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Chapter 1

Introduction

Your order is your anarchy
Psychotic Waltz

Independence limited
Freedom of choice
Choice is made
For you my friend

Metallica

Generally speaking, computational linguistics is concerned with the use of
computers to \understand" natural, i.e., human, languages. This thesis con-
centrates on a more concrete subtask: Given some natural language utterance,
compute the syntactic structure of this utterance, which, in turn, is related to its
semantic structure. Solving this task requires answering two questions: 1. What
does this structure look like? and 2. How can it be computed eÆciently?

Context-free grammars (CFGs) have been a popular choice to tackle the �rst
question. The syntactic structure of a natural language utterance, i.e., a string of
words, is then regarded as being the derivation tree(s) of this string w.r.t. some
given CFG. Using context-free rules for writing grammars is also attractive from a
computational point of view because they are known to be recognisable in O(n3).
If, however, one wants to write a context-free grammar for a language with freer
word order, those rules either typically overgenerate or undergenerate, i.e., word
order is freer than in CFGs but not completely free (see section 1.1.2 for some
examples). One can use machine learning techniques to acquire syntactic roles
but the generated rules are often arbitrary with regard to semantic composition
(see also section 1.2.1).

There have been attempts to relax word order implicitly, notably ID/LP gram-
mars (cf. Gazdar, Klein, Pullum & Sag 1985), and Johnson (1985), which re-
quires total freedom of order on an ID rule. On the other hand, recognition with
CFG-like rules with no linear precedence have been shown to be NP-complete
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1.1. THE LINEAR SPECIFICATION LANGUAGE LSL 5

(Huynh 1983). Formalisms like Johnson (1985) that allow discontinuities in ad-
dition are, in practice, even less tractable. For a more detailed discussion see
section 1.2.2.

The Linear Speci�cation Language (LSL) was proposed in G�otz & Penn (forth-
coming) as an extension of CFGs designed to \�ll the gap", linguistically and
computationally, between those two extremes by naturally expressing syntactic
combinations in natural languages with freer word order (see section 1.1).

In this thesis, I will investigate mainly three aspects of LSL grammars. Since
they de�ne a class of formal languages, I will take a look at how LSL behaves in
terms of some classic questions of formal language theory (chapter 2), in partic-
ular, the Chomsky hierarchy, closure properties, and decidability. Section 2.8 is
devoted to the complexity theoretic properties of the decidable problems.

The membership (or recognition) problem is the most relevant one for practi-
cal purposes and is analysed in detail in chapter 3. A generalisation of an Earley
parser is described, extending the concepts of chart parsing in a straightforward
way. That parser is shown to need exponential time in the worst case (which is
not surprising since the membership problem is NP-complete). However, a suÆ-
cient condition for a �xed LSL grammar to be parseable in polynomial time can
be identi�ed. This condition can be stated more generally so as to suit applica-
tions to natural languages better. A corresponding extension to LSL is proposed
as well. The presented algorithm is not being presented as an even near-optimal
solution for practical purposes, but only to establish the theoretical result.

In chapter 4, I will describe a C++ implementation of the parsing algorithm.
It will be particularly concerned with issues which are not of interest from a
theoretical point of view, but do play a crucial role for a practical system.

Chapter 5 contains a summary, a short discussion about what role the theo-
retical results play in practice, and an outlook on extensions of LSL.

In the next section, I will informally describe what an LSL grammar looks
like and how strings can be derived by it. For a more formal account, see chapter
2.

1.1 The Linear Speci�cation Language LSL

LSL grammars are a generalisation of context-free grammars in that they allow
arbitrary partial orders and discontinuities on the right hand side of a grammar
rule.

Throughout this thesis, I will consider an idealisation of the formalism pro-
posed in G�otz & Penn (forthcoming). In chapter 5, I will briey present important
additional parts of this original proposal. Aldag (1998) gives a formal semantics
of LSL in the context of a typed feature logic (cf. King 1994).



6 CHAPTER 1. INTRODUCTION

1.1.1 Introduction to the Formalism

An LSL grammar G consists of a set of nonterminals N , a set of terminals T ,
a set of LSL rules P , a set of lexical entries L, and a start symbol S (G =
(N; T; P; L; S)).

A lexical entry is a pair Y ! a where Y 2 N and a 2 T . Keeping the lexical
entries separate from the rules is realistic, because in linguistic applications, this
distinction is often made, too.

Informally, an LSL rule consists of two parts, a two-place relation between a
nonterminal and a set of nonterminals (called immediate dominance), and some
linear precedence constraints (LP constraints) between those nonterminals. For
instance

S ! AB C D ; (1.1)

A < B;B � C; hAi

S, A, B, C, and D are nonterminals. The terms after the semicolon make state-
ments about the ordering and discontinuity of the nonterminals on the right hand
side (RHS) and left hand side (LHS) of the rule, or rather the terminal string (or
terminal yield) derived from those nonterminals. They de�ne relations between
occurrences of nonterminals on the RHS of the rule, rather than nonterminals
as such. If the same nonterminal occurs more than once, I will use indices to
distinguish these occurrences. There are three kinds of LP constraints:

1. (Weak) precedence (written as A < B): The terminal yield of A is com-
pletely to the left of the terminal yield of B.

2. Immediate precedence (A � B): The rightmost terminal derived from A
stands immediately to the left of the leftmost terminal derived from B.

3. Isolation (hAi): The terminal yield of A is continuous (has no discontinu-
ities). It is also possible to isolate the LHS of a rule which means that
the terminal yield derived by a nonterminal expanded by that rule must be
continuous.

If no LP constraints are imposed (denoted by \"" after the semicolon), the rule
allows any arbitrary ordering of A, B, C, and D and discontinuities.

So suppose, the terminal yield of A is aa, that of B is bb, that of C is c, and
that of D is dd. If the rule had no LP constraints, all permutations of aabbcdd
would be licensed by the rule.

For a terminal string to be grammatical according to rule 1.1, it must hold
that

1. The rightmost a must occur somewhere to the left of the leftmost b.

2. The rightmost b must occur immediately to the left of c.
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S ! NP VP ; NP � VP.
VP ! NP1 NP2 V ; NP1 < V, NP2 < V

hNP1i, hNP2i.
V ! gibt.

Figure 1.1: LSL grammar for a German subordinate clause. For simplicity, it is
assumed that \Fabian", \der Lisa", and \die Principia Mathematica" are NPs.
The VP rule allows arbitrary ordering of the two objects of the verb.

3. The two a's must be continuous (next to each other).

These three conditions hold for the following terminal strings (there are still
more): aabbcdd, aadbdbc, aadbbcd, daabbcd, aadbdbc. Note that D is not con-
strained in any way. On the other hand, one condition is violated in each of the
following cases:

� adabbcd (A is not isolated)

� aadbbdc (B does not immediately precede C)

� bddbcaa (A does not precede B)

In what follows, I will use the term derivation tree (or parse tree) to refer
to the tree expressing only the ID relations, i.e., two derivation trees which use
exactly the same rules (but maybe have di�erent word orders) are considered to
be the same. In this sense, the derivation trees of all the strings generated by
rule 1.1 are considered to be the same.

1.1.2 Examples

Let us now turn to more linguistically motivated examples from German which
demonstrate what the term freer word order means in the context of natural
language.

Subordinate Clauses

The LSL grammar in Fig. 1.1 generates the two subordinate clauses \(da�)
Fabian der Lisa die Principia Mathematica gibt" and \(da�) Fabian die Principia
Mathematica der Lisa gibt". The derivation trees for these two sentences are the
same (see Fig. 1.2). Note how the VP rule allows for two orderings of the objects
of the verb.
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die Principia Mathematica

NP

gibt

V

NP

NP

Fabian

der Lisa

VP

S

Figure 1.2: Derivation tree for \(da�) Fabian der Lisa die Principia Mathemat-
ica gibt" and \(da�) Fabian die Principia Mathematica der Lisa gibt".

S ! NP VP ; "
NP ! D �N ; D � �N
�N ! N CP ; N < CP, hCPi
D ! der
N ! Mann
VP ! stirbt

Figure 1.3: LSL grammar for extraposition. For simplicity, it is assumed that
\der z�ogert" is a CP.

Extraposition

Consider the LSL grammar in Fig. 1.3 capturing extraposition phenomena.
This grammar derives the grammatical German sentences \Der Mann, der

z�ogert, stirbt", \Der Mann stirbt, der z�ogert" and \Stirbt der Mann, der z�ogert"
which all have the same derivation tree (see Fig. 1.4). Note, in particular, that
the NP \der Mann, der zoegert" has a discontinuity in the two latter sentences.

On the other hand, the string \der stirbtMann der z�ogert" is ruled out because
\der" is required to immediately precede \Mann", i.e., nothing is allowed to occur
in between them.

1.1.3 Encoding CFGs as LSL Grammars

It is possible to express CFGs in LSL. Consider the simple context-free rule
S ! ABC. In LSL terminology, this rule expresses the following:

1. An S consists of (immediately dominates) an A, a B, and a C.

2. A (immediately) precedes B, and B (immediately) precedes C.

3. A, B, and C are isolated.
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N

NP

CP

S

der zögert

VPD

Der stirbtMann

N

Figure 1.4: Derivation tree of \Der Mann, der z�ogert, stirbt", \Der Mann stirbt,
der z�ogert", and \Stirbt der Mann, der z�ogert". The three sentences only di�er
w.r.t. word order but are all generated with the same rules.

4. S is isolated.

There are a couple of di�erent ways to express these constraints. What they
all have in common is the immediate dominance part, which looks just like the
context-free rule: S ! ABC;'. And here are some possibilities for ' (the LP
constraints):

1. A < B;B < C; hSi; hAi; hBi; hCi

2. A < B;B < C; hSi

3. A� B;B � C; hAi; hBi; hCi

4. A� B;B � C; hSi

Note that (1) and (2) are equivalent in that the isolation of the ordered A, B, and
C is implied by the isolation of the LHS (but not the converse). If the isolation
of S is left out, i.e., A < B;B < C; hAi; hBi; hCi, this does not imply (2), since
there could be a \hole" between the A and B, or B and C, respectively.

1.2 Motivation

The reader might ask at this point: \Why add another beast to the formal
language zoo?". To answer this question, I will �rst briey discuss why CFGs (one
of the best known and understood grammar formalisms) are inappropriate for
describing freer word order phenomena. Secondly, I will describe some alternative
approaches to freer word order and show their weaknesses.
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1.2.1 Why not CFGs?

There are mainly two reasons why CFGs cannot be used sensibly for describing
languages with freer word order.

Expressive Power

It has often been argued that the context-free languages (CFL) are simply to
weak to describe some \non context-free" phenomena in natural languages like
cross-serial dependencies (cf. Shieber 1985) or copying (cf. Radzinski 1990).
Furthermore, a CFG for a language with freer word order must have a single rule
for every possible word ordering. Since word order is not completely free (thus the
term freer word order), these rules typically either overgenerate or undergenerate
severely. This is a fact that is not acceptable.

Parsing and Semantics

The ultimate goal of parsing an expression in natural language is not only to �nd
out if it is licensed by a speci�ed grammar, which is a simple yes/no question,
but to somehow create the semantics of this expression. This is crucial for appli-
cations using Natural Language Processing techniques like machine translation
or database querying. The semantics1 of a natural language utterance can be
computed from its derivation tree.

For expository purposes, I will use some kind of �-terms as semantics. For in-
stance, the German word \gibt" might have a semantics like �z�y�x:gives(x; y; z).
This semantics is stored somewhere in the lexicon. Consider the German sub-
ordinate clause \(da�) Fabian der Lisa die Principia Mathematica gibt". The
derivation tree of this sentence w.r.t. the grammar in Fig. 1.1 is shown in Fig.
1.2.

Assume that the semantics of \Fabian" is the constant \fabi", that of \der
Lisa" is \lisa", and that of \die Principia Mathematica" is \principia", respec-
tively. Then the semantics of the sentence is computed by functional application
in such a way that every inner node is assigned a �-term as follows: the semantics
of VP is the semantics of the V node successively applied to the semantics of the
two NP nodes (the two objects of the verb) in the order from right to left:

(�z�y�x:gives(x; y; z))(principia)(lisa)

= �y�x:gives(x; y; principia)(lisa)

= �x:gives(x; lisa; principia)

The semantics of the S node can be computed analogously:

(�x:gives(x; lisa; principia))(fabi) = gives(fabi; lisa; principia);

1The term \semantics" should be understood as precise, detailed semantic representation
rather than a vague conception of meaning such as keyword-occurrences.
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which is the semantics of the sentence. Now note that this semantics is the same
for a variation of this sentence, e.g., \(da�) Fabian die Principia Mathematica der
Lisa gibt". The VP rule of the grammar in Fig. 1.1 allows both orders mentioned
above. Hence, the two sentences have the same derivation trees.

If, on the other hand, one assumes that \(da�) Fabian der Lisa die Principia
Mathematica gibt" and \(da�) Fabian die Principia Mathematica der Lisa gibt"
have di�erent derivation trees, the rules for the semantics composition cannot be
applied straightforwardly. One would then be forced to transform one tree into
the other2 to compute the semantics. This situation would certainly arise if one
used a context-free grammar which has a di�erent rule for every possible word
ordering. With an adequate LSL grammar, on the other hand, it is possible for
the derivation trees of all those sentences to be the same and that their respective
word orders satisfy the LP constraints of that grammar. Then, the semantics can
be computed uniformly.

1.2.2 Previous Work

This section will briey cover a selection of previous work on formalisms (mostly
extensions of CFGs) to handle natural languages with freer word order.

ID/LP Grammars

In Gazdar et al. (1985), ID/LP grammars were introduced. These kind of gram-
mars has two kinds of rules: Immediate dominance (ID) and linear precedence
(LP) rules. ID rules have the form X0 ! X1; : : : ; Xn, which is supposed to mean
\X0 immediately dominates X1 to Xn". No statement, however, is made as to
what the linear order of the Xi is. LP rules are pairs of nonterminals like A < B
saying \If A and B are sisters, i.e., if they occur both on the RHS of a rule,
then A has to precede B". These LP statements are not attached to an ID rule
as in LSL, but are valid \globally". Furthermore, discontinuity is not allowed,
or in LSL terminology: every nonterminal is isolated. It is easy to see that for
every ID/LP grammar one can construct an equivalent CFG. This is done by
computing every permutation of the RHS of an ID rule which satis�es all the LP
rules. The lack of the possibility to specify discontinuity, however, makes it hard
to write ID/LP grammars for languages with freer word order.

An important formal di�erence between ID/LP and LSL grammars is that
LP constraints are attached to a particular rule in LSL, thus de�ne relations
between occurrences of nonterminals of that particular rule, whereas in ID/LP,
they de�ne relations between nonterminals as such. It is thus not possible to
directly specify an LP rule like X < X3. In LSL, however, one can easily specify
a rule Y ! X1X2;X1 < X2.

2In some (pure) linguistic theories this is actually done.
3What should that mean, anyway?
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UCFGs

Unordered context-free grammars (UCFGs), also called commutative context-
free grammars, are a special case of ID/LP grammars in that there are only
ID rules and no LP rules, i.e., there are no ordering constraints. Still, strings
derived by a nonterminal are continuous. In Huynh (1983) and Barton, Berwick
& Ristad (1987), it was shown that the general membership problem for UCFGs
is NP-complete.

Johnson's Extension of DCGs

In Johnson (1985), a natural extension of de�nite clause grammars (DCGs) was
proposed for parsing \non-con�gurational languages", i.e., languages with com-
pletely free word order. DCGs (cf. Gazdar & Mellish 1989) are generalised
context-free grammars in that nonterminals are �rst order terms and that a rule
can also have procedural attachments. They are strongly connected to the Prolog
programming language, which allows direct parsing of DCGs using the built-in
depth-�rst search strategy. For instance, one can write the following DCG rule:

np --> det, n.

This clause plays the role of a context-free rule, expressing the fact that an np

consists of a determiner and a noun. Internally, the Prolog compiler translates
this DCG rule into the following clause:

np(X,Y) :- det(X,Z), n(Z,Y).

The two added arguments represent string positions. This clause now means: \To
�nd an np from position X to Y, we have to �nd a det from X to some position Z,
and an n from this Z to Y".

Generalising DCGs to languages with discontinuous constituents makes it
impossible to take just two integers as string positions. Rather, we use just
one extra argument instead of two which contains the so called location of the
nonterminal, indicating which string positions belong to the constituent to be
parsed. This location is implemented as a bit pattern (bit vector) (see also section
3.2.1). All locations on the RHS of a rule may be combined to yield the location
of the LHS, i.e., the bit patterns are ORed bitwise. This is done by the three
place predicate combines. So, the example from above would be rewritten as

np(L) :- det(L1), n(L2), combines(L1,L2,L).

where L, L1, and L2 are bit patterns, implemented as e.g. lists.
Writing a grammar in this fashion, it is easy to construct a parser. One can

either use Prolog's built-in strategy or any other strategy for processing Prolog
programs, e.g., Earley Deduction. No specialised parser needs to be written.
Furthermore, one can modify the de�nition of combines so as to suit other needs.
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For instance, it is very straightforward to implement a predicate that checks if
two bit patterns precede or immediately precede each other. Hence, one can
simulate LSL with such predicates.

However, Johnson's framework does not have any notion of derivation nor any
formal backbone. It describes how a parser might be implemented using Prolog
as the programming language, no more and no less4.

Generalisations of Known Parsing Algorithms

In Reape (1991), some common parsing algorithms are generalised for the pars-
ing of so called permutation complete languages5. A language L is permutation
complete if w 2 L implies that every permutation of w is also in L.

Starting with simple parsing algorithms, like top-down, left corner, and shift
reduce parsers, chart parsers like CYK which use codes (another word for bit
patterns) are also investigated. For all generalisations, it is proven that they
have the minimality (all parses are found exactly once), soundness (a found parse
is licensed by the grammar), and completeness (if the language is decidable, all
parses are found) properties. As one can easily imagine, the complexity of all
those algorithms is exponential.

Instead of giving up here, Reape tries to analyse the complexity of languages
with a \nonconcatenative" nature, i.e., where the string of a mother might be
created in a more complicated way than being simply the concatenation of the
strings of the daughters. He therefore uses the linear context-free rewriting sys-
tems (LCFRS) of Vijay-Shanker, Weir & Joshi (1987). It turns out that the
complexity then depends on what these \string combining" operators look like.
If the operator is a function, e.g., append in the context-free case, we have polyno-
mial complexity. If this operator, on the other hand, is relational, i.e., may have
several solutions, it seems6 that this makes the problem NP-complete. An ex-
ample of such a relational operator is shu�e, which \nondeterministically" mixes
two lists.

Since LSL languages are not permutation complete in the general case, the
results of Reape (1991) are of restricted value to us. Furthermore, trying to
de�ne operators to embed LSL into the mentioned LCFRS does not work in a
straightforward way because it is not enough to order the string of a mother
satisfying some LP constraints and then forget about those constraints for a
reason described in section 2.2.

4To see how Johnson's framework can be described more formally, see section 3.4.
5Johnson (1985) does also but his framework does not rely on this property.
6Reape does not give formal proof for this, in fact he uses the word \seems" himself.
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Dependency Grammars

In Holan, Kubo�n & Pl�atek (1995), non-projective context-free dependency gram-
mars (NCFDGs) are introduced. Generally, dependency grammars are quite
popular for Slavic languages which have a high degree of freedom of word order.
NCFDGs have rules of the form A!L BC or A!R BC which mean that a sen-
tential form like �1�2A�1�2 can be rewritten as �1B�2C�1�2 or �1�2B�1C�2,
respectively, i.e., the left (right) nonterminal on the RHS can be inserted some-
where to the left (right) of the rewritten nonterminal.

NCFDGs have a notion of discontinuity but a di�erent notion of precedence
than LSL. This is because a rule A !L BC does not imply that B (weakly)
precedes C (in LSL terminology) since with the rule C !L DE, the derivation
A ) BC ) DBE is possible. There is also no notion of immediate prece-
dence or isolation, it is thus impossible to enforce context-freeness for some parts
of the grammar which is no problem with LSL. Holan, Kubo�n, Oliva & Pl�atek
(1998) proposes an enhancement of NCFDGs (the free order dependency gram-
mars (FODGs) introduced herein are basically equivalent to NCFDGs) by in-
troducing rules of the form A !0

X BC (X 2 fL;Rg) which means that A is
isolated, i.e., A has 0 discontinuities. (Note that the isolation constraint can only
be attached to the LHS of a rule whereas in LSL, any nonterminal on the RHS
can be isolated.)

Another important notion of NCFDGs and linguistic dependency theory in
general is the dependency tree of a string which is rather di�erent from a deriva-
tion tree of CFGs or LSL.

Overall, dependency theory is a very di�erent approach to natural language
than the kind of theories LSL builds upon.

Other Extensions of CFGs

The formal language literature is full of extensions of CFGs, which have emerged
from di�erent needs and motivations. For instance, Dassow & P�aun (1989) is
particularly concerned with adding context-sensitive features to a context-free
backbone. Examples for such extensions are indexed, matrix, programmed, and
random context grammars. However, none of those formalisms has either a notion
of discontinuity nor partial ordering of a RHS - notions likely to be needed for
natural languages with freer word order.



Chapter 2

Formal Language and

Complexity Aspects

In this chapter, I will formally de�ne LSL grammars and investigate some of
the classic questions in formal language and complexity theory. In particular, I
will be concerned with the Chomsky hierarchy, closure properties, decidability,
and the complexity of some of the decidable problems. Although LSL languages
might seem close to the context-free languages (CFL), not all results of CFLs
do hold for them.

Apart from the academic interest in formal language properties of LSL (since it
is, after all, a class of formal languages), there is another, maybe more interesting
aspect of this chapter. If it turns out that LSL is a (more or less) adequate
formalism to express natural language, one might get some insights into the
properties of natural languages themselves.

Note: In a lot of the de�nitions, I use statements like \If x 2 A then y 2 B"
to describe how to construct a set B, when a set A is given. To prevent B
from containing any \junk" which is allowed due to the implicational form of the
statement (What happens if x =2 A?), this is always intended to mean \Let B be
the smallest set such that: If x 2 A, then y 2 B".

2.1 LSL Grammars

In CFGs, the right hand side (RHS) of a context-free production A ! BCD
implies that the yields of B, C, and D occur in the input string in this order
and that they are adjacent to each other. In LSL, that is no longer the case.
We can have arbitrary partial orders on the RHS and must distinguish between
a weak notion of order (precedence) and a strong one (immediate precedence).
Precedence is, in some sense, weaker then immediate precedence because: If A
immediately precedes B then A precedes B, but not necessarily the converse. In
other words, immediate precedence implies weak precedence.

15
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Thus, RHSs of LSL productions are represented as directed acyclic graphs
(DAGs). There are two kinds of edges in such graphs: i-edges indicate obligatory
immediate precedence, p-edges indicate obligatory precedence which may or may
not be immediate. Lack of an edge indicates that precedence of any kind is not
obligatory, but not that it is prohibited. I will call such a graph an IP-graph.

I assume an in�nite, enumerable set Node.

De�nition 1 (IP-Graph) A tuple (V;EP ; EI) is an IP-graph, where V � Node
is the �nite set of nodes, EP ; EI � V � V are the disjoint sets of p-edges and
i-edges, and (V;EP [ EI) is a DAG.

Let IG be the set of all IP-graphs over Node. As for general graphs, one
can de�ne the notion of a path for IP-graphs as well. It is useful to distinguish
between two di�erent kinds of paths.

De�nition 2 Let R = (V;EP ; EI ) be an IP-graph. A sequence v1 : : : vn 2 V � is
a

� Path in R if for all i = 1; : : : ; n� 1: (vi; vi+1) 2 EP [ EI .

� I-Path in R if for all i = 1; : : : ; n� 1: (vi; vi+1) 2 EI .

Every i-path is also a path, but not necessary conversely. I will write v
R
 v0,

v
R
 i v

0, to express that there is a path, or an i-path from v to v0 inR, respectively.
Later, I will also need the following notions of start nodes and end nodes of

an IP-graph.

De�nition 3 Let R = (V;EP ; EI ) 2 IG. De�ne

� start(R) := fv 2 V j:9u : (u; v) 2 EP [ EIg

� end(R) := fv 2 V j:9u : (v; u) 2 EP [ EIg

Since IP-graphs do not have cycles, these two sets are empty i� the IP-graph
itself is empty.

Given an IP-graph, one can, analogously to DAGs, de�ne the notion of a
topological sort. This sorting can be seen as embedding the partial order given
by the DAG into a total order. Since i-edges represent immediate precedence, we
should, additionally, ensure that nodes connected by i-edges are adjacent to each
other in this topological sort.

De�nition 4 Let R = (fv1; : : : ; vng; EP ; EI) be an IP-graph. A topological sort
of R is a bijective function � : f1; : : : ; ng ! fv1; : : : ; vng such that:

1. If (vi; vj) 2 EP , then ��1(vi) < ��1(vj).

2. If (vi; vj) 2 EI , then ��1(vi) = ��1(vj)� 1.
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1

2

3

4 5

Figure 2.1: An IP-graph which has indegree and outdegree � 1 w.r.t. EI , but is
not topologically sortable. P-edges are drawn as single, i-edges as double arrows.

The sequence �(1) : : : �(n) is called the topological ordering of R w.r.t. �.

Although � is only de�ned by its inverse, it is well de�ned because � is a bijection
and, thus, has a unique inverse ��1.

Not all IP-graphs have such a topological ordering. However, for the IP-
graphs to represent the partial orders of the RHSs of LSL productions, they must
be topologically sortable.

De�nition 5 (Rule Graph) An IP-graph is called a rule graph i� it has a
topological ordering.

Let RG � IG be the set of all rule graphs.
One can identify a necessary condition for an IP graph to be topologically

sortable.

Proposition 1 Let R = (V;EP ; EI) 2 IG. If R 2 RG, then every v 2 V has
indegree and outdegree � 1 w.r.t. EI .

Proof:
Let � be a topological sort of R. Now assume that the outdegree of V w.r.t.
to EI is � 2, thus there are di�erent v; v1; v2 2 V such that (v; v1) 2 EI and
(v; v2) 2 EI . Since � is a bijection, ��1(v1) 6= ��1(v2). But it must hold that
��1(v) = ��1(v1) � 1 and ��1(v) = ��1(v2) � 1, thus ��1(v1) = ��1(v2), which
is a contradiction.

The proof for the indegree follows from symmetry.
�

By contraposition, we have the following corollary:

Corollary 1 Let R = (V;EP ; EI ) 2 IG. If there is a v 2 V which has indegree
and outdegree � 2 w.r.t. EI , then R does not have a topological ordering.

The condition of Proposition 1 is only necessary, not suÆcient, i.e., there are
IP-graphs with indegree and outdegree � 1 w.r.t. EI which are, however, not
topologically sortable. For instance, consider Fig. 2.1.

If a rule graph has a topological ordering, it can be computed in polynomial
time (just as for ordinary DAGs).
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Proposition 2 There is a function topsort : IG ! Node� which computes a
topological ordering of an IP-graph in polynomial time if there is one.

Proof:
Let R = (V;EP ; EI ). We can assume that the indegree and outdegree of R w. r.
t. EI is � 1. Otherwise, R does not have a topological ordering (cf. Corollary
1). Furthermore, w.l.o.g. we can assume that no two nodes which are connected
by an i-path also have a p-edge between them.

It was shown in, e.g., Cormen, Leiserson & Rivest (1990) that topologically
sorting a DAG (N;E) can be done by performing a depth �rst search which takes
time O(jN j+ jEj). Sorting (V;EP [ EI) with this method makes condition 1 of
De�nition 4 true, but condition 2 may still be false. To get this right, one can
simply consider all maximal chains in EI as atomic nodes because for all possible
topological orderings, the order of such a chain is the same. These maximal
chains can be computed by the function maxichains:

function maxichains((V;EP ; EI ) : IG): P(V +);
S := ;;
for all v 2 V such that there is no y s.t. (y; v) 2 EI do
� := v;
u := v;
while 9x : (u; x) 2 EI do
� := �x; (* concatenate � and x *)
u := x;

endwhile
S := S [ f�g;

endfor
return S;

maxichains �rst examines each node (takes time O(jV j)), checks if it is a start
node w.r.t. EI (takes time O(jEIj)), and then follows the i-chain, if any. Note
that by Corollary 1, this i-chain is unique if there exists a topological ordering,
and thus, following it takes timeO(jEIj). The overall runtime is thusO(jV jjEI j2),
a polynomial.

We can now construct the graph

D = (maxichains(R); ED)
ED = f(v1 : : : vn; u1 : : : um) j there are i 2 f1; : : : ; ng; j 2 f1; : : : ;mg

such that (vi; uj) 2 EP g

In D, all (maximal) chains in EI are treated as a single node. Creating D can
also be done in polynomial time. If D has a cycle, R has no topological ordering
and we fail (cyclicity can be tested in polynomial time). (Due to our assumption
above, D cannot introduce loops, i.e., edges of the form (v; v).)
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Sorting this graph topologically yields a sequence of nodes of D which is also
a sequence of nodes of R, and is thus a topological ordering of R. The overall
runtime is then polynomial.

�

Having the notion of a rule graph, one can de�ne LSL productions. Rule
graphs labelled with nonterminals are used as RHSs in an LSL production. I
assume N to be a �xed, �nite set of nonterminals.

De�nition 6 (LSL Production) An LSL production is of the form

(v ! (V;EP ; EI ); �; I)

where

� v =2 V is an unused symbol

� (V;EP ; EI ) 2 RG

� � : V [ fvg ! N

� I � V [ fvg

An LSL production has a partial order on the RHS, represented as a rule
graph, which is labelled with nonterminals via �.

The edges of EP (EI respectively) represent the < (�) relation originally
de�ned in the LSL formalism, see section 1.1.1. The set I plays the role of the
hi relation.

As above, p-edges are drawn as single, and i-edges as double arrows. Isolated
nodes are drawn as double circles, the labels of the nodes are written within them.
For instance

S -��
��
Æ
��
A Æ
��
B Æ
��
C

Æ
��
D

- --

By letting the graph on the RHS be empty (V = ;), we have an "-production.
There can be three kinds of LP constraints on the RHS:

1. (Weak) Precedence, (x; y) 2 EP : x, i.e., the terminal yield of the category
�(x), is realised to the left of y.

2. Immediate precedence, (x; y) 2 EI : The rightmost terminal of the yield of
x must occur immediately to the left of the leftmost terminal of y, i.e., the
yields are adjacent.

3. Isolation, x 2 I : x is contiguously realised. Note that also the left hand
side (LHS) of a production may be isolated.
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LSL productions are also called LSL rules. Now we are ready to de�ne LSL
grammars.

De�nition 7 (LSL Grammar) An LSL grammar is a tuple G = (N; T; P; L; S)
where N is the set of nonterminals, T is the set of terminals, L � N�T is the set
of lexical entries, P is a set of LSL productions, and S 2 N is the start symbol.

Let LSLG be the set of all LSL grammars. Note that by de�nition, LSL
grammars are in some kind of \normal form" in that terminals do not appear in
productions other than of the form X ! a. This is realistic in that grammars
used in linguistic applications are usually separated into grammar rules and the
lexicon.

From now on, I assume a �xed LSL grammar G = (N; T; P; L; S).
Next, I will de�ne what derivations are formally and prove some properties

of this derivation relation.

2.2 Derivations

With CFGs, a derivation step works as follows: If we have a string (sentential
form) �A� where A is a nonterminal, we can choose some production A ! 
out of the set of de�ned productions and replace A with the RHS () yielding
the sentential form ��. This can be extended straightforwardly for UCFGs (cf.
section 1.2.2) in that A can also be replaced by some permutation of .

For LSL derivations, a similar mechanism would not work, because LP con-
straints introduced at some point in the derivation may have to be remembered
until the very end. One cannot simply order a sequence of nonterminals in a
sentential form in a way which satis�es all LP constraints currently imposed and
then forget about those constraints because, discontinuities might appear later
in the derivation.

For instance, consider the set of LSL productions S ! AB; ", A! CD;C <
D; hCi, and lexical entries C ! c, D! d, and B ! b. This grammar can derive
the string cbd. In a \Chomsky" style sentential form, we only have two possibil-
ities of expanding S, namely AB or BA. However, the possible discontinuity of
A makes it important to somehow remember the LP constraints C < D and hCi
until the very end of the derivation.

To overcome this problem, nonterminals in a sentential form are tagged with
a �nite set of integers indicating which string positions this nonterminal must
eventually derive. I will call those sets index sets. Let Fin(IN) = fM �
IN jM is �niteg.

A derivation step splits the index sets among the the items on the RHS so as
to satisfy the LP constraints. When we arrive at a stage where all index sets are
singleton, we may end the derivation, apply lexical entries and in this fashion,
generate a string. I will write these two \phases" as ) and ..
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Isolated nonterminals are tagged with contiguous index sets.

De�nition 8 Let M 2 Fin(IN). M is called contiguous (written as cont(M)) i�
M = ; or for all min(M) < k < max(M), it holds that k 2M .

Since the order in which the tagged nonterminals appear in a sentential form
should not matter (only the index sets determine the order in the derived terminal
string), we might use sets as containers. This would be correct for nonempty
index sets, but we might derive a nonterminal A with the empty index set at two
di�erent points in a derivation which would only appear once in the sentential
form if we used sets. Hence, we use bags (also called \multisets") instead.

The bags over a domain Q are written as B(Q). I use \[" and \]" as opening
and closing brackets of bags. Formally, a bag B over a domain Q is a mapping
from Q to IN0. If B(q) = 0, q is not in B, and if B(q) = i, i copies of q are
in B. The cardinality of a bag is de�ned as jBj =

P
q2QB(q). The union of

two bags B;B0 2 B(Q) is de�ned such that B [ B0 2 B(Q) and for all x 2 Q :
(B [B0)(x) = B(x) +B0(x). The empty bag is written as [].

Here is the de�nition of the derivation relation), the �rst phase of a deriva-
tion.

De�nition 9 The derivation relation

)G� B(N � Fin(IN))� B(N � Fin(IN))

with respect to an LSL grammar G = (N; T; P; L; S) is de�ned to be such that

D [ [(X0;M0)])G D [ [(X1;M1); : : : ; (Xn;Mn)]

i�

1. (v0 ! (fv1; : : : ; vng; EP ; EI)| {z }
=:R

; �; I) 2 P and �(vi) = Xi for all i = 0; 1; : : : ; n.

2. M0 =
Sn
i=1Mi and all Mi are pairwise disjoint.

3. For all i; j 2 f0; 1; : : : ; ng:

(a) If vi 2 I then cont(Mi).

(b) If vi
R
 vj and Mi 6= ; 6=Mj then max(Mi) < min(Mj).

(c) If vivi1 : : : vikvj is an i-path in R, Mi 6= ; 6= Mj, and Miq = ; for all
q = 1; : : : ; k, then max(Mi) = min(Mj)� 1.

Condition 1 of the de�nition requires that indeed a production of G is applied.
The second condition expresses that the index set is partitioned among the non-
terminals on the RHS. Note that it is allowed that some of the Mi are empty
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to enable derivations with "-productions. Finally, the index sets have to satisfy
certain conditions imposed by the LP constraints (condition 3):

(3a) If a nonterminalXi is isolated, then its index setMi must be contiguous.
(3b) If a nonterminal Xi tagged with index set Mi precedes a nonterminal Xj

tagged withMj then the biggest member ofMi must be smaller than the smallest
member of Mj , i.e., all terminals derived by Xi occur to the left of all terminals
derived by Xj , provided that Mi and Mj are not empty.

(3c) If the rule graph has an i-path between two nodes vi and vj which have
nonempty index sets, and all nodes on this i-path have empty index sets, then
the immediate precedence relation should also hold between vi and vj . If k = 0,
there is an i-edge between vi and vj , i.e., vi immediately precedes vj .

Note that M0 = ; if n = 0, i.e., if the production has an empty rule graph on
the RHS, the tagged nonterminal (X0; ;) is deleted from the sentential form.

As usual, )i
G denotes a derivation in exactly i steps, and )�

G the reexive
and transitive closure of )G. When I want to express that a �xed production p
was used for a derivation step, I write)p.

For instance, the grammar Gex with productions

(P1) S ! ABCD ; hAi; A < B;B � C
(P2) A ! A0A0 ; "
(P3) B ! B0

1B
0
2B

0
3 ; B0

1 < B0
2; B

0
2 < B0

3

(P4) B0 ! " ; "
(P5) C ! C 0 ; "
(P6) D ! D0D0 ; "

gives rise to the derivation

[(S; f1; 2; 3; 4; 5; 6g)]
)P1 [(A; f2; 3g); (B; f5g); (C; f6g); (D; f1; 4g)]
)P2 [(A0; f2g); (A0; f3g); (B; f5g); (C; f6g); (D; f1; 4g)]
)P3 [(A0; f2g); (A0; f3g); (B0; ;); (B0; f5g); (B0; ;); (C; f6g); (D; f1; 4g)]
)P5 [(A0; f2g); (A0; f3g); (B0; ;); (B0; f5g); (B0; ;); (C 0; f6g); (D; f1; 4g)]
)P6 [(A0; f2g); (A0; f3g); (B0; ;); (B0; f5g); (B0; ;); (C 0; f6g); (D0; f1g); (D0; f4g)]
)P4 [(A0; f2g); (A0; f3g); (B0; ;); (B0; f5g); (C 0; f6g); (D0; f1g); (D0; f4g)]
)P4 [(A0; f2g); (A0; f3g); (B0; f5g); (C 0; f6g); (D0; f1g); (D0; f4g)]

Note that application of (P3) introduces two nonterminals (B0; ;) which would
be \merged" if sentential forms were sets, thus the usage of bags. Those two
nonterminals are then deleted by applying (P4) twice.

The second phase of the derivation strips o� the (now singleton) index sets
from the nonterminals and applies lexical entries.

De�nition 10 The terminating derivation relation

.G � B(N � Fin(IN))� T �
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with respect to G is de�ned to be such that

[(X1;M1); : : : ; (Xn;Mn)] .G w1 : : : wn

with wi 2 T i�

1. jMij = 1 for all i = 1; : : : ; n

2. If Mi = fjg, then Xi ! wj 2 L.

Suppose Gex has lexical entries

A0 ! a

B0 ! b

C 0 ! c

D0 ! d

then the last sentential form from the example above derives a terminal string as
follows:

[(A0; f2g); (A0; f3g); (B0; f5g); (C 0; f6g); (D0; f1g); (D0; f4g)] .Gex
daadbc

What now remains to be de�ned is the notion of the language generated by
an LSL grammar.

De�nition 11 The language generated by an LSL grammar G = (N; T; P; L; S)
is de�ned as

L(G) := fw 2 T �j9D 2 B(N � Fin(IN)) : [(S; f1; : : : ; jwjg)])�
G D .G wg:

Let LSLL be the set of all languages generated by LSL grammars.

2.2.1 A Note on Graph Grammars

Derivations of CFGs are de�ned as rewriting sentential forms as follows: Select a
nonterminal in a sentential form and a production which has this nonterminal on
the LHS and replace the nonterminal in the sentential form with the RHS of the
selected production. De�ning derivations of LSL grammars in an analogous way
would result in some kind of graph rewriting. There is a vast amount of literature
on graph rewriting systems or graph grammars. In Nagl (1979), a very general
notion of graph grammars is introduced. Analogously to Chomsky grammars,
there are also regular, context-free and context-sensitive graph grammars. The
inclusion properties of these grammar types are, however, quite di�erent than for
Chomsky grammars. For LSL, we would like something like context-free graph
rewriting because LHSs of LSL productions consist of only one nonterminal sym-
bol. Context-free graph grammars are, e.g., discussed in Engelfriet & Rozenberg
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(R1) S ! ABC ; A� B;B � C
(R2) B ! B0B0 ; "
(R3) B ! " ; "
(R4) B0 ! " ; "

Figure 2.2: LSL grammar which poses a problem for graph rewriting.

A B C A C

A

B’

B’

C A C

(b)(a)

(c)
(d)

Figure 2.3: Possible derivations with an LSL graph grammar.

(1997) (called node-replacement grammars). Intuitively, a derivation should work
as follows: We start with a graph with a single node, which is labelled with the
start symbol. A rewriting step should then remove a node which is labelled with
the same nonterminal as the LHS of some production, plug in the corresponding
RHS rule graph, and connect the rule graph to the environment of the removed
node of the original graph in a natural manner. At some point we have to convert
that graph back into a string. This should be done by \guessing" some topolog-
ical ordering of the graph yielding a sequence of nonterminals and applying a
lexical entry to each of those nonterminals. The result is then a string.

The following problem arises when one wants to de�ne LSL derivations in
such a way. Consider the LSL grammar in Fig. 2.2 where S is the start symbol.
In Fig. 2.3 you can see two possible derivations, namely (a) )R3 (b) and (a)
)R2 (c) )2

R4 (d). In (c), the idea of how to connect the two nodes labelled with
B0 with the A and C nodes is that we nondeterministically choose a (start) node
which immediately precedes A and one (end) node which immediately precedes
C. Now, whereas (b) is the desired result, (d) is not, because a further derivation
might allow terminals neither derived by A nor C to stand between them.

However, I do not claim that modifying context-free graph grammars to de�ne
LSL derivations cannot be done but it seems that the machinery needed would
be far more complicated than the one presented in De�nition 11.
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2.3 Simpli�cations of LSL Grammars

In this section, I will present two constructions for simplifying LSL grammars.
Special cases of these constructions are well known for CFGs. First, I will show
how to eliminate "-productions from a grammar. Secondly, an algorithm is shown
which transforms a grammar into an equivalent one which does not have unit
productions.

2.3.1 Elimination of "-Productions

I will now show how to construct, given an arbitrary LSL grammar, an equivalent
LSL grammar without "-productions. The construction itself is quite similar to
the one presented in Hopcroft & Ullman (1979) for CFGs. Substituting " for a
nonterminal on the RHS of a \Chomsky" style production is easy: Just delete
it. For LSL productions, however, this is a little bit trickier, because we have to
delete a node in a rule graph.

For this purpose, I de�ne the function delete.

De�nition 12 De�ne a function delete : Node �RG! RG such that

delete(v; (V;EP ; EI )) = (V 0; E 0
P ; E

0
I)

if

1. v 2 V; V 0 = V � fvg

2. EP � f(x; y) 2 EP jx = v _ y = vg � E 0
P

EI � f(x; y) 2 EI jx = v _ y = vg � E 0
I

3. If (x; v) 2 EI and (v; y) 2 EI , then (x; y) 2 E 0
I .

4. If (x; v) 2 EP [ EI and (v; y) 2 EP [ EI (but not both (x; v) 2 EI and
(v; y) 2 EI), then (x; y) 2 E 0

P .

For instance, consider the graph of Fig. 2.4 (a). Suppose we want to delete node
2. With condition 3, we have to connect 1 and 3 with an i-edge (Fig. 2.4 (b)).
Deleting node 3 subsequently yields Fig. 2.4 (c) due to condition 4.

If we want to delete two nodes v1 and v2 from a graph, it does not matter in
which order they are deleted, in other words delete is associative.

Lemma 1 Let R = (V;EP ; EI) 2 RG and v1; v2 2 V .

delete(v2; delete(v1; R)) = delete(v1; delete(v2; R))

Proof:
Let R1 = (V1; E1

P ; E
1
I ) = delete(v1; R), R12 = (V12; E12

P ; E
12
I ) = delete(v2; R1),

R2 = (V2; E2
P ; E

2
I ) = delete(v2; R), and R21 = (V21; E21

P ; E
21
I ) = delete(v1; R2). We

must now show that R12 = R21.
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1 3
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5

1 2 3
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4

5
(c)

(b)(a)

Figure 2.4: Example for deleting nodes in a rule graph.

1. It obviously holds that V12 = V21 = V � fv1; v2g.

2. Show that (x; y) 2 E12
P i� (x; y) 2 E21

P :

()): Suppose (x; y) 2 E12
P . Then there are two cases to consider:

Case 1: (x; y) 2 EP . It must be the case that v1 6= x 6= v2 and v1 6= y 6= v2
which implies that (x; y) 2 E21

P since only edges adjacent to v1 and v2 are
a�ected by delete.

Case 2: (x; y) =2 EP . One of the following two cases must be true:

(a) (x; v1) 2 EP [ EI and (v1; y) 2 EP [ EI (where at least one of those
two edges is not in EI). Thus also (x; y) 2 E21

P (with De�nition 12, 4).

(b) (x; v2) 2 EP [ EI and (v2; y) 2 EP [ EI (where at least one of those
two edges is not in EI ). Analogously to (a), (x; y) 2 E21

P .

(c) (x; v1); (v1; v2); (v2; y) 2 EP [ EI (where at least one of those edges is
not in EI). Then also (x; y) 2 E21

P with De�nition 12, 4. (Analogously
for the roles of v1 and v2 reversed.)

((): Completely symmetric to ()).

3. Show that (x; y) 2 E12
I i� (x; y) 2 E21

I :

()): Suppose (x; y) 2 E12
I . Then there are again two cases to consider:

Case 1: (x; y) 2 EI . (x; y) 2 EI for the same reason as above.

Case 2: (x; y) =2 EI . Again, one of the two following cases must be true:

(a) (x; v1) 2 EI and (v1; y) 2 EI . Thus also (x; y) 2 E21
I (with De�nition

12, 3).

(b) (x; v2) 2 EI and (v2; y) 2 EI . Analogously to (a), (x; y) 2 E21
I .
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(c) (x; v1); (v1; v2); (v2; y) 2 EI . Then also (x; y) 2 E21
P with De�nition 12,

3. (Analogously for the roles v1 and v2 reversed.)

((): Again, completely symmetric to ()).

�

With Lemma 1, delete can be extended to delete a set of nodes from a graph
in a well-de�ned way:

delete(fv1; : : : ; vng; R) := delete(v1; delete(v2; : : : ; delete(vn; R) : : :))

If two nodes are connected by a path in a rule graph, deletion of a third node
does not inuence this property.

Lemma 2 Let R = (V;EP ; EI) 2 RG, u 2 V , and Rd = delete(u;R) =
(V 0; E 0

P ; E
0
I). Let V 3 v 6= u 6= v0 2 V . Then

1. v
R
 v0 i� v

Rd
 v0

2. v
R
 i v

0 i� v
Rd
 i v

0

Proof:

1. ()) Suppose, � = vv1 : : : vmv
0 is a path in R.

(a) vi 6= u for all i = 1; : : : ;m: Then � is also a path in Rd with De�nition
12, 2.

(b) vi = u for some i 2 f1; : : : ;mg. Then by De�nition 12, 3 and 4:

(vi�1; vi+1) 2 E 0
P [ E

0
I , thus v

R0

 v0.

(() Suppose there is no path between v and v0 in R. delete only adds an
edge between two nodes which are already connected by a path. But since
v and v0 are not, they cannot be connected in Rd either.

2. ()) Suppose, � = vv1 : : : vmv
0 is an i-path in R.

(a) vi 6= u for all i = 1; : : : ;m: Then � is also an i-path in Rd with
De�nition 12, 2.

(b) vi = u for some i 2 f1; : : : ;mg. Then by De�nition 12, 3: (vi�1; vi+1) 2

E 0
I , thus v

Rd
 i v

0.
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(() Suppose there is no i-path between v and v0 in R. delete only adds an
i-edge between two nodes which are already connected by an i-path. But
since v and v0 are not, they cannot be connected in Rd either.

�

The last fact we need about delete is the fact that a derivation with some
production plus a series of "-production is also possible by deleting the erased
node from that production directly.

Lemma 3 Let G be an LSL grammar. Let P 3 p = (v0 ! (V;EP ; EI ); �; I)
where V = fv1; : : : ; vng, n � 1, and �(vi) = Xi. Then

[(X0;M0)] )p [(X1;M1); : : : ; (Xk; ;); : : : ; (Xn;Mn)]| {z }
=:D

)+
G [(X1;M1); : : : ; (Xk�1;Mk�1); (Xk+1;Mk+1); : : : ; (Xn;Mn)]| {z }

=:D0

i�
[(X0;M0)])p0 D

0

where p0 = (v0 ! delete(vk; (V;EP ; EI)); �jV�fvkg; I � fvkg).

Proof:
Let Rd = delete(vk; (V;EP ; EI)) = (V 0; E 0

P ; E
0
I ). In the derivation step from D to

D0, the nonterminal Xk was deleted by applying one or more "-productions.

With Lemma 2, it holds that for all vi; vj 2 V 0 � V : vi
R
 vj i� vi

Rd
 vj and

vi
R
 i vj i� vi

Rd
 i vj . In particular, vi�vk�vj is a path (i-path) in R i� vi��vj is

a path (i-path) in Rd.
Thus, the lemma holds.

�

With Lemma 3, we can �nally present the transformation of an LSL grammar
into an equivalent one without "-productions.

Proposition 3 For every LSL grammar G, there is an LSL grammar G0 with
no "-productions such that L(G)� f"g = L(G0).

Proof:
Let G = (N; T; P; L; S). Then construct grammar G0 = (N 0; T; P 0; L; S) as fol-
lows:

1. Construct the set N0 � N (the set of nullable nonterminals, i.e., all non-
terminals which may derive the empty string) as follows: If X ! ";' 2 P ,
then X 2 N0. If there is a production X ! X1 : : : Xn;' 2 P and all
Xi 2 N0, then X 2 N0. Repeat this until no new nonterminals are added
to N0. Then N 0 := N �N0.
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2. Construct P 0 as follows: If (v ! (V;EP ; EI ); �; I) 2 P where V 6= ;,
then add all productions (v ! R0; �jV�V � ; I � V �) to P 0, where there is
V � = fv�1 ; : : : ; v

�
mg � V with m � 0, such that �(v�i ) 2 N0, and R0 =

delete(V �; (V;EP ; EI)).

I will now prove the following claim (this proof is completely analogous to the
corresponding one in Hopcroft & Ullman (1979)).

Claim: [(A;M)])�
G0 D i� [(A;M)])�

G D and D 6= ;

Proof of the claim:
(() Let [(A;M)])i

G D and D 6= ;. Induction over i:

(IB) i = 0: trivial

(IH) [(A;M)])i�1
G D implies [(A;M)])�

G0 D

(IS) Let [(A;M)] )G [(X1;M1); : : : ; (Xn;Mn)] )
i�1
G D with production

(v ! (V;EP ; EI); �; I) 2 P , V = fv1; : : : ; vng such that �(vj) = Xj .
Write D = D1 [ : : : [ Dn such that for each j: [(Xj;Mj)] )�

G Dj in
fewer than i steps in the derivation above. If Dj 6= ; then by (IH) we
have [(Xj;Mj)])�

G0 Dj . IfDj = ; thenXj is nullable andMj = ;. Let
j1; : : : ; jm 2 f1; : : : ; ng be pairwise di�erent such that Djk 6= ; for all
k = 1; : : : ;m. Thus, there is a production (v ! (V 0; E 0

P ; E
0
I ); �

0; I 0) 2
P 0 such that there is V � � V : (V 0; E 0

P ; E
0
I ) = delete(V �; (V;EP ; EI))

such that for all j: vj 2 V � if Mj = ; and vj 2 V 0 if Mj 6= ;. Hence,
with Lemma 3 there is a derivation

[(A;M))G0 [(Xj1 ;Mj1); : : : ; (Xjm ;Mjm)])
�
G0 Dj1 [ : : : [Djm = D

()) Suppose [(A;M)])i
G0 D. SurelyD 6= ;, since G0 has no " productions.

Proof by induction over i.

(IB) i = 0: trivial

(IH) [(A;M)])i�1
G0 D implies [(A;M)])�

G D

(IS) Let [(A;M)] )G0 [(X1;M1); : : : ; (Xn;Mn)] )
i�1
G0 D with production

(v0 ! (V 0; E 0
P ; E

0
I ); �

0; I 0) 2 P 0, V 0 = fv01; : : : ; v
0
ng, �(v

0) = A, and
w.l.o.g. �(v0j) = Xj.

There must be a production p = (v ! (V;EP ; EI); �; I) 2 P such that
there is V � � V : (V 0; E 0

P ; E
0
I) = delete(V �; (V;EP ; EI )) (if (V;EP ; EI ) =

(V 0; E 0
P ; E

0
I), V

� is set to ;). Thus with Lemma 3:

[(A;M)] )p [(X1;M1); : : : ; (Xn;Mn); (Y1; ;); : : : ; (Ys; ;)]

)�
G [(X1;M1); : : : ; (Xn;Mn)]

with s = jV �j.
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Write D = D1 [ : : : [ Dn such that for all j: [(Xj;Mj)] )�
G0 Dj by

fewer than i steps in the assumed derivation above. Then by (IH):
[(Xj ;Mj)])�

G Dj. Thus

[(A;M)])�
G [(X1;M1); : : : ; (Xn;Mn)])

�
G D1 [ : : : [Dn = D

�

To see that the proposition holds just note that D.Gw i� D.G0 w, because
G and G0 have exactly the same set of lexical entries.

�

As for CFGs, elimination of "-productions might add exponentially many new
productions.

2.3.2 Elimination of Unit Productions

A unit production is a production (v ! (V;EP ; EI); �; I) where jV j = 1. As in the
previous section, the construction for eliminating unit productions is quite similar
to the one for CFGs. The idea is to construct a set U(A) for each nonterminal A
which contains all nonterminalsA can be replaced by, using only unit productions.
Then we add a production A ! � for every B 2 U(A) where B ! � is a
production.

In our case, we have to be a little bit careful here, because we must distinguish
two di�erent kinds of \unit production chains", depending on whether one unit
production in the chain has an isolation constraint attached to it. If B 2 U(A)
and one of the derived productions has such an isolation constraint, then for every
production B ! �;', we have to add A ! �;'; hAi. The exact construction is
shown in the proof of the next proposition.

Proposition 4 Let G = (N; T; P; L; S) be an LSL grammar. Then there is an
LSL grammar G0, which can be constructed in polynomial time, such that L(G) =
L(G0) and G0 has no unit productions.

Proof:
In some systematic fashion, we can construct all sequences

A1�1A2�2 : : : Am�1�m�1Am

such that all Ai 2 N are pairwise di�erent, there are unit productions pi =
(vi ! (fuig; ;; ;); fvi 7! Ai; ui 7! Ai+1g; Ii) for i = 1; : : : ;m, and �i = 0 if
Ii = ; and �i = 1, otherwise. These sequences represent the mentioned unit
production chains. There are only polynomially many of those chains since all Ai

are required to be pairwise di�erent. During the construction of those sequences,
we can in parallel build the following sets for each A 2 N . If there is a sequence
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A�1 : : : �mB then B 2 U(A) i� �i = 0 for all i = 1; : : : ;m and B 2 UI(A) i� there
is an i 2 f1; : : : ;mg such that �i = 1. Constructing U(A) and UI(A) can be done
in polynomial time.

We can now construct the new grammar G0 = (N; T; P 0; L; S) as follows

1. Add all non unit productions of P to P 0.

2. If there is (v ! (V;EP ; EI ); �; I) 2 P with jV j � 2 and �(v) = A. then

(a) add (v ! (V;EP ; EI); �[v 7! B]; I) to P 0 if B 2 U(A)

(b) add (v ! (V;EP ; EI); �[v 7! B]; I [ fvg) to P 0 if B 2 UI(A)

It should be clear that G0 \simulates" all possible unit production chains and,
additionally, takes care of the isolation constraints. Furthermore, since U(A) and
UI(A) are polynomial in size, constructing G0 takes polynomial time (in the size
of G).

�

2.4 Context-Free Subsets

It is possible to construct, for a given LSL grammar G, a context-free grammar
cf(G) with L(cf(G)) � L(G). Loosely speaking, this is done by topologically
sorting the rule graph on the RHS. This grammar has a lot of useful properties.

De�nition 13 De�ne a function cf : LSLG! CFG as follows:

cf((N; T; P; L; S)) = (N; T; P 0; S)

if

1. If (v ! (V;EP ; EI ); �; I) 2 P then �(v) ! �(�(1)) : : : �(�(n)) 2 P 0 where
� : f1; : : : ; jV jg ! V is such that �(1) : : : �(jV j) = topsort((V;EP ; EI )).

2. If X ! a 2 L then X ! a 2 P 0

cf is constructed in two steps: First, all rule graphs are sorted using topsort and,
second, all lexical entries are simply added to the set of new productions.

IfX ! X1 : : : Xn is a context-free production being the result of this construc-
tion, allXi are isolated and eachXi immediately precedesXi+1. In particular, the
LP constraints of the original LSL production are satis�ed. Thus, the following
holds:

Proposition 5 L(cf(G)) � L(G).
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Proof:
Let G = (N; T; P; L; S) be an LSL grammar. Suppose there is a derivation
S )�

cf(G) w = w1 : : : wn. W.l.o.g. we can assume that this derivation is of the

form

S = �0 )cf(G) �1 )cf(G) : : :)cf(G) �k = A1 : : : An

)cf(G) a1A2 : : : An )cf(G) a1a2A3 : : : An )cf(G) : : :)cf(G) a1 : : : an = w

with �i 2 N�, ai 2 T . Let spani(j) be the set of string positions the jth non-
terminal from the left in sentential form �i derives, e.g., spank(l) = l for all
l = 1; : : : ; n. Construct a sequence D0; D1; : : : ; Dk 2 B(N � Fin(IN)) as follows:

If �i = X1 : : : Xm then Di = [(X1; spani(1)); : : : ; (Xm; spani(m))]. Thus, D0 =
[(S; f1; : : : ; ng)], Dk = [(A1; f1g); : : : ; (An; fng)], and Dk .G a1 : : : an = w.

For all i = 1; : : : ; k it holds by de�nition of span:

1. For all l = 1; : : : ; j�ij: cont(spani(l)).

2. If spani(l) 6= ; 6= spani(q) with l < q � j�ij, then max(spani(l)) <
min(spani(q)).

3. If spani(l) 6= ; 6= spani(q) with l < q � j�ij, and for all d = l + 1; : : : ; q � 1:
spani(d) = ;, then max(spani(l)) = min(spani(q))� 1.

It now remains to show that D0 )�
G Dk. Proof by induction over length of

this derivation i.

(IB) i=0: D0 is, of course, a derivation.

(IH) D0 )�
G Di

(IS) Let �i = X1 : : : Xj�1XjXj+1 : : : Xs and �i+1 = X1 : : : Xj�1Y1 : : : YrXj+1 : : : Xs

be the result of applying the production p = Xj ! Y1 : : : Yr of cf(G). Then

Di = [(X1;M1); : : : ; (Xj ;Mj); : : : ; (Xs;Ms)]

and

Di+1 = [(X1;M1); : : : ; (Y1;M
0
1); : : : ; (Yr;M

0
r); : : : ; (Xs;Ms)]

where M 0
l = spani+1(l + j � 1) for l = 1; : : : ; r, by de�nition of the Di.

Let (v ! (V;EP ; EI )| {z }
=:R

; �; I) 2 P be the production p was constructed from

where V = fv1; : : : ; vrg and � = fvl 7! Yljl = 1; : : : ; rg. It holds that

1. �(vl) = Yl for all l = 1; : : : ; r.
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2. Mj = spani(j) =
Sr

l=1 spani+1(l + j � 1) =
Sr

l=1M
0
j by de�nition of

span.

3. (a) cont(M 0
l ) for all l = 1; : : : ; r with (1) from above

(b) If vl
R
 vq, l < q and M 0

l 6= ; 6= M 0
q, then with (2) from above:

max(M 0
l ) < min(M 0

q).

(c) If vlvl1 : : : vlmvq is i-path in R with M 0
l 6= ; 6=M 0

q and Mlt = ; for
all t = 1; : : : ;m, then with (3) from above: max(M 0

l) = min(M 0
q)�

1.

Thus, all conditions of De�nition 9 are satis�ed.

�

Obviously, L(G) 6� L(cf(G)) in the general case, but it can be shown that
L(cf(G) is letter equivalent to L(G).

De�nition 14 (Letter equivalence) Two words w1; w2 2 T � are called letter
equivalent if for all a 2 T : #a(w1) = #a(w2) (where #a(w) is the number of
occurrences of the terminal a in word w).

Two languages L1; L2 � T � are called letter equivalent if for each w1 2 L1,
there is a letter equivalent w2 2 L2 and vice versa.

Proposition 6 L(G) is letter equivalent to L(cf(G)).

Proof:
()) Suppose there is a derivation

[(S; f1; : : : ; ng)])�
G [(A1;M1); : : : ; (An;Mn)] .G w1 : : : wn = w

with wj 2 T . Let ti = wj if Mi = fjg. Then there also exists a derivation

S )�

cf(G) A1 : : : An )
�

cf(G) t1 : : : tn = w0

Since allMi are pairwise disjoint, it holds that w
0 is a permutation of w. In other

words: for all a 2 T : #a(w) = #a(w
0).

(() If w 2 L(cf(G)) then with Proposition 5, w 2 L(G). Since w is letter
equivalent to itself, the proposition holds.

�

As direct corollaries, we have

Corollary 2 L(G) = ; i� L(cf(G)) = ;.

Corollary 3 L(G) is �nite i� L(cf(G)) is �nite.

When we consider a unary terminal alphabet, it holds that two words are
letter equivalent i� they are equal.
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Corollary 4 Let G be an LSL grammar over a unary alphabet. Then L(G) =
L(cf(G)).

In Salomaa (1973), theorem 7.3. (p. 68) proves that context-free languages
over a unary terminal alphabet are regular. Combining this with Corollary 4
yields

Corollary 5 An LSLL over a unary alphabet is regular.

A remark about the complexity of cf is in order. With Proposition 2, it
immediately follows that

Corollary 6 cf can be computed in polynomial time.

Taken together, Propositions 5 and 6 can be used to show

Proposition 7 Let G be an LSL grammar. If for all n, it holds that jfw 2
L(G)jjwj = ngj � 1, then L(cf(G)) = L(G).

Proof:
\�" follows directly from Proposition 5. We now have to show that L(G) �
L(cf(G)). Let w 2 L(G), jwj = n. Then there is a letter equivalent w0 2 L(cf(G))
to w, where jw0j = n. Since, in turn, w0 2 L(G) and w is the only element in
L(G) with length n, it must be the case that w = w0.

�

2.5 LSL in the Chomsky Hierarchy

First, I will take a look at where LSLL stand in relation to CFL. It turns out
that LSL grammars are a proper extension of CFGs.

Proposition 8 CFL � LSLL

Proof:

(�) Let G = (N; T; P; S) be a context-free grammar in Chomsky normal form.
Then it is possible to e�ectively construct an equivalent LSL grammarGL =
(N; T; PL; L; S) as follows:

1. For all productions in P of the form X ! a, a 2 T , add X ! a to L.

2. For all productions in P of the form X ! AB, A;B 2 N , add X !
AB;A� B to PL.
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(6=) Consider the following LSL grammar Geq:

S ! ABCS; "

S ! ABC; "

A ! a

B ! b

C ! c

Geq generates the language: Leq := L(Geq) = fw 2 (ajbjc)+j#a(w) =
#b(w) = #c(w)g and this language is not context-free. This is because
CFL is closed under intersection with regular languages. So if L(Geq) were
context-free, then L(Geq) \ a�b�c� would be context-free. But L(Geq) \
a�b�c� = fanbncnjn � 1g which is not context-free.

�

Apparently, LSL grammars can \count" more than CFGs, but they are not
able to order (more than two) terminals \globally". As a result, anbncn cannot
be generated by any LSL grammar.

Proposition 9 fanbncnjn � 1g =2 LSLL

Proof:
Suppose L := fanbncnjn � 1g 2 LSLL with LSL grammar G. L does not contain
two words with the same length. Then with Proposition 7, it holds that L can
be generated by the context-free grammar cf(G), which is a contradiction since
L cannot be generated by any context-free grammar.

�

It follows directly that the context-sensitive languages (CSL) are not con-
tained in the LSL languages:

Corollary 7 CSL 6� LSLL

2.6 Closure Properties

In this section, I want to investigate some of the \classic" formal language closure
properties of LSLL. Most of the proofs are very similar to the corresponding ones
in Hopcroft & Ullman (1979) for CFGs.

Proposition 10 LSLL is closed under union, concatenation, and Kleene clo-
sure.

Proof:
LetL1 = L(G1) andL2 = L(G2) with the two LSL grammarsG1 = (N1; T1; P1; L1; S1)
and G2 = (N2; T2; P2; L2; S2). We can assume that N1 \N2 = ;.
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For L1 [L2 we can construct the LSL grammar GU = (N1 [N2 [ fSUg; T1 [
T2; PU ; L1[L2; SU ) where SU is a new symbol and PU = P1[P2[fSU ! S1; SU !
S2g. It obviously holds that L(GU) = L(G1) [ L(G2).

The language generated by LSL grammar GC = (N1 [ N2 [ fSCg; T1 [
T2; PC ; L1 [ L2; SC) where SC is a new symbol and PC = P1 [ P2 [ fSC !
S1S2;S1 � S2g is L1L2. The immediate precedence constraint ensures that all
terminals derived from S1 appear to the left of all terminals derived from S2.

For generating the Kleene closure of L1, consider the LSL grammar GK =
(N1[fSKg; T1; PK ; L1; SK) where SK is an unused symbol and PK = P1[fSK !
S1SK ;S1 � SK ; SK ! "g. Analogously to above, it holds that L(GK) = L(G1)

�.
�

Proposition 11 LSLL is not closed under intersection.

Proof:
As shown in Hopcroft & Ullman (1979), the languages L1 = faibicj ji; j � 1g and
L2 = fajbiciji; j � 1g are context-free. Thus they are also in LSLL (Proposition
8). Their intersection L = L1 \ L2 = faibiciji � 1g is not in LSLL (Proposition
9).

�

Proposition 12 LSLL is not closed under complement.

Proof:
Let L1; L2 2 LSLL. Suppose LSLL is closed under complement. Then L1[L2 =
�L1 [ �L2. Since LSLL is closed under union, it follows that it is closed under
intersection which is a contradiction to Proposition 11.

�

Proposition 13 LSLL is closed under substitutions.

Proof:
Let L � T � be an LSLL and for each a 2 T let La be an LSLL. We have
thus LSL grammars G = (N; T; P; L; S) with L = L(G) and for each a 2 T :
Ga = (Na; Ta; Pa; La; Sa) with La = L(Ga).

One can then construct an LSL grammar G0 = (N 0; T 0; P 0; L0; S) with

N 0 = N [
[
a2T

Na

T 0 =
[
a2T

Ta

P 0 = P [
[
a2T

Pa [ fA! Sa; hAijA! a 2 Lg

L0 =
[
a2T

La
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This grammar uses the productions of G to derive some sentential form but
instead of terminating with terminal a, it \invokes" Ga. Since the LHSs of the new
productions in P 0 are isolated, it is ensured that a is substituted by a contiguous
word of La. More formally:

Suppose there is a derivation

[(S; f1; : : : ; ng)])�
G [(A1; f1g); : : : ; (An; fng)] .G a1 : : : an

Then the following is also a valid derivation

[(S;M1 [ : : : [Mn)])
�
G [(A1;M1); : : : ; (An;Mn)]

where the Mi are contiguous index sets, pairwise disjoint, and M1 [ : : : [Mn is
contiguous. Note that if some Mi = ;, this is still true. This derivation is also
possible in G0 by construction.

Now if there are derivations

[(Sai ;Mi)])
�
G0 Di .G0 wi

for all i, there is a derivation

[(S;M1 [ : : : [Mn)] )�
G0 [(A1;M1); : : : ; (An;Mn)]

)G0 [(Sa1 ;M1); : : : ; (San ;Mn)]

)�
G0 D1 [ : : : [Dn .G0 w1 : : : wn

�

Since substitutions are a generalisation of homomorphisms, it immediately
follows that

Corollary 8 LSLL is closed under homomorphism.

The last results also hold for CFL, but unlike CFL, LSLL is not closed under
intersection with regular sets.

Proposition 14 LSLL is not closed under intersection with regular sets.

Proof:
This follows from the fact that Leq = f(ajbjc)+j#a = #b = #cg 2 LSLL (see
proof of Proposition 8) and Leq \ a�b�c� = Ln =2 LSLL (Proposition 9).

�

This result suggests that it is diÆcult to �nd a straightforward automaton
model which recognises LSL languages.

Another important property of formal languages (especially in the context of
AFL theory) is closure under inverse homomorphism, i.e., if every member of a
class of languages is the homomorphic image of another member of that class. In
Ginsburg (1975) (theorem 3.7.2, p. 74), the following was shown:
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[ � � \ co subs (hom) \REG inv hom

CFL y y y n n y y y
LSLL y y y n n y n n

Table 2.1: Closure properties of LSLL.

Proposition 15 (Ginsburg) Let L be a family of "-free languages. If L is not
closed under intersection with regular sets, then it is not true that L is closed
under concatenation, "-free homomorphism and inverse homomorphism.

Since LSLL is not closed under intersection with regular sets and closed under
concatenation and "-free homomorphism, it cannot be the case that it is closed
under inverse homomorphism.

Corollary 9 LSLL is not closed under inverse homomorphisms.

Table 2.1 provides an overview of all of the closure properties in contrast to
CFL.

2.7 Decidability

When talking about decidability issues, we always assume that the underlying
alphabet has at least two elements, since otherwise the considered language is
regular (see Corollary 5).

As for CFGs, the emptiness, �niteness, and membership problem are decid-
able.

Proposition 16 Emptiness and Finiteness of LSL grammars is decidable.

Proof:
With Corollaries 2 and 3 one can decide emptiness and �niteness of an LSL
grammar G by computing cf(G) and deciding the problem for cf(G). Emptiness
and �niteness are decidable for context-free grammars (cf. Hopcroft & Ullman
(1979)). Since topsort and thus cf(G) is decidable, the proposition holds.

�

Proposition 17 The membership problem for LSL grammars is decidable.

Proof:
I will show how a nondeterministic Turing machine (NTM) M can decide if a
given string x belongs to L(G) for a given LSL grammar G. First, we transform
G into a grammar G0 with no " and no unit productions. If x = " and S is
nullable in G, we accept. Otherwise, x = x1 : : : xn 6= ".
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M will simulate a derivation. It starts with writing (S; f1; : : : ; jxjg) onto the
tape. A derivation step is simulated in a straightforward way: Suppose the tape
looks like this:

(X1;M1) : : : (Xn;Mn)

M then nondeterministically \guesses" some production Y ! Y1 : : : Yr;' such
that Y = Xk for some k 2 f1; : : : ; ng and simulates the derivation completely
analogous to De�nition 9, thus the tape will look like this:

(X1;M1) : : : (Y1;M
0
1) : : : (Yr;M

0
r) : : : (Xn;Mn)

Now the following holds: Since G0 has no unit productions, r � 2, in other words
the number of tagged nonterminals strictly increases with every simulated deriva-
tion step. Since G0 also has no "-productions, M 0

i 6= ; for all i = 1; : : : ; r. This
means that it will eventually be the case that every index set is singleton, thus
every possible computation will in a �nite number of steps end with a situation
like this:

(C1; S1) : : : (Cm; Sm)

where w.l.o.g. Si = fig. If m = jxj and there are lexical entries Si ! xi 2 L, M
accepts, otherwise it rejects.

Since, every simulation of M halts, M can be simulated by a deterministic
Turing machine. Hence, the membership problem is decidable.

�

Note however, that the simulation of the derivation does need more than
linear space because there are n slots for nonterminals each requiring space O(n)
for storing the index sets. Thus, O(n2) space is needed overall which does not
prove that LSLL � CSL.

All undecidability results for CFLs of course also hold for LSLL. The next
proposition presents some of those.

Proposition 18 Let T � � L;L0 2 LSLL, R 2 REG. It is undecidable if L =
T �, L = L0, L � L0, L = R, L � REG, and L \ L0 = ;.

Proof:
That follows directly from the corresponding undecidability results for CFL and
that CFL � LSLL. In particular, the proof of Proposition 8 shows an e�ective
construction, given a context-free grammar, of an equivalent LSL grammar.

�

Until now, we basically have the same decidability results for CFL and LSLL.
We will, however, see later that the complexity of especially the membership
problem di�ers remarkably.

A question that remains is this: Given an LSL grammar G, is L(G) context-
free? Unfortunately, it is not possible to answer this question in the general case.
The next Proposition was proven in Holzer (1999).
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L = T � L1 = L2 L1 � L2 L = R L � REG
R 2 REG

CFL undec. undec. undec. undec. undec.
LSLL undec. undec. undec. undec. undec.

L1 \ L2 = ; w 2 L L = ; jLj <1 L 2 CFL
CFL undec. dec. dec. dec. triv.
LSLL undec. dec. dec. dec. undec.

Table 2.2: Decidability properties of LSLL (entries mean undecidable, decidable,
trivially decidable)

Proposition 19 Let G be an LSL grammar. It is undecidable whether L(G) is
context-free.

Table 2.2 provides an overview over the decidability properties.

2.8 Complexity

In this section I want to take a look at complexity theoretic aspects of LSL
grammars, especially at the problems that were shown to be decidable in section
2.7. It will be shown that from this point of view, LSL grammars are a \proper"
generalisation of CFGs, as LSL recognition is more diÆcult than the polynomial
time recognition for CFGs (in fact, the general membership problem for CFGs is
P-complete, cf. Greenlaw, Hoover & Ruzzo (1995) whereas the �xed membership
problem is LOGCFL-complete, cf. Johnson (1990) ).

First, I will take a look at the emptiness and �niteness problems.

2.8.1 Emptiness and Finiteness

Proposition 20 The emptiness and �niteness problems for LSL grammars are
P-complete.

Proof:
Let ECFL (FCFL) be the emptiness (�niteness) problem for context-free languages
and ELSLL (FLSLL), for LSL languages.

(in P): Let G be an LSL grammar. With Corollaries 2 and 3, the problem
is decidable by computing cf(G) (which is possible in polynomial time ac-
cording to Corollary 6) and solving the problem for cf(G). Since ECFL and
FCFL are P-complete (cf. Greenlaw et al. 1995) and thus also in P , this
algorithm needs polynomial time.
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(P-hardness): (I will only show the proof for ELSLL since the one for FLSLL
is completely analogous.) Since ECFL is P-complete, it holds that for all
L 2 P , L reduces to ECFL with a logspace reduction f such that x 2 L ()
f(x) 2 ECFL, i.e., f(x) is (the encoding of) a context-free grammar G where
L(G) = ; i� x 2 L.

Let g be a function which takes (an encoding of) a context-free grammar
and \transforms" it into (an encoding of) an LSL grammar as follows:

First, a new CFG G0 is constructed which has only productions of the form
N �N� or N � T . This can be done by replacing every terminal a on the
RHS of a production by a new nonterminal �a and adding a new production
a! �a to G0. Building G0 is possible in constant space.

Secondly, an LSL grammar is constructed from G0 by copying every pro-
duction of G0 and connecting all nonterminals on the RHS by an i-edge in
their occurring order. To do that, the number of nonterminals on this RHS
must be counted which takes logarithmic space.

(This construction was also shown in the proof of Proposition 8).

Since it holds that

x 2 L () g(f(x)) 2 ELSLL

and the composition of logspace reductions is also a logspace reduction
(Papadimitriou 1995), we have shown that every L 2 P is reducible to
ELSLL.

�

2.8.2 Membership

In this section I will investigate the complexity both of the general and �xed
membership problem. These two di�er in that for the former, the input is con-
sidered to consist of the LSL grammar plus the string to be recognised whereas
for the latter, the input consists of the string only.

Proposition 21 The general membership problem for LSL grammars is NP-
complete.

Proof:
(2 NP) Let G = (N; T; P; L; S) be an LSL grammar. We can assume that G
has no unit productions (cf. Proposition 4). The NTM M deciding if a string
x 2 L(G) works exactly as the one described in the proof of Proposition 17.
There is, however, a small diÆculty: the grammar resulting from eliminating all
"-productions might be exponentially bigger than G. Instead, M computes the
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set of nullable symbols (in polynomial time) and each time a nonterminal (X; ;)
appears on the tape, M checks if X is nullable, and if so, it is deleted from the
tape and the computation continues, otherwise M halts and rejects.

Since the derivation tree is only polynomial in size and G does not contain
unit productions, all computations of M take polynomial time.

(NP-hardness) Proof by reduction from the general membership problem for
UCFGs (see section 1.2.2).

It is easy to see that UCFGs are a special case of LSL grammars: a UCFG
is an LSL grammar with no precedence constraints and all nonterminals be-
ing isolated. A UCFG rule X ! fX1; : : : ; Xng (which means that X may be
rewritten by any permutation of the Xi) can be simulated by the LSL rule
X ! X1 : : : Xn; hX1i; : : : ; hXni.

Since the general membership for UCFGs is NP-complete, as was shown in
Huynh (1983) and Barton et al. (1987), the proposition holds.

�

What happens with the complexity if we hold the grammar �xed, i.e., the
grammar is no longer part of the input? One could suspect that this makes
the problem easier. For UCFGs, the �xed membership problem is indeed in P
(which for instance follows from the complexity analysis in section 3.3). But,
unfortunately, for LSL grammars this is not the case.

Proposition 22 The �xed membership problem for LSL grammars isNP-complete.

Proof:
(2 NP) This follows directly from the fact that the general membership problem
is in NP, see Proposition 21.

(NP-hardness) This was proven in Holzer & Suhre (1999) by reduction from the
tripartite matching problem (cf. Garey & Johnson 1979).

�

2.9 Uni�cation-Based Grammars

Uni�cation-Based (context-free) Grammars (UBGs) are like CFGs, but they use
more complex structures than nonterminals (complex categories). Basically, only
one operation on these structures needs to be de�ned: uni�cation. In this section
I will briey de�ne UBGs and show how LSL can be extended towards a similar
notion. For simplicity, I will use a well known instance of complex categories,
namely �rst order terms.

De�nition 15 (UBG) A Uni�cation-Based Grammar (UBG) is a tuple (F ; T; P; tS)
where F is the set of �rst order terms over some �xed signature, T is the set of
terminal symbols, P � F � (F [ T )� is the set of rules, and tS 2 F is the start
term.
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Note that F which is the analogue to the set of nonterminals in conventional
CFGs, is in�nite in the general case.

Derivations are de�ned analogously to CFGs with the di�erence that not only
nonterminals in a sentential form which are equal to the LHS of some rule can
be expanded, but also those who unify with it.

De�nition 16 Let UG = (F ; T; P; tS) be a UBG. The derivation relation)UG�
(F [ T )� � (F [ T )� is de�ned as follows: �t� )UG  i�

� t0 ! t1 : : : tn is a copy of a rule in r 2 P such that all variables of r are
replaced by fresh ones.

� t uni�es with t0 with most general uni�er (mgu) �.

�  = (�t1 : : : tn�)�.

If one considers strings as being constants (�rst order terms with no arguments
and no variables), CFGs can be considered as a special case of UBGs because two
constants unify i� they are equal. The language of a UBG is the set of strings
derived by the start term.

De�nition 17 Let UG = (F ; T; P; tS) be a UBG. Then the language of UG is
de�ned as L(UG) := fw 2 T �jtS )�

UG wg.

2.9.1 An Example

For the following example, I will use Prolog notation, i.e., constants start with a
lowercase, variables with an uppercase letter.

np(Gen,Case) ! det(Gen,Case) n(Gen,Case)

det(masc,nom) ! der

n(masc, ) ! mann

det(fem,nom) ! die

n(fem, ) ! frau
The �rst rule expresses the fact that the gender and case of a determiner must

match those of the noun to form a valid nominal phrase. Suppose the start term
is np(X,Y). An example derivation is then

np(X,Y) )G det(X,Y) n(X,Y) fX=X; Y=Yg
)G det(masc,Y) mann fX=masc; Y=Yg
)G der mann fX=masc; Y=nomg

On the right, you see the current instantiations of the variables.
Now, if the grammar is used for parsing, the string der mann will yield the

instantiated term np(masc,nom).

De�nite clause grammars (DCGs, see Gazdar & Mellish 1989) are basically
UBGs over �rst order terms. Additionally, they provide the possibility to attach
arbitrary procedures, i.e., Prolog predicates, to a rule.
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2.9.2 Beyond First Order Terms

UBGs can be de�ned over more complex structures than �rst order terms. A
prominent example is the typed feature structures used in HPSG (cf. Pollard
& Sag 1994), formally described in Carpenter (1992) or King (1994). The ALE
system (cf. Carpenter & Penn 1998) is an example of an eÆcient Prolog imple-
mentation of UBGs using typed feature structures.

For more on UBGs, see Gerdemann (1991), Shieber (1986), Covington (1995),
or Gazdar & Mellish (1989).

It is easy to extend LSL towards a uni�cation-based approach in a similar
fashion. Since for some structures, the uni�cation operation might not even be
decidable, the formal language and complexity-theoretic properties of LSL with
strings as nonterminals are not applicable any more.

The next chapter presents a parsing algorithm for LSL grammars. With
Propositions 21 and 22 we cannot expect that this algorithm has less than ex-
ponential runtime. However, a reasonable condition on LSL grammars will be
identi�ed such that the �xed recognition problem with grammars satisfying this
condition is solvable in polynomial time.



Chapter 3

Parsing

This chapter presents a parsing algorithm for LSL grammars which is based on
Earley's algorithm for CFGs. A complexity analysis of this algorithm reveals
a suÆcient condition on grammars which allows parsing grammars with this
property in polynomial time.

I will now briey describe Earley's algorithmmainly to introduce the notation
I will use later. This version is similar to the presentation in, e.g., Gazdar &
Mellish (1989).

3.1 Earley's Algorithm

I assume a �xed CFG (N; T; P; S0) being start-separated such that there is only
one rule S0 ! S. I furthermore assume that every rule in P looks either like
X ! X1 : : : Xn where Xi 2 N or X ! w where w 2 T .

Earley's algorithm operates on a chart (well-formed substring table). It makes
one single pass through the input string x. x[k] is the terminal at position k in
x. Every chart entry looks either like

1.

hi; j;X ! X1 : : : Xm �Xm+1 : : : Xni

where i; j 2 IN , X ! X1 : : : Xn 2 P , or

2.

hi; i + 1; X ! w�i

where i 2 IN , X ! w 2 P , and w 2 T .

In the following, I write �; �;  for strings in (N [ T )�, X; Y for nonterminals,
and w for a terminal.

45
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A chart entry of the form

hi; j;X ! ��i

is called an inactive edge (or passive edge), every other entry is called an active
edge.

At initialisation, k is set to 0, and an initial edge

h0; 0; S0 ! �Si

is inserted into the chart.
At each step, three operations are performed until there are no more to per-

form.

1. Scanning (Fig. 3.1):
If x[k] = w and there is X ! w 2 P then add

hk; k + 1; X ! w�i

to the chart.

2. Prediction (Fig. 3.2):
If there is an edge

hi; k;X ! � � Y �i

in the chart then for every rule Y ! , add edge

hk; k; Y ! �i

to the chart

3. Completion (Fig. 3.3):
If there is an inactive edge

hj; k;X ! ��i

and an active edge
hi; j; Y ! � �Xi

in the chart then add edge

hi; k; Y ! �X � i

to the chart

At each string position k, one scanning step is performed and prediction plus
completion are repeated until they yield no new edges. Then k is incremented by
one and these steps are repeated. When k = jxj + 1, the algorithm terminates.
If there is an edge

h0; jxj + 1; S0 ! S�i

at that point, x is in the language and we accept.
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k+1k

wX

Figure 3.1: Scanning in Earley's algorithm: If there is w at position k, we add
the corresponding inactive edge.

. . . ki

X α

Y γ

βY

Figure 3.2: Prediction in Earley's algorithm: If we want to �nd a Y starting at
position k, we add edges for all rules expanding Y.

X α

. . . . . . k

X

XY β γ

Y β γ

ji

Figure 3.3: Completion in Earley's algorithm: If we have found an X from j to
k and look for an X at j, then we can extend the active edge to k.
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3.2 Parsing LSL Grammars

The proposed parsing algorithm is a natural generalisation of Earley's algorithm.
The concept of chart edges in Earley's algorithm must be extended to suit the
di�erent needs. I assume a �xed LSL grammar G = (N; T; P; L; S).

3.2.1 Bit Vectors as String Positions

As shown above, Earley's algorithm (and any chart parser which uses well-formed-
substring tables) uses chart edges to indicate substrings that have already been
or still must be parsed, cf., Gazdar & Mellish (1989), e.g., hi; j; A ! B � Ci.
Two integers suÆce because we know that the yield of nonterminal A must be
continuous and is hence de�ned by the start and end position in the input string.
This condition does not necessarily hold for LSL grammars.

This di�erence is captured in the LSL parser by using bit vectors instead of
these two integers. Using bit vectors for this purpose is a very natural idea also
considered, e.g., in Johnson (1985) or Reape (1991). Consider, again, the example
sentence from section 1.1.2 and the bit vectors associated with some nonterminals
during the parsing process:

Der Mann stirbt der z�ogert
(B1) D 1 0 0 0 0
(B2) N 0 1 0 0 0
(B3) CP 0 0 0 1 1
(B4) �N 0 1 0 1 1
(B5) NP 1 1 0 1 1
(B6) VP 0 0 1 0 0
(B7) S 1 1 1 1 1

The bit vectors have the same length as the input string. If the terminal
belongs to the yield, the corresponding entry in the bit vector is set to 1, and 0
otherwise. (B6) could occur in an inactive edge indicating that the third terminal
in the input string forms the (complete) VP `stirbt', and similarly for the NP `Der
Mann der z�ogert'. Note (B5) as it does not consist of a continuous block of 1s
indicating that the NP is not continuous.

Now instead of \concatenating" the chart edges, the completion operation will
perform a bitwise OR on these bit vectors, provided they do not overlap (this
is the case i� the bitwise AND only consists of 0s). Overlapping bit vectors are
not allowed because a terminal cannot be derived by two di�erent nonterminals.
For instance, combining (B1) and (B3) yields an NP (because NP! D �N), with
bit vector (B5). Similarly, we take (B5) and (B6) (the NP and VP) to build
an S yielding (B7). Since (B7) contains only 1s, we know that this S yields the
complete input. Provided we take S to be the \start symbol" of our grammar, we
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can accept the input. It is also during completion where we check the precedence
and isolation constraints.

In what follows, I will write BV for the set of all bit vectors. Since for one
parse, the length of all bit vectors occurring in the edges is �xed I assume that
all mentioned bit vectors are of the right length. � ^ �0 (� _ �0, respectively) is
the result of the bitwise AND (OR, respectively) of the bit vectors � and �0. For
instance:

0100100
_ 0011001
= 0111101
Let right(�) (left(�), respectively) be the position, i.e., an integer value, of the

rightmost (leftmost, respectively) bit set to 1 in the bit vector �. If � consists just
of 0s (written as � = ~0) we de�ne left(�) to be 0 and right(�) to be j�j+1 where
j�j is the length of the bit vector. For instance (the crucial bits are underlined):

left(01001100) = 2, right(01001100) = 6
Note that bit vectors are only a di�erent representation for the index sets

from chapter 2.

3.2.2 Edges

As in Earley's algorithm, our edges consist of the string position information (bit
vectors in our case) and the rules. Earley's algorithm keeps a dot in the RHS of
a rule to indicate which constituent is to be parsed next. This single dot suÆces
because of the total order on the RHSs of the rules. For a rule graph representing
a partial order we must probably put the dot before more than one node, i.e.,
we have a dot set. After having completed a constituent, we can \move" the dot
over the corresponding node by adding all successors of this node to the dot set.
If the dot set is empty, i.e., all constituents were found, the edge is inactive.

De�nition 18 (Edge) An edge is a tuple

h�; p;D; �i

where

� � 2 BV

� p = (v ! (V;EP ; EI); �; I) 2 P

� D � V

� � : V ! IN

D is the dot set. � maps every node that has already been found to its rightmost
string position or if it is empty, to the rightmost string position of every nonempty



50 CHAPTER 3. PARSING

predecessor of it. Every active edge will be initialised with �n, the function that
maps every input to n + 1. This convention identi�es every node v such that
�(v) = n + 1 as a node which has not already been found yet. � is needed to
check the precedence constraints. I will write �[x 7! a] for the mapping that is
equal to � except that x is mapped to a.

In what follows, I will use a more readable notation for edges:

� (v! (V;EP ; EI); �; I) D �

Before presenting the algorithm formally, let me work through it with the
simple example from above.

3.2.3 A Worked Example

In this section, I will show how the algorithm will parse the sentence \Der Mann
stirbt, der z�ogert" with the grammar of section 1.1.1. I repeat the grammar here
using rule graphs for the RHSs:

(R1) S - Æ
��
NP Æ
��
VP

(R2) NP - Æ
��
D Æ
��
�N--

(R3) �N - Æ
��
N -Æ
��
��
��
CP

I will leave out � and I from the formal de�nition and rather write the non-
terminal into the node and use double circles to indicate isolation.

�n is the constant function that maps every input to n+1 as mentioned above.
Since the input sentence is of length n = 5, we will use �5 mapping every input
to 6. A '�' left of a node indicates that it is in the dot set (if there is an incoming
i-edge into this node it must come next). If a node was found, the '�' gets shifted
over it and is then placed to the left of a succeeding node (if there is one) or the

right of it if there is no such node. So, for instance
r r

S - Æ
��
NP Æ
��
VP indicates

that the NP has been found where the VP is still to be.
The parser initialises the chart before the actual parsing process by inserting

an edge for every rule with dots before all start nodes with the bit vector ~0. In
a way, we predict every rule at every string position.

(I1) 00000
r r

S - Æ
��
NP Æ
��
VP �5

(I2) 00000
r

NP - Æ
��
D Æ
��
�N-- �5

(I3) 00000
r

�N - Æ
��
N -Æ
��
��
��
CP �5

One single pass through the input is performed. Each step consists of two
operations:
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1. Scanning: skipping one terminal of the input and creating an edge from the
lexical entry. This edge has an empty rule graph on the RHS to indicate
that it is inactive.

2. Completion: combining an active edge with a matching inactive edge.

The latter is repeated until no more edges can be added to the chart (see also
section 3.2.6).

A scan operation advances a pointer on the input string. Completion just
produces new edges. These new edges are listed in each step with an identifying
number (to the left) and the edges or rules which were used creating them (to
the right).

Having initialised the chart, we start the pass over the input with the input
pointer at the very beginning:

! Der Mann stirbt der z�ogert

1. (a) Scan: Der ! Mann stirbt der z�ogert

(1.1) 10000 D - �5 (L1)

(b) Completion:

(1.2) 10000
r

NP - Æ
��
D Æ
��
�N-- �5[D7! 1] (1.1) + (I2)

2. (a) Scan: Der Mann! stirbt der z�ogert

(2.1) 01000 N - �5 (L2)

(b) Completion:

(2.2) 01000
r

�N - Æ
��
N -Æ
��
��
��
CP f N7! 2, CP7!6g (I3)+(2.1)

3. (a) Scan: Der Mann stirbt! der z�ogert

(3.1) 00100 VP - �5 (L3)

(b) Completion:

(3.2) 00100
r r

S - Æ
��
NP Æ
��
VP f NP7! 6, VP7! 3g (R1)

4. I assume that the CP is recognised during the next two scanning steps, i.e.,
(4.1) is inactive.

(a) Scan: Der Mann stirbt der z�ogert !

(4.1) 00011 CP - �5
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(b) Completion:

(4.2) 01011
r

�N - Æ
��
N -Æ
��
��
��
CP f CP 7! 5, N 7!2g (2.2) + (4.1)

(4.3) 11011
r

NP - Æ
��
D Æ
��
�N-- fD7! 1, �N 7! 5g (1.2) + (4.2)

(4.4) 11111
r r

S - Æ
��
NP Æ
��
VP fNP 7! 5, VP 7! 3g (3.2) + (4.3)

(4.2) is possible because the CP is isolated and it occurs at position 4
which is bigger than required (�(N) = 2).
Similarly, in (4.3.), the leftmost string position of �N (2) is exactly
one bigger than the rightmost of D (1 = �(D)), i.e., D immediately
precedes �N.

Since the bit vector of (4.4) only consists of 1s and S is the start symbol of
the grammar, we halt and accept.

3.2.4 The LSL Parsing Algorithm

In this section I will present the parsing algorithm in detail. The pseudocode for
the main parsing procedure is shown in Fig. 3.4. As shown in the last section,
the chart is initialised �rst. Then, a single pass over the input takes place. At
each string position, scanning (also called lexical lookup) is performed, and the
corresponding inactive edges are inserted into the chart. Then, completion is
applied as long as new edges can be added to the chart.

I use the following functions:

� set(k; i) returns a bit vector of length k with the ith bit being set to 1 and
all other bits being set to 0.

� lex entries(w) returns a set of nonterminals fC1; : : : ; Cmg such that Ci !
w 2 L for all i = 1; : : : ;m.

� add edge(e) adds edge e to the chart.

Initialisation

The prediction operation in Earley's algorithm can be seen as a kind of top down
guidance at a string position k. This is established by inserting an edge from k
to k. With bit vectors this is not possible in the same way. An \empty" edge
would bear the bit vector ~0, which gives absolutely no indication where in the
input string this edge is meant to start.

What we do instead is perform prediction \o�-line", i.e., add an edge for
every rule in R bearing ~0 before making a pass over the input. The bitwise OR
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procedure parse(x:list)
1 n := jxj;
2 initialise();
3 for i := 1 to n do (* Add initial edges for x[i] *)
4 � := set(n; i);
5 (* Scanning *)
6 for all L 2 lex entries(x[i]) do
7 add edge(h�; (u! (;; ;; ;); fu 7! Lg; ;); ;; �ni);
8 repeat
9 completion();
10 until no more new edges can be added
11 endfor

12 if there is h~1; (v ! R; �; I); ;; �i with �(v) = S then
13 accept; (* If S spans the whole string ) accept *)
14 else reject;

Figure 3.4: Top level loop of the parser

procedure initialise()
1 for each (v ! R; �; I) 2 P do

2 add edge(h~0; (v ! R; �; I); start(R); �ni);

Figure 3.5: The initialisation procedure

operation of completion will then automatically use these edges correctly1. Such
a predicted edge will be initialised with the set of start nodes as the dot set.

Note also that with this mechanism, there is an inactive edge for every "-rule
with bit vector ~0. This perfectly makes sense, because an empty nonterminal
could really appear anywhere in the string.

You can see the pseudocode for initialisation in Fig. 3.5.

Completion

During the completion operation, we may check if parsed substrings are contin-
uous. For this purpose I modify the de�nition of cont so as to suit bit vectors.

De�nition 19 The predicate cont(�) is true i� the bit vector � contains exactly

1An actual implementation might, on the other hand, use some kind of index to be able to
do prediction at a certain string position. For the complexity analysis, however, it does not
make a di�erence.
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procedure completion()
1 select inactive edge h�0; (v0 ! (V 0; E 0

P ; E
0
I ); �

0; I 0); ;; �0i;
2 select active edge h�; (v ! (V;EP ; EI); �; I); D; �i;
3 if � ^ �0 6= ~0 then return;
4 for all x 2 D with �(x) = �0(v0) do
5 B := pred(V;EP ;EI )

(x);
6 F := succ(V;EP ;EI )(x);
7 if maxy2B(�(y)) > n then return;
8 D� := (D � fxg) [ F ;
9 Check that all of the following conditions hold, else return:

10 1. If �0 6= ~0 6= �:
11 a) If (y; x) 2 EI then �(y) = left(�0)� 1
12 b) If (y; x) 2 EP then �(y) < left(�0)
13 2. If x 2 I then cont(�0)
14 3. If v 2 I and D� = ; then cont(� _ �0)
15 �� := �[x 7! min(maxy2B(�(y)); right(�0))];
16 add edge(h� _ �0; (v ! (V;EP ; EI ); �; I); D

�; ��i);
17 endfor

Figure 3.6: The completion procedure

one continuous block of 1s or � = ~0.

If cont(�)2 is true we know that the constituent associated with � is isolated.

The pseudocode of the completion procedure is shown in Fig. 3.6.

First an inactive and an active edge are selected from the chart (line 1 and 2).
These edges can only be possible candidates if their bit vectors do not overlap
which is ensured by demanding that � ^ �0 = ~0 (line 3), i.e., there is no position
where both � and �0 have a 1. Then in line 4, every node x of the active edge
which has \the dot to the left of it", i.e., which is in the dot set D, is examined.
The nonterminal of that node and the nonterminal of the LHS of the inactive
edge must be equal (�(x) = �0(v0)). Additionally, the � value of all predecessors
must be � n, because otherwise they have not been found yet (line 7). D� is the
set of the union of D � fxg and all the successor nodes of x, i.e., we \shift" the
dot over x (line 8). The conditions to be checked ensure that the LP constraints
are satis�ed, namely

1. LP constraints need only to be checked if �0 6= ~0 6= �, because otherwise, at
least one of the edges belongs to an empty category which trivially satis�es
all such constraints.

2Compare with De�nition 8.



3.2. PARSING LSL GRAMMARS 55

(a) If y immediately precedes x, the � value of y (the rightmost position
of y) has to be exactly the value of the leftmost string position of x -
1.

(b) If y precedes x, then the � value of y has to be smaller than the
leftmost position of x.

2. An isolated node must have a continuous bit vector associated with it.

3. If the last node of the active edge was found and the LHS of this edge is
isolated, combining the two edges must yield a continuous bit vector.

In line 15, the new �� is equal to � except for x. ��(x) = right(�0) if � 6= ~0. If
not, we let it be the value of the rightmost position of one of its predecessors.
If x has no predecessors and is empty, ��(x) = 0. The new edge that is added
bears the bitwise OR of � and �0, the same rule as the active edge, the new dot
set D�, and a modi�ed �� (line 16).

Note that empty nonterminals do not cause any problems. If there is an empty
nonterminal, the corresponding rule is just inserted during initialisation with ~0.
If a rule is recognised as having only empty nonterminals, completion takes care
that the corresponding bit vector is also ~0.

3.2.5 Correctness

To show the correctness of the algorithm, one must prove that it recognises exactly
those strings derived by some �xed LSL grammar G = (N; T; P; L; S) in the sense
of De�nition 11. I consider a �xed string w = w1 : : : wn of length n. In what
follows, the term \chart" always refers to the chart after parsing w.

Every bit vector of length n can be interpreted as an index set of at most size
n and vice versa. I will thus use bit vectors throughout this section, even in places
where, formally, index sets should occur, e.g., expressions like [(X; �)] )G D or
j 2 � are well-de�ned. In particular, ; is equivalent to ~0.

W.l.o.g., we can assume that there is at most one lexical entry Ci ! wi 2 L
per terminal wi. Then let W (�) = [(Cj ; fjg)jj 2 �]. It holds that W (�) .G w.

From section 3.2.4, it should be clear that the completion procedure works
correctly. By an inductive argument, one can show that a certain series of com-
pletions corresponds to a single valid derivation step and vice versa.

Lemma 4 Let ea = h~0; (v ! R; �; I); start(R); �ni be an active edge added during
initialisation where r is the number of nodes of R. Let e1; : : : ; er be inactive edges
where ei = h�i; (vi ! Ri; �i; Ii); ;; �ii.

Then ea can successively be completed with e1; : : : ; er yielding an inactive edge
i� there is a derivation

[(�(v); �1 [ : : : [ �r)])G [(�1(v1); �1); : : : ; (�r(vr); �r)]
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The next de�nition de�nes the inactive and active child, respectively, for some
edge e, i.e., the two edges e was created from.

De�nition 20 Let e be an edge in the chart. Let ic(e) and ac(e) (inactive, active
child) be the inactive and active edge, respectively, e was created from by comple-
tion. If e was created during initialisation or scanning, ic(e) = ac(e) = nil.

The notion of an inactive child can be extended to the set of inactive children
of an edge e. This set contains all inactive edges which were needed directly for
building e.

De�nition 21 Let e be an edge in the chart. De�ne the set of inactive children
of e as follows:

ichld(e) =

�
; if ic(e) = ac(e) = nil
fic(e)g [ ichld(ac(e)) otherwise

The depth of an inactive edge e is similar to the depth of the parse tree that
has e as a root.

De�nition 22 Let ep be an inactive edge in the chart. De�ne the depth of ep as
follows:

depth(ep) =

�
0 if ic(ep) = ac(ep) = nil
1 + max

e2ichld(ep) depth(e) otherwise

The next lemma proves that each inactive chart edge corresponds to a deriva-
tion and vice versa.

Lemma 5 h�; (v ! R; �; I); ;; �i is an inactive edge in the chart i� there is a
derivation [(�(v); �)])�

G W (�).

Proof:
()) Induction over the depth d of the edge.

(IA) d = 0: If e = h�; (v ! R; �; I); ;; �i was inserted during initialisation,
R is empty, thus � = ~0 and [(�(v);~0)] )�

G [] = W (�). If e was inserted
during scanning, R has a single node, thus � = set(n; k) for some k and
[(�(v); �)] = W (�).

(IH) If e = h�; (v ! R; �; I); ;; �i with depth(e) � d � 1 is in the chart, then
[(�(v); �)])�

G W (�).

(IS) Let p = (v ! R; �; I) 2 P and r be the number of nodes of R. Let
e = h�; p; ;; �i with depth(e) = d. Let ei = h�i; (vi ! Ri; �i; Ii); ;; �ii
for all i = 1; : : : ; r such that fe1; : : : ; erg = ichld(e) which means that
depth(ei) � d � 1 for all i. Then there must exist an active edge ea =
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h~0; p; start(R); �ni, inserted during initialisation, such that e is the result
of successive completion of ea with e1; : : : ; er. With Lemma 4 and (IH) it
holds that

[(�(v); �)] )p [(�1(v1); �1); : : : ; (�r(vr); �r)]

)�
G W (�1) [ : : : [W (�r) =W (�)

(() Induction over the length of the derivation k.

(IA) k = 0: If [(X; �)] = W (�), it is either the case that � = ~0 or � = set(n; j)
for some j. In the former case, h~0; (v ! R; �; I); ;; �ni was inserted during
initialisation. Scanning, on the other hand, ensures that the edge h�; (v !
R; �; I); ;; �ni is in the chart in the latter case.

(IH) [(X; �)])�k�1
G W (�) implies that there is an edge h�; (v ! R; �; I); ;; �ni

with �(v) = X in the chart.

(IS) Let p = (v ! R; �; I) 2 P where R has r nodes and �(v) = X . Suppose
there is a derivation

[(X; �)] )p [(X1; �1); : : : ; (Xr; �r)]

)�
G W (�1) [ : : : [W (�r) = W (�)

such that each (Xi; �i) derivesW (�i) in fewer than k steps. Then with (IH)
there are passive edges ei = h�i; (vi ! Ri; �i; Ii); ;; �ii such that �i(vi) = Xi

for all i = 1; : : : ; r. With Lemma 4 there is ea = h~0; p; start(R); �ni in the
chart, inserted during initialisation, such that e = h�; p; ;; �0i is the result
of successively completing ea with e1; : : : ; er.

�

It is now easy to see that the algorithm is correct:

Proposition 23 Let G = (N; T; P; L; S) be an LSL grammar and let w 2 T �.
The LSL parsing algorithm recognises w i� w 2 L(G).

Proof:
With Lemma 5 it is the case that there is an edge h~1; (v ! R; �; I); ;; �i with
�(v) = S in the chart i� there exists a derivation [(S; f1; : : : ; ng)])�

G W (~1).Gw.
�

3.2.6 Termination

For the algorithm to terminate, it is important to show that completion does not
loop at any string position, i.e., that it does not add an in�nite number of edges
to the chart. There are two things that must be ensured:
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1. Two edges that already have been combined should not be considered for
completion again which can be done easily, e.g., by marking those pairs3.

2. One must check that an edge to be inserted is not already in the chart. This
check is often called \subsumption check" in the literature. This possibility
is not ruled out by 1. because two di�erent completions might result in the
same edge. It can simply be done by checking if any edge already in the
chart is equal to the edge to be inserted.

Thus the following holds:

Proposition 24 The LSL parsing algorithm terminates on every input.

With the naive strategy mentioned in 2., the number of comparisons is then
linear in the size of the chart and comparing two edges, particularly comparing
two bit vectors, takes linear time in the size of the input string. I will thus ignore
the subsumption check in the following since it does not \blow up" the runtime
exponentially.

3.3 Complexity Analysis

As for the presentation of the algorithm itself, I will compare the complexity
analysis of the LSL parsing algorithm with the one of Earley's algorithm. I only
consider parsing with a �xed grammar, i.e., the input is only the string to be
parsed rather than this string plus the grammar. Since the grammar is �xed, we
assume the number of nonterminals and rules to be constant.

3.3.1 Complexity of Earley's Algorithm

Earley's algorithm uses three basic operations which are performed at each string
position during a parse:

1. Scanning

2. Prediction

3. Completion

We will now analyse how long each of them takes in a single step, i.e., at some
string position i.

There can only be O(i) edges ending at string position i, because there are
only i possible starting points4, and the number of rules and nonterminals is
constant.

3In the implementation a more sophisticated strategy was used using iterators (see section
4.3).

4This will not be the case for the LSL parsing algorithm.
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1. At position i, only one symbol is scanned, i.e., scanning takes time O(1).

2. Prediction considers each of the O(i) edges and since the number of rules
is constant, only O(i) edges are inserted thus, prediction takes time O(i).

3. If there is an inactive edge ep ending at i, we may be able to perform
completion with an active edge ea ending where ep starts (say position
i � j). At this position i� j there are O(i� j) (active) edges. So we have
O(i(i� j)) = O(i2) di�erent possibilities for completion.

Summing over all the n string positions yields:

nX
i=1

(O(1)|{z}
Scan.

+O(i)|{z}
Pred.

+ O(i2)| {z }
Compl.

) =
nX
i=1

O(i2) �
nX
i=1

O(n2) = nO(n2) = O(n3)

Note that it is crucial that when adding an inactive edge from j to k, we know
that only active edges ending at j are possible candidates for completion. This
will no longer be the case for the LSL parsing algorithm since the notions of start
and end point as needed for Earley's algorithm no longer exist.

3.3.2 Complexity Analysis of the LSL Parsing Algorithm

The complexity analysis consists of three parts. First, a relationship between
space and time complexity is established that allows us to focus on space in
the following discussion. Second, I will present a measure for space complexity
which immediately gives the worst-case complexity of the algorithm (exponen-
tial). Third, a suÆcient condition for parsing in polynomial time is presented.

Time and Space Bounds

In this section, I will describe a relationship between the time and space bounds
of the algorithm. In particular, the space bound can be used as a measure for
the time bound.

The space bound can be measured in terms of the number of edges in the
chart. Note that I ignore the storage needed for a bit vector which is O(n), i.e.,
the term \space" means \number of edges in the chart".

Suppose our algorithm needs O(f(n)) space with f(n) = 
(n),i.e., for an
input string of length n, the chart contains O(f(n)) edges after the parse. Ini-
tialisation inserts an edge with ~0 for every rule and an empty edge for each
nonterminal in "-rule. Since the number of rules is constant, initialisation inserts
O(1) edges.

Let us now consider the time needed for each of the two basic operations at
some string position i (analogously to the analysis above).
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1. Scanning: Since scanning one terminal and adding a �xed number of rules
is independent of i, scanning takes time O(1).

2. Completion: As mentioned above, the notions of start and endpoints of
edges no longer exist: they do not make sense for bit vectors. Instead, the
algorithm performs a simple completion strategy by trying to combine each
possible pair of edges. Since we have O(f(i)) edges in the chart at string
position i and we have O(f2(i)) pairs, completion occurs O(f2(i)) times.
The result of completion is a new edge in the chart.

As above, the overall complexity is given by summing over all string positions:

O(1)|{z}
Init.

+
nX
i=1

(O(1)|{z}
Scan.

+O(f2(i))| {z }
Compl.

) =
nX
i=1

O(f2(i)) �
nX
i=1

O(f2(n)) = O(nf2(n))

Note that, if f(n) is a polynomial, e.g., nk, the overall runtime is also polyno-
mial, namely O(n2k+1). In what follows, I will identify a condition that bounds
this f to a polynomial and thus enables parsing in polynomial time.

Again, I ignore the time needed to perform a bitwise OR of two bit vectors
(this is possible in time O(n)). Taking this time into account, however, would
yield O(n2f2(n)) which is still polynomial if f is polynomial.

A Measure for Space Complexity

As was shown in Earley (1968), Earley's algorithm requires space O(n2). The
only content of the edges we must consider are the start and end points. The
rest is of constant size because the rule sizes and the number of nonterminals are
constant. So for input length n, we can have an edge between each pair of nodes.
And there are (n+ 1)2 = O(n2) such pairs.

Similarly, for our algorithm, we only need to measure the possible numbers of
\string positions" which in our case are the bit vectors. As above, the rule sizes
etc. are constant and thus will not be considered. Since there are 2n bit vectors
of length n, the chart might contain 2O(n) edges in the worst case.

Consider the following example to see that this number can actually be
reached: Suppose we have an LSL grammar just consisting of the rule

A! A A; "

(i.e. no LP constraint on the RHS) and a lexical entry

A! a

where A is the start symbol. Then, the number of edges for the input string an

is actually 2n (see Fig. 3.7).
Substituting this result in the above sum yields:
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A 100 A 010 A 001

A 110 A 101

A 111

a a a

A 011

Figure 3.7: The chart for the LSL rule A ! A A; ", lexical entry A ! a,
and input string aaa. The indices at the nonterminal are the corresponding bit
vectors. Note that there are other possibilities than the one shown to create A111.

Proposition 25 (Worst case complexity) The LSL parsing algorithm has a
worst case time complexity of 2O(n).

One would suspect that only \pathological" grammars like the example in
Fig. 3.7 do actually need exponential time.

In the next section, I will present a suÆcient condition for LSL grammars
that ensures parseability in polynomial time. A special case of this condition is
directly expressible in LSL.

3.3.3 A SuÆcient Condition for Polynomial Time

As seen above, the number of possible edges in the chart correlates only with the
possible number of bit vectors for length n. If we want to reduce complexity to
polynomial time, we must impose a restriction on all bit vectors that might occur
during a parse of an LSL grammar.

De�nition 23 (Block) A block in a bit vector � is a string of continuous 1s.

For instance, in
00011110000011100

there are two blocks.
Note that one block is exactly determined by two positions in the bit vector

(in the example indicated with a \ 0 "). Thus, if we consider bit vectors of length
n with k blocks, we can choose 2k positions out of the n+1 positions that there
are, and in this fashion completely determine the form of the bit vector.

So, for the example above n = 13 and k = 2. We chose 2k = 4 positions out
of the n + 1 = 14 possible ones, namely 2 and 6 for the �rst block and 9 and 12
for the second.
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The next question is: How many possible bit vectors of length n with k blocks
can there possibly be, or in other words: How many possibilities are there to pick
2k positions out of n+ 1? The answer is�

n + 1

2k

�
y = O((n+ 1)2k) = O(n2k)

And this is polynomial in n.
So suppose we have input length n and know that all bit vectors occurring in

edges in the chart have (at most) k blocks, i.e., k is a constant independent of n.
The maximal number of possible bit vectors in the edges is then

kX
i=1

�
n+ 1

2i

�
=

kX
i=1

O(n2i) = O(n2k)

Thus, the number of possible edges as well is O(n2k). Space complexity is then
polynomial (since k is constant) and thus the run time is

O(n(n2k)2) = O(n4k+1)

This k depends on the LSL grammar used. For CFGs, we have k = 1 and thus
the algorithm runs in O(n5). The di�erence to the O(n3) of Earley's algorithm
stems from the fact that continuity of edges enables better indexing of the chart.

In general, the maximal number of blocks in a parse may not be constant,
i.e. independent of n, but rather be a function k(n) growing with n for some
grammars. For this case, the space is bounded by

k(n)X
i=1

O(

�
n+ 1

2i

�
) = O(2n)

for k(n) = n
2
for example. The aim is now to �nd a condition for LSL grammars

such that k can be bounded by a constant.
I will call the maximal number of blocks occurring for a �xed LSL grammar

G the block number of G.
We can summarise the last section as

Proposition 26 If the block number of an LSL grammar G = (N; T; P; L; S)
is bounded by a constant, then for all w 2 T �, the LSL parsing algorithm takes
polynomial time parsing w w.r.t. G (G is parseable in polynomial time).

In Holan et al. (1995), it is mentioned that, if the span of every nonterminal
is one-gap, i.e., has at most one discontinuity, then space and time complexity of

yRather than n
2k. Permutation without replacement is justi�ed because blocks do not

\overlap".
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their parser (an extension of the CYK algorithm to parse dependency grammars,
see section 1.2.2) is polynomial. The condition of Proposition 26 is more general
and is also stated in Holan et al. (1998). It can be seen as a kind of m-gap
restriction.

In the next section, I will go further and describe a condition for LSL gram-
mars to be parseable in polynomial time which is less restrictive and more natural
than posing a one-gap or m-gap restriction on every nonterminal.

The Condition

As shown above, we must ensure that the block number k for an LSL grammar
G is a constant, i.e., does not grow with n. Therefore, we will �rst identify which
conditions are responsible for letting k be a function of n.

Closely related to this is the question of how grammars can generate arbitrary
long sentences, i.e., the language generated by the grammar is in�nite. This is
because if the language is �nite, k is trivially constant. Only in�nite languages
may have the property that k grows with n.

So what makes grammars generate arbitrarily long sentences? The answer is
recursion. If we did not have recursion, the language would be �nite. One must
somehow restrict the properties of recursive nonterminals in such a way that k
can only be constant.

In this section I will prove that, if one can ensure that the yield of every
recursive nonterminal has at most a constant number of blocks, we know that the
block number of the grammar is a constant and thus the grammar is parseable in
polynomial time. In other words, if every recursive nonterminal has a �xed block
number, then we cannot add arbitrarily many blocks to a mother nonterminal.

The rest of this section consists of the formal proof of this proposition. I
assume a �xed grammar G = (N; T; P; L; S).

De�nition 24 (Recursive nonterminal) A nonterminal X 2 N is called re-
cursive i� there are pairwise distinct rules

(v1 ! (V1; EP1; EI1); �1; I1) 2 P

(v2 ! (V2; EP2; EI2); �2; I2) 2 P
...

(vn ! (Vn; EPn; EIn); �n; In) 2 P

such that

� For all i = 1; : : : ; n� 1 there is a v 2 Vi with �i(v) = �i+1(vi+1)

� There is a v 2 Vn such that �1(v1) = �n(v) = X.
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Let NR � N be the set of all recursive nonterminals. NR can be constructed
as in the context-free case (cf. Hopcroft & Ullman 1979) by building a graph
(N;E) where there is an edge from X to Y if there is a rule X ! : : : Y : : : ;'.
A recursive nonterminal then is every nonterminal which lies on a cycle in this
graph.

I will now de�ne a special notion of derivation which is a restricted form of
derivations we used thus far, in that it does not allow for expansion of recursive
nonterminals.

De�nition 25 The nonrecursive derivation relation

R
)G� B(N � Fin(IN))� B(N � Fin(IN))

w.r.t. to G is de�ned such that

D1 = D [ [(X0;M0)]
R
)G D [ [(X1;M1); : : : ; (Xn;Mn)] = D2

if D1 )G D2 and X0 =2 NR

It obviously holds that
R
)G is a special case of )G, formally

R
)G�)G.

One can now de�ne a normal form for an LSL derivation which consists of
three phases as opposed to the two we had before. First, all non recursive non-
terminals are expanded until only recursive nonterminals or nonterminals which
are eventually expanded by a lexical entry are in the sentential form (we will use
R
) for that). The second phase is the usual derivation w.r.t. ). The third phase
(as before) applies lexical entries and thus generates a string.

De�nition 26 A derivation D0 )G D1 )G : : : )G Dn .G w is in normal form
i�

1. There is k such that Di
R
)G Di+1 for all i = 0; 1; : : : ; k � 1

2. For all (X;M) 2 Dk it holds that X 2 NR or (X;M) 2 Dn

A derivation is in normal form, if all nonrecursive nonterminals are expanded �rst
until only recursive nonterminals or those nonterminals, which will eventually be
used to generate terminals, appear in the sentential form. We can w.l.o.g. assume

that all derivations are in normal form D0
R
)

�

G Dk )�
G Dn .Gw since k could also

be 0.

Lemma 6 Let M 2 Fin(IN). If [(A;M)]
R
)

�

G D )�
G D0 .G w is a derivation in

normal form, then jDj is bounded by a constant.
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Proof:
Since

R
) does not expand recursive nonterminals, there is only a �nite number of

possibilities to apply productions.
�

Lemma 7 If there is m 2 IN such that every recursive nonterminal has block
number � m then the block number of every nonterminal is bounded by a constant.

Proof:
The proposition holds trivially for all nonterminals in NR. Let A 2 N . Let
bn : Fin(IN) ! IN be the function such that bn(M) is the block number of M .
De�ne a function f : B(Fin(IN)� IN)! IN as the block number of a sentential
form as follows:

f(;) = 0

f([(X;M)] [D) = bn(M) + f(D)

It holds that if [(A;M)] )�
G D then bn(M) � f(D) because splitting an index

set into many index sets during a derivation step may only result in more blocks.

Let [(A;M)]
R
)

�

G D )�
G D0 .G w be a derivation in normal form. It holds

that5

bn(M) � f(D) � jDjm

Since with Lemma 6, jDj is bounded by some constant c, it is the case that
bn(M) � cm and thus the block number of A is bounded by a constant.

�

Proposition 27 If the block numbers of all recursive nonterminals of G are
bounded by a constant then G is parseable in polynomial time.

Proof:
With Lemma 7, it holds that the block number of every nonterminal is bounded
by a constant c. The bit vectors of all inactive edges used during a parse then
also have at most block number c. Since each active edges only has a constant
number of nonterminals on the RHS (call this constant r), its bit vector has at
most rc blocks. With Proposition 26, G is parseable in polynomial time.

�

There are two possibilities how Proposition 27 can be exploited.

1. LSL has a feature which can be used to set the block number of all recursive
nonterminals to 1: Isolation. Since this is directly expressible in LSL, it can easily
be checked. Note that it is not necessary that every occurrence of a recursive
nonterminal X is isolated but either every occurrence of X on a LHS, or every
occurrence on a RHS. If this condition is satis�ed I will call X to be isolated in
the grammar G.

5This is a rather rough estimate because some nonterminals that might be expanded with
lexical entries have block number 1.
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LP constraints on Grammar type Complexity
X ! X1 : : : Xn

hXii;8i UCFG P
Xi � Xi+1;8i CFG P (LOGCFL-complete)
hXii, Xi 2 NR Restricted LSLG P

any General LSLG NP-complete

Table 3.1: Special cases of LSL grammars and their complexity for the �xed
membership problem. The �rst column shows the LP constraints attached to every
rule X ! X1 : : : Xn in the grammar (NR is the set of recursive nonterminals),
the second the (e�ective) grammar type, and the third the complexity.

Corollary 10 An LSL grammar G is parseable in polynomial time if every re-
cursive nonterminal in G is isolated in G.

Corollary 10 is a specialisation of Proposition 27 in that the required condition
can be directly expressed in LSL.

2. One could, however, pursue another (in a way the opposite) approach and
extend LSL's notion of isolation tom-isolation. If a constituent ism-isolated that
should mean that it can have at most m blocks (or in other words at most m� 1
discontinuities). Such an extended LSL grammar where all recursive nonterminals
are m-isolated satis�es the condition of Proposition 27 and, thus, this grammar
is parseable in polynomial time.

From a linguistic point of view, the latter approach is more promising because
the requirement that every recursive nonterminal has no discontinuities might be
too strong. For a discussion see section 5.2. (Holan et al. (1998) mention a
possible extension to their dependency grammar framework by adding rules of
the form A !i

X BC meaning that a tree dominated by A built using this rule
may have at most i discontinuities (see also section 1.2.2). It is not mentioned,
however, which (subset of) nonterminals should appear on the LHSs of such rules
in order to decrease complexity.)

Notice that, during the whole complexity analysis, the precedence relation
never came into play. The important factor which made parsing polynomial6

is isolation. What is it then that makes parsing CFGs so eÆcient? Isolation,
i.e., contiguity, makes it polynomial. The total order on the RHS, additionally,
enables good indexing and thus Earley's result of O(n3).

Fig. 3.1 summarises the complexity results for some variations and special
cases of LSL grammars.

6Note that this is the case for the �xed recognition problem.
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3.3.4 Computing the Block Number

The condition of Proposition 27 requires that the block number of every recursive
nonterminal is bounded by a constant. It is pretty diÆcult to take this into
consideration when writing a grammar. What one wants is an algorithm which
takes a grammar and checks if such a condition is satis�ed. Furthermore, it
would be nice if one could say more about the maximal block number than just
\bounded by some constant".

I will now present a simple algorithm to determine the block number of a given
grammar. The block number of a grammar is the maximum of the block numbers
of all nonterminals in the grammar. We consider all nonterminals (even the ones
that are not \reachable" from the start symbol S) because the parser may �nd
substrings that can be derived by such a nonterminal. The block number of a
nonterminal X can be computed as follows: Consider every rule p with X on
the LHS and some nonterminals X1; : : : ; Xm on the RHS (in some order). If X
is isolated in p, the block number is simply 1. Otherwise, we sum up all block
numbers of the Xi. If Xi is isolated, the block number is again 1 and no recursion
is needed. If not we recurse. At the end we subtract the number of i-edges from
this sum because if two bit vectors with block numbers k1 and k2, respectively,
are put together via immediate precedence, the block number of the resulting
new bit vector is k1 + k2 � 1. Furthermore, we must remember all nonterminals
we already tried to compute the block numbers of to avoid loops. You can see
the pseudocode of this algorithm in Fig. 3.8. The nonterminals already inspected
are stored in the argument visited which is a set.

Note that block num() only returns the maximal number of blocks for inactive
edges. If we want to compute the block number of a grammar, we also must take
possible active edges into account (see Fig. 3.9).

Since LSL currently does not have a notion of m-isolation, this algorithm can
only check the condition of Corollary 10, i.e., that every recursive nonterminal is
isolated. If LSL is extended towards such a notion, the lines 10 and 11 in Fig.
3.8 may be modi�ed in a straightforward way.

Note again that only a suÆcient condition from above is checked, i.e., if the
algorithm returns a number k, the block number is bounded by k. If, however,
the algorithm terminates abnormally, nothing can be said about this grammar
being parseable in polynomial time.

It is easy to see that the block number computed by the function block number
in Fig. 3.9 is large even when all recursive nonterminals are isolated, i.e., the
time complexity is a polynomial with a high degree. Nonetheless, a line is drawn
between exponential and polynomial time parsing.
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function block num(X :N ,visited:set(N)) : integer
1 if X 2 visited then output("Possibly in�nite block number !"); halt;
2 if there is X ! a 2 L then max := 1; (* Lexical nonterminal *)
3 else max := 0;
4 (* For all rules expanding X *)
5 for each (v ! (fv1; : : : ; vmg; EP ; EI ); �; I) 2 P do
6 if v 2 I then res := 1; (* Isolation ) Block number = 1 *)
7 else
8 res := 0;
9 for i= 1 to m do
10 if vi 2 I then (* node on RHS is isolated ) block number = 1 *)
11 b := 1;
12 else (* Compute block number for all non-isolated nonterminals *)
13 b := block num(�(vi),fXg[ visited);
14 res := res + b;
15 endfor
16 res := res - jEI j; (* Subtract blocks that \melt together" *)
17 endif
18 if res > max then max := res; (* Find maximum *)
19 endfor
20 return(max);

Figure 3.8: Computing the block number for a nonterminal X.

function block number((N; T; P; L; S): LSL grammar) : integer
1 bI := maxX2Nfblock num(X; ;)g; (* Inactive edges *)
2 (* Now for all active edges *)
3 m := 0;
4 for each (v ! (V;EP ; EI ); �; I) 2 P do
5 bA := maxV 0�V f

P
x2V 0 block num(�(x))g;

6 if bA > m then m := b;
7 endfor
8 return max(bI ; bA);

Figure 3.9: Compute the block number of a grammar. block num() only returns
the block number for inactive edges. An active edge for rule (v ! (V;EP ; EI ); �; I)
can have a block number which is at most the sum of all nonterminals of all proper
subsets of V .
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3.4 Generalisation of LSL Grammars

In this section, I will briey show how LSL grammars can be generalised such
that arbitrary LP constraints (not necessarily only <, �, and hi) can be used
and how still the condition of Proposition 27 can be applied to yield polynomial
time parseability.

De�nition 27 (LPC-Grammar) An LPC-Grammar is a tuple G = (N; T; P; L; S),
where N , T , L, S are de�ned as for LSL grammars and P is a set of rules of the
form (X0 ! X1 : : : Xr; ') where Xi 2 N and ' is a function from (Fin(IN))r to
ftrue; falseg.

A rule in an LPC grammar consists of a context free rule plus a function ' which
checks if some LP constraints between the string positions of the nonterminals
on the right hand side hold and returns true if so, and false otherwise. ' is
essentially a predicate, but the functional notation should indicate its procedural
nature. It is the analogue to the combines predicate of Johnson (1985). Deriva-
tions are a generalisation of LSL derivations.

De�nition 28 (LPC Derivation) Let G = (N; T; P; L; S) be an LPC gram-
mar. Then the derivation relation )G is de�ned such that

D [ [(X0;M0)])G D [ [(X1;M1); : : : ; (Xr;Mr)]

if

1. (X0 ! X1 : : : Xr; ') 2 P

2. M0 =
Sr

i=1Mi and all Mi are pairwise disjoint

3. '(M1; : : : ;Mr) = true

The terminating derivation relation .G is de�ned exactly as for LSL grammars, as
is the language of an LPC grammar. For the description of the parsing algorithm,
I will use bit vectors instead of index sets and assume that ' is de�ned for those.

In the generalisation of the LSL chart parser, we only use inactive edges. An
edge then is simply a pair h�;Xi where � is a bit vector and X 2 N . The
parser can also be generalised as follows: Let w = w1 : : : wn be the string to
be parsed. After scanning which works as for the LSL parser, we choose a rule
(X ! X1 : : : Xr; ') 2 P and look at all r-tuples of edges. If the nonterminals of
those edges match X1; : : : ; Xr, respectively, and their bit vectors satisfy ', i.e., '
maps them to true, we can add an edge with the nonterminal X and the bitwise
OR of all the bit vectors of the Xi. For simplicity, I assume that ' also checks
that the bit vectors do not overlap. The criterion for acceptance is also the same
as for the LSL parser. The pseudocode can be seen in Fig. 3.10.
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procedure lpc parse(x : T �)

1 for each (X ! "; ') 2 P do add edge(h~0; Xi);
2 for i := 1 to jxj do
3 scan(xi);
4 while there are edges h�1; X1i; : : : ; h�m; Xmi in the chart
5 and there is rule (X0 ! X1 : : : Xm; ') 2 P
6 such that '(�1; : : : ; �m) = true do add edge(h�1 _ : : : _ �m; X0i);
7 endfor

8 if there is an edge h~1; Si in the chart then accept;
9 else reject;

Figure 3.10: Pseudocode for parsing LPC grammars

Now let c(n) = 
(n) be the number of edges in the chart, and f'(n) be the
time complexity of the \worst" function attached to a rule. Let r be the maximal
number of nonterminals occurring on the RHS of a rule. The complexity of this
algorithm for the �xed parsing problem, using a similar argument as in section
3.3, is then

O(1)|{z}
Initialisation (line 1)

+
nX
i=1

( O(1)|{z}
Scan. (line 3)

+ O((c(i))rf'(n))| {z }
Compl. (lines 4-6)

)

=
X
i=1

O((c(i))rf'(n)) �
X
i=1

O((c(n))rf'(n)) = O(n(c(n))rf'(n))

Note that since there are no active edges, we must search through the chart
�nding all r tuples rather than all pairs, which makes complexity much worse.

Again, if c(n) = nk for some k � 1, and, additionally, ' has polynomial
complexity, i.e., f'(n) = nq for some q � 0, we have

O(n(c(n))rf'(n)) = O(n(nk)rnq) = O(n1+kr+q)

Since k, r, and q are constant, this is a polynomial in n. If there is a notion of
active edges, the algorithm must only search through all possible pairs of edges
in the chart, and thus r = 2.

To ensure that c(n) is a polynomial, the same suÆcient condition as above
holds: all recursive nonterminals should have at most a constant number m of
blocks, they should be m-isolated. Every ' attached to a rule must return false
if this property is not satis�ed in the corresponding rule.

LSL grammars are a special instance of LPC grammars. One can easily
de�ne functions implementing isolation, precedence, or immediate precedence
constraints between any of their arguments.
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The formal language results of LSL do not hold for LPC grammars in general.
It is, for example, not even required that a function attached to a rule is decidable.

If we, however, assume that all functions attached to rules have polynomial
complexity, the exponent of the polynomial parsing complexity for LPC gram-
mars satisfying the suÆcient condition from Proposition 27 is much larger due
to the lack of the notion of active edges (see above), but it is still constant, thus
parsing in polynomial time is possible.



Chapter 4

Implementation

This chapter describes an implementation of the LSL parsing algorithm (this
implementation is called LieSL). LieSLwas implemented in C++ using the LEDA
library1 (cf. Mehlhorn, N�aher, Seel & Uhrig 1999). LEDA (Library of EÆcient
Data Types and Algorithms) provides standard data types (such as lists) as well
as more complicated data structures (such as graphs). LieSL can be used on any
UNIX2 system.

As described in section 2.9, LieSL implements a uni�cation-based version of
LSL grammars. I will not describe the complete implementation in detail but
rather emphasise the design decisions of problems which were underspeci�ed in
chapter 3 since they do not make any di�erence from a complexity theoretic point
of view but play an essential role in a practical system. These issues are: organisa-
tion of the chart (indexing) (section 4.3), control of the core algorithm, i.e., which
edges are selected for completion and when (section 4.4), and implementation of
complex categories (section 4.2).

4.1 General Remarks

4.1.1 Usage

It is possible to use LieSL as a standalone application (using atomic or �rst order
term categories), or in connection with the ConTroll/XTroll system (cf. G�otz,
Meurers & Gerdemann 1997) using its typed feature structures. In either case,
LieSL provides a terminal-based text mode or an X-interface.

Format of an LSL Grammar

LieSL grammars must satisfy the BNF in Fig. 4.1.

1LEDA is available free of charge for research purposes.
2UNIX is a registered trademark of AT&T.

72
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<Grammar> ::= "

| <NERules>.

<NERules> ::= <Rule>

| <Rule> <NERules>.

<Rule> ::= <LSLRule>

| <LexEntry>.

<LexEntry> ::= <Constant> '--->' <YVDef> '.'.

<LSLRule> ::= <YVDef> '==>' <YVars> ';' <LPConstraints> '.'.

<YVars> ::= "

| <NEYVars>.

<NEYVars> ::= <YVDef>

| <YVDef> ',' <NEYVars>.

<YVDef> ::= <YV>'(' <Desc> ')'.

<LPConstraints> ::= "

| <NELPConstraints>.

<NELPConstraints> ::= <LPCons>

| <LPCons> ',' <NELPConstraints>.

<LPCons> ::= <YV> '<' <YV>

| <YV> '<<' <YV>

| '[' <YV> ']'

| '[' <YV> '] ' <Number>.

Figure 4.1: BNF for LieSL grammars.

<YV> is a yieldvariable which, by convention, looks like a Prolog constant.
<Number> is an arbitrary natural number. <Desc> is an arbitrary string (a de-
scription of a category) which can also have nested parentheses. These descrip-
tions depend on which category type was chosen. Comments are either possible
in C-style, i.e., between \/*" and \*/", or as single line comments starting with
\%".

Note that [] are the parentheses used for isolation and that LieSL also has a
notion of m-isolation written as [y]_m. See Fig. 4.2 for an example (cf. section
1.2.1).

4.1.2 LieSL-ConTroll Interface

LieSL uses the C-Prolog interface of SICStus Prolog (cf. SICS 1999) for inter-
facing with ConTroll which is implemented in SICStus. As in the standalone
application, all control stays within the C++ part of LieSL. The only calls made
to SICStus are itself hook predicates to ConTroll routines, mainly uni�cation
and subsumption. ConTroll's constraint resolution interpreter is not used. It is
therefore straightforward to use a di�erent underlying system than ConTroll by
simply changing the mentioned hook predicates.
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% rule for sentences

s( s(Sem) ) ==> np( np(X,Gen,Case) ),

vp( vp(lambda(X,Sem)) ) ;

np << vp, [vp].

% rule for the VP (any order of the two objects allowed)

vp( vp(Sem) ) ==> v( v(lambda(X,lambda(Y,Sem))) ),

npdo( np(X,GenDO,akk) ),

npio( np(Y,GenIO,dat) ) ;

npdo < v, npio < v,

[npdo], [npio].

% rule for NPs with determiner

np( np(Sem,Gen,Case) ) ==> d( det(Gen,Case) ),

n( n(Sem,Gen,Case) ) ;

d << n.

% Lexicon

der ---> l( det(masc,nom) ).

der ---> l( det(fem,dat) ).

die ---> l( det(fem,akk) ).

Fabian ---> l( n(fabi,masc,_) ).

Lisa ---> l( n(lisa,fem,_) ).

PrincipiaMathematica ---> l( n(principia,fem,_) ).

gibt ---> l( v(lambda(X,lambda(Y,lambda(Z,gives(Z,Y,X))))) ).

Figure 4.2: Example LieSL grammar with �rst order terms as categories. This
grammar generates German complement clauses. Note that the second rule li-
censes both orderings of the objects of \gibt". Parsing, e.g., \der Fabian die
PrincipiaMathematica der Lisa gibt" yields s(gives(fabi,lisa,principia)).
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4.2 Implementation of Complex Categories

The design of LieSL enables easy addition of a new concept of category. In
the current system, three types of categories are supported: atomic categories
(nonterminals, i.e., just strings), �rst order terms, and ConTroll�s typed feature
structures (see section 4.1.2). In general, all kinds of uni�cation-based categories
can easily be integrated into the system, i.e., categories which have a notion of
subsumption and uni�cation. For the case of atomic categories, a subsumes b i�
a = b and a uni�es with b yielding c i� a = b = c. For �rst order terms, the
classical notions of term subsumption and term uni�cation are used whereas for
typed feature structures, more complicated notions are necessary (cf. Carpenter
1992).

The Idea

Uni�cation-based categories may have a notion of shared variables (also called
structure sharing). For instance, the terms f(a;X) and g(X) share the variable
X (if they both occur within the scope of the same rule). Once this variable is
instantiated, the Xs in both terms are bound to that instantiation. Variables are,
on the other hand, only shared within the scope of one rule, i.e., if X appears
in two di�erent rules, it may not be shared. Inspired by a WAM model for �rst
order terms (cf. Ait-Kaci 1991, Warren 1983), a category in LieSL is considered
as being some kind of pointer into a data structure which, in turn, realises the
sharing of variables. So for example, the terms f(a;X) and g(X) are represented
by \pointers" (in this case the integers 0 and 3, respectively) into the following
WAM style heap

0 f/2
1 a/0
2 REF 2
3 g/1
4 REF 2
The identity of the second and the �rst argument, respectively, of the two

terms (i.e. the variable X) is established by letting the second cell after cell 0
(thus second argument of f) and the �rst cell after cell 3 (�rst argument of g)
point to the same heap cell, namely 2.

Every rule, and thus every edge, has exactly one object realising this shared
data structure associated with it. In turn, every category appearing in this rule
(or edge) is a pointer into exactly this object.

Implementation

The abstract C++ classes CategoryCommon and Category implement the func-
tionality of a shared data structure object and a pointer into this object, respec-
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...

Category
Position

pos

cat

Figure 4.3: Organisation of the chart. The index (cat; pos) is mapped to a list of
edges by two indexing mechanisms (represented by triangles) - �rst by category,
then by string position.

tively. The parser itself only uses the (pure virtual) methods de�ned for those
abstract classes. Thus, new category types can be added by new subclasses,
e.g., AtomicCategory and AtomicCategoryCommon for atomic categories, with-
out making modi�cations to the parser code.

4.3 Chart Organisation

From a theoretical point of view, the chart may simply be a list because in the
worst case, the required access time is linear in the size of the chart. In practice,
however, one might suspect that chart organisation is crucial for the speed of
a running system. As a rule of thumb, uni�cations between categories must be
avoided whenever possible because the copying and complex operations involved
may slow down the runtime considerably.

4.3.1 Indexing Scheme

The chart consists of two components: the active chart and the passive chart
which contain active and passive edges, respectively. Each edge is stored and is
accessible under an index. Such an index consists of two parts: 1. a string (which
represents a category, also called cat-index) and 2. an integer (a position in the
input string). Given such an index (cat; pos), the respective edges are retrieved
by indexing �rst by category, and secondly by string position. Under each index,
one can, in turn, �nd a linked list of edges (see also Fig. 4.3).

In general, categories with di�erent cat-indices must not be uni�able whereas,
on the other hand, categories with the same cat-index are not guaranteed to
be uni�able. Ideally, the index should be chosen such that in most cases two
categories with the same cat-index are, in fact, uni�able.
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The cat-index depends on the category type. For atomic categories, it can
just be the category itself (since it is just a string). For �rst order terms, the cat-
index might for example be the functor of the term. Then the two terms f(a; b)
and f(c; d; e) have the same cat-index (namely f) but are not uni�able. A more
sophisticated scheme might take the arity also into account (in the example above,
the two cat-indices would be f/2 and f/3, respectively, and would thus (correctly)
be considered as not uni�able). For typed feature structures, an obvious choice
would be the type of the root node. However, this might be suboptimal because
when using a typical HPSG style grammar, a majority of found constituents are
just phrases. A more sophisticated scheme might thus also take feature values
into account.

It means di�erent things for active and passive edges to be stored under the
index ix = (cat; pos). For a passive edge it means that the category on the LHS
has cat-index cat and pos is the leftmost bit in its bit vector, in other words, it
starts at position pos. An active edge at ix, on the other hand, indicates that
it is looking for a category with cat-index cat, i.e., a node on the RHS labelled
with a category with cat-index cat is in the dot set, and that this category should
start at string position pos. This latter fact will typically be the result of an LP
constraint.

4.3.2 Chart Operations

There are mainly two chart operations the parsing algorithm uses for a given
edge e: inserting e and retrieving all edges which are candidates for completion
with e.

Inserting an Edge

An edge e is inserted into the chart as follows:
If e is passive, the cat-index cat of the LHS and the leftmost bit of e's bit

vector pos is determined and e is appended to the list accessible under the index
(cat; pos) in the passive chart.

If e is active, for every node v in the dot set with cat-index cat and for every
string position pos where v might possibly start, append e to the list accessible
at (cat; pos) in the active chart. Since the dot set in general contains more than
one node, and each of those nodes may be found at more than one position, e
might be stored under many di�erent indices.

Appending e to a list in this context means appending only if e is not subsumed
by an edge already in the list, i.e., LieSL uses a subsumption check (cf. section
3.2.6). (Two edges where one subsumes the other also have the same index.)

For instance, suppose we have typed feature structures as categories with a
type hierarchy with two types t and t1 where t subsumes3 t1. For the sake of

3This type subsumption has nothing to do with the subsumption check mentioned earlier.
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example, we will use the type of the root node as a the cat-index.
The passive edge

ep = h011; t! : : :i

will be inserted under the index (t; 2) because it has cat-index t on the LHS and
starts at string position 2 (the rule graph on the RHS is not important here,
hence the ': : :'). (The problem that ep should also be accessible via t1 because t1
is subsumed by t will be discussed in the next subsection.)

On the other hand, the active edge

ea = h100;
r

t - Æ
��
.. Æ
��
t1- i

is inserted under the indices (t1; 2) and (t1; 3), because a t1 may be found at
position 2 or 3 (if we ignore empty categories for now). Note that the �rst string
position belongs to the �rst node. If the edge in the rule graph of ea was an i-edge,
then (t1; 2) would be the only index because due to the immediate precedence
constraint it must occur at string position 2 and not later.

Retrieving all Candidates For Completion

At some point, the parsing algorithm wants to perform all possible completions
of a newly created edge e with all edges in the chart. The chart determines all
those candidates for completion as follows:

Suppose e is passive. Roughly speaking, we determine the index of e and use
this index to retrieve edges from the active chart4. With ep from the example
above, all active edges which can be found under the index (t; 2) would be se-
lected. With the assumed type hierarchy, however, we run into the problem that
a category with cat-index t might unify with categories with cat-index t1 so we
should retrieve all edges under index (t1; 2) as well. Thus, the indexing scheme
additionally provides a way to get all cat-indices for categories which might unify
with a given category. In the example, all uni�able cat-indices for t would be t
itself and t1, thus ea is (correctly) chosen as a possible candidate for completion
with ep since it is stored (among others) under index (t1; 2).

For active edges, this mechanism works analogously. In the example, ea would
consider all passive edges under the indices (t1; 2), (t1; 3), (t; 2), and (t; 3).

As demonstrated, there is, in general, more than one list that must be searched
through. To access all those lists uniformly, the chart is able to create an iterator
object (cf. Gamma, Helm, Johnson & Vlissides 1995) for an edge e. Dereferencing
this iterator object subsequently yields all those edges which are candidates for
completion with e. Additionally, the iterator is implemented such that no two
edges are tried to be completed more than once.

4The index is thus used both for storing and for retrieving.
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procedure process(A: Agenda)
1 last successful := nil;
2 (e; it) := dequeue(A);
3 while e 6= last successful do
4 while it can be dereferenced do
5 c := deref(it);
6 if e and c can be completed do
7 last successful := e;
8 ec := complete(e,c);
9 add ec to the chart and to A
10 endif
11 endwhile
12 enqueue(A,(e,it));
13 (e; it) := dequeue(A);
14 endwhile

Figure 4.4: Pseudocode for processing the agenda, initialised after lexical lookup.

4.4 Control

As in classical chart parsing, LieSL uses an agenda, i.e., a queue, which keeps
track of new edges that were inserted into the chart. An agenda entry is a pair
consisting of an edge and the iterator of that edge (see section 4.3). When arriving
at string position i, where lexical item w is found, new edges are created which
have an empty rule graph on the RHS and category C on the LHS if C ! w is a
lexical entry (see section 3.2.4). All those edges are then stored in the chart and
enqueued into an empty agenda together with their associated chart iterators,
i.e., the iterators over all possible candidates for completion (see Fig. 4.5 for the
pseudocode of the top level loop which is modi�cation of Fig. 3.4). After this
lexical lookup step, the agenda is processed as follows:

Dequeue (e; it) from the agenda. While there are candidates for completion
with e in the chart, perform completion with those. In other words, while it can
be dereferenced, try to perform completion with those dereferenced entries. If
such a completion successfully yields a new edge, insert it into the chart and into
the agenda. Finally, add (e; it) to the agenda again. If a complete pass through
the agenda is made without one successful completion, we are done at this string
position. See Fig. 4.4 for the pseudocode of this loop.
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procedure parse(x:list)
1 n := jxj;
2 initialise();
3 for i := 1 to jxj do (* Add initial edges for x[i] *)
4 � := set(n; i);
5 A := emptyAgenda();
6 (* Scanning *)
7 for all L 2 lex entries(x[i]) do
8 e := h�; (u! (;; ;; ;); fu 7! Lg; ;); ;; �ni);
9 add e to chart
10 insert e into A (* together with e's chart iterator *)
11 endfor
12 process(A); (* do all possible completions *)
13 endfor

14 if there is h~1; (v ! R; �; I); ;; �i with �(v) = S then
15 accept; (* If S spans the whole string ) accept *)
16 else reject;

Figure 4.5: Top level loop of the parser with an agenda

4.5 LieSL in Practice

In this section, I will �rst investigate what role the theoretical predictions in
chapter 3 about parseability of LSL grammars (in particular about parseability
in polynomial time) play in practice. Secondly, I will present a linguistically
motivated grammar which uses ConTroll-style typed feature structures.

Practical E�ects of LP Constraints

To investigate what e�ects the di�erent LP constraints have on the parsing times,
I used variations of the simple grammar (using atomic categories):

A ! AA;'

A ! a

In particular, (almost) all possible kinds of LP constraints were substituted for '
and LieSL was run on the inputs a5; a6; : : : up to a20. Since atomic categories are
implemented using a stringpool, copying and \unifying" those categories amounts
just to pointer copying, and pointer comparison, respectively. Thus, the opera-
tions on categories themselves are kept to a minimum5.

5Pro�ling proved that point. On the other hand, most of the overall time when parsing with
�rst order categories was needed for copying, subsumption, and uni�cation (in that order).
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See Table 4.1 for the test results. There is one column for each data set. The
column headers indicate which isolation (NI: no isolation, RI: right isol., i.e., only
nonterminals on RHS isolated, LI: left isol., i.e., only LHS isolated) and prece-
dence (NP: no precedence, WP: Weak prec., IP: Immediate prec.) constraints
were attached to the �rst rule in the grammar above. For instance, LI/WP cor-
responds to the rule A! A1A2; hAi; A1 < A2. Each row shows the parsing times
for some input length (which, in turn, is indicated in the �rst column), the times
themselves are given in seconds6. Under the time the size of the chart is indicated
as (# of active edges, # of passive edges).

Note that the the �rst four data sets are e�ectively LSL encodings of context-
free grammars. In fact, the charts built in those four runs are all the same. The
�rst three of them have merely the same runtimes due to the fact that immediate
precedence narrows down the number of possible completion candidates more
than weak precedence (see section 4.3).

Considering this and the fact that both data sets which do not involve any
isolation (either directly or indirectly) are much slower than the others, implies
that the theoretical predictions are borne out (in this case). Furthermore, im-
mediate precedence is an important factor. Note that isolation and immediate
precedence are more closely related than isolation and weak precedence because
if the RHS of every rule is a single \immediate precedence chain", this implies
that the LHS is isolated.

Overall, parsing times decrease as the data sets get more \restrictive". This
observation can also be interpreted to show that weak precedence also inuences
the runtime for the better which is what one might have expected. As one can see
from the chart sizes, weak precedence only reduces the number of active edges,
but there is still a substantial di�erence particularly between NI/WP and NI/NP
or RI/WP and WI/NP.

A Small Grammar For German

The grammar discussed in this section was written by Frank Richter (cf. Richter
& Suhre 1999). It demonstrates the possible usage of LieSL in a linguistic en-
vironment. In particular, it captures the e�ect of freer word order in German
sentences using ConTroll-style typed feature structures as categories. In Fig. 4.6,
a rule of the grammar is shown (see section A for the complete grammar). It is
important to note that complete freedom of word order (including discontinuities)
is never allowed, i.e., a lot of isolation and precedence constraints are used.

The parsing times for all the sentences generated by the grammar, e.g., \dass
der Mann das Buch dem Kind gibt", are all around 0.6s. Considering the fact
that the structures built during a parse are quite large, this is acceptable.

6As measured on a SUN SPARC Ultra Enterprise 450 with two 250 MHz Ultra II SPARC
CPUs and 512 MB of main memory running under SunOS 5.6.
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n Data Sets
(ordered by increasing runtimes in secs)

RI/IP LI/IP NI/IP LI/WP LI/NP RI/WP RI/NP NI/WP NI/NP

5 0.01 0.01 0.01 0.01 0.02 0.01 0.02 0.01 0.05
(11,15) (32,15) (11,30) (32,30) (16,31) (64,31)

6 0.01 0.01 0.01 0.01 0.03 0.02 0.05 0.03 0.17
(16,21) (44,21) (16,56) (44,56) (32,63) (128,63)

7 0.02 0.01 0.01 0.01 0.04 0.03 0.09 0.07 0.61
(22,28) (58,28) (22,98) (58,98) (64,127) (256,127)

8 0.02 0.03 0.02 0.02 0.07 0.04 0.16 0.17 2.39
(29,36) (74,36) (29,162) (74,162) (128,255) (512,255)

9 0.03 0.03 0.03 0.03 0.09 0.07 0.25 0.48 11.08
(37,45) (92,45) (37,255) (92,255) (256,511) (1024,511)

10 0.04 0.04 0.04 0.05 0.15 0.12 0.46 1.57 55.81
(46, 55) (112,55) (46,385) (112,385) (512,1023) (2048,1023)

11 0.04 0.04 0.04 0.06 0.21 0.17 0.74 5.89 310.66
(56,66) (134,66) (56,561) (134,561) (1024,2047) (4096,2047)

12 0.06 0.06 0.06 0.08 0.27 0.27 1.19 24.62 1899.400
(67,78) (158,78) (67,793) (158,793) (2048,4095) (8192,4095)

13 0.07 0.08 0.08 0.10 0.37 0.42 1.84 115.12 11675.00
(79,91) (184,91) (79,1092) (184,1092) (4096,8191) (16384,8191)

14 0.09 0.08 0.09 0.13 0.48 0.62 2.84 542.25
(92,105) (212,105) (92,1470) (212,1470) (8192,16383)

15 0.12 0.11 0.10 0.17 0.61 0.93 4.26 2519.53
(106,120) (242,120) (106,1940) (242,1940) (16384,32767)

16 0.14 0.14 0.15 0.21 0.77 1.35 6.28 11032.61
(121,136) (274,136) (121,2516) (274,2516) (32768,65535)

17 0.18 0.16 0.16 0.25 0.94 1.96 9.16
(137,153) (308,153) (137,3213) (308,3213)

18 0.20 0.20 0.21 0.29 1.17 2.73 13.11
(154,171) (344,171) (154,4047) (344,4047)

19 0.24 0.25 0.24 0.37 1.40 3.91 18.57
(172,190) (382,190) (172,5035) (382,5035)

20 0.28 0.29 0.29 0.43 1.69 5.42 25.76
(210,401) (422,210) (191,6195) (422,6195)

Table 4.1: Parsing times and chart sizes (active,passive) for variations of the
test grammar. The charts for the �rst four data sets are all the same.
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% Rule for flat finite verb last sentences

vp( (hf_phrase, dtr1:SU, dtr2:IO, dtr3:DO, dtr4:VE, synsem:nonloc:[],

synsem:loc:cat:(head:HD,

subcat:[])) )

==>

np1( (SU, bin_phrase, synsem:(NP1,loc:cat:head:noun))),

np2( (IO, bin_phrase, synsem:(NP2,loc:cat:head:noun))),

np3( (DO, bin_phrase, synsem:(NP3,loc:cat:head:noun))),

v( (VE, word, synsem:loc:cat:((head:(HD,dsl:[]),

subcat:[(NP1),(NP2),(NP3)]))))

; np1 < v, np2 < v, np3 < v,

[np1], [np2], [np3]

.

Figure 4.6: A rule from Richter's grammar.

Unfortunately, large scale LSL grammars were not available at the time of
writing this thesis. It is thus still an open question how LieSL performs in real
linguistic applications.

However, since Richter's grammar uses quite a lot LP constraints, particularly
isolation, it is a reasonable assumption that this property will also hold for large
grammars and thus the odds are not too bad that LieSL performs reasonably
well.



Chapter 5

Conclusion

In this chapter I will summarise the basic results of this thesis and discuss some
of their consequences. After the following summary, I want to briey discuss
how the suÆcient condition for polynomial time parseability is practical from a
linguistic point of view. The last section then presents possible extensions to LSL
as proposed in G�otz & Penn (forthcoming).

5.1 Summary

In this thesis I presented the LSL grammar formalism, a natural generalisation
of context free grammars, to express natural language phenomena which involve
freer word order. The set of LSL languages is a proper superset of the context free
languages but the same decidability results hold for the two classes. However,
they di�er in their closure and complexity theoretic properties. In particular, both
the general and �xed membership problem are NP-complete for LSL grammars
whereas for CFL, the general is P-complete and the �xed is LOGCFL-complete.

I furthermore presented a generalisation of Earley's algorithm for parsing LSL
grammars. The worst case complexity of this algorithm is exponential (as could
be expected). It can be shown, however, that parsing in polynomial time can be
ensured if the grammar satis�es the condition that the yield of every recursive
nonterminal has at most a constant number of discontinuities (at most a constant
number of \blocks").

A uni�cation-based extension of this parsing algorithmwas implemented, pro-
viding atomic categories, �rst order terms, and ConTroll-style typed feature struc-
tures. Experiments with this implementation (called LieSL) showed that the the-
oretical predictions are borne out in that the more isolation there is, the shorter
the parsing times are. Furthermore, factors which were not so important in the
theroretical analysis (precedence), have a considerable inuence in practice.

A grammar using typed feature structures demonstrated how LSL can be used
for writing grammars in a linguistic framework.

84
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5.2 The Role of m-Isolation

We have seen that the condition of Corollary 10 is directly expressible in LSL.
For natural language, however, this condition is too strong. One might want to
relax the notion of isolation to something like m-isolation, meaning at most m
blocks (or, in other words, at most m � 1 discontinuities). With Proposition 27,
this is suÆcient to ensure parseability in polynomial time. I conjecture that there
is such a number for natural languages.

To see that this number might even be bigger than 2, consider the sentence:
Von dem Mann habe ich viele B�ucher gelesen, der \The Hobbit" geschrieben hat.
By the man have I many books read who \The Hobbit" written has.
\I have read many books by the man who wrote `The Hobbit'. "

Here, the discontinuous NP \Viele B�ucher von dem Mann, der `The Hobbit'
geschrieben hat" has three blocks (two discontinuities). Holan et al. (1998) argue
that a number of 5 discontinuities is certainly enough for Czech.

Including m-isolation into the parsing algorithm is straightforward and was
actually implemented in the LieSL system. How it will inuence the formal
language properties is an open question. I would suspect, however, that it does
not make a big di�erence.

Further linguistic research should be concerned about what this m might be
for di�erent languages.

5.3 Outlook

In G�otz & Penn (forthcoming), other LP constraints than isolation, weak prece-
dence, and immediate precedence are proposed. In this section, I want to present
the three most important of those and discuss them briey. These are:

1. Liberation, written as hXi(: Y ). Liberation generalises isolation in that
components of an isolated constituent are explicitly allowed to violate the
isolation constraint. The example means that \X is isolated except for a
Y it contains". \contains" here is equivalent to \derives".

2. Universal Quanti�cation (8X 2 Y:'). This kind of constraint enables for-
mulating statements like: \For all X contained in Y (for all Xs derived by
Y ), the constraint ' must hold".

3. Existential Quanti�cation (9X 2 Y:'). Similarly, this means: \There must
be an X contained in Y which satis�es '".

From a linguistic point of view, it is desirable to have such constraints. From a
processing point of view, however, it is not clear how to implement them in an
eÆcient manner: In LSL as presented in this thesis, LP constraints can be checked
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\locally" during parsing; the derivation tree, i.e., the \history", of a constituent
can be ignored to check if it is isolated, or if it (weakly or immediately) precedes
another constituent. With the constraints above, however, this is no longer the
case. Those constraints require knowledge about the complete derivation tree
of a constituent to be able to check, for example, if some other constraint holds
for all contained constituents of a certain type (as would be needed for universal
quanti�cation). Furthermore, the e�ects on the formal language and complexity
results are not at all obvious.

It will be an important topic in further research to integrate these new con-
straints into LSL and at the same time ensure eÆcient processing.
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Appendix A

An Example Grammar for LieSL

This section shows the grammar written by Frank Richter for a fragment of
German. It uses ConTroll's typed feature structures.

Sentences parseable with this grammar are (among others):

dass der mann dem kind das buch gibt

dass dem kind der mann das buch gibt

dass das buch dem kind der mann gibt

der mann gibt dem kind das buch

der mann gibt das buch dem kind

das buch gibt der mann dem kind

A.1 The Type Hierarchy

type_hierarchy

bot

sign synsem:synsem phon:list

bin_phrase dtr1:sign dtr2:sign

hf_phrase dtr1:sign dtr2:sign dtr3:sign dtr4:sign

word

synsem loc:loc nonloc:list

loc cat:cat cont:cont

cat head:head subcat:list

cont index:index

index per:num gen:gen

num

sg

pl

gen

fem

90
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masc

neut

head

marker spec:synsem

art case:case

verb

vfinal dsl:list

verb2

noun case:case

case

nom

akk

dat

string

.

A.2 The Grammar

% Grammar rules

% Rules for definite NPs

np( (bin_phrase, dtr1:ART,

dtr2:NP, synsem:nonloc:[],

synsem:loc:cat:(head:HD,

subcat:[])) )

==>

a( (ART, word, synsem:(X, loc:(cat:head:art,

cont:index:per:Num))) ),

n( (NP, word, synsem:loc:(cat:(head:(HD, noun),

subcat:[X]),

cont:index:per:Num)) )

; a << n

.

% Rule for flat finite verb last sentences

vp( (hf_phrase, dtr1:SU, dtr2:IO, dtr3:DO, dtr4:VE, synsem:nonloc:[],

synsem:loc:cat:(head:HD,

subcat:[])) )

==>

np1( (SU, bin_phrase, synsem:(NP1,loc:cat:head:noun))),

np2( (IO, bin_phrase, synsem:(NP2,loc:cat:head:noun))),

np3( (DO, bin_phrase, synsem:(NP3,loc:cat:head:noun))),

v( (VE, word, synsem:loc:cat:((head:(HD,dsl:[]),

subcat:[(NP1),(NP2),(NP3)]))))

; np1 < v,
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np2 < v,

np3 < v,

[np1],

[np2],

[np3]

.

% Rule for the dass-complementiser

s( (bin_phrase, dtr1:MA, dtr2:VP, synsem:nonloc:[],

(synsem:loc:cat:(head:HD,

subcat:SC))) )

==>

m( (MA, word, synsem:loc:cat:head:spec:SS) ),

vp( (VP, hf_phrase, (synsem:(SS, loc:cat:(head:HD,subcat:SC)))) )

; m << vp,

[vp]

.

% Rule for the complement of a V2 verb

vp( (bin_phrase,

synsem:nonloc:NL,

dtr1:V2, dtr2:VP,

synsem:loc:cat:(head:VH,

subcat:[])) )

==>

v2( (V2, word, synsem:nonloc:NL,

synsem:loc:cat:(head:(VH,verb2),

subcat:[SC])) ),

v( (VP, bin_phrase, synsem:nonloc:[],

synsem:SC) )

; v2 << v,

[v]

.

% 2 rules for the binary complement realisation of the verb trace

vp( (bin_phrase, synsem:nonloc:[],

dtr1:NP, dtr2:V,

synsem:loc:cat:(head:dsl:(X,ne_list),

subcat:[NP1])) )

==>

np( (NP, bin_phrase, synsem:(NP2,loc:cat:head:noun)) ),

v( (V, word, synsem:loc:cat:(head:dsl:X,

subcat:[(NP1),(NP2)])) )

; [np]

.
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vp( (bin_phrase, synsem:nonloc:[],

dtr1:NP, dtr2:V,

synsem:loc:cat:(head:dsl:(X,ne_list),

subcat:[])) )

==>

np( (NP, bin_phrase, synsem:(NP1,loc:cat:head:noun)) ),

v( (V, bin_phrase, synsem:loc:cat:(head:dsl:X,

subcat:[NP1])) )

; [np],

[v]

.

% Rule for topicalisation in V2 sentences

s( (bin_phrase, synsem:nonloc:[],

dtr1:NP, dtr2:VP,

synsem:loc:cat:(head:(HD,verb2),

subcat:(SC,[]))) )

==>

np( (NP, bin_phrase, synsem:loc:NLNP) ),

vp( (VP, bin_phrase, synsem:(loc:cat:(head:HD,

subcat:SC),

nonloc:[NLNP])) )

; np << vp,

[np],

[vp]

.

%% Trace, empty category

v( (word, synsem:nonloc:[], phon:[],

synsem:loc:cat:(head:dsl:SC,

subcat:(SC, [(loc:cat:head:noun),

(loc:cat:head:noun)]))) ) ==>

;

.

%% Lexicon

% Nouns

buch ---> l( (word, (synsem:loc:((cat:(head:(noun,case:CA),

subcat:[(loc:((cat:head:(art,case:CA)),

(cont:index:IN)))])),

cont:index:(IN,gen:neut))),

phon:[buch],
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synsem:nonloc:[]) ).

kind ---> l( (word, (synsem:loc:((cat:(head:(noun,case:CA),

subcat:[(loc:((cat:head:(art,case:CA)),

(cont:index:IN)))])),

cont:index:(IN,gen:neut))),

phon:[kind],

synsem:nonloc:[]) ).

mann ---> l( (word, (synsem:loc:((cat:(head:(noun,case:CA),

subcat:[(loc:((cat:head:(art,case:CA)),

(cont:index:IN)))])),

cont:index:(IN,gen:masc))),

phon:[mann],

synsem:nonloc:[]) ).

% determiner

der ---> l( (word, (synsem:loc:((cat:(head:(art, case:nom),

subcat:[])),

cont:index:(per:sg,

gen:masc))),

phon:[der],

synsem:nonloc:[]) ).

das ---> l( (word, (synsem:loc:((cat:(head:(art, case:(nom;akk)),

subcat:[])),

cont:index:(per:sg,

gen:neut))),

phon:[das],

synsem:nonloc:[]) ).

dem ---> l( (word, (synsem:loc:((cat:(head:(art, case:dat),

subcat:[])),

cont:index:(per:sg,

gen:(masc;neut)))),

phon:[dem],

synsem:nonloc:[]) ).

% verbs

% vfinal version of gibt

gibt ---> l( (word, (synsem:loc:cat:(head:dsl:[],

subcat:[(loc:cat:(head:(noun, case:nom),

subcat:[])),

(loc:cat:(head:(noun, case:dat),

subcat:[])),

(loc:cat:(head:(noun, case:akk),

subcat:[]))])),

phon:[gibt],

synsem:nonloc:[]) ).
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% verb2 versions of gibt

gibt ---> l( (word, (synsem:loc:cat:(head:verb2,

subcat:[(loc:cat:(head:dsl:[

(loc:cat:(head:(noun, case:dat),

subcat:[])),

(loc:cat:(head:(noun, case:akk),

subcat:[]))],

subcat:[]))])),

phon:[gibt],

synsem:nonloc:[(cat:(head:(noun, case:nom),

subcat:[]))]) ).

gibt ---> l( (word, (synsem:loc:cat:(head:verb2,

subcat:[(loc:cat:(head:dsl:[

(loc:cat:(head:(noun, case:nom),

subcat:[])),

(loc:cat:(head:(noun, case:dat),

subcat:[]))],

subcat:[]))])),

phon:[gibt],

synsem:nonloc:[(cat:(head:(noun, case:akk),

subcat:[]))]) ).

gibt ---> l( (word, (synsem:loc:cat:(head:verb2,

subcat:[(loc:cat:(head:dsl:[

(loc:cat:(head:(noun, case:nom),

subcat:[])),

(loc:cat:(head:(noun, case:akk),

subcat:[]))],

subcat:[]))])),

phon:[gibt],

synsem:nonloc:[(cat:(head:(noun, case:dat),

subcat:[]))]) ).

% complementiser

dass ---> l( (word, (synsem:loc:cat:((head:spec:loc:cat:(head:vfinal,

subcat:[]),

subcat:[]))),

phon:[dass],

synsem:nonloc:[])).


