Introduction to Computational Linguistics

Frank Richter

fr@sfs.uni-tuebingen.de.

Seminar für Sprachwissenschaft
Eberhard Karls Universität Tübingen
Germany

What is in a State

Definition 4

Given a DFA M $=(\Sigma, Q, i, F, \delta)$,
a state of M is triple (x, q, y)
where $q \in Q$ and $x, y \in \Sigma^{*}$

The directly derives relation

Definition 5 (directly derives)

Given a DFA $(\Sigma, Q, i, F, \delta)$,
a state (x, q, y) directly derives state $\left(x^{\prime}, q^{\prime}, y^{\prime}\right)$:
$(x, q, y) \vdash\left(x^{\prime}, q^{\prime}, y^{\prime}\right)$ iff

1. there is $\sigma \in \Sigma$ such that $\mathrm{y}=\sigma \mathrm{y}^{\prime}$ and $\mathrm{x}^{\prime}=\mathrm{x} \sigma$ (i.e. the reading head moves right one symbol σ)
2. $\delta(q, \sigma)=q^{\prime}$

The derives relation

Definition 6 (derives)

Given a DFA $(\Sigma, Q, i, F, \delta)$,
a state A derives state B :
$(x, q, y) \vdash^{*}\left(x^{\prime}, q^{\prime}, y^{\prime}\right)$ iff
there is a sequence $S_{0} \vdash S_{1} \vdash \cdots \vdash S_{k}$
such that $\mathrm{A}=S_{0}$ and $\mathrm{B}=S_{k}$

Acceptance

Definition 7 (Acceptance)

Given a DFA $M=(\Sigma, Q, i, F, \delta)$ and a string $x \in \Sigma^{*}$, M accepts x iff
there is a $q \in F$ such that $(0, i, x) \vdash^{*}(x, q, 0)$.

Language accepted by M

Definition 8 (Language accepted by M)

Given a DFA $M=(\Sigma, Q, i, F, \delta)$, the language $L(M)$ accepted by M is the set of all strings accepted by M.

Example of String Acceptance

$$
\text { Let } \begin{aligned}
M= & \left(\{a, b\},\left\{q_{0}, q_{1}, q_{2}\right\}, q_{0},\left\{q_{1}\right\},\left\{\left(\left(q_{0}, a\right), q_{1}\right),\left(\left(q_{0}, b\right), q_{1}\right),\right.\right. \\
& \left.\left.\left(\left(q_{1}, a\right), q_{2}\right),\left(\left(q_{1}, b\right), q_{2}\right),\left(\left(q_{2}, a\right), q_{2}\right),\left(\left(q_{2}, b\right), q_{2}\right),\right\}\right) .
\end{aligned}
$$

Example of String Acceptance

$$
\text { Let } \begin{aligned}
M= & \left(\{a, b\},\left\{q_{0}, q_{1}, q_{2}\right\}, q_{0},\left\{q_{1}\right\},\left\{\left(\left(q_{0}, a\right), q_{1}\right),\left(\left(q_{0}, b\right), q_{1}\right),\right.\right. \\
& \left.\left.\left(\left(q_{1}, a\right), q_{2}\right),\left(\left(q_{1}, b\right), q_{2}\right),\left(\left(q_{2}, a\right), q_{2}\right),\left(\left(q_{2}, b\right), q_{2}\right),\right\}\right) .
\end{aligned}
$$

M accepts a and b and nothing else, i.e. $L(M)=\{a, b\}$, since
$\left(0, q_{0}, a\right) \vdash\left(a, q_{1}, 0\right) \quad$ and
$\left(0, q_{0}, b\right) \vdash\left(b, q_{1}, 0\right)$
are the only derivations from a start state to a final state for M.

More Properties of FSAs

Given the FSAs A, A_{1}, and A_{2} and the string w, the following properties are decidable:

Membership: $\quad w \stackrel{?}{\in} L(A)$
Emptiness:
$L(A) \stackrel{?}{=} \varnothing$
Totality:
$L(A) \stackrel{?}{=} \Sigma^{*}$
Subset:
$L\left(A_{1}\right) \stackrel{?}{\subseteq} L\left(A_{2}\right)$
Equality:

$$
L\left(A_{1}\right) \stackrel{?}{=} L\left(A_{2}\right)
$$

Regular Expressions and Automata (1)

Regular Expression:
\varnothing
Automaton:

Regular Expression:
Automaton:

Regular Expression:
Automaton:
a

Regular Expressions and Automata (2)

Regular Expression:
[a|b]
Automaton:

Regular Expression:
[ab]
Automaton:

The Finite State Utilities

The FSA Utilities toolbox:

- a collection of utilities to manipulate regular expressions, finite-state automata (and finite-state transducers).
- implemented in Prolog by Gertjan van Noord, University of Groningen
- Home Page:
http://odur.let.rug.nl/~vannoord/Fsa/
- command in the SfS network (on 'penthesilea'): fsa -tk

Reg. Expressions: Syntactic Extensions

\$A contains
$\$ \mathrm{~A}={ }_{\text {def }}$ [?* A ?*]
for example: $\$[\mathrm{a} \mid \mathrm{b}]$ denotes all strings
that contain at least one a or b somewhere.
A \& B Intersection
A - B Relative complement (minus)
\sim A Complement (negation)

The Bigger Picture

Definition 9 (Regular Languages)

A language L is said to be regular or recognizable if the set of strings s such that $s \in L$ are accepted by a DFA.

Theorem (Kleene, 1956)

The family of regular languages over Σ^{*} is equal to the smallest family of languages over Σ^{*} that contains the empty set, the singleton sets, and that is closed under Kleene star, concatenation, and union.
\Rightarrow The family of regular languages over Σ^{*} is equal to the family of languages denoted by the set of regular expressions.

