Introduction to Computational Linguistics

Frank Richter

fr@sfs.uni-tuebingen.de.

Seminar für Sprachwissenschaft Eberhard-Karls-Universität Tübingen Germany

Incremental Linguistic Analysis

- tokenization
- morphological analysis (lemmatization)
- part-of-speech tagging
- named-entity recognition
- partial chunk parsing
- full syntactic parsing
- semantic and discourse processing

Regular languages and finite state automata

deterministic finite state automata,

Regular languages and finite state automata

- deterministic finite state automata,
- nondeterministic finite state automata,

Regular languages and finite state automata

- deterministic finite state automata,
- nondeterministic finite state automata,
- finite state automata, and

Regular languages and finite state automata

- deterministic finite state automata,
- nondeterministic finite state automata,
- finite state automata, and
- regular expressions

Regular languages and finite state automata

- deterministic finite state automata,
- nondeterministic finite state automata,
- finite state automata, and
- regular expressions

characterize the same class of languages, *viz.* Type 3 languages

Regular Expressions

Given an alphabet Σ of symbols the following are all and only the regular expressions over the alphabet $\Sigma \cup \{ \mathbf{\emptyset}, 0, |, *, [,] \}$:

- Ø empty set
- 0 the empty string $(\epsilon, [])$
- $\sigma \qquad \text{ for all } \sigma \in \Sigma$
- $[\alpha \mid \beta]$ union (for α, β reg.ex.)
- $(\alpha \cup \beta, \alpha + \beta)$
- $[\alpha \beta]$ concatenation (for α, β reg.ex.)
- [α^*] Kleene star (for α reg.ex.)

Meaning of Regular Expressions

 $L(\emptyset) = \emptyset$ the empty language $L(0) = \{0\}$ the empty-string language $L(\sigma) = \{\sigma\}$ $L([\alpha \mid \beta]) = L(\alpha) \cup L(\beta)$ $L([\alpha \mid \beta]) = L(\alpha) \circ L(\beta)$ $L([\alpha^*]) = (L(\alpha))^*$

 Σ^* is called the universal language. Note that the universal language is given relative to a particular alphabet.

Remarks on Regular Expressions

The empty string, i.e., the string containing no character, is denoted by 0. The empty string is the neutral element for the concatenation operation. That is:

for any string $w \in \Sigma^*$: w0 = 0w = w

Square brackets, [], are used for grouping expressions. Thus [A] is equivalent to A while (A) is not. We leave out brackets for readability if no confusion can arise.

Regular Expressions: Syntax

- () is (sometimes) used for optionality; e.g. (A);
 definable in terms of union with the empty string.
- ? denotes any symbol; L(?) = ∑
 (our ? corresponds to # in the textbook by Kozen)
- A⁺ denotes iteration; one or more concatenations of A. Equivalent to A (A*).
- Note the following simple expressions:
 - [] denotes the empty-string language
 - ?* denotes the universal language (corresponds to @ in Kozen)

Deterministic Finite-State Automata

Definition 1 (DFA) A deterministic FSA (DFA) is a quintuple $(\Sigma, Q, i, F, \delta)$ where

 Σ is a finite set called *the alphabet*,

Q is a finite set of *states*,

 $i \in Q$ is the *initial state*,

 $F \subseteq Q$ the set of *final states*, and

 δ is the transition function from $Q \times \Sigma$ to Q.

Generalizing Finite-State Automata

Definition 2 (rNFA) A restricted nondeterministic finite-state automaton is a quintuple $(\Sigma, Q, i, F, \Delta)$ where

 Σ is a finite set called *the alphabet*,

Q is a finite set of *states*,

 $i \in Q$ is the *initial state*,

 $F \subseteq Q$ the set of *final states*, and

 $\Delta \subseteq Q \times (\Sigma \cup \{\epsilon\}) \times Q \text{ is the set of edges}$ (the transition *relation*).

Nondeterministic Finite-State Automata

Definition 3 (NFA) A nondeterministic finite-state automaton is a quintuple $(\Sigma, Q, S, F, \Delta)$ where

 Σ is a finite set called *the alphabet*,

Q is a finite set of *states*,

- $S \subseteq Q$ is the set of *initial states*,
- $F \subseteq Q$ the set of *final states*, and

 $\Delta \subseteq Q \times \Sigma^* \times Q$ is the set of edges (the transition *relation*).

Some Important Properties of FSAs (1)

- Determinization: For every nondeterministic finite-state automaton there exists an equivalent deterministic automaton.
- Minimization: For every nondeterministic finite-state automaton there exists an equivalent deterministic automaton with a minimal number of states.

What is in a State

Definition 4

Given a DFA M = $(\Sigma, Q, i, F, \delta)$,

a state of M is triple (x, q, y)

where $q \in Q$ and $x, y \in \Sigma^*$

The directly derives relation

Definition 5 (directly derives)

Given a DFA $(\Sigma, Q, i, F, \delta)$,

a state (x, q, y) *directly derives* state (x', q', y'): $(x, q, y) \vdash (x', q', y')$ iff

1. there is $\sigma \in \Sigma$ such that $y = \sigma y'$ and $x' = x\sigma$ (i.e. the reading head moves right one symbol σ)

2.
$$\delta(q,\sigma) = q'$$

The derives relation

Definition 6 (derives)

Given a DFA $(\Sigma, Q, i, F, \delta)$,

a state A *derives* state B: $(x,q,y) \vdash * (x',q',y')$ iff there is a sequence $S_0 \vdash S_1 \vdash \cdots \vdash S_k$

such that $A = S_0$ and $B = S_k$

Acceptance

Definition 7 (Acceptance)

Given a DFA $M = (\Sigma, Q, i, F, \delta)$ and a string $x \in \Sigma^*$, *M* accepts *x* iff

there is a $q \in F$ such that $(0, i, x) \vdash *(x, q, 0)$.

Language accepted by M

Definition 8 (Language accepted by M)

Given a DFA $M = (\Sigma, Q, i, F, \delta)$, the language L(M) accepted by M is the set of all strings accepted by M.

Example of String Acceptance

Let $M = (\{a, b\}, \{q_0, q_1, q_2\}, q_0, \{q_1\}, \{((q_0, a), q_1), ((q_0, b), q_1), ((q_1, a), q_2), ((q_1, b), q_2), ((q_2, a), q_2), ((q_2, b), q_2), \}).$

Example of String Acceptance

Let $M = (\{a, b\}, \{q_0, q_1, q_2\}, q_0, \{q_1\}, \{((q_0, a), q_1), ((q_0, b), q_1), ((q_1, a), q_2), ((q_1, b), q_2), ((q_2, a), q_2), ((q_2, b), q_2), \}).$

M accepts a and b and nothing else, i.e. $L(M) = \{a, b\}$, since

 $(0, q_0, a) \vdash (a, q_1, 0)$ and $(0, q_0, b) \vdash (b, q_1, 0)$

are the only derivations from a start state to a final state for M.