
Introduction to Computational
Linguistics

Frank Richter

fr@sfs.uni-tuebingen.de.

Seminar für Sprachwissenschaft

Eberhard-Karls-Universit ät Tübingen

Germany

Intro to CL – WS 2006/7 – p.1

Regular Relations

Regular expressions can contain two kinds of symbols:
unary symbols and symbol pairs.

Unary symbols (a, b, etc) denote strings.
Symbol pairs (a:b, a:0, 0:b, etc.) denote pairs of
strings.

The simplest kind of regular expression contains a
single symbol. E.g., “a” denotes the set {a}.

Similarly, the regular expression “a:b” denotes the
singleton relation {〈a, b〉}.

A regular relation can be viewed as a mapping between
two regular languages. The a:b relation is simply the
crossproduct of the languages denoted by the
expressions a and b.

Intro to CL – WS 2006/7 – p.2

Finite-State Transducer

Definition 10 (FST) A finite-state transducer is a 6-tuple
(Σ1 ,Σ2 , Q, i, F,E) where

Σ1 is a finite alphabet,
(called the input alphabet)

Σ2 is a finite alphabet,
(called the output alphabet)

Q is a finite set of states,

i ∈ Q is the initial state,

F ⊆ Q the set of final states, and

E ⊆ Q × (Σ1
∗ × Σ2

∗) × Q

is the set of edges.

Intro to CL – WS 2006/7 – p.3

Constructing Regular Relations

Crossproduct: A .x. B

The crossproduct operator, .x., is used only with
expressions that denote a regular language; it
constructs a relation between them.
[A .x. B] designates the relation that maps every
string of A to every string of B. If A contains x and B
contains y, the pair 〈x, y〉 is included in the
crossproduct.

Intro to CL – WS 2006/7 – p.4

Constructing Regular Relations

Composition: A .o. B

Composition is an operation on relations that yields
a new relation. [A .o. B] maps strings that are in the
upper language of A to strings that are in the lower
language of B.
If A contains the pair 〈x, y〉 and B contains the pair
〈y, z〉, the pair 〈x, z〉 is in the composite relation.

Intro to CL – WS 2006/7 – p.5

Properties of Regular Relations

Regular relations in general are not closed under

complementation,

intersection, and

subtraction.

Intro to CL – WS 2006/7 – p.6

Properties of Transducers

A transducer is functional iff for any input there is at
most one output.

A transducer is sequential iff no state has more than
one arc with the same symbol on the input side.

Intro to CL – WS 2006/7 – p.7

Replacement Operators

Unconditional obligatory replacement:

A → B =def [[∼$[A - []] [A .x. B]]∗ ∼$[A - []]]

Unconditional optional replacement:

A (→) B =def [[∼$[A - []] [A .x. A | A .x. B]]∗

∼$[A - []]]

Contextual obligatory replacement:

A → B ‖ L R

meaning: “Replace A by B in the context L R.”

Intro to CL – WS 2006/7 – p.8

Non-determinism of replace (1)

Example: ab → ba | x

meaning: “replace ab by ba or x

non-deterministically”

Sample input: abcdbaba

Outputs: bacdbbaa,bacdbxa,

xcdbbaa,xcdbxa

Intro to CL – WS 2006/7 – p.9

Non-determinism of replace (2)

Example: [a b | b | b a | a b a] → x

meaning: “replace ab or b or ba or aba by x”

Sample input: a ba aba a b a a b a

Outputs: x a axa a x x

Intro to CL – WS 2006/7 – p.10

Longest match, left-to-right replace

For many applications, it is useful to define another
version of replacement that in all such cases yields a
unique outcome.

The longest-match, left-to-right replace operator, @->,
defined in Karttunen (1996), imposes a unique
factorization on every input.

The replacement sites are selected from left to right, not
allowing any overlaps.

If there are alternate candidate strings starting at the
same location, only the longest one is replaced.

Intro to CL – WS 2006/7 – p.11

A Grammar for Date Expressions

1To9 = [1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9]

0To9 = [%0 | 1To9]

SP = [", "]

Day = [Monday | ... | Saturday | Sunday]

Month = [January | ... | November | December]

Date = [1To9 | [1 | 2] 0To9 | 3 [%0 | 1]]

Year = 1To9 (0To9 (0To9 (0To9)))

DateExp = Day | (Day SP) Month " " Date (SP Year)

Intro to CL – WS 2006/7 – p.12

Marking Date Expressions

A parser for date expressions can be compiled from the
following simple regular expression:
DateExp @-> %[... %]

The above expression can be compiled into a
finite-state transducer.

@-> is a replacement operator which scans the input
from left to right and follows a longest-match.

Due to the longest match constraint, the transducer
brackets only the maximal date expressions.

The dots mean: identity with the upper string. The
whole expression means: replace DateExp by DateExp
surrounded by brackets.

Intro to CL – WS 2006/7 – p.13

Overgeneration Problem

The grammar for date expressions accepts illegal dates.

Example: It admits dates like “February 30, 2007”.

More generally:
If a grammar admits strings that should not be
accepted by the grammar, the grammar is said to
overgenerate.
If a grammar does not admit strings that should be
accepted by the grammar, the grammar is said to
undergenerate.

Intro to CL – WS 2006/7 – p.14

Tokenizing Date Expressions

Example:

Today is [Wednesday, August 28, 1996] because yesterday
was [Tuesday] and it was [August 27] so tomorrow must be
[Thursday, August 29] and not [August 30, 1996] as it says
on the program.

Intro to CL – WS 2006/7 – p.15

Incremental Tokenization

input layer one, two, and so on.

single word layer one || , || two || , || and || so || on || . ||

multi-word layer one || , || two || , || and so on || . ||

Intro to CL – WS 2006/7 – p.16

Advantages of Incremental Tokenization

With finite-state transducers incremental tokenization is
implemented by the composition operator for
transducers.

Separation of grammar specification and program code:
Each analysis level is specified in a well-defined
language of regular expressions.

Transducers for each layer can be stated independently
of each other.

Regular expressions can be compiled automatically into
(composed) finite state transducers.

Intro to CL – WS 2006/7 – p.17

A Quick Guide to Morphology (1)

Morphology studies the internal structure of words.

The building blocks are called morphemes. One
distinguishes between free and bound morphemes.

Free morphemes are those which can stand alone
as words.
Bound morphemes are those that always have to
attach to other morphemes.

Intro to CL – WS 2006/7 – p.18

A Simple Morphological Typology

Isolating languages: no bound morphemes

Intro to CL – WS 2006/7 – p.19

A Simple Morphological Typology

Isolating languages: no bound morphemes

Agglutinative languages: all bound forms are affixes

Intro to CL – WS 2006/7 – p.19

A Simple Morphological Typology

Isolating languages: no bound morphemes

Agglutinative languages: all bound forms are affixes

Inflectional languages: distinct features merged into
single bound form; same underlying feature expressed
differently, depending on paradigm

Intro to CL – WS 2006/7 – p.19

A Simple Morphological Typology

Isolating languages: no bound morphemes

Agglutinative languages: all bound forms are affixes

Inflectional languages: distinct features merged into
single bound form; same underlying feature expressed
differently, depending on paradigm

Polysynthetic languages: more structural information
expressed morphologically

Intro to CL – WS 2006/7 – p.19

A Quick Guide to Morphology (2)

Linguists commonly distinguish three types of
morphological processes:

Inflectional morphology: refers to the class of bound
morphemes that do not change word class.

Derivational morphology: refers to the class of bound
morphemes that do change word class.

Compounding: a morphologically complex word can be
constructed out of two or more free morphemes.

Intro to CL – WS 2006/7 – p.20

Inflectional Morphemes

Bound morphemes which do not change part of speech,
e.g. big and bigger are both adjectives.

Typically indicate syntactic or semantic relations
between different words in a sentence, e.g. the English
present tense morpheme -s in waits shows agreement
with the subject of the verb.

Typically occur with all members of some large class of
morphemes, e.g. the pural morpheme -s occurs with
most nouns.

Typically occur at the margins of words as affixes
(prefix, suffix, circumfix)

Intro to CL – WS 2006/7 – p.21

Derivational Morphemes

Bound morphemes which change part of speech, e.g.
-ment forms nouns, such as judgment, from verbs such
as judge.

Typically indicate semantic relations within the word,
e.g. the morpheme -ful in painful has no particular
connection with any other morpheme beyond the word
painful.

Typically occur with only some members of a class of
morphemes, e.g. the suffix -hood occurs with just a few
nouns such as brother, neighbor, and knight, but not
with many others, e.g. friend, daughter, candle, etc.

Typically occur before inflectional suffixes, e.g. in
interpretierbare (Antwort) the derivational suffix bar
before the inflectional suffix -e.

Intro to CL – WS 2006/7 – p.22

Compounding

A compound is a word formed by the combination of
two independent words.

The parts of the compound can be free morphemes,
derived words, or other compounds in nearly any
combination:

girlfriend (two independent morphemes),
looking glass (derived word + free morpheme),
life insurance salesman (compound + free
morpheme).

Intro to CL – WS 2006/7 – p.23

	Regular Relations
	Finite-State Transducer
	Constructing Regular Relations
	Constructing Regular Relations
	Properties of Regular Relations
	Properties of Transducers
	Replacement Operators
	Non-determinism of {em replace} (1)
	Non-determinism of {em replace} (2)
	Longest match, left-to-right replace
	A Grammar for Date Expressions
	Marking Date Expressions
	Overgeneration Problem
	Tokenizing Date Expressions
	Incremental Tokenization
	Advantages of Incremental Tokenization
	A Quick Guide to Morphology (1)
	A Simple Morphological Typology
	A Quick Guide to Morphology (2)
	Inflectional Morphemes
	Derivational Morphemes
	Compounding

