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Abstract

This paper provides a coalgebraic modelling of Head-Driven Phrase Structure Grammar.
HPSG is a licensing theory in the sense that grammaticality is defined in terms of abstract
grammar principles, well-formedness conditions on linguistic analyses rather then by a set of
rules that would explicitely generate an analysis. Since coalgebras are very well suited for
modelling licensing theories, we provide a conceptually particularly adequate formalisation
for HPSG by showing that HPSG can indeed be modeled with coalgebras. We also show that
the category of grammar models contains a final coalgebra. This final coalgebra we propose as
the model of an HPSG grammar, because it models the analyses of the structurally different
readings of all and only those utterances licensed by the grammar while eliminating spurious
ambiguities.

1 INTRODUCTION

Linguistic theories in general fall into one out of two classes. They can be generating theories
in the sense that the grammar actually generates utterances and analyses of utterances. Typical
examples of such theories are the early transformational grammar framework or GPSG. The
second class of theories are the licensing theories. These theories do not generate utterances or
their analyses. Rather they define well-formedness conditions often layed out as abstract general
principles. An analysis of an utterance is admissible, if it obeys to all these principles. How this
analysis is originally obtained is of no concern for the grammar, it may “fall from heaven”.

HPSG clearly is such a licensing theory as the whole grammar is given as a set of universal and
language specific principles. We also know that this appearance of the grammar is not merely a
coincidence, its authors intended it to look that way. So, for example, Pollard and Sag (1994)
write on page 31:

“But how do we specify the well-formed phrases of a given language? The answer we
give is similar to the one given in GB theory: a candidate phrase will be well formed
provided it satisfies all the principles of grammar, including both universal principles
and language-specific principles.”

We think it is therfore an important task of any formalisation of HPSG to capture the idea of
licensing within its main concepts. And in particular, we think these concepts should differ from
those used in the formalisation of generating theories to be able to capture the difference between
these two types of linguistic theories within the way models look.

As the name implies, in a generating theory, the internal structure of a linguistic analysis is
generated by the grammar. Consequently, the internal structure is completely visible for the



outside world. A linguist does not only know what properties the internal structure may have,
ideally, he knows exactly what it looks like and works directly with it.

If a licensing theory sets out well-formedness conditions, we need a different concept. The internal
structure of a linguistic analysis is no longer of importance. We do not need to know it. What
the linguist needs to know instead are only certain observable properties of the analysis. Because
whatever the internal structure of the analysis may be, as long as its observable properties, its fea-
tures (in the non-technical sense) are compatible with the well-formedness conditions the grammar
sets out, the analysis is grammatical. The internal structure becomes a hidden, because finally
irrelevant aspect of the analysis.

That does not mean that a licensing theory does not have any data structures for linguistic
analyses. They sure have, and, as we know, HPSG uses feature structures. But how these feature
structures are internally constructed and represented is no longer relevant. What counts are their
formal, observable properties, that is their sorts and features and the relations of the two. An
HPSG principle like the Head Feature Principle makes a statement on the relation of certain sorts
and features. And if we can observe that this relation holds in a given feature structure, we know
it obeys to the principle. The principle makes no statement how it should come along that the
relation is true for the feature structure in question. It does not care about the “internal affairs”
of the feature structure, as long as the relation holds true.

Hence for a modelling of HPSG that conforms with the idea of a licensing theory we need a formal
framework that allows us to talk about observable properties of data structures in a mathematically
precise sense. Universal algebra provides a modelling concept that does not deal with constructing
data types but with observing properties of data types, namely the concept of (final) coalgebras
and coinduction. It is this concept that we propose for modelling HPSG.

2 COALGEBRAS

The theory of coalgebras is a methodology from universal algebra (see Cohn (1965); Grétzer (1979))
and theoretical computer science to make the notions of observation and observability formally
precise. In this introduction to coalgebras, we will need some simple notions from category theory
that we cannot introduce here. The interested reader is referred to Pierce (1991), for example.
Our explanation of coalgebras closely follows the introductory paper by Jacobs and Rutten (1997).

Definition 1 Let T be a functor. A coalgebra is a pair (U, ¢) consisting of a set U and a function
c:U—=T{).

The set U is called universe, carrier or state space. The function c is called the structure of the
coalgebra.

Example 2 A typical example of a system that can fruitfully be modeled as a coalgebra is a state
transition system. The universe U is the set of different states the system can be in. The system is
a black box, the internal structure of a state is hidden and unavailable from outside. All we have
are observers that can tell us some information about states. In our simple example, we suppose
states to have a colour and potentially a successor state. These properties can be observed with the
observers colour : U — {red, green, blue} and next : U — U W {*} where * is used to indicate that
a state has no successor. Since the internal representation is unavailable, what we can see from
outside about a state u is colour(u), colour(next(u)), colour(next(next(u))), and so on. What
we perceive of a state is a sequence of colours, the colour of the state and the colours of its succes-
sors. So, each state is associated with an observation chain, e.g., (red,red,blue,red,green,blue,green).
It can be that in a given coalgebra, two states have the same observation chain. That is there
can be two different states u; # wug, which are still such that colour(u;) = colour(us) and
colour(next”(u;)) = colour(next”(uz)) for all n. That means an outside observer cannot dis-
tinguish the two states. For him, they appear to be one and the same. So, why should there be



two different states at all? The answer is that there is not just one model of the state space, rather
there exists a whole collection of them. The collection are all the coalgebras for the given functor.

In this example, the functor is T(X) = 1 + X X {red, green,blue}. There are many different
coalgebras for this functor, all of them modelling the state transition system in a different way.
Together with homomorphisms, they form a category of coalgebras.

Definition 3 Let T be a functor.

A homomorphism of coalgebras from a T-coalgebra (Uy, ¢1) to another T-coalgebra (Us, ¢2) consists
of a function f : U; — Uy between the carrier sets which commutes with the operations: ¢y o f =
T(f) ocy as expressed by the following diagram.

Uy U,

T(Uy) TG T(Us)

A final coalgebra (W, d) is a coalgebra such that for every algebra (U, c) there exists a unique
homomorphism f : (U, ¢) — (W, d).

To continue the example, there exists a distinguished T-coalgebra in the category of coalgebraic
models of our state transition system. It contains states for all and only those observations that
can be made. Hence there are no different, but indistinguishable states, each chain of observations
belongs to a unique element. This coalgebra is the final coalgebra. The carrier of the coalgebra
is the set of all finite and infinite sequences of the colours {red, green,blue}. The colour of
such a state is just the first element or the head of the sequence. And if the sequence is more
than one element long, then the successor state is the tail of the sequence, that is the sequence
obtained by deleting the leftmost element of the given sequence. If the sequence is just one
element long, it has no successor. So, e.g., colour((red,red,blue,red,green,blue,green)) = red and
next((red,red,blue,red,green,blue,green)) = (red,blue,red,green,blue,green).

To see that this coalgebra is final, consider a T-coalgebra (U, c). As explained above, each state
u € U is assigned a unique observation chain. This observation chain obviously exists, too, in
the final coalgebra. Hence we map each state to its observation chain. This map is clearly a
homomorphism: The colour of a state is the same as the first colour of its observation chain. And
the observation chain of the successor of a state is the observation chain of the state with the
leftmost element removed.

To see that this homomorphism is unique, consider any function from the set of states to sequences
of colours. In order to be a homomorphism it must firstly map a state to a sequence that starts
with the colour of that state. And further, if the state has a successor then it must be mapped to
a sequence that has as second element the colour of the successor. If it has no successor, it can
only be mapped to the one element sequence that consists just of the colour of the state. Now,
we can iterate the argument with the potential successor, and we see that there exists indeed only
a single homomorphism from the set of states to sequences of colours namely the one that maps
each state to its observation chain.

Final coalgebras play a role in coalgebraic theory that is dual to the role of initial algebras in
algebraic theory. They provide coinduction, the dual of induction, a means for defining functions
on and proving properties of coalgebras. Hence the existence of a final coalgebra is similarly
desirable and equally important as the existence of an initial algebra.

Proposition 4 (i) Final coalgebras, if they exist, are uniquely determined (up to isomorphism,).
(i) A final coalgebra W — T (W) is a fized point W 5 T(W) of the functor T



3 SPECIATE RE-ENTRANT LOGIC

Speciate Re-entrant Logic (SRL, see King (1989, 1999)) is a complete (King (1989)) and decidable
(Kepser (1994)) sorted feature logic for HPSG developed by Paul King. Here we review only those
aspects of the formal language of SRL that are germane to the present paper, and do not discuss
the logical properties of SRL. We follow mainly the exposition of SRL as given in King et al.
(1999).

Definition 5 A signature ¥ = (S, F,.A) for this logic consists of a set S of sorts, a set F of
features, and an appropriateness function A : S x F — ©(S)! that states for each sort which
features are appropriate and which sorts may follow these features.

For notational facility we henceforth assume that none of the symbols :, ~, =, =, AV, —, (or ) is
a sort or a feature.

Definition 6 An interpretation for a signature ¥ = (S, F, A) is a triple (U, S, F') where
U is a set,
S is a total function from U to S, and
F is a total function form F to the set of partial function from U to U, and for each a €
FuelU
F(a)(u) is defined iff A(S(u), ) # 0, and
if F(a)(u) is defined then S(F(«)(u)) € A(S(u), a).

Suppose I = (U, S, F) is a X-interpretation. We call U the universe of I and its elements objects;
S is the sort assignment function that assigns each object o € U to a unique sort in S. And F is
the feature interpretation function. Each feature is interpreted by a partial function on U. The
additional clauses in the definition of F’ ensure that the interpretation obeys to the appropriateness
function A and that the resulting feature structures are totally well-typed and sort resolved.

The language of the logic is a description language for feature structures. Terms are feature
sequences. That is to say the reserved symbol ‘:’ is a term, and if 7 is a term and o € A a feature
then 7o is a term. We write T for the set of all X-terms. Let I = (U, S, F) be a structure.
The feature interpretation function F' can naturally be extended to terms in the following way.
F(:) =idy and F(ra) = F(7) o F(a) where o is composition of partial functions.

Definition 7 Let X be a signature. The set D_ of descriptions is defined as follows.
If reTy, and s€ Sthen 7~ s € D_,
if 7,7/ € Ty, then 7 = 7' € D_,
if d € D_ then -d € D_,
if d,d € D= then (dAd') € D,
if d,d" € D_ then (dVd') € D=,
if d,d" € D— then (d — d') € D_.
T ~ s is called a sort statement, 7 = 7’ a path equation. These two are atomic descriptions.

The descriptions are supposed to describe elements of the universe of discourse. Hence they are
interpreted as true or false of an object.

Definition 8 Let I = (U, S, F) be an interpretation. The denotation of a description is defined
as follows (7,7 € Ty, s € S,d,d € D-):

1We write p(M) for the power set of a set M.
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s] ={u e U | F(r) is defined on u and S(F(7)(u)) = s},
F(r) and F(7') are defined on u
1= {“ €U\ and F(r)(w) = F(+')(u) }
—d] = U\ [d],

[
[
[
[dAd] =[d]n[d],
[
[

T

T

avd]=[dula],
d— d]= U\ [d) U[d].

The denotation of a sort statement is the set of all those objects on which the path 7 is defined
and for which the object at the end of the path is of sort s. The denotation of a path equation is
the set of those objects on which both paths 7 and 7’ are defined and lead to one and the same
object. As one can see, the connectives have classical meaning of set complement, intersection,
and union.

Let ¥ be a signature , I = (U, S, F') be an interpretation, and d a description. We say I satisfies d
iff [d] # 0, that is if the description is true of at least one object in the universe. We say I models
d or I is a model of d iff [d] = U, that is if the description d is true of every object in the universe.

Principles of HPSG can be expressed in the description language. For example, the Head Feature
Principle is, simplifying slightly, rendered as

(:~ phrase A :daughters ~ headed-structure) —

:synsem local category head = :daughters head-dtr synsem local category head
An HPSG grammar I" is then a conjunction of descriptions. For a given interpretation I, the
grammar is true of some of the entities in its universe, but not necessarily of all. Naturally,
the linguist is interested in I'-models, because interpretations that contain objects violating the
principles can never be representations for grammatical utterances or their analyses. And not all
I'-models are equally important. The extreme case of an uninteresting I'-model is one with an
empty universe. Of particular interest are the so-called exhaustive models. To define them, we
need the notion of a subinterpretation below an object.

Definition 9 Let I = (U, S, F) be an interpretation and u € U. Define the subinterpretation
(u) = (Uy, Su, Fu) below u as follows

U,={o€eU|ITeTs:0=F(r)(u)},

Su=Su,, Fu.=Fyp,?
We sometimes call the subinterpretation below u also the substructure below u. w is called its
root.

Now, a I'-model 2 is called an ezhaustive model iff for every I'-model B and each u € Uy there
exists an isomorphic image of the substructure (u) in 2. In other words, an exhaustive model
contains every feature structure that is compatible with the grammar. The strong generative
capacity of HPSG can be defined using exhaustive models (Pollard (1999)).

4 SRL-MODELS AS COALGEBRAS

King himself certainly does not regard SRL-interpretations as coalgebras. But it is very natural
to interprete them in this way. The universe of an SRL-interpretation is a kind of hidden state
space. And indeed, King makes no claim about the inner structure of the entities in the universe.
The sort function replaces the colour-function of the introductory example. And instead of a
single successor function we now have a whole bunch of them in terms of the features. So, we are
not looking at the internal structure of a feature structure. Rather we use sorts and features to
make certain observations about it. The appropriateness function A is a kind of theory for the
class of all coalgebras for a signature ¥ = (S, F,.A). Let the cardinality of the set F of features be
. Then the endofunctor is T(X) = S x (X + 1)*. An SRL-interpretation (U, S, F') is a coalgebra

2We write S for the restriction of the function f to the set M.




srl: U — 8§ x (U +1)". The leftmost component of srl is the sort function S. And for each feature
f € F there is a function F(f) : U — U + 1 which returns the successor of an element under the
feature f, if it is defined, and * otherwise. Hence srl =5 x [[;c = F'(f).

Of course, it is not so much the whole class of all coalgebras for a given signature that is interesting.
More interesting is the subclass that for a given grammar I' contains all and only its I-models.
With homomorphisms, this subclass forms a category.

It would be nice, if this category had final coalgebras. But unfortunately, we observe the following

Theorem 10 In the language D—, the category of I'-models does generally not contain final coal-
gebras.

We give a simple example with a very small signature and a simple grammar to show that in
general the existence of final objects cannot be expected.

Example 11 The signature contains two sorts: s and ¢, two features: a and b, and the appropri-
ateness function: s a t s b t.

There are three prototypical structures that are compatible with the given signature:

ol oS oS
(/ \, . < \‘ \
¥ N V
ot ot of
A B C

Any structure is constructed out of these elements.

Now, let the grammar I' = {:~ s —: a #: b}.

This explicitely forbids structure C. Structure A cannot be the final object, because there is no
homomorphism from B to A. But structure B cannot be the final object either, because there are
two different homomorphisms from A to B. Any other candidate for a final object would have to
contain an element of sort s in its universe, because otherwise there cannot be a homomorphism
from B into the candidate. But then the candidate already contains B as a substructure, and is
therefore unsuitable as final object for the same reason that B is.

The result is not very surprising considering the fact that our description language contains full
negation. We can use path disequations in a grammar I" to express that two elements in the
universe have to be different. At the same time, we can set up the signature and the rest of the
grammar in such a fashion that these two different entities must be observationally equivalent.
We know that a final coalgebra will always identify entities that are observationally equivalent in
other coalgebras within the same category. But since the grammar prohibits this identification,
the final coalgebra cannot be in the category of I'-models.

So, we are clearly faced with the fact that the description language is too powerful. Being able
to express that there should be two different but observationally equivalent entities violates the
spirit of coalgebraic modelling. To solve the problem, we can try and restrict the language. We
do so by restricting the use of negation to the negation of atomic sort statements. We thus have
T~sT~sand T =7 as statement literals and then conjunction and disjunction (and nothing
else) to form complex descriptions. With the language that restricted, we can prove the following

Theorem 12 The category of I'-models contains final coalgebras, if only atomic sort statements
can be negated.



It is interesting to note that the language restriction is not as severe as it may seem at first. Since
the connectives are interpreted classically, any description can be transformed into an equivalent
one where only atomic statements are negated. Thus all we prohibit are path disequations. In
particular, implications of the form ‘ry ~ s — 75 = 73’ are still allowed. And many principles of
HPSG have exactly that form. The Head Feature Principle is the prototypical example for such
principle. Path disequations are rarely directly used in Pollard and Sag (1994). The two places
where they play an important role are the Binding theory and the Control theory. Although
the Binding theory is not completely expressed in terms of feature structures, one can see that
path disequations are the means of choice to express that a personal pronoun of Principle B or a
nonpronoun of Principle C must be (locally) o-free. And in the Control theory, there is an overt
use of a path disequation in so far as there is a path equation in the antecedent of an implication.
Thus although quite a few principles can be expressed without path disequations it is finally not
possible to capture the whole of HPSG without them. We therefore have to find another way to
cope with path disequations, and not just prohibit them.

In general, if path disequations are used in HPSG, then as a convenient means to express that two
sub-feature structures are really two different structures, that means they should also be obser-
vationally different, while the malicious counterexample above demands that two observationally
indistinguishable structures be different. Therefore another way to remedy the problem with path
disequation is to offer a different semantics for path equations. SRL-interpretations model path
equations as true identity. Following the ideas of licensing theories, we propose to model them as
observational indiscernability. We introduce a new logical constant ~ and its negation %. As a
replacement of Definition 7 we now have the following definition of descriptions.

Definition 13 Let X be a signature. The set Dy, of descriptions is defined as follows.
If reTy and s € S then 7 ~ s € D,
if 7,7/ € T, then 7 ~ 7/ € D,
if d € Dy then —d € Dy,
if d,d’" € Dy then (dAd') € Dy,
if d,d’" € Dx then (dV d') € Dy,
if d,d’ € Dy then (d — d') € Dx.

Before we can define the denotation of a path equation, we have to make the notion precise that
two objects in the domain of an interpretation are indiscernible or observationally equal.

Definition 14 Let I = (U, S, F) be an interpretation. An element b € U is called an immediate
successor of a € U iff there exists a feature o such that F(a)(a) = b.

Let I be an interpretation. For each element a € U define recursively its sort-successors-pair as
the pair containing the sort of a as its left component and as its right component the set containing
the sort-successors-pairs of a’s immediate successors. ssp(a) denotes the sort-successors-pair of a.

Note that a sort-successors-pair may be an infinite object. Now, two objects are indiscernible,
if they have the same sort-successors-pair. With the notion of a sort-successors-pair we can now
define the denotation of a description in Dx..

Definition 15 Let I = (U, S, F') be an interpretation. The denotation of a description is defined
as follows (1,7 € Tx,s € §,d,d' € Dy):

[t ~s] ={ueU|F(r) is defined on v and S(F(7)(u)) = s},

[rar]=ducu F(7) and F(7') are defined on u }

and ssp(F'(7)(u)) = ssp(F(7)(u)) |~

[~d] = U\ [4],
[dnd] =T[d] N[d],
[dvd]=[dUld],
[d—d'l=@\[d)u[d]



Since we have classical negation, it follows that
F(7) or F(7') is not defined on u
n—
71 = { < U] oo & s
The language D where HPSG path equalities are interpreted as indiscernability of objects has

the desirable property of offering unrestricted negation on the one hand and still providing final
coalgebras in the category of grammar models on the other.

Theorem 16 In language D, the category of I'-models contains a final coalgebra.

The interpretation of path equations as observational indiscernability may at first seem somewhat
unusual to linguists. But it is not only natural if the underlying model is coalgebraic in nature.
It is also in line with the idea of a licensing theory. If grammaticality is defined in terms of
well-formedness conditions, then it should be observable from the outside whether a candidate
structure obeys to these well-formedness conditions. It should not be a potentially unobservable
property of its internal representation. Understood in this manour, a path equation expresses
that the structures at the end of the paths behave exactly alike, that they cannot be distinguished
with the expressive means we have. In such a situation it is no longer material whether these two
structures are really one and the same or not.

On the other hand, there is little doubt that Pollard and Sag (1994) expect path equations to be
interpreted as literal identity. For example, on page 19 they write “It is important to be clear that
structure sharing involves token identity of values, not just values that are structurally identical
feature structures.” So how can we come in terms with the linguists’ expectations? Concerning the
relation of = and ~ it is simple to see that if two objects are strictly equal, they are indiscernible.
And if they are observationally different, they are of course distinct. For a coalgebra in general, the
two notions differ. But in a final coalgebra, the notions coincide, because for any observation chain
we can find there exists exactly one element in the final coalgebra. Since there are independent
reasons to consider the final coalgebra as the model of choice, we can interprete path equations
as observational indiscernability, as is desireable for licensing theories, and at the same time meet
the linguists’ intuitions that path equations denote true identity.

Theorem 17 In a final coalgebra of the category of I'-models, if two objects are observationally
equal, they are identical. If two objects are distinct, they are observationally different.

We regard the final coalgebra of a category of I'-models as the model of choice for an HPSG
grammar I'. As explained at length above, coalgebraic models are the right models for a licensing
theory such as HPSG, because licensing theories set out well-formedness conditions of observable
properties of linguistic structures and coalgebras model observable properties abstracting from
internal structures. The final coalgebra now contains feature structures for the linguistic analyses
of all and only the grammatical sentences. That is because for every grammatical utterance
there is a coalgebra in the category of I'-models that models that utterance and its analysis.
And by definition, the final coalgebra contains a homomorphic image of the coalgebra. Since
the grammaticality properties are preserved by the homomorphism, the final coalgebra models
that utterance, too. Natural language utterances are inherently ambiguous. A grammar captures
this fact by providing different analyses for readings of the utterance that differ in structure (as
opposed to simple lexical ambiguity). Consequently, there will also be different coalgebras in the
category of models for the grammar that model the different structural analyses. And for the
same reason as above, all these different models find their homomorphic counterpart in the final
coalgebra. By definition, a homomorphism can only map a substructure onto a substructure that is
observationally equal. And differences in structural analyses lead obviously to observably different
feature structures. Thus all structural ambiguities can also be found in the final coalgebra, no
reading gets lost.



The final coalgebra of a category of I'-models will in general not be an exhaustive model. The
reason for this is that an exhaustive model will contain some feature structures that are observa-
tionally equal, but have different internal structures, while the final coalgebra will contain only a
single one of them. As we argued in the introduction, it does not make much sense to distinguish
between observationally equal feature structures within the framework of a licensing theory. If the
linguistic principles cannot make a distinction between these structures, why should the linguist
do so? The final coalgebra contains all and only those feature structure that are justified by the
licensing principles of the grammar. Hence we regard it as the model of choice.

5 PROOF OF THE EXISTENCE-THEOREMS

To simplify proofs we will use yet another description language, in which we have true equality
= and observational indiscernability ==, but restricted negation. Only atomic sort statements and
atomic path indiscernability statements can be negated.

Definition 18 Let X be a signature. The set D of descriptions is defined as follows.
IfreTx and s€ Sthen 7 ~s €D,
if 7 €Ty and s € S then 7 ¢ s € D,
if 7,7/ € Ty, then 7 = 7/ € D,
if 7,7/ € Ty, then 7 ~ 7/ € D,
if 7,7/ € Ty, then 7 % 7' € D,
if d,d’ € D then (dAd') € D,
if d,d" € D then (dVv d') € D,

The denotation of a description in D is just the same as it was defined for D— and D~. We repeat
is here for completeness.

Definition 19 Let I = (U, S, F) be an interpretation. The denotation of a description is defined
as follows (7,7" € Ts,, s € S,d,d’ € D):
[t ~s]={ueU]|F(r) is defined on w and S(F(7)(u)) = s},
[T #s]={ueU]|F(r) is not defined on uw or S(F(7)(u)) # s},
F(7) and F(7') are defined on u
and F(7)(u) = F(7')(u) }’
F(7) and F(7') are defined on u }

hzrﬂ:{ueU

and ssp(F'(7)(u)) = ssp(F'(7")(u))
F(7) or F(7') is not defined on u }

h%rﬂ:{ueU

or ssp(F(7)(u)) # ssp(F(7')(u))

M¢Tm{ueu

[dnd] =[dN[d],
[dv d] = [d] U [d].

We fix the signature ¥ and the grammar I' as parameters and consider the category K of all
I'-models with coalgebra-homomorphisms as morphisms. We will show that for the conjoint de-
scription language D the category K has final coalgebras.

In subsequent proofs, we will simplify notation of feature paths a little bit. If I = (U, S, F)
is an interpretation and v € U then instead of writing F'(7)(u) we write 7u, and instead of
F(a)(F(7)(u)) we write Tau.

We start by showing some important properties of homomorphisms. Homomorphisms preserve
modelhood and they are confluent. But first three useful technical lemma.

Lemma 20 Let 2 and B be X-structures and h : A — B a homomorphism. Let T € Ty, be a
feature path.



1. If u € Uy is such that Tu is defined then h(tu) = Th(u) € B.
2. If u € Uy is such that Tu is defined then Sa(Tu) = Sp(h(Tu)).
3. If u € Uy is such that T is defined on h(u) € Uy then 7 is defined on u.

Proof. (1) can be shown by a simple induction on the length of the path.

(2) Again a simple induction on the length of the path: If 7 = : then Sa(u) = Sp(h(u)), because
h is a homomorphism.

Let 7 = 7’a. By induction hypothesis, S4(7'u) = Sg(h(7’u)). Thus feature « is defined on 7'u
and h(7'u), because 2 and 9B are totally well-typed. Then Su(7'au) = Sg(h(r'au)) because h is
a homomorphism.

(3) Let 7 € Ty, be a path and u € Uy such that 7 is defined on h(u). Then 7 is defined on u.

In the induction step, let 7 = 7/a. By the induction hypothesis, 7’ is defined on u, and by (2),
Sa(t'u) = Sp(h(r'u)) = s for some sort s. Since 7 is defined on h(u), we know « is appropriate
for s. Thus « is defined on 7'u, because 2 is totally well-typed. Hence 7 is defined on u. [

Lemma 21 Let A and B be X-structures and h : A — B be a homomorphism and u € Uy. Then
ssp() = ssp(h(u).

Proof. This is an immediate consequence of the above lemma. Let 7 be any feature path. By
Lemma 20 (1) and (3), 7 is defined on w iff it is defined on h(u) and by (2) Sa(7u) = Sg(h(Tu)).
Hence ssp(u) = ssp(h(u)). |

Corollary 22 let 2 and B be X-structures and h : 4 — B be a homomorphism. For allu,v € U,
if h(u) = h(v) then the sort-successors-pairs of u and v are identical.

Proof. h(u) = h(v) = ssp(h(u)) = ssp(h(v)) and ssp(u) = ssp(h(u)) and ssp(v) = ssp(h(v)) by
the above lemma. Thus ssp(u) = ssp(v). |

Lemma 23 Let A and B be Y-structures and 2 in particular a I'-model. Let h : 2 — B be a
surjective homomorphism. Then B is a I'-model.

Proof. Let u € Uy. We show that for every description d, if u € [d]* then h(u) € [d]® by a
structural induction over descriptions starting with the five different types of literals.

Let u € [7 ~ s]®. Then 7 is defined on h(u) and s = Sa(7u) = Sg(h(ru)) by (1) and (2) of the
above lemma. Hence h(u) € [1 ~ s]®.

Let u € [7 # s]®. We distinguish two cases.

Firstly, let 7 be defined on uw. Then there is a sort ¢ € S with ¢t # s and Sa(7u) = ¢t. Thus 7 is
defined on h(u) and t = Sa(ru) = Sp(h(ru)) by Lemma 20 (1) and (2).

Hence h(u) € [7 £ s]®.

Secondly, let 7 not be defined on u. Then 7 is not defined on A(u) by Lemma 20 (3).

So h(u) € [r # s]®.

Let u € [t =7']*. Then 7u = 7'u. Then 7 and 7’ are defined on h(u) and Th(u) = h(Tu) =
h(t'u) = 7'h(u) by Lemma 20 (1). Hence h(u) € [r = 7']®.

Let u € [r ~ 7']*. Then ssp(ru) = ssp(r’u). Then 7 and 7’ are defined on h(u) and Th(u) =
h(ru) and h(7'u) = 7'h(u) by Lemma 20 (1). By Lemma 21, ssp(7h(u)) = ssp(7’h(u)). Hence
h(u) € [7 =~ 7']®.

Let u € [T % 7']*. We distinguish two cases.

Firstly, let 7 be undefined on u. Then 7 is undefined on h(u) by Lemma 20 (3). Hence h(u) €
[T # 7]®.
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Secondly, let 7 and 7’ be defined on u and ssp(ru) # ssp(7’u). Then 7 and 7’ are defined on
h(u) and 7h(u) = h(ru) and h(7'u) = 7'h(u) by Lemma 20 (1). And ssp(7h(u)) = ssp(Tu) #
ssp(7'u) = ssp(7'h(u)) by Lemma 21.

Hence h(u) € [7 % 7']®.

Now for the induction step.
Let d and d’ € D be descriptions u € [d Ad’]*. Then u € [d]* and u € [d']*. By induction
hypothesis h(u) € [d]® and h(u) € [d']®. Therefore h(u) € [d A d']®.

Let d and d’ € D be descriptions v € [dV d']*. Then u € [d]* or u € [d']*. By induction
hypothesis h(u) € [d]® or h(u) € [d']®. Therefore h(u) € [dV d']®. ]

Lemma 24 (Local confluence lemma) Let A, B, and € be I'-models and hap : A — B and
hac : A — € be surjective homomorphisms.
Then there exists a I'-model ® and surjective homomorphisms hgp : B — ® and hep : € — D
such that the following diagram commutes:
A
hiB/ y:c
B ¢
hB\L\ AD
D
Proof. Define equivalence classes on Ug by setting for each u € Uy [u] = {v € Uy | hap(u) =
hAB(’U) or hAc(’u,) = hAc(U)}.
Define ® = (D, Sp, Fp) by
D —{[u] | u € Uy}
Sp([u]) = Sa(u)
Fp:afu] =[v] iff au=wvin 2A.
Fact 1: ® is a proper Y-structure.
Since homomorphisms are sort preserving, if h(u) = h(v) then Sa(u) = Sa(v). Hence, Sp is
well-defined.
Let au = v and u’ € [u]. Since Sa(u) = Sa(v) and 2 is totally well-typed, « is defined on u’. Let
hap(u) = hap(u') ( — the argument for hc(u) = hac(u') is analogue).
= ahap(u) = ahap(u')
- hAB(au) = hAB(ozu’)

= au’ € [v].

Thus Fp is well-defined.

Let Sp([u]) = s,Sp([v]) = ¢, and afu] = [v].

Then Sa(u) = s,54(v) = ¢, and au = v by definition of D.
Then (s,a,t) € F of X, because 2 is totally well-typed.
Let (s,a,t) € F of ¥ and Sp([u]) = s.

Then Sa(u) = s. « is defined on uw and Sy (au) = t, because 2 is totally well typed.
Then « is defined on [u] and Sp([au]) = t by definition of D.

Thus ® is a proper X-structure.

Fact 2: There exists a surjective homomorphism hap : A — .
Define hap : v [u] for all u € Uy.
Let u € Uy. Sp(hap(u)) = Sp([u]) = Sa(u) by definition of .
ahap(u) = afu] =[au] by definition of Fp

=hap (u)

11



So, hap is a homomorphism.
Let d € D. Then there is a u € Uy such that d = [u]. By definition of hap we have hap(u) = d.
Thus hap is surjective.

Fact 3: ® is a ['-model.
Follows immediately from Fact 2 and the fact that homomorphisms preserve modelhood.

Fact 4: There exists a surjective homomorphism hgp : B — D.
Define hpp : hap(u) — [u] for all u € Us.
Since hap is surjective, hpp is a total on Us. It is a function, because if hag(u) = hap(v) then
v € [u] by definition.
Let b € Uss. There exists a u € Uy such that b = hap(u).
Sp(b) = Sp(hap(u)) = Sa(u)  because hap is a homomorphism
= Sp(Ju]) by definition of Sp
= Sp(hpp(b)).

Let ¢ € Uy and ab = c. There exists a v € Uy with ¢ = hap(v) and au = v.

Now ahpp(b) = afu] = [au] by definition of Fp.

And hpp(ab) = hpp(c) = [v] = [aul.

Thus hgp is a homomorphism.

Let d € D. Then there is a u € Uy with d = [u]. By definition of hgp : hap(u) — d. Thus hgp
is surjective.

Fact 5: There exists a surjective homomorphism hop : € — D.
The argument is analogue to the proof for Fact 4. [

Lemma 25 There ezists a I'-model A in K such that for each I'-model B in IC and for each
u € U it is true that A contains a homomorphic image of (u).

This is a consequence of the theorem by King that every grammar has an exhaustive model (King
(1999)). The following line of argument leads to Proposition 34, a strengthening of the above
lemma stating that there is a unique homomorphic image of (u).

Definition 26 A I'-model A is called minimal iff for every I'-model 8 and homomorphism #h :
A — B it is true that h is injective.

Let 2 and B be I'models. B is called a minimal model for 2 iff there exists a surjective homo-
morphism h : A — B.

Lemma 27 The minimal models of a I'-model are unique up to isomorphism.

Proof. Let 2 be a I'-model, B; and B, two minimal models of A, and h; o : A — B 2 surjective
homomorphisms.

By the local confluence lemma, there exists a I'-model ® and surjective homomorphisms g; 2 :
%1,2 — 3.

g1,2 is injective, because B 2 is minimal.

As a homomorphism, g 2 is sort-preserving in both directions, hence g; 2 is an isomorphism.

So, B » is isomorphic to ® and thus 9B, is isomorphic to B,. [

The next task is to show the existence of minimal models.

Definition 28 Let 2 be a I'-model. Define a structure 2l |= (U, S, F') by
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U is the set of all sort-successors-pairs of 2,
S associates with each sort-successors-pair its left component,
A (ur,uz) € agy it (v1,v2) € ag,
w1 is the sort-successors pair of vy, and
us is the sort-successors pair of vs.

Lemma 29 2| is a proper X-interpretation.

Proof. What we have to show is that F' obeys to the appropriateness function A of the signature
Y. Let (s,a,t) € A and v € Uy with S(u) = s. Then there is a v € Uy with sort s and
sort-successor-pair u. Since 2 is totally well-typed, there is a v’ € Uy such that v’ is of sort ¢
and av = v’. By construction of 2|, there is a u’ € Uy that is the sort-successors-pair of v and
hence has sort t. By definition of F, we have au = u’.

Let u,u’ € Uy, S(u) = s,5') = t, and au = «’. By definition of 2 | there is a v € Uy with
S (v) = s and sort-successors-pair u, a v’ € Uy with Sy (v') = ¢ and sort-successors-pair ', and
av = v'. Since 2 obeys to F, we know (s, a,t) € F. ]

Lemma 30 There exists a surjective homomorphism h : 24 — 24 |.

Proof. Define h as follows: Map each v € Uy to its sort-successors-pair. Then h is obviously a
surjective function.

Let v € Uy and Sg(v) = s. Let u be the sort-successors-pair of v. Then S assigns s to u by
definition of S.

Let v € Uy and « a feature appropriate for v and av = v’. Let u be the sort-successors-pair of v
(i.e., hv) = u) and ' be the sort-successors-pair of v (i.e., h(v') = ’). Thus h(av) = h(v') = .
By definition of F: (u,u’) € ag). Therefore a(h(v)) = au = u'. |

Corollary 31 24| s a I'-model.

Proof. This follows immediately from the above lemma and Lemma 23. [ ]

Lemma 32 Let 2 be a I'-model. Every u € Uy is identical with its own sort-successors-pair.

Proof. Let uw € Ug . There is a v € Uy such that u is the sort-successors-pair of v. Simply by
definition of 2| for every feature path 7 € Ty, we know 7 is defined on v if and only if it is defined
on u, and if it is defined then Sg(7v) = Sy (7u). Hence by definition of a sort-successors-pair, u
and v have the same sort-successors-pair. Since u is the sort-successors-pair of v it follows that
is identical with its own sort-successors-pair. [

Lemma 33 2| is a minimal model of 2.

Proof. Let B be a I model and h : %A |— 9B be a homomorphism. Let u,v € U such that
h(u) = h(v). By Lemma 22, the sort-successors-pair of u is identical with that of v. By the
above lemma, w is identical with its own sort-successors-pair, and v is identical with its own sort-
successors-pair. Therefore u = v. This shows that 2 | is a minimal model. That it is a minimal
model for A follows from Lemma 30. [ ]

Proposition 34 There exists a I'-model 2 in IC such that for each T'-model B in K and for each
u € U it is true that A contains a unique homomorphic image of (u).
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Proof. By Lemma 25, there exists a I'-model B in I such that for each I'model € in K and each
u € Ug: B contains a homomorphic image of (u). We will show that % |, the minimal model of
B is the desired I'-model.

Let € be a I'-model in K and u € Ug. By Lemma 30, there exists a homomorphism h : B — B |.
Hence 9B | contains a homomorphic image of (u).

For uniqueness, let hy : (u) — B | and hy : (u) — B | be two homomorphisms. On their images
hi({u)) and ho((u)), hy and hy are of course surjective. By the local confluence lemma, there
exists a I'-model © and surjective homomorphisms g; : hi({(u)) — © and g2 : ha({u)) — D. g1
and go are injective. (If g; was not, it could be extended to a non-injective homomomorphism on
B |, which contradicts the minimality of 8B |. Hence g; and g, are isomorphisms, and thus h ((u))
and ha({u)) are isomorphic. By definition of a sort-successors-pair, hi(u) and ho(u) have the same
sort-successors-pair. By Lemma 32, hi(u) and ho(u) are identical with its sort-successors-pair.
Hence hq(u) = ho(u), and their is one unique homomorphic image of (u). |

Definition 35 A I'-model 2 as in Proposition 34 is called a fit model.
Proposition 36 Let A be a fit model in the category K. Then 2 is a final coalgebra in IC.

Proof. Let 2 be a fit I''model and B be a I'model in . We first show the existence of a
homomorphism from % to . For each b € Uy there exists a unique homomorphism hy, : (b) — 2.
Define h = Uy, ho-

Fact 1: h is a function.

Let b,c € Uy such that ¢ € (b). Then (c) is a substructure of (b) by definition of substructures.
Since 2 contains exactly one homomorphic image of (c) it follows that hy((c)) = h.({c)) and a
fortiori hy(c) = he(c).

Fact 2: h is a homomorphism.
For each b € Uy we know that h and hy agree on (b). hy is a homomorphism, so b is a homomor-
phism on (b), too.

Now we show uniqueness of the homomorphism from 9B to 2. Let h : 6 — 2 and g : B — A be
two homomorphisms and b € Ug. Since 2 contains a uniqgue homomorphic image of (b) it follows
that h and g agree on (b). So h and g agree on Usy. [ ]

Theorem 12 stating that category K in a language with true equality but without disequality has
final coalgebras is now a simple consequence of Proposition 36. Also Theorem 16 stating that IC
in the language ©~ has final coalgebras is a consequence of this proposition. Theorem 17 stating
that in the final coalgebra the notions of path equality and indiscernability coincide follows from
Proposition 36 and Lemma 32.

6 CONCLUSION

We provided a coalgebraic modelling of Head-Driven Phrase Structure Grammar. We showed
that this modelling is conceptually and technically very well suited for HPSG. Conceptually,
because HPSG is a licensing theory, and licensing theories define grammaticality in terms of
well-formedness conditions of observabilities of linguistic structures. Coalgebras are the tools for
modelling observable properties of systems. Technically, because the final coalgebra of the category
of all coalgebraic models of a grammar contains a feature structural analysis of each structurally
different reading of every grammatical sentence while eliminating spurious ambiguities that other
models tend to have. And also because in the final coalgebra the at first maybe somewhat unusual
denotation of path equations coincides with the intuitions that linguists have about path equations.
Coalgebraic models provide the first conceptually adequate formalisation of licensing theories like
HPSG while fulfilling the technical demands HPSG grammarians have.
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