Krifka's Theory of NPIs

Pragmatics

Armin W. Buch

Seminar für Sprachwissenschaft Universität Tübingen

21.5.2007 / Negative Polarity Items

Pragmatics

Overview

- A theory of semantics and pragmatics
- Building on Kadmon & Landman and Zwarts

Coverage

Data

anything, any + N, at all, ever, a drop (minimal entities)

Pragmatics

- PPIs: tons of, rather
- Presuppositional: already

Contexts

- sentence negation, negated NPs
- generally, propositions on implicational scales
- interrogatives, double negation

Pragmatics

In a nutshell

- Nothing special to the meaning:
- anything] = [any thing] = [a thing]
- "any" introduces alternatives

Alternative semantics

The semantic framework captures alternatives.

- ▶ The meaning of each node in LF is a triple < B, F, A >
- background, foreground, alternatives
- The meaning of a sentence is: B(F)
- Its alternatives are all B(F') with F' ∈ A
- ► The rules for functional application abstract over the focus
 - \bullet $\alpha(\langle B, F, A \rangle) = \langle \lambda X[\alpha(B(X))], F, A \rangle$
 - \triangleright $\langle B, F, A \rangle (\beta) = \langle \lambda X[B(X)(\beta)], F, A \rangle$

Overview

anything

- $\triangleright \langle B, thing, \{P|P \subset thing\}\rangle$
- exhaustivity: the alternatives make up the foreground $\cup \{P|P \in thing\} = thing$

Pragmatics

object "anything" $\langle \lambda Q \lambda R \lambda i \lambda x \exists y [Q_i(y) \land R_i(x,y)], thing, \{P | P \subset thing\} \rangle$

A lengthier calculation

- ▶ ¶ Mary $\mathbf{I} = \lambda P \lambda i [P_i(m)]$
- [saw] = saw
- ▶ ¶ Mary say anything $| | = \lambda i \exists y [thing_i(y) \land saw_i(m, y)] |$
- ▶ ¶ Mary didn't see anything $] = \lambda i \neg \exists y [thing_i(y) \land saw_i(m, y)]$

Pragmatics

Both sentences have a well-defined semantics.

In a nutshell

Overview

Why are semantically valid sentences ungrammatical?

⇒ When trying to intersect them with the common ground, the latter is reduced to the empty set due to a conflict between the meaning of a sentence and its implicatures.

Grice's principles

Pragmatic effects usually don't lead to ungrammaticality. The closest one gets is a violation of a principle. Speakers tell the truth.

- the full truth (quantity)
- and nothing but the truth (quality)
- but only what is relevant¹
- and they avoid ambiguity

Krifka makes use of all four. The first two receive a formal treatment.

¹ see Hitch Hiker's Guide To The Galaxy

Assert Operator

update of the common ground c by asserting a proposition $p (= B(F)): c \cap p$

Pragmatics •0000

- ▶ informative: $c \cap p \neq c$
- ▶ not contradictory: $c \cap p \neq \emptyset$
- ▶ There are alternatives: $\exists p' : c \cap p \neq c \cap p'$
- Each such alternative
 - is either wrong
 - or the speaker lacks evidence for it

This still renders "Mary saw anything" valid.

Weak NPIs

Overview

Scalar Assertion

"There are 3 students in the room."

- Excludes less than 3 students semantically, and more than 3 pragmatically (quantity)
- The number of students forms a scale
- ► The according propositions are on a implicational scale

Weak NPIs

Overview

Scalar Assert Operator

- applicable if on a scale
- $ightharpoonup \forall F' \in A : [c \cap B(F')] \subseteq [c \cap B(F)] \vee [c \cap B(F)] \subseteq [c \cap B(F')]$
- ▶ scal.assert($\langle B, F, A \rangle$)(c) = { $i \in c | i \in B(F)$ $\land \neg \exists F' \in A[[c \cap B(F')] \subset [c \cap B(F)] \land i \in B(F')]\}$
- read: the common ground is restricted to those worlds in which
 - the proposition is true
 - and no stronger alternative is true

Scalar Assertion, applied to anything

"Mary saw anything"

- ▶ alternatives imply "thing" → scale
- meaning under scal.assert: Mary saw a thing, but no (particular) thing

Pragmatics 00000

contradiction, common ground is empty

"Mary didn't see anything"

- meaning: Mary saw no thing, and no stronger alternative is true
- "no thing" is already strongest

something — a PPI?

Compare "anything" to "something", wrt to negation scope:

- "don't see anyone"
 - ¬∃: correct
 - → ∃¬: impossible because of alternatives
- "don't see someone"
 - ► ∃¬: correct
 - ¬∃: anyone preferred (ambiguity avoidance)

Emphatic ANYthing

"Mary didn't get ANYthing (at ALL)!"

- as opposed to "nothing"
- $\triangleright \langle B, thing, \{P | P \subset thing \land \neg min(P)\} \rangle$
- minimal alternatives excluded
- non-exhaustivity: the union of the alternatives is smaller than the foreground (and makes up what would be meant by "nothing")

Emphatic Assertion

first version of emph.assert in terms of likelihood

- second version on implicational scales
- assertable if strictly strongest:
- \blacktriangleright $[c \cap B(F)] \subset \cap \{c \cap B(F') | F' \in A\}$
- weak NPIs cannot be asserted emphatically
- on the contrary, strong NPIs are not exploited by scal.assert
- thus ruled out by the principle of relevance

Emphatic Assertion, applied to ANYthing

"Mary got ANYthing"

- $<\lambda Q\lambda i\exists y[Q_i(y) \land get_i(m,y)], thing, \{P|P \subset thing \land \neg min(P)\}>$

- emph.assert now says: Mary got a thing → Mary got all kinds of stuff (except minimal alternatives).
- Obviously not.

 Ungrammaticality of misplaced NPIs follows from pragmatics

- More precisely, from formalized Gricean principles
- Such sentences implicate, what they deny
- The common ground would get empty