Frank Richter
Semantik II

Syntax and Semantics of Higher Order Intensional Logic

Types As in our previous higher-order language, all expressions of our higherorder intensional language, $\mathcal{L}_{\text {Type }}$, will be typed.

Definition 1 Types

Type is the smallest set such that
i.) $e \in$ Type,
ii.) $t \in$ Type,
iii.) for each $\tau_{1} \in$ Type, for each $\tau_{2} \in$ Type, $\left\langle\tau_{1}, \tau_{2}\right\rangle \in$ Type,
iv.) for each $\tau \in$ Type, $\langle s, \tau\rangle \in$ Type.

Syntax The basic expressions of $\mathcal{L}_{\text {Type }}$ consist only of variables and constants. Again there is no distinction between terms and formulae.

Definition 2 Basic Expressions

i.) For each $\tau \in \operatorname{Type}, \operatorname{Var}_{\tau}$ is the smallest set such that for each $n \in \mathbb{N}_{0}$, $v_{n, \tau} \in \operatorname{Var}_{\tau}$.
ii.) For each $\tau \in$ Type, Const $_{\tau}$ is the smallest set such that for each $n \in \mathbb{N}_{0}$, $c_{n, \tau} \in$ Const.

We write Var for the set of all variables, $\bigcup_{\tau \in \operatorname{Type}} \operatorname{Var}_{\tau}$, and Const for the set of all constants, $\bigcup_{\tau \in \text { Type }}$ Const $_{\tau}$.
The set of basic expressions of our language is the union of the set of variables and the set of constants.

Definition 3 Meaningful Expressions

The meaningful expressions of $\mathcal{L}_{\text {Type }}$ are the smallest familiy $\left(\mathrm{ME}_{\tau}\right)_{\tau \in \text { Type }}$ such that
i.) for each $\tau \in$ Type, for each $n \in \mathbb{N}_{0}$, for each variable $v_{n, \tau} \in \operatorname{Var}_{\tau}$,
$v_{n, \tau} \in \mathrm{ME}_{\tau}$;
ii.) for each $\tau \in$ Type, for each $n \in \mathbb{N}_{0}$, for each constant $c_{n, \tau} \in$ Const $_{\tau}$, $c_{n, \tau} \in \mathrm{ME}_{\tau} ;$
iii.) for each $\tau \in$ Type, for each $\phi_{\tau} \in \mathrm{ME}_{\tau}$, for each $\psi_{\tau} \in \mathrm{ME}_{\tau}$, $\left(\phi_{\tau} \equiv \psi_{\tau}\right)_{t} \in \mathrm{ME}_{t} ;$
iv.) for each $\phi_{\left\langle\tau_{2}, \tau_{1}\right\rangle} \in \mathrm{ME}_{\left\langle\tau_{2}, \tau_{1}\right\rangle}$, for each $\psi_{\tau_{2}} \in \mathrm{ME}_{\tau_{2}}$, $\left(\phi_{\left\langle\tau_{2}, \tau_{1}\right\rangle}\left(\psi_{\tau_{2}}\right)\right)_{\tau_{1}} \in \mathrm{ME}_{\tau_{1}} ;$
v.) for each $\phi_{t} \in \mathrm{ME}_{t}$, $\left(\neg \phi_{t}\right)_{t} \in \mathrm{ME}_{t} ;$
vi.) for each $\phi_{t} \in \mathrm{ME}_{t}$, for each $\psi_{t} \in \mathrm{ME}_{t}$, $\left(\phi_{t} \wedge \psi_{t}\right)_{t} \in \mathrm{ME}_{t} ;$
vii.) for each $\phi_{t} \in \mathrm{ME}_{t}$, for each $\psi_{t} \in \mathrm{ME}_{t}$, $\left(\phi_{t} \vee \psi_{t}\right)_{t} \in \mathrm{ME}_{t} ;$
viii.) for each $\phi_{t} \in \mathrm{ME}_{t}$, for each $\psi_{t} \in \mathrm{ME}_{t}$, $\left(\phi_{t} \rightarrow \psi_{t}\right)_{t} \in \mathrm{ME}_{t} ;$
ix.) for each $\phi_{t} \in \mathrm{ME}_{t}$, for each $\psi_{t} \in \mathrm{ME}_{t}$, $\left(\phi_{t} \leftrightarrow \psi_{t}\right)_{t} \in \mathrm{ME}_{t} ;$
x.) for each $\tau_{1} \in$ Type, for each $\tau_{2} \in$ Type, for each $n \in \mathbb{N}_{0}$, for each $v_{n, \tau_{2}} \in$ Var, for each $\phi_{\tau_{1}} \in \mathrm{ME}_{\tau_{1}}$,
$\left(\lambda v_{n, \tau_{2}} \cdot \phi_{\tau_{1}}\right)_{\left\langle\tau_{2}, \tau_{1}\right\rangle} \in \mathrm{ME}_{\left\langle\tau_{2}, \tau_{1}\right\rangle} ;$
xi.) for each $\phi_{t} \in \mathrm{ME}_{t}$,
$\square \phi_{t} \in \mathrm{ME}_{t} ;$
xii.) for each $\phi_{t} \in \mathrm{ME}_{t}$,
$\diamond \phi_{t} \in \mathrm{ME}_{t} ;$
xiii.) for each $\tau \in$ Type, for each $\phi_{\tau} \in \mathrm{ME}_{\tau}$,
${ }^{\wedge} \phi_{\tau} \in \mathrm{ME}_{\langle s, \tau\rangle} ;$
xiv.) for each $\tau \in$ Type, for each $\phi_{\langle s, \tau\rangle} \in \mathrm{ME}_{\langle s, \tau\rangle}$, ${ }^{-} \phi_{\langle s, \tau\rangle} \in \mathrm{ME}_{\tau} ;$
$x v$.) for each $\tau \in$ Type, for each $n \in \mathbb{N}_{0}$, for each $v_{n, \tau} \in \operatorname{Var}$, for each $\phi_{t} \in$ ME_{t},
$\left(\forall v_{n, \tau} \phi_{t}\right)_{t} \in \mathrm{ME}_{t} ;$
xvi.) for each $\tau \in$ Type, for each $n \in \mathbb{N}_{0}$, for each $v_{n, \tau} \in \operatorname{Var}$, for each $\phi_{t} \in$ ME_{t},
$\left(\exists v_{n, \tau} \phi_{t}\right)_{t} \in \mathrm{ME}_{t}$.

Semantics D is a set of individuals, and W is a set of possible worlds. The interpretation domain with respect to the set of individuals D and the set of possible worlds W is then defined as $\mathrm{D}_{e, \mathrm{D}, \mathrm{W}}=\mathrm{D}, \mathrm{D}_{t, \mathrm{D}, \mathrm{W}}=\{0,1\}$, for each $\tau_{1} \in$ Type, for each $\tau_{2} \in$ Type, $D_{\left\langle\tau_{1}, \tau_{2}\right\rangle}=D_{\tau_{2}, \mathrm{D}, \mathrm{W}} \mathrm{D}_{\tau_{1}, \mathrm{D}, \mathrm{W}}$ (the set of all functions from $\mathrm{D}_{\tau_{1}, \mathrm{D}, \mathrm{W}}$ to $\mathrm{D}_{\tau_{2}, \mathrm{D}, \mathrm{W}}$), and for each $\tau \in$ Type, $\mathrm{D}_{\langle s, \tau\rangle}=\mathrm{D}_{\tau, \mathrm{D}, \mathrm{W}} \mathrm{W}$ (the set of functions from worlds to objects in the domain $\left.\mathrm{D}_{\tau, \mathrm{D}, \mathrm{W}}\right)$.
Let I be a function which assigns to each non-logical constant of type $\tau, c_{n, \tau}$ in $\mathcal{L}_{\text {Type }}$, a function which gives, for each world, the meaning of that constant in that world. This means that $\mathrm{I}\left(c_{n, \tau}\right) \in \mathrm{D}_{\tau, \mathrm{D}, \mathrm{W}} \mathrm{W}$.
Let $\mathrm{M}=\langle\mathrm{D}, \mathrm{W}, \mathrm{I}\rangle$. We will call each M a model.
Let g be a function in $\bigcup_{\tau \in \text { Type }}\left(\mathrm{D}_{\tau} \mathrm{Var}_{\tau}\right)$ which assigns an object (of the appropriate type) in the domain $\bigcup_{\tau \in \text { Type }} \mathrm{D}_{\tau}$ to each variable in Var. We call each g an assignment function.
Assume that v is a variable of type τ and d is an element of D_{τ}. We will use the notation $g \stackrel{d}{v}$ for the assignment function g^{\prime} which differs from the assignment function g in the following way:
For each $\tau \in$ Type, for each $v \in \operatorname{Var}_{\tau}$, for each $x \in \operatorname{Var}_{\tau}$, for each $d \in \mathrm{D}_{\tau}$,
$g \stackrel{d}{v}(x)= \begin{cases}d & \text { if } x=v, \text { and } \\ g(x) & \text { otherwise. }\end{cases}$
Definition 4 Extension (Reference) of Meaningful Expressions in Worlds given M and g
Let $\mathrm{M}=\langle\mathrm{D}, \mathrm{W}, \mathrm{I}\rangle$ be a model and g an assignment function.
i.) For each $\tau \in$ Type, for each $n \in \mathbb{N}_{0}$, for each variable $v_{n, \tau} \in \operatorname{Var}_{\tau}$, for each $w \in \mathrm{~W}$,
$\llbracket v_{n, \tau} \rrbracket^{\mathrm{M}, w, g}=g\left(v_{n, \tau}\right)$.
ii.) For each $\tau \in$ Type, for each $n \in \mathbb{N}_{0}$, for each constant $c_{n, \tau} \in$ Const $_{\tau}$, for each $w \in \mathbf{W}$,
$\llbracket c_{n, \tau} \rrbracket^{\mathrm{M}, w, g}=\mathrm{I}\left(c_{n, \tau}\right)(w)$.
iii.) For each $\tau \in$ Type, for each $\phi_{\tau} \in \mathrm{ME}_{\tau}$, for each $\psi_{\tau} \in \mathrm{ME}_{\tau}$, for each $w \in \mathrm{~W}$,
$\llbracket\left(\phi_{\tau} \equiv \psi_{\tau}\right)_{t} \rrbracket^{\mathrm{M}, w, g}=1$ iff $\llbracket \phi_{\tau} \rrbracket^{\mathrm{M}, w, g}=\llbracket \psi_{\tau} \rrbracket^{\mathrm{M}, w, g}$.
iv.) For each $\phi_{\left\langle\tau_{2}, \tau_{1}\right\rangle} \in \mathrm{ME}_{\left\langle\tau_{2}, \tau_{1}\right\rangle}$, for each $\psi_{\tau_{2}} \in \mathrm{ME}_{\tau_{2}}$, for each $w \in \mathrm{~W}$,
$\llbracket\left(\phi_{\left\langle\tau_{2}, \tau_{1}\right\rangle}\left(\psi_{\tau_{2}}\right)\right)_{\tau_{1}} \rrbracket^{\mathrm{M}, w, g}=\llbracket \phi_{\left\langle\tau_{2}, \tau_{1}\right\rangle} \rrbracket^{\mathrm{M}, w, g}\left(\llbracket \psi_{\tau_{2}} \rrbracket^{\mathrm{M}, w, g}\right)$.
v.) For each $\phi_{t} \in \mathrm{ME}_{t}$, for each $w \in \mathrm{~W}$,
$\llbracket\left(\neg \phi_{t}\right)_{t} \rrbracket^{\mathrm{M}, w, g}=1$ iff $\llbracket\left(\phi_{t}\right)_{t} \rrbracket^{\mathrm{M}, w, g}=0$
vi.) For each $\phi_{t} \in \mathrm{ME}_{t}$, for each $\psi_{t} \in \mathrm{ME}_{t}$, for each $w \in \mathrm{~W}$,
$\llbracket\left(\phi_{t} \wedge \psi_{t}\right)_{t} \rrbracket^{\mathrm{M}, w, g}=1$ iff $\llbracket \phi_{t} \rrbracket^{\mathrm{M}, w, g}=1$ and $\llbracket \psi_{t} \rrbracket^{\mathrm{M}, w, g}=1$.
vii.) For each $\phi_{t} \in \mathrm{ME}_{t}$, for each $\psi_{t} \in \mathrm{ME}_{t}$, for each $w \in \mathrm{~W}$,
$\llbracket\left(\phi_{t} \vee \psi_{t}\right)_{t} \rrbracket^{\mathrm{M}, w, g}=1$ iff $\llbracket \phi_{t} \rrbracket^{\mathrm{M}, w, g}=1$ or $\llbracket \psi_{t} \rrbracket^{\mathrm{M}, w, g}=1$.
viii.) For each $\phi_{t} \in \mathrm{ME}_{t}$, for each $\psi_{t} \in \mathrm{ME}_{t}$, for each $w \in \mathrm{~W}$,
$\llbracket\left(\phi_{t} \rightarrow \psi_{t}\right)_{t} \rrbracket^{\mathrm{M}, w, g}=1$ iff $\llbracket \phi_{t} \rrbracket^{\mathrm{M}, w, g}=0$ or $\llbracket \psi_{t} \rrbracket^{\mathrm{M}, w, g}=1$.
ix.) For each $\phi_{t} \in \mathrm{ME}_{t}$, for each $\psi_{t} \in \mathrm{ME}_{t}$, for each $w \in \mathrm{~W}$,
$\llbracket\left(\phi_{t} \leftrightarrow \psi_{t}\right)_{t} \rrbracket^{\mathrm{M}, w, g}=1$ iff $\llbracket \phi_{t} \rrbracket^{\mathrm{M}, w, g}=\llbracket \psi_{t} \rrbracket^{\mathrm{M}, w, g}$.
x.) For each $\tau_{1} \in$ Type, for each $\tau_{2} \in$ Type, for each $n \in \mathbb{N}_{0}$, for each $v_{n, \tau_{2}} \in \operatorname{Var}$, for each $\phi_{\tau_{1}} \in \mathrm{ME}_{\tau_{1}}$, for each $w \in \mathrm{~W}$,
$\llbracket\left(\lambda v_{n, \tau_{2}} \cdot \phi_{\tau_{1}}\right)_{\left\langle\tau_{2}, \tau_{1}\right\rangle} \rrbracket^{\mathrm{M}, w, g}$ is that function h from $\mathrm{D}_{\tau_{2}}$ to $\mathrm{D}_{\tau_{1}}$ such that for each $o \in \mathrm{D}_{\tau_{2}}, h(o)=\llbracket \phi_{\tau_{1}} \rrbracket^{\mathrm{M}, w, g v_{n, \tau_{2}}}$.
xi.) For each $\phi_{t} \in \mathrm{ME}_{t}$, for each $w \in \mathrm{~W}$,
$\llbracket \square \phi_{t} \rrbracket^{\mathrm{M}, w, g}=1$ iff for all $w^{\prime} \in \mathrm{W}, \llbracket \phi_{t} \rrbracket^{\mathrm{M}, w^{\prime}, g}=1$.
xii.) For each $\phi_{t} \in \mathrm{ME}_{t}$, for each $w \in \mathrm{~W}$,
$\llbracket \diamond \phi_{t} \rrbracket^{\mathrm{M}, w, g}=1$ iff for at least one $w^{\prime} \in \mathrm{W}, \llbracket \phi_{t} \rrbracket^{\mathrm{M}, w^{\prime}, g}=1$.
xiii.) For each $\tau \in$ Type, for each $\phi_{\tau} \in \mathrm{ME}_{\tau}$, for each $w \in \mathrm{~W}$,
$\llbracket{ }^{\wedge} \phi_{\tau} \rrbracket^{\mathrm{M}, w, g}$ is that function $h \in \mathrm{D}_{\tau, \mathrm{D}, \mathrm{W}} \mathrm{W}^{\text {such that for all } w^{\prime} \in \mathrm{W}, h\left(w^{\prime}\right)=}$ $\llbracket \phi_{\tau} \rrbracket^{\mathrm{M}, w^{\prime}, g}$.
xiv.) For each $\tau \in$ Type, for each $\phi_{\langle s, \tau\rangle} \in \mathrm{ME}_{\tau}$, for each $w \in \mathrm{~W}$,
$\llbracket 乞 \phi_{\langle s, \tau\rangle} \rrbracket^{\mathrm{M}, w, g}=\llbracket \phi_{\langle s, \tau\rangle} \rrbracket^{\mathrm{M}, w, g}(w)$.
xv.) For each $\tau \in$ Type, for each $n \in \mathbb{N}_{0}$, for each $v_{n, \tau} \in \operatorname{Var}$, for each $\phi_{t} \in \mathrm{ME}_{t}$, for each $w \in \mathrm{~W}$,
$\llbracket\left(\forall v_{n, \tau} \phi_{t}\right)_{t} \rrbracket^{\mathrm{M}, w, g}=1$ iff for each $o \in \mathrm{D}_{\tau}, \llbracket \phi_{t} \rrbracket^{\mathrm{M}, w, g v_{n, \tau}}=1$.
xvi.) For each $\tau \in$ Type, for each $n \in \mathbb{N}_{0}$, for each $v_{n, \tau} \in \operatorname{Var}$, for each $\phi_{t} \in \mathrm{ME}_{t}$, for each $w \in \mathrm{~W}$,
$\llbracket\left(\exists v_{n, \tau} \phi_{t}\right)_{t} \rrbracket^{\mathrm{M}, w, g}=1$ iff for at least one $o \in \mathrm{D}_{\tau}, \llbracket \phi_{t} \rrbracket^{\mathrm{M}, w, g v_{n, \tau}^{o}}=1$.

