# Introduction to Computational Linguistics 

Frank Richter

fr@sfs.uni-tuebingen.de.

Seminar für Sprachwissenschaft<br>Eberhard-Karls-Universität Tübingen<br>Germany

## What Makes Machine Translation Hard

- Lexical Ambiguity


## What Makes Machine Translation Hard

- Lexical Ambiguity
- Lexical Gaps


## What Makes Machine Translation Hard

- Lexical Ambiguity
- Lexical Gaps
- Syntactic Divergences between Source and Target Language


## Problems: Word-to-Word Translations

## English - German

The ticket office
in the train station
Der Fahrkartenschalter im Bahnhof
öffnet wieder um ein Uhr.
re-opens at one o'clock.

## Lexical Ambiguity: Open (1)

## English

in store door
on new building
open door
open golf tourney
open question
open job
open morning
open football player

## German

Offen
Neu eröffnet
Tür öffnen
Golfspiel eröffnen
offene Frage
freie Stelle freier Morgen
freier Fussballspieler

## Lexical Ambiguity: Open (2)

## English

loose ice
blank endorsement private firm
unfortified town
blank cheque
to unbutton a coat

German
offenes Eis
offenes Giro
offene Handelsgesellschaft
offene Stadt
offener Wechsel
einen Mantel öffnen

## Structural Divergence (1)

## English - German

Max likes to swim. NP VFIN INF

Max schwimmt gerne. NP VFIN ADV

## Structural Divergence (2)

## Russian - English

Jego zovut Julian. Him they callJulian. They call him Julian.

## Japanese - English

Kino ame ga futa.
Yesterday rain fell.
It was raining yesterday.

## Differences in Word Order

## English - German

Does it make sense to translate Macht es Sinn
documents automatically ?
Dokumente automatisch zu übersetzen ?

## MT: The Weaver Memo (1)

- Translation and Context

If one examines the words in a book, one at a time as through an opaque mask with a hole in it one word wide, then it is obviously impossible to determine, one at a time, the meaning of the words.

## MT: The Weaver Memo (1)

- Translation and Context

If one examines the words in a book, one at a time as through an opaque mask with a hole in it one word wide, then it is obviously impossible to determine, one at a time, the meaning of the words.
But if one lengthens the slit in the opaque mask, until one see not only the central word in question but also say $N$ words on either side, then if $N$ is large enough one can unambiguously decide the meaning of the central word.

## MT: The Weaver Memo (2)

- Translation and Context

The practical question is: "What minimum value of $N$ will, at least, in a tolerable fraction of cases, lead to the correct choice of meaning for the central word?"

## MT: The Weaver Memo (2)

- Translation and Context

The practical question is: "What minimum value of $N$ will, at least, in a tolerable fraction of cases, lead to the correct choice of meaning for the central word?"

- Translation and Cryptography
... it is very tempting to say that a book written in Chinese is simply a book written in English which was coded into the "Chinese code".


## MT: The Weaver Memo (3)

- Translation and Language Universals (Invariants) ... there are certain invariant properties which are, again not precisely, but to some statistically useful degree, common to all languages.


## MT: The Weaver Memo (3)

- Translation and Language Universals (Invariants) ... there are certain invariant properties which are, again not precisely, but to some statistically useful degree, common to all languages. Thus may it be true that the way to translate Chinese to Arabic or from Russian to Portuguese, is not to attempt the direct route ... but down to the common base of human communication - the real but yet undiscovered universal language and then to re-emerge by whatever particular route is convenient.


## Strategies for Machine Translation

- Word-to-Word (Direct) Translation


## Strategies for Machine Translation

- Word-to-Word (Direct) Translation
- Syntactic Transfer


## Strategies for Machine Translation

- Word-to-Word (Direct) Translation
- Syntactic Transfer
- Semantic Transfer


## Strategies for Machine Translation

- Word-to-Word (Direct) Translation
- Syntactic Transfer
- Semantic Transfer
- Interlingua Approach


## Strategies for Machine Translation (2)

- Word-to-Word (Direct) Translation
- simplest approach:


## Strategies for Machine Translation (2)

- Word-to-Word (Direct) Translation
- simplest approach:
- may require only an electronic, bi-lingual dictionary


## Strategies for Machine Translation (2)

- Word-to-Word (Direct) Translation
- simplest approach:
- may require only an electronic, bi-lingual dictionary
- depending on the source and target languages and the dictionary, minimal morphological analysis and generation may be required.


## Strategies for Machine Translation (2)

- Word-to-Word (Direct) Translation
- simplest approach:
- may require only an electronic, bi-lingual dictionary
- depending on the source and target languages and the dictionary, minimal morphological analysis and generation may be required.
- no use of syntactic or semantic knowledge


## Strategies for Machine Translation (3)

- Syntactic Transfer


## Strategies for Machine Translation (3)

- Syntactic Transfer
- requires syntactic analysis of the source language


## Strategies for Machine Translation (3)

- Syntactic Transfer
- requires syntactic analysis of the source language
- requires a syntactic parser


## Syntactic Transfer Trees

## An Example of a Transfer Tree for English like and French plaire



## Syntactic Transfer Trees (2)

## An Example of a Transfer Tree for English like to $\langle V\rangle$ and

 German $\langle V\rangle$ gern

## Strategies for Machine Translation (4)

- Semantic Transfer
- requires syntactic and semantic analysis of the source language


## Strategies for Machine Translation (4)

- Semantic Transfer
- requires syntactic and semantic analysis of the source language
- requires language-dependent meaning representation language


## Strategies for Machine Translation (4)

- Semantic Transfer
- requires syntactic and semantic analysis of the source language
- requires language-dependent meaning representation language
- language-dependent rules that relate source language meaning representations to target language meaning representations


## Strategies for Machine Translation (4)

## - Semantic Transfer

- requires syntactic and semantic analysis of the source language
- requires language-dependent meaning representation language
- language-dependent rules that relate source language meaning representations to target language meaning representations
- requires language generation component which maps target language meaning representations to output sentences


## Strategies for Machine Translation (5)

- Semantic Transfer
- synthesis typically performed in two stages: semantic synthesis (resulting in syntactic trees) and morphological synthesis (resulting in strings of inflected word forms).


## Strategies for Machine Translation (5)

- Interlingua Approach
- source language input is mapped to a language-neutral (quasi-universal) meaning representation language


## Strategies for Machine Translation (5)

- Interlingua Approach
- source language input is mapped to a language-neutral (quasi-universal) meaning representation language
- requires syntactic and semantic analysis of the source language into interlingua


## Strategies for Machine Translation (5)

- Interlingua Approach
- source language input is mapped to a language-neutral (quasi-universal) meaning representation language
- requires syntactic and semantic analysis of the source language into interlingua
- requires language generation component which maps interlingua to output sentences


# Strategies for Machine Translation (5) 

- Interlingua Approach
- source language input is mapped to a language-neutral (quasi-universal) meaning representation language
- requires syntactic and semantic analysis of the source language into interlingua
- requires language generation component which maps interlingua to output sentences
- synthesis typically performed in two stages: semantic synthesis from the interlingua (resulting in syntactic trees) and morphological synthesis (resulting in strings of inflected word forms).


## Interlingua Representation for Motion Verbs

He walked across the road.
lls traversa la rue a pied.
$\left[\begin{array}{c}\text { PRED }=\langle\text { MOTION }\rangle \\ \text { TENSE }=\text { PAST } \\ \text { AGENT }=\left[\begin{array}{l}\text { PRED }=\text { PRON } \\ \text { NUM }=\text { SING } \\ \text { PERS }=3 \\ \text { SEX }=\text { MALE }\end{array}\right] \\ \text { INSTR }=\left[\begin{array}{l}\text { PRED }=\langle\text { FOOT }\rangle\end{array}\right] \\ \text { LOC }=\left[\begin{array}{l}\text { PRED }=\langle\text { CROSS }\rangle \\ \text { OBJ }=[\text { PRED }=\langle\text { ROAD }\rangle\end{array}\right]\end{array}\right]$.

## Interlingua Representation for Motion Verbs (2)

They flew
lls partirent par avion de Gatwick.

$$
\left[\begin{array}{l}
\text { PRED }=\langle\text { MOTION }\rangle \\
\text { TENSE }=\text { PAST } \\
\text { AGENT }=\left[\begin{array}{l}
\text { PRED }=\text { PRON } \\
\text { NUM }=\text { PLUR } \\
\text { PERS }=3
\end{array}\right] \\
\text { INSTR }=\left[\begin{array}{l}
\text { PRED }=\langle\text { PLANE }\rangle
\end{array}\right] \\
\text { LOC }=\left[\begin{array}{l}
\text { PRED }=\langle\text { LEAVE }\rangle \\
\text { OBJ }=[\text { PRED }=\text { GATWICK }]
\end{array}\right]
\end{array}\right] .
$$

## Interlingua Representation for Verbs (1)

English wall German Wand (inside a building)
Mauer (outside)

English river French riviere (general term)
fleuve (major river, flowing into sea)

## Interlingua Representation for Verbs (2)

English leg Spanish pierna (human)
pata (animal,table)
pie (chair)
etapa (of a journey)

French jambe (human)
patte (animal,insect)
pied (chair,table)
étape (journey)

## Interlingua Representation for Verbs (3)

English blue
Russian goluboi (pale blue) sinii (dark blue)

French louer English hire or rent

French colombe
German Taube
English pigeon or dove

German leihen English borrow or lend

## Interlingua Representation for Verbs (4)

English rice Malay padi (unharvested grain) beras (uncooked)
nasi (cooked)
emping (mashed)
pulut (glutinous)
bubor (cooked as a gruel)

## Interlingua Representation for Verbs (5)

English wear Japanese kiru (generic)
haoru (coat or jacket)
haku (shoes or trousers)
kaburu (hat)
hameru (ring or gloves)
shimeru (belt or tie or scarf)
tsukeru (brooch or clip)
kakeru (glasses or necklace)

## The Vauqois Triangle



Strategies for Machine Translation

## Modules required in an all-pairs MTS

Number of Analysis Generation languages modules modules

Transfer modules modules

| 2 | 2 | 2 | 2 | 6 |
| :---: | :---: | :---: | :---: | :---: |
| 3 | 3 | 3 | 6 | 12 |
| 4 | 4 | 4 | 12 | 20 |
| 5 | 5 | 5 | 20 | 30 |
| $\ldots$ |  |  |  |  |
| 9 | 9 | 9 | 72 | 90 |
| $n$ | $n$ | $n$ | $n(n-1)$ | $n(n+1)$ |

