WS 13/14 20. November 2013

Frank Richter

Constraint-based Computational Semantics

Syntax and Semantics of a Higher Order Logic

Types All expressions of our higher-order language, $\mathcal{L}_{\mathsf{Type}}$, will be typed. To keep the language simple, we will only use two basic types, e (for the basic entities in the domain) and t (for the truth values 0 and 1).

Definition 1 Types

Type is the smallest set such that

- i.) $e \in \mathsf{Type}$,
- ii.) $t \in \mathsf{Type},$
- *iii.*) for each $\tau_1 \in \mathsf{Type}$, for each $\tau_2 \in \mathsf{Type}$, $\langle \tau_1, \tau_2 \rangle \in \mathsf{Type}$.

Syntax The basic expressions of $\mathcal{L}_{\mathsf{Type}}$ consist only of variables and constants. In contrast to first order logic there is no distinction between terms and formulae.

Definition 2 Basic Expressions

- $i.) \ \ For \ each \ \tau \in \mathsf{Type}, \ \mathsf{Var}_\tau \ \ is \ the \ smallest \ set \ such \ that \ for \ each \ n \in \mathbb{N}_0,$ $v_{n,\tau} \in \mathsf{Var}_\tau.$
- ii.) For each $\tau \in \mathsf{Type}$, Const_{τ} is the smallest set such that for each $n \in \mathbb{N}_0$, $c_{n,\tau} \in \mathsf{Const}$.

We write Var for the set of all variables, $\bigcup_{\tau \in \mathsf{Type}} \mathsf{Var}_{\tau}$, and Const for the set of all constants, $\bigcup_{\tau \in \mathsf{Type}} \mathsf{Const}_{\tau}$.

The set of basic expressions of our language is the union of the set of variables and the set of constants.

Definition 3 Meaningful Expressions

The meaningful expressions of $\mathcal{L}_{\mathsf{Type}}$ are the smallest familiy $(\mathsf{ME}_{\tau})_{\tau \in \mathsf{Type}}$ such that

- i.) for each $\tau \in \mathsf{Type}$, for each $n \in \mathbb{N}_0$, for each variable $v_{n,\tau} \in \mathsf{Var}_{\tau}$, $v_{n,\tau} \in \mathsf{ME}_{\tau}$;
- ii.) for each $\tau \in \mathsf{Type}$, for each $n \in \mathbb{N}_0$, for each constant $c_{n,\tau} \in \mathsf{Const}_{\tau}$, $c_{n,\tau} \in \mathsf{ME}_{\tau}$;

- iii.) for each $\tau \in \mathsf{Type}$, for each $\phi_{\tau} \in \mathsf{ME}_{\tau}$, for each $\psi_{\tau} \in \mathsf{ME}_{\tau}$, $(\phi_{\tau} \equiv \psi_{\tau})_{t} \in \mathsf{ME}_{t};$
- iv.) for each $\phi_{(\tau_2,\tau_1)} \in \mathsf{ME}_{(\tau_2,\tau_1)}$, for each $\psi_{\tau_2} \in \mathsf{ME}_{\tau_2}$, $\left(\phi_{\langle \tau_2, \tau_1 \rangle} \left(\psi_{\tau_2}\right)\right)_{\tau_1} \in \mathsf{ME}_{\tau_1};$
- v.) for each $\tau_1 \in \mathsf{Type}$, for each $\tau_2 \in \mathsf{Type}$, for each $n \in \mathbb{N}_0$, for each $v_{n,\tau_2} \in \mathsf{Type}$ Var, for each $\phi_{\tau_1} \in \mathsf{ME}_{\tau_1}$, $(\lambda v_{n,\tau_2}.\phi_{\tau_1})_{\langle \tau_2,\tau_1\rangle} \in \mathsf{ME}_{\langle \tau_2,\tau_1\rangle}.$

Semantics D_e is a set of entities, and $D_t = \{0,1\}$. For each $\tau_1 \in \mathsf{Type}$, for each $\tau_2 \in \mathsf{Type}, \ \mathsf{D}_{\langle \tau_1, \tau_2 \rangle} = \mathsf{D}_{\tau_2}^{\ \ \mathsf{D}_{\tau_1}}$ (the set of all functions from D_{τ_1} to D_{τ_2}). Let I be a function assigning a denotation to each non-logical constant, $c_{n,\tau}$, of $\mathcal{L}_{\mathsf{Type}}$ from the set D_{τ} .

Let $M = \langle D_e, I \rangle$. We will call each M a model.

Let g be a function in $\bigcup_{\tau \in \mathsf{Type}} \left(\mathsf{D}_{\tau}^{\mathsf{Var}_{\tau}} \right)$ which assigns an object (of the appropriate type) in the domain $\bigcup_{\tau \in \mathsf{Type}} \mathsf{D}_{\tau}$ to each variable in Var . We call each g an assignment for the second of the second o assignment function.

Assume that v is a variable of type τ and d is an element of D_{τ} . We will use the notation g^{d} for the assignment function g' which differs from the assignment function g in the following way:

For each $\tau \in \mathsf{Type}$, for each $v \in \mathsf{Var}_{\tau}$, for each $x \in \mathsf{Var}_{\tau}$, for each $d \in \mathsf{D}_{\tau}$, $g_v^d(x) = \begin{cases} d & \text{if } x = v, \text{ and} \\ g(x) & \text{otherwise.} \end{cases}$

Definition 4 Denotation

Let M be a model and g an assignment function.

- i.) For each $\tau \in \mathsf{Type}$, for each $n \in \mathbb{N}_0$, for each variable $v_{n,\tau} \in \mathsf{Var}_{\tau}$, $\llbracket v_{n,\tau} \rrbracket^{\mathsf{M},g} = g(v_{n,\tau}).$
- ii.) For each $\tau \in \mathsf{Type}$, for each $n \in \mathbb{N}_0$, for each constant $c_{n,\tau} \in \mathsf{Const}_{\tau}$, $\llbracket c_{n,\tau} \rrbracket^{\mathsf{M},g} = \mathsf{I}(c_{n,\tau}).$
- iii.) For each $\tau \in \mathsf{Type}$, for each $\phi_{\tau} \in \mathsf{ME}_{\tau}$, for each $\psi_{\tau} \in \mathsf{ME}_{\tau}$, $\llbracket (\phi_{\tau} \equiv \psi_{\tau})_{t} \rrbracket^{\mathsf{M},g} = 1 \text{ iff } \llbracket \phi_{\tau} \rrbracket^{\mathsf{M},g} = \llbracket \psi_{\tau} \rrbracket^{\mathsf{M},g}.$
- iv.) For each $\phi_{\langle \tau_2, \tau_1 \rangle} \in \mathsf{ME}_{\langle \tau_2, \tau_1 \rangle}$, for each $\psi_{\tau_2} \in \mathsf{ME}_{\tau_2}$, $[\![\left(\phi_{\langle \tau_2, \tau_1 \rangle} \left(\psi_{\tau_2} \right) \right)_{\tau_1}]\!]^{\mathsf{M}, g} = [\![\phi_{\langle \tau_2, \tau_1 \rangle}]\!]^{\mathsf{M}, g} \left([\![\psi_{\tau_2}]\!]^{\mathsf{M}, g} \right).$
- v.) For each $\tau_1 \in \mathsf{Type}$, for each $\tau_2 \in \mathsf{Type}$, for each $n \in \mathbb{N}_0$, for each $v_{n,\tau_2} \in \mathsf{Var}, \ for \ each \ \phi_{\tau_1} \in \mathsf{ME}_{\tau_1},$ $[\![(\lambda v_{n,\tau_2}.\phi_{\tau_1})_{\langle \tau_2,\tau_1\rangle}]\!]^{M,g} \ is \ that \ function \ h \ from \ \mathsf{D}_{\tau_2} \ to \ \mathsf{D}_{\tau_1} \ such \ that \ for \ \mathsf{D}_{\tau_2} \ to \ \mathsf{D}_{\tau_1} \ such \ that \ for \ \mathsf{D}_{\tau_2} \ to \ \mathsf{D}_{\tau_2} \ to \ \mathsf{D}_{\tau_3} \ such \ that \ for \ \mathsf{D}_{\tau_4} \ such \ that \ for \ \mathsf{D}_{\tau_5} \ to \ \mathsf{D}_{\tau_5} \ such \ that \ for \ \mathsf{D}_{\tau_5} \ to \ \mathsf{D}_{\tau_5} \ such \ that \ for \ \mathsf{D}_{\tau_5} \ to \ \mathsf{D}_{\tau_5} \ such \ that \ for \ \mathsf{D}_{\tau_5} \ to \ \mathsf{D}_{\tau_5} \ such \ that \ for \ \mathsf{D}_{\tau_5} \ to \ \mathsf{D}_{\tau_5} \ such \ that \ for \ \mathsf{D}_{\tau_5} \ such \ that \ for \ \mathsf{D}_{\tau_5} \ such \ that \ for \ \mathsf{D}_{\tau_5} \ such \ \mathsf{D}_{\tau_5} \$ each $o \in D_{\tau_2}$, $h(o) = [\![\phi_{\tau_1}]\!]^{\mathsf{M}, g_{v_n, \tau_2}}$.

Standard results tell us that the usual logical connectives and quantifiers can be defined using these five clauses.