Introduction to Computational Linguistics

Frank Richter

fr@sfs.uni-tuebingen.de.

Seminar für Sprachwissenschaft Eberhard Karls Universität Tübingen Germany

Incremental Linguistic Analysis

- tokenization
- morphological analysis (lemmatization)
- part-of-speech tagging
- named-entity recognition
- partial chunk parsing
- full syntactic parsing
- semantic and discourse processing

Regular languages and finite state automata

deterministic finite state automata,

Regular languages and finite state automata

- deterministic finite state automata,
- nondeterministic finite state automata,

Regular languages and finite state automata

- deterministic finite state automata,
- nondeterministic finite state automata,
- finite state automata, and

Regular languages and finite state automata

- deterministic finite state automata,
- nondeterministic finite state automata,
- finite state automata, and
- regular expressions

Regular languages and finite state automata

- deterministic finite state automata,
- nondeterministic finite state automata,
- finite state automata, and
- regular expressions

characterize the same class of languages, *viz.* Type 3 languages

Regular Expressions

Given an alphabet Σ of symbols the following are all and only the regular expressions over the alphabet $\Sigma \cup \{\emptyset, 0, |, *, [,]\}$:

Ø	empty set	
0	the empty string	(ϵ , [])
σ	for all $\sigma \in \Sigma$	
$[\alpha \mid \beta]$	union (for α, β reg.ex.)	($\alpha \cup \beta$, $\alpha + \beta$)
$[\alpha \beta]$	concatenation (for α, β reg.ex.)	
$[\alpha^*]$	Kleene star (for α reg.ex.)	

Meaning of Regular Expressions

$$L(\emptyset) = \emptyset$$

$$L(0) = \{0\}$$

$$L(\sigma) = \{\sigma\}$$

$$L([\alpha \mid \beta]) = L(\alpha) \cup L(\beta)$$

$$L([\alpha \ \beta]) = L(\alpha) \circ L(\beta)$$

$$L([\alpha^*]) = (L(\alpha))^*$$

the empty language
the empty-string language

 Σ^* is called the universal language. Note that the universal language is given relative to a particular alphabet.

Remarks on Regular Expressions

- $\mathbf{Ø}^* =_{def} \{0\}$
- The empty string, i.e., the string containing no character, is denoted by 0. The empty string is the neutral element for the concatenation operation. That is:

for any string
$$w \in \Sigma^*$$
: $w0 = 0w = w$

Square brackets, [], are used for grouping expressions. Thus [A] is equivalent to A while (A) is not. We leave out brackets for readability if no confusion can arise.

Regular Expressions: Syntax

- () is (sometimes) used for optionality; e.g. (A);
 definable in terms of union with the empty string.
- ? denotes any symbol; $L(?) = \Sigma$
- A⁺ denotes iteration; one or more concatenations of A. Equivalent to A (A*).
- Note the following simple expressions:
 - [] denotes the empty-string language
 - ?* denotes the universal language

Deterministic Finite-State Automata

Definition 1 (DFA) A deterministic FSA (DFA) is a quintuple $(\Sigma, Q, i, F, \delta)$ where

 Σ is a finite set called *the alphabet*,

Q is a finite set of *states*,

 $i \in Q$ is the *initial state*,

 $F \subseteq Q$ the set of *final states*, and

 δ is the transition function from $Q \times \Sigma$ to Q.

Generalizing Finite-State Automata

Definition 2 (rNFA) A restricted nondeterministic finite-state automaton is a quintuple $(\Sigma, Q, i, F, \Delta)$ where

 Σ is a finite set called *the alphabet*,

Q is a finite set of *states*,

 $i \in Q$ is the *initial state*,

 $F \subseteq Q$ the set of *final states*, and

 $\Delta \subseteq Q \times (\Sigma \cup \{\epsilon\}) \times Q$ is the set of edges (the transition *relation*).

Nondeterministic Finite-State Automata

Definition 3 (NFA) A nondeterministic finite-state automaton is a quintuple $(\Sigma, Q, S, F, \Delta)$ where

 Σ is a finite set called *the alphabet*,

Q is a finite set of states,

 $S \subseteq Q$ is the set of *initial states*,

 $F \subseteq Q$ the set of *final states*, and

 $\Delta \subseteq Q \times \Sigma^* \times Q$ is the set of edges (the transition *relation*).

Some Important Properties of FSAs (1)

Determinization: For every nondeterministic finite-state automaton there exists an equivalent deterministic automaton.

Minimization: For every nondeterministic finite-state automaton there exists an equivalent deterministic automaton with a minimal number of states.