WS 13/14

Frank Richter

Constraint-based Computational Semantics

Syntax and Semantics of Higher Order Intensional Logic

Types As in our previous higher-order language, all expressions of our higherorder intensional language, $\mathcal{L}_{\mathsf{Type}}$, will be typed.

Definition 1 Types

Type is the smallest set such that

- *i.*) $e \in \mathsf{Type}$,
- *ii.*) $t \in \mathsf{Type}$,
- *iii.)* for each $\tau_1 \in \mathsf{Type}$, for each $\tau_2 \in \mathsf{Type}$, $\langle \tau_1, \tau_2 \rangle \in \mathsf{Type}$,
- *iv.*) for each $\tau \in \mathsf{Type}$, $\langle s, \tau \rangle \in \mathsf{Type}$.

Syntax The basic expressions of $\mathcal{L}_{\mathsf{Type}}$ consist only of variables and constants. Again there is no distinction between terms and formulae.

Definition 2 Basic Expressions

- *i.)* For each $\tau \in \mathsf{Type}$, Var_{τ} is the smallest set such that for each $n \in \mathbb{N}_0$, $v_{n,\tau} \in \mathsf{Var}_{\tau}$.
- *ii.)* For each $\tau \in \mathsf{Type}$, Const_{τ} is the smallest set such that for each $n \in \mathbb{N}_0$, $c_{n,\tau} \in \mathsf{Const.}$

We write Var for the set of all variables, $\bigcup_{\tau \in \mathsf{Type}} \mathsf{Var}_{\tau}$, and Const for the set of all

constants,
$$\bigcup_{\tau \in \mathsf{Type}} \mathsf{Const}_{\tau}$$

The set of *basic expressions* of our language is the union of the set of variables and the set of constants.

Definition 3 Meaningful Expressions

The meaningful expressions of $\mathcal{L}_{\mathsf{Type}}$ are the smallest familiy $(\mathsf{ME}_{\tau})_{\tau \in \mathsf{Type}}$ such that

- *i.)* for each $\tau \in \mathsf{Type}$, for each $n \in \mathbb{N}_0$, for each variable $v_{n,\tau} \in \mathsf{Var}_{\tau}$, $v_{n,\tau} \in \mathsf{ME}_{\tau}$;
- *ii.)* for each $\tau \in \mathsf{Type}$, for each $n \in \mathbb{N}_0$, for each constant $c_{n,\tau} \in \mathsf{Const}_{\tau}$, $c_{n,\tau} \in \mathsf{ME}_{\tau}$;

- *iii.)* for each $\tau \in \text{Type}$, for each $\phi_{\tau} \in \text{ME}_{\tau}$, for each $\psi_{\tau} \in \text{ME}_{\tau}$, $(\phi_{\tau} \equiv \psi_{\tau})_t \in \text{ME}_t$;
- *iv.)* for each $\phi_{\langle \tau_2, \tau_1 \rangle} \in \mathsf{ME}_{\langle \tau_2, \tau_1 \rangle}$, for each $\psi_{\tau_2} \in \mathsf{ME}_{\tau_2}$, $\left(\phi_{\langle \tau_2, \tau_1 \rangle} (\psi_{\tau_2})\right)_{\tau_1} \in \mathsf{ME}_{\tau_1}$;
- v.) for each $\phi_t \in \mathsf{ME}_t$, $(\neg \phi_t)_t \in \mathsf{ME}_t$;
- vi.) for each $\phi_t \in \mathsf{ME}_t$, for each $\psi_t \in \mathsf{ME}_t$, $(\phi_t \land \psi_t)_t \in \mathsf{ME}_t$;
- vii.) for each $\phi_t \in \mathsf{ME}_t$, for each $\psi_t \in \mathsf{ME}_t$, $(\phi_t \lor \psi_t)_t \in \mathsf{ME}_t$;
- viii.) for each $\phi_t \in \mathsf{ME}_t$, for each $\psi_t \in \mathsf{ME}_t$, $(\phi_t \to \psi_t)_t \in \mathsf{ME}_t$;
- *ix.*) for each $\phi_t \in \mathsf{ME}_t$, for each $\psi_t \in \mathsf{ME}_t$, $(\phi_t \leftrightarrow \psi_t)_t \in \mathsf{ME}_t$;
- $\begin{array}{l} x.) \ for \ each \ \tau_1 \in \mathsf{Type}, \ for \ each \ \tau_2 \in \mathsf{Type}, \ for \ each \ n \in \mathbb{N}_0, \ for \ each \ v_{n,\tau_2} \in \mathsf{Var}, \ for \ each \ \phi_{\tau_1} \in \mathsf{ME}_{\tau_1}, \\ & (\lambda v_{n,\tau_2}.\phi_{\tau_1})_{\langle \tau_2,\tau_1 \rangle} \in \mathsf{ME}_{\langle \tau_2,\tau_1 \rangle}; \end{array}$
- *xi.)* for each $\phi_t \in \mathsf{ME}_t$, $\Box \phi_t \in \mathsf{ME}_t$;
- *xii.) for each* $\phi_t \in \mathsf{ME}_t$, $\diamond \phi_t \in \mathsf{ME}_t$;
- *xiii.) for each* $\tau \in \mathsf{Type}$ *, for each* $\phi_{\tau} \in \mathsf{ME}_{\tau}$ *,* $\hat{\phi}_{\tau} \in \mathsf{ME}_{\langle s, \tau \rangle}$ *;*
- *xiv.)* for each $\tau \in \mathsf{Type}$, for each $\phi_{\langle s,\tau \rangle} \in \mathsf{ME}_{\langle s,\tau \rangle}$, $\check{\phi}_{\langle s,\tau \rangle} \in \mathsf{ME}_{\tau}$;
- *xv.*) for each $\tau \in \mathsf{Type}$, for each $n \in \mathbb{N}_0$, for each $v_{n,\tau} \in \mathsf{Var}$, for each $\phi_t \in \mathsf{ME}_t$,

$$(\forall v_{n,\tau} \phi_t)_t \in \mathsf{ME}_t;$$

xvi.) for each $\tau \in \mathsf{Type}$, for each $n \in \mathbb{N}_0$, for each $v_{n,\tau} \in \mathsf{Var}$, for each $\phi_t \in \mathsf{ME}_t$, $(\exists v_1 \dots \land v_n) \in \mathsf{ME}_t$

$$(\exists v_{n,\tau} \phi_t)_t \in \mathsf{ME}_t.$$

Semantics D is a set of individuals, and W is a set of possible worlds. The interpretation domain with respect to the set of individuals D and the set of possible worlds W is then defined as $D_{e,D,W} = D$, $D_{t,D,W} = \{0,1\}$, for each $\tau_1 \in \mathsf{Type}, \text{ for each } \tau_2 \in \mathsf{Type}, \mathsf{D}_{\langle \tau_1, \tau_2 \rangle} = \mathsf{D}_{\tau_2,\mathsf{D},\mathsf{W}} \mathsf{D}_{\tau_1,\mathsf{D},\mathsf{W}}$ (the set of all functions from $\mathsf{D}_{\tau_1,\mathsf{D},\mathsf{W}}$ to $\mathsf{D}_{\tau_2,\mathsf{D},\mathsf{W}}$), and for each $\tau \in \mathsf{Type}, \ \mathsf{D}_{\langle s,\tau \rangle} = \mathsf{D}_{\tau,\mathsf{D},\mathsf{W}}^{\mathsf{W}}$ (the set of functions from worlds to objects in the domain $D_{\tau,D,W}$).

Let I be a function which assigns to each non-logical constant of type τ , $c_{n,\tau}$ in \mathcal{L}_{Type} , a function which gives, for each world, the meaning of that constant in that world. This means that $I(c_{n,\tau}) \in D_{\tau,D,W}W$.

Let $M = \langle D, W, I \rangle$. We will call each M a *model*.

Let g be a function in $\bigcup_{\tau \in \mathsf{Type}} \begin{pmatrix} \mathsf{Var}_{\tau} \\ \mathsf{D}_{\tau} \end{pmatrix}$ which assigns an object (of the appropriate type) in the domain $\bigcup_{\tau \in \mathsf{Type}} \mathsf{D}_{\tau}$ to each variable in Var. We call each g an anisomer t assignment function.

Assume that v is a variable of type τ and d is an element of D_{τ} . We will use the notation g_v^a for the assignment function g' which differs from the assignment function q in the following way:

For each $\tau \in \mathsf{Type}$, for each $v \in \mathsf{Var}_{\tau}$, for each $x \in \mathsf{Var}_{\tau}$, for each $d \in \mathsf{D}_{\tau}$, $g_{v}^{d}(x) = \begin{cases} d & \text{if } x = v, \text{ and} \\ g(x) & \text{otherwise.} \end{cases}$

Definition 4 Extension (Reference) of Meaningful Expressions in Worlds given M and q

Let $M = \langle D, W, I \rangle$ be a model and g an assignment function.

- *i.)* For each $\tau \in \mathsf{Type}$, for each $n \in \mathbb{N}_0$, for each variable $v_{n,\tau} \in \mathsf{Var}_{\tau}$, for each $w \in W$. $\llbracket v_{n,\tau} \rrbracket^{\mathsf{M},w,g} = q\left(v_{n,\tau}\right).$
- *ii.*) For each $\tau \in \mathsf{Type}$, for each $n \in \mathbb{N}_0$, for each constant $c_{n,\tau} \in \mathsf{Const}_{\tau}$, for each $w \in W$, $\left[\!\left[c_{n,\tau}\right]\!\right]^{\mathsf{M},w,g} = \mathsf{I}\left(c_{n,\tau}\right)(w).$
- *iii.)* For each $\tau \in \mathsf{Type}$, for each $\phi_{\tau} \in \mathsf{ME}_{\tau}$, for each $\psi_{\tau} \in \mathsf{ME}_{\tau}$, for each $w \in W$, $\llbracket (\phi_{\tau} \equiv \psi_{\tau})_{\downarrow} \rrbracket^{\mathsf{M},w,g} = 1 \ iff \llbracket \phi_{\tau} \rrbracket^{\mathsf{M},w,g} = \llbracket \psi_{\tau} \rrbracket^{\mathsf{M},w,g}.$
- iv.) For each $\phi_{\langle \tau_2, \tau_1 \rangle} \in \mathsf{ME}_{\langle \tau_2, \tau_1 \rangle}$, for each $\psi_{\tau_2} \in \mathsf{ME}_{\tau_2}$, for each $w \in \mathsf{W}$,

$$\left[\left(\phi_{\langle \tau_{2},\tau_{1}\rangle}\left(\psi_{\tau_{2}}\right)\right)_{\tau_{1}}\right]^{\mathsf{M},w,g}=\left[\!\left[\phi_{\langle \tau_{2},\tau_{1}\rangle}\right]^{\mathsf{M},w,g}\left(\left[\!\left[\psi_{\tau_{2}}\right]^{\mathsf{M},w,g}\right)\right]\right)$$

- v.) For each $\phi_t \in \mathsf{ME}_t$, for each $w \in \mathsf{W}$, $\left[\left(\neg\phi_{t}\right)_{\star}\right]^{\mathsf{M},w,g} = 1 \quad iff \left[\left(\phi_{t}\right)_{\star}\right]^{\mathsf{M},w,g} = 0$
- vi.) For each $\phi_t \in \mathsf{ME}_t$, for each $\psi_t \in \mathsf{ME}_t$, for each $w \in \mathsf{W}$, $[\![(\phi_t \wedge \psi_t)_t]\!]^{\mathsf{M},w,g} = 1 \text{ iff } [\![\phi_t]\!]^{\mathsf{M},w,g} = 1 \text{ and } [\![\psi_t]\!]^{\mathsf{M},w,g} = 1.$
- vii.) For each $\phi_t \in \mathsf{ME}_t$, for each $\psi_t \in \mathsf{ME}_t$, for each $w \in \mathsf{W}$, $[\![(\phi_t \lor \psi_t)_{\star}]\!]^{\mathsf{M},w,g} = 1 \ iff [\![\phi_t]\!]^{\mathsf{M},w,g} = 1 \ or [\![\psi_t]\!]^{\mathsf{M},w,g} = 1.$

- viii.) For each $\phi_t \in \mathsf{ME}_t$, for each $\psi_t \in \mathsf{ME}_t$, for each $w \in \mathsf{W}$, $\llbracket (\phi_t \to \psi_t)_t \rrbracket^{\mathsf{M},w,g} = 1$ iff $\llbracket \phi_t \rrbracket^{\mathsf{M},w,g} = 0$ or $\llbracket \psi_t \rrbracket^{\mathsf{M},w,g} = 1$.
- ix.) For each $\phi_t \in \mathsf{ME}_t$, for each $\psi_t \in \mathsf{ME}_t$, for each $w \in \mathsf{W}$, $\llbracket (\phi_t \leftrightarrow \psi_t)_t \rrbracket^{\mathsf{M}, w, g} = 1 \text{ iff } \llbracket \phi_t \rrbracket^{\mathsf{M}, w, g} = \llbracket \psi_t \rrbracket^{\mathsf{M}, w, g}.$
- *x.)* For each $\tau_1 \in \mathsf{Type}$, for each $\tau_2 \in \mathsf{Type}$, for each $n \in \mathbb{N}_0$, for each $v_{n,\tau_2} \in \mathsf{Var}$, for each $\phi_{\tau_1} \in \mathsf{ME}_{\tau_1}$, for each $w \in \mathsf{W}$, $[(\lambda v_{n,\tau_2}.\phi_{\tau_1})_{\langle \tau_2,\tau_1 \rangle}]^{\mathsf{M},w,g}$ is that function h from D_{τ_2} to D_{τ_1} such that for each $o \in \mathsf{D}_{\tau_2}$, $h(o) = [[\phi_{\tau_1}]]^{\mathsf{M},w,g_{v_{n,\tau_2}}}$.
- *xi.*) For each $\phi_t \in \mathsf{ME}_t$, for each $w \in \mathsf{W}$, $\llbracket \Box \phi_t \rrbracket^{\mathsf{M},w,g} = 1$ iff for all $w' \in \mathsf{W}$, $\llbracket \phi_t \rrbracket^{\mathsf{M},w',g} = 1$.
- *xii.)* For each $\phi_t \in \mathsf{ME}_t$, for each $w \in \mathsf{W}$, $[\![\diamond \phi_t]\!]^{\mathsf{M},w,g} = 1$ iff for at least one $w' \in \mathsf{W}$, $[\![\phi_t]\!]^{\mathsf{M},w',g} = 1$.
- *xiii.*) For each $\tau \in \mathsf{Type}$, for each $\phi_{\tau} \in \mathsf{ME}_{\tau}$, for each $w \in \mathsf{W}$,

 $\left[\left[\begin{array}{c} \phi_{\tau} \end{array}\right]^{\mathsf{M},w,g} \text{ is that function } h \in \mathsf{D}_{\tau,\mathsf{D},\mathsf{W}}^{\mathsf{W}} \text{ such that for all } w' \in \mathsf{W}, \ h(w') = \left[\phi_{\tau} \right]^{\mathsf{M},w',g}.$

- *xiv.)* For each $\tau \in \mathsf{Type}$, for each $\phi_{\langle s,\tau \rangle} \in \mathsf{ME}_{\tau}$, for each $w \in \mathsf{W}$, $\llbracket \phi_{\langle s,\tau \rangle} \rrbracket^{\mathsf{M},w,g} = \llbracket \phi_{\langle s,\tau \rangle} \rrbracket^{\mathsf{M},w,g}(w).$
- *xv.*) For each $\tau \in \mathsf{Type}$, for each $n \in \mathbb{N}_0$, for each $v_{n,\tau} \in \mathsf{Var}$, for each $\phi_t \in \mathsf{ME}_t$, for each $w \in \mathsf{W}$,

 $\left[\left(\left\forall v_{n,\tau} \phi_t\right)_t\right]^{\mathsf{M},w,g} = 1 \text{ iff for each } o \in \mathsf{D}_{\tau}, \left[\!\left[\phi_t\right]\!\right]^{\mathsf{M},w,g\overset{\circ}{v}_{n,\tau}} = 1.$

xvi.) For each $\tau \in \mathsf{Type}$, for each $n \in \mathbb{N}_0$, for each $v_{n,\tau} \in \mathsf{Var}$, for each $\phi_t \in \mathsf{ME}_t$, for each $w \in \mathsf{W}$,

 $[\![(\exists v_{n,\tau} \phi_t)_t]\!]^{\mathsf{M},w,g} = 1 \text{ iff for at least one } o \in \mathsf{D}_{\tau}, [\![\phi_t]\!]^{\mathsf{M},w,g\overset{\circ}{v}_{n,\tau}} = 1.$