Introduction to Computational Linguistics

Frank Richter

fr@sfs.uni-tuebingen.de.

Seminar für Sprachwissenschaft Eberhard Karls Universität Tübingen Germany

What is in a State

Definition 4

Given a DFA M = $(\Sigma, Q, i, F, \delta)$,

a state of M is triple (x, q, y)

where $q \in Q$ and $x, y \in \Sigma^*$

The directly derives relation

Definition 5 (directly derives)

Given a DFA $(\Sigma, Q, i, F, \delta)$,

a state (x, q, y) *directly derives* state (x', q', y'): $(x, q, y) \vdash (x', q', y')$ iff

1. there is $\sigma \in \Sigma$ such that $y = \sigma y'$ and $x' = x\sigma$ (i.e. the reading head moves right one symbol σ)

2.
$$\delta(q,\sigma) = q'$$

The *derives* relation

Definition 6 (derives)

Given a DFA $(\Sigma, Q, i, F, \delta)$,

a state A *derives* state B:

 $(x,q,y) \vdash * (x',q',y')$ iff

there is a sequence $S_0 \vdash S_1 \vdash \cdots \vdash S_k$

such that $A = S_0$ and $B = S_k$

Acceptance

Definition 7 (Acceptance)

Given a DFA $M = (\Sigma, Q, i, F, \delta)$ and a string $x \in \Sigma^*$, *M* accepts *x* iff

there is a $q \in F$ such that $(0, i, x) \vdash *(x, q, 0)$.

Language accepted by M

Definition 8 (Language accepted by M)

Given a DFA $M = (\Sigma, Q, i, F, \delta)$, the language L(M) accepted by M is the set of all strings accepted by M.

Example of String Acceptance

Let $M = (\{a, b\}, \{q_0, q_1, q_2\}, q_0, \{q_1\}, \{((q_0, a), q_1), ((q_0, b), q_1), ((q_1, a), q_2), ((q_1, b), q_2), ((q_2, a), q_2), ((q_2, b), q_2), \}).$

Example of String Acceptance

Let $M = (\{a, b\}, \{q_0, q_1, q_2\}, q_0, \{q_1\}, \{((q_0, a), q_1), ((q_0, b), q_1), ((q_1, a), q_2), ((q_1, b), q_2), ((q_2, a), q_2), ((q_2, b), q_2), \}).$

M accepts a and b and nothing else, i.e. $L(M) = \{a, b\}$, since

 $(0, q_0, a) \vdash (a, q_1, 0)$ and $(0, q_0, b) \vdash (b, q_1, 0)$

are the only derivations from a start state to a final state for M.

More Properties of FSAs

Given the FSAs A, A_1 , and A_2 and the string w, the following properties are decidable:

Membership: $w \stackrel{?}{\in} L(A)$ Emptiness: $L(A) \stackrel{?}{=} \varnothing$ Totality: $L(A) \stackrel{?}{=} \Sigma^*$ Subset: $L(A_1) \stackrel{?}{\subseteq} L(A_2)$ Equality: $L(A_1) \stackrel{?}{=} L(A_2)$

Regular Expressions and Automata (1)

Regular Expressions and Automata (2)

The Finite State Utilities

The FSA Utilities toolbox:

- a collection of utilities to manipulate regular expressions, finite-state automata (and finite-state transducers).
- implemented in Prolog by Gertjan van Noord, University of Groningen
- Home Page: http://odur.let.rug.nl/~vannoord/Fsa/
- command in the SfS network (on 'penthesilea'): fsa -tk

Reg. Expressions: Syntactic Extensions

\$A co

contains

 $A =_{def} [?^* A ?^*]$

for example: \$[a | b] denotes all strings that contain at least one *a* or *b* somewhere.

- A & B Intersection
- A B Relative complement (minus)
- \sim A Complement (negation)

The Bigger Picture

Definition 9 (Regular Languages)

A language *L* is said to be *regular or recognizable* if the set of strings *s* such that $s \in L$ are accepted by a DFA.

Theorem (Kleene, 1956)

The family of regular languages over Σ^* is equal to the smallest family of languages over Σ^* that contains the empty set, the singleton sets, and that is closed under Kleene star, concatenation, and union.

 \Rightarrow The family of regular languages over Σ^* is equal to the family of languages denoted by the set of regular expressions.