WS 08/09 2. Dezember 2008

Frank Richter

Semantik II

Syntax and Semantics of Higher Order Intensional Logic

Types As in our previous higher-order language, all expressions of our higher-order intensional language, $\mathcal{L}_{\mathsf{Type}}$, will be typed.

Definition 1 Types

Type is the smallest set such that

- *i.*) $e \in \mathsf{Type}$,
- ii.) $t \in \mathsf{Type}$,
- *iii.*) for each $\tau_1 \in \mathsf{Type}$, for each $\tau_2 \in \mathsf{Type}$, $\langle \tau_1, \tau_2 \rangle \in \mathsf{Type}$,
- iv.) for each $\tau \in \mathsf{Type}, \ \langle s, \tau \rangle \in \mathsf{Type}.$

Syntax The basic expressions of $\mathcal{L}_{\mathsf{Type}}$ consist only of variables and constants. Again there is no distinction between terms and formulae.

Definition 2 Basic Expressions

- i.) For each $\tau \in \mathsf{Type}$, Var_{τ} is the smallest set such that for each $n \in \mathbb{N}_0$, $v_{n,\tau} \in \mathsf{Var}_{\tau}$.
- ii.) For each $\tau \in \mathsf{Type}$, Const_{τ} is the smallest set such that for each $n \in \mathbb{N}_0$, $c_{n,\tau} \in \mathsf{Const}$.

We write Var for the set of all variables, $\bigcup_{\tau \in \mathsf{Type}} \mathsf{Var}_{\tau}$, and Const for the set of all constants, $\bigcup_{\tau \in \mathsf{Type}} \mathsf{Const}_{\tau}$.

The set of *basic expressions* of our language is the union of the set of variables and the set of constants.

Definition 3 Meaningful Expressions

The meaningful expressions of $\mathcal{L}_{\mathsf{Type}}$ are the smallest familiy $(\mathsf{ME}_{\tau})_{\tau \in \mathsf{Type}}$ such that

- i.) for each $\tau \in \mathsf{Type}$, for each $n \in \mathbb{N}_0$, for each variable $v_{n,\tau} \in \mathsf{Var}_{\tau}$, $v_{n,\tau} \in \mathsf{ME}_{\tau}$;
- ii.) for each $\tau \in \mathsf{Type}$, for each $n \in \mathbb{N}_0$, for each constant $c_{n,\tau} \in \mathsf{Const}_{\tau}$, $c_{n,\tau} \in \mathsf{ME}_{\tau}$;

```
iii.) for each \tau \in \mathsf{Type}, for each \phi_{\tau} \in \mathsf{ME}_{\tau}, for each \psi_{\tau} \in \mathsf{ME}_{\tau}, (\phi_{\tau} \equiv \psi_{\tau})_{t} \in \mathsf{ME}_{t};
```

iv.) for each
$$\phi_{\langle \tau_2, \tau_1 \rangle} \in \mathsf{ME}_{\langle \tau_2, \tau_1 \rangle}$$
, for each $\psi_{\tau_2} \in \mathsf{ME}_{\tau_2}$, $(\phi_{\langle \tau_2, \tau_1 \rangle} (\psi_{\tau_2}))_{\tau_1} \in \mathsf{ME}_{\tau_1}$;

v.) for each
$$\phi_t \in \mathsf{ME}_t$$
,
 $(\neg \phi_t)_t \in \mathsf{ME}_t$;

vi.) for each
$$\phi_t \in \mathsf{ME}_t$$
, for each $\psi_t \in \mathsf{ME}_t$, $(\phi_t \wedge \psi_t)_t \in \mathsf{ME}_t$;

vii.) for each
$$\phi_t \in \mathsf{ME}_t$$
, for each $\psi_t \in \mathsf{ME}_t$,
$$(\phi_t \lor \psi_t)_t \in \mathsf{ME}_t;$$

viii.) for each
$$\phi_t \in \mathsf{ME}_t$$
, for each $\psi_t \in \mathsf{ME}_t$,
$$(\phi_t \to \psi_t)_t \in \mathsf{ME}_t;$$

ix.) for each
$$\phi_t \in \mathsf{ME}_t$$
, for each $\psi_t \in \mathsf{ME}_t$, $(\phi_t \leftrightarrow \psi_t)_t \in \mathsf{ME}_t$;

$$x.)$$
 for each $au_1 \in \mathsf{Type}$, for each $au_2 \in \mathsf{Type}$, for each $n \in \mathbb{N}_0$, for each $v_{n, au_2} \in \mathsf{Var}$, for each $\phi_{ au_1} \in \mathsf{ME}_{ au_1}$, $(\lambda v_{n, au_2}.\phi_{ au_1})_{\langle au_2, au_1 \rangle} \in \mathsf{ME}_{\langle au_2, au_1 \rangle};$

xi.) for each
$$\phi_t \in \mathsf{ME}_t$$
, $\Box \phi_t \in \mathsf{ME}_t$;

xii.) for each
$$\phi_t \in \mathsf{ME}_t$$
, $\diamond \phi_t \in \mathsf{ME}_t$;

xiii.) for each
$$\tau \in \mathsf{Type}$$
, for each $\phi_{\tau} \in \mathsf{ME}_{\tau}$, $\hat{\phi}_{\tau} \in \mathsf{ME}_{\langle s, \tau \rangle}$;

xiv.) for each
$$\tau \in \mathsf{Type}$$
, for each $\phi_{\langle s, \tau \rangle} \in \mathsf{ME}_{\langle s, \tau \rangle}$, $\check{\phi}_{\langle s, \tau \rangle} \in \mathsf{ME}_{\tau}$;

$$xv.$$
) for each $\tau \in \mathsf{Type}$, for each $n \in \mathbb{N}_0$, for each $v_{n,\tau} \in \mathsf{Var}$, for each $\phi_t \in \mathsf{ME}_t$, $(\forall v_{n,\tau} \ \phi_t)_t \in \mathsf{ME}_t$;

xvi.) for each
$$\tau \in \mathsf{Type}$$
, for each $n \in \mathbb{N}_0$, for each $v_{n,\tau} \in \mathsf{Var}$, for each $\phi_t \in \mathsf{ME}_t$, $(\exists v_{n,\tau} \ \phi_t)_t \in \mathsf{ME}_t$.

Semantics D is a set of individuals, and W is a set of possible worlds. The interpretation domain with respect to the set of individuals D and the set of possible worlds W is then defined as $D_{e,D,W} = D$, $D_{t,D,W} = \{0,1\}$, for each $\tau_1 \in \mathsf{Type}$, for each $\tau_2 \in \mathsf{Type}$, $D_{\langle \tau_1,\tau_2 \rangle} = D_{\tau_2,D,W}^{D_{\tau_1,D,W}}$ (the set of all functions from $D_{\tau_1,D,W}$ to $D_{\tau_2,D,W}$), and for each $\tau \in \mathsf{Type}$, $D_{\langle s,\tau \rangle} = D_{\tau,D,W}^{W}$ (the set of functions from worlds to objects in the domain $D_{\tau,D,W}$).

Let I be a function which assigns to each non-logical constant of type τ , $c_{n,\tau}$ in $\mathcal{L}_{\mathsf{Type}}$, a function which gives, for each world, the meaning of that constant in that world. This means that $\mathsf{I}(c_{n,\tau}) \in \mathsf{D}_{\tau,\mathsf{D},\mathsf{W}}^{\mathsf{W}}$.

Let $M = \langle D, W, I \rangle$. We will call each M a *model*.

Let g be a function in $\bigcup_{\tau \in \mathsf{Type}} \left(\mathsf{D}_{\tau}^{\mathsf{Var}_{\tau}}\right)$ which assigns an object (of the appropriate type) in the domain $\bigcup_{\tau \in \mathsf{Type}} \mathsf{D}_{\tau}$ to each variable in Var . We call each g an assignment function.

Assume that v is a variable of type τ and d is an element of D_{τ} . We will use the notation g^{d} for the assignment function g' which differs from the assignment function g in the following way:

For each $\tau \in \mathsf{Type}$, for each $v \in \mathsf{Var}_{\tau}$, for each $x \in \mathsf{Var}_{\tau}$, for each $d \in \mathsf{D}_{\tau}$, $g^dv(x) = \left\{ \begin{array}{ll} d & \text{if } x = v \text{, and} \\ g(x) & \text{otherwise.} \end{array} \right.$

Definition 4 Extension (Reference) of Meaningful Expressions in Worlds given $\mathbb M$ and g

Let $M = \langle D, W, I \rangle$ be a model and g an assignment function.

- i.) For each $\tau \in \mathsf{Type}$, for each $n \in \mathbb{N}_0$, for each variable $v_{n,\tau} \in \mathsf{Var}_\tau$, for each $w \in \mathsf{W}$, $\llbracket v_{n,\tau} \rrbracket^{\mathsf{M},w,g} = g\left(v_{n,\tau}\right).$
- ii.) For each $\tau \in \mathsf{Type}$, for each $n \in \mathbb{N}_0$, for each constant $c_{n,\tau} \in \mathsf{Const}_{\tau}$, for each $w \in \mathsf{W}$, $[\![c_{n,\tau}]\!]^{\mathsf{M},w,g} = \mathsf{I}(c_{n,\tau})(w)$.
- iii.) For each $\tau \in \mathsf{Type}$, for each $\phi_{\tau} \in \mathsf{ME}_{\tau}$, for each $\psi_{\tau} \in \mathsf{ME}_{\tau}$, for each $w \in \mathsf{W}$, $\llbracket (\phi_{\tau} \equiv \psi_{\tau})_{t} \rrbracket^{\mathsf{M},w,g} = 1 \text{ iff } \llbracket \phi_{\tau} \rrbracket^{\mathsf{M},w,g} = \llbracket \psi_{\tau} \rrbracket^{\mathsf{M},w,g}.$
- $$\begin{split} \textit{iv.)} \;\; \textit{For each} \; \phi_{\langle \tau_2, \tau_1 \rangle} \in \mathsf{ME}_{\langle \tau_2, \tau_1 \rangle}, \, \textit{for each} \; \psi_{\tau_2} \in \mathsf{ME}_{\tau_2}, \, \textit{for each} \; w \in \mathsf{W}, \\ \mathbb{I} \left(\phi_{\langle \tau_2, \tau_1 \rangle} \left(\psi_{\tau_2} \right) \right)_{\tau_1} \mathbb{I}^{\mathsf{M}, w, g} &= \mathbb{I} \phi_{\langle \tau_2, \tau_1 \rangle} \mathbb{I}^{\mathsf{M}, w, g} \left(\mathbb{I} \psi_{\tau_2} \mathbb{I}^{\mathsf{M}, w, g} \right). \end{split}$$
- v.) For each $\phi_t \in \mathsf{ME}_t$, for each $w \in \mathsf{W}$, $\left[\left(\neg \phi_t\right)_t\right]^{\mathsf{M},w,g} = 1 \text{ iff } \left[\left(\phi_t\right)_t\right]^{\mathsf{M},w,g} = 0$
- $\begin{aligned} \textit{vi.)} \;\; \textit{For each} \; \phi_t \in \mathsf{ME}_t, \, \textit{for each} \; \psi_t \in \mathsf{ME}_t, \, \textit{for each} \; w \in \mathsf{W}, \\ & \left[\left(\phi_t \wedge \psi_t \right)_t \right]^{\mathsf{M}, w, g} = 1 \; \textit{iff} \; \left[\phi_t \right]^{\mathsf{M}, w, g} = 1 \; \textit{and} \; \left[\psi_t \right]^{\mathsf{M}, w, g} = 1. \end{aligned}$
- vii.) For each $\phi_t \in \mathsf{ME}_t$, for each $\psi_t \in \mathsf{ME}_t$, for each $w \in \mathsf{W}$, $[\![(\phi_t \vee \psi_t)_t]\!]^{\mathsf{M},w,g} = 1 \text{ iff } [\![\phi_t]\!]^{\mathsf{M},w,g} = 1 \text{ or } [\![\psi_t]\!]^{\mathsf{M},w,g} = 1.$

- viii.) For each $\phi_t \in \mathsf{ME}_t$, for each $\psi_t \in \mathsf{ME}_t$, for each $w \in \mathsf{W}$, $[(\phi_t \to \psi_t)_t]^{\mathsf{M},w,g} = 1 \text{ iff } [\![\phi_t]\!]^{\mathsf{M},w,g} = 0 \text{ or } [\![\psi_t]\!]^{\mathsf{M},w,g} = 1.$
- ix.) For each $\phi_t \in \mathsf{ME}_t$, for each $\psi_t \in \mathsf{ME}_t$, for each $w \in \mathsf{W}$, $\llbracket (\phi_t \leftrightarrow \psi_t)_t \rrbracket^{\mathsf{M},w,g} = 1 \text{ iff } \llbracket \phi_t \rrbracket^{\mathsf{M},w,g} = \llbracket \psi_t \rrbracket^{\mathsf{M},w,g}.$
- x.) For each $\tau_1 \in \mathsf{Type}$, for each $\tau_2 \in \mathsf{Type}$, for each $n \in \mathbb{N}_0$, for each $v_{n,\tau_2} \in \mathsf{Var}$, for each $\phi_{\tau_1} \in \mathsf{ME}_{\tau_1}$, for each $w \in \mathsf{W}$, $[\![(\lambda v_{n,\tau_2}.\phi_{\tau_1})_{\langle \tau_2,\tau_1 \rangle}]\!]^{\mathsf{M},w,g} \text{ is that function } h \text{ from } \mathsf{D}_{\tau_2} \text{ to } \mathsf{D}_{\tau_1} \text{ such that for each } o \in \mathsf{D}_{\tau_2}, \ h(o) = [\![\phi_{\tau_1}]\!]^{\mathsf{M},w,g}{}^{\mathsf{v}_{n,\tau_2}}.$
- *xi.*) For each $\phi_t \in \mathsf{ME}_t$, for each $w \in \mathsf{W}$, $\llbracket \Box \phi_t \rrbracket^{\mathsf{M},w,g} = 1 \text{ iff for all } w' \in \mathsf{W}, \ \llbracket \phi_t \rrbracket^{\mathsf{M},w',g} = 1.$
- xii.) For each $\phi_t \in \mathsf{ME}_t$, for each $w \in \mathsf{W}$, $\llbracket \diamond \phi_t \rrbracket^{\mathsf{M}, w, g} = 1 \text{ iff for at least one } w' \in \mathsf{W}, \ \llbracket \phi_t \rrbracket^{\mathsf{M}, w', g} = 1.$
- xiii.) For each $\tau \in \mathsf{Type}$, for each $\phi_{\tau} \in \mathsf{ME}_{\tau}$, for each $w \in \mathsf{W}$, $\llbracket \hat{\phi}_{\tau} \rrbracket^{\mathsf{M},w,g} \text{ is that function } h \in \mathsf{D}_{\tau,\mathsf{D},\mathsf{W}} \mathsf{W} \text{ such that for all } w' \in \mathsf{W}, \ h(w') = \llbracket \phi_{\tau} \rrbracket^{\mathsf{M},w',g}.$
- xiv.) For each $\tau \in \mathsf{Type}$, for each $\phi_{\langle s, \tau \rangle} \in \mathsf{ME}_{\tau}$, for each $w \in \mathsf{W}$, $\llbracket \check{\phi}_{\langle s, \tau \rangle} \rrbracket^{\mathsf{M}, w, g} = \llbracket \phi_{\langle s, \tau \rangle} \rrbracket^{\mathsf{M}, w, g}(w).$