii.) for each φt ∈ MEt, for each ψt ∈ MEt,

(φt → ψt)t ∈ MEt;

ix.) for each φt ∈ MEt, for each ψt ∈ MEt,

(φt ↔ ψt)t ∈ MEt;

x.) for each τ1 ∈ Type, for each τ2 ∈ Type, for each n ∈ IN0, for each vn,τ2
∈

Var, for each φτ1
∈ MEτ1

,

(λvn,τ2
.φτ1

)〈τ2,τ1〉
∈ ME〈τ2,τ1〉;

xi.) for each τ ∈ Type, for each n ∈ IN0, for each vn,τ ∈ Var, for each φt ∈
MEt,

(∀vn,τ φt)t
∈ MEt;

xii.) for each τ ∈ Type, for each n ∈ IN0, for each vn,τ ∈ Var, for each φt ∈
MEt,

(∃vn,τ φt)t
∈ MEt.

Semantics De is a set of entities, and Dt = {0, 1}. For each τ1 ∈ Type, for

each τ2 ∈ Type, D〈τ1,τ2〉 = Dτ2

Dτ1 (the set of all functions from Dτ1
to Dτ2

).
Let I be a function assigning a denotation to each non-logical constant, cn,τ , of
LType from the set Dτ .
Let M = 〈De, I〉. We will call each M a model.

Let g be a function in
⋃

τ∈Type

(

Dτ

Varτ
)

which assigns an object (of the appro-

priate type) in the domain
⋃

τ∈Type

Dτ to each variable in Var. We call each g an

assignment function.
Assume that v is a variable of type τ and d is an element of Dτ . We will use the

notation g
d
v for the assignment function g′ which differs from the assignment

function g in the following way:
For each τ ∈ Type, for each v ∈ Varτ , for each x ∈ Varτ , for each d ∈ Dτ ,

g
d
v(x) =

{

d if x = v, and
g(x) otherwise.
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Definition 4 Denotation

Let M be a model and g an assignment function.

i.) For each τ ∈ Type, for each n ∈ IN0, for each variable vn,τ ∈ Varτ ,

[[vn,τ ]]
M,g

= g (vn,τ ).

ii.) For each τ ∈ Type, for each n ∈ IN0, for each constant cn,τ ∈ Constτ ,

[[cn,τ ]]
M,g

= I (cn,τ ).

iii.) For each τ ∈ Type, for each φτ ∈ MEτ , for each ψτ ∈ MEτ ,

[[ (φτ ≡ ψτ )t ]]
M,g

= 1 iff [[φτ ]]
M,g

= [[ψτ ]]
M,g

.

iv.) For each φ〈τ2,τ1〉 ∈ ME〈τ2,τ1〉, for each ψτ2
∈ MEτ2

,

[[
(

φ〈τ2,τ1〉 (ψτ2
)
)

τ1

]]
M,g

= [[φ〈τ2,τ1〉]]
M,g

(

[[ψτ2
]]
M,g

)

.

v.) For each φt ∈ MEt,

[[ (¬φt)t ]]M,g = 1 iff [[ (φt)t ]]M,g = 0

vi.) For each φt ∈ MEt, for each ψt ∈ MEt,

[[ (φt ∧ ψt)t ]]M,g = 1 iff [[φt]]
M,g = 1 and [[ψt]]

M,g = 1.

vii.) For each φt ∈ MEt, for each ψt ∈ MEt,

[[ (φt ∨ ψt)t ]]
M,g

= 1 iff [[φt]]
M,g

= 1 or [[ψt]]
M,g

= 1.

viii.) For each φt ∈ MEt, for each ψt ∈ MEt,

[[ (φt → ψt)t ]]
M,g

= 1 iff [[φt]]
M,g

= 0 or [[ψt]]
M,g

= 1.

ix.) For each φt ∈ MEt, for each ψt ∈ MEt,

[[ (φt ↔ ψt)t ]]
M,g

= 1 iff [[φt]]
M,g

= [[ψt]]
M,g

.

x.) For each τ1 ∈ Type, for each τ2 ∈ Type, for each n ∈ IN0, for each
vn,τ2

∈ Var, for each φτ1
∈ MEτ1

,

[[ (λvn,τ2
.φτ1

)〈τ2,τ1〉
]]
M,g

is that function h from Dτ2
to Dτ1

such that for

each o ∈ Dτ2
, h(o) = [[φτ1

]]
M,g

o

vn,τ2 .

xi.) For each τ ∈ Type, for each n ∈ IN0, for each vn,τ ∈ Var, for each
φt ∈ MEt,

[[ (∀vn,τ φt)t
]]
M,g

= 1 iff for each o ∈ Dτ , [[φt]]
M,g

o

vn,τ = 1.

xii.) For each τ ∈ Type, for each n ∈ IN0, for each vn,τ ∈ Var, for each
φt ∈ MEt,

[[ (∃vn,τ φt)t
]]M,g = 1 iff for at least one o ∈ Dτ , [[φt]]

M,g
o

vn,τ = 1.

Standard results tell us that the entire language LType can be given in terms
of the clauses i.)–iv.) and x.) of our syntax and semantics. This means that
the logical connectives in v.)–ix.) and the quantifiers in xi.) and xii.) can be
defined using these five clauses.
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