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Chapter 1

Introduction

Your order is your anarchy
Psychotic Waltz

Independence limited
Freedom of choice
Choice 1s made

For you my friend
Metallica

Generally speaking, computational linguistics is concerned with the use of
computers to “understand” natural, i.e., human, languages. This thesis con-
centrates on a more concrete subtask: Given some natural language utterance,
compute the syntactic structure of this utterance, which, in turn, is related to its
semantic structure. Solving this task requires answering two questions: 1. What
does this structure look like? and 2. How can it be computed efficiently?

Context-free grammars (CFGs) have been a popular choice to tackle the first
question. The syntactic structure of a natural language utterance, i.e., a string of
words, is then regarded as being the derivation tree(s) of this string w.r.t. some
given CFG. Using context-free rules for writing grammars is also attractive from a
computational point of view because they are known to be recognisable in O(n?).
If, however, one wants to write a context-free grammar for a language with freer
word order, those rules either typically overgenerate or undergenerate, i.e., word
order is freer than in CFGs but not completely free (see section 1.1.2 for some
examples). One can use machine learning techniques to acquire syntactic roles
but the generated rules are often arbitrary with regard to semantic composition
(see also section 1.2.1).

There have been attempts to relax word order implicitly, notably ID/LP gram-
mars (cf. Gazdar, Klein, Pullum & Sag 1985), and Johnson (1985), which re-
quires total freedom of order on an ID rule. On the other hand, recognition with
CFG-like rules with no linear precedence have been shown to be AN/P-complete
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(Huynh 1983). Formalisms like Johnson (1985) that allow discontinuities in ad-
dition are, in practice, even less tractable. For a more detailed discussion see
section 1.2.2.

The Linear Specification Language (LSL) was proposed in Gotz & Penn (forth-
coming) as an extension of CFGs designed to “fill the gap”, linguistically and
computationally, between those two extremes by naturally expressing syntactic
combinations in natural languages with freer word order (see section 1.1).

In this thesis, I will investigate mainly three aspects of LSL grammars. Since
they define a class of formal languages, I will take a look at how LSL behaves in
terms of some classic questions of formal language theory (chapter 2), in partic-
ular, the Chomsky hierarchy, closure properties, and decidability. Section 2.8 is
devoted to the complexity theoretic properties of the decidable problems.

The membership (or recognition) problem is the most relevant one for practi-
cal purposes and is analysed in detail in chapter 3. A generalisation of an Earley
parser is described, extending the concepts of chart parsing in a straightforward
way. That parser is shown to need exponential time in the worst case (which is
not surprising since the membership problem is N'P-complete). However, a suffi-
cient condition for a fixed LLSL. grammar to be parseable in polynomial time can
be identified. This condition can be stated more generally so as to suit applica-
tions to natural languages better. A corresponding extension to LSL is proposed
as well. The presented algorithm is not being presented as an even near-optimal
solution for practical purposes, but only to establish the theoretical result.

In chapter 4, I will describe a C4++ implementation of the parsing algorithm.
It will be particularly concerned with issues which are not of interest from a
theoretical point of view, but do play a crucial role for a practical system.

Chapter 5 contains a summary, a short discussion about what role the theo-
retical results play in practice, and an outlook on extensions of LSL.

In the next section, I will informally describe what an LSL grammar looks
like and how strings can be derived by it. For a more formal account, see chapter
2.

1.1 The Linear Specification Language LSL

LSL grammars are a generalisation of context-free grammars in that they allow
arbitrary partial orders and discontinuities on the right hand side of a grammar
rule.

Throughout this thesis, I will consider an idealisation of the formalism pro-
posed in Gotz & Penn (forthcoming). In chapter 5, I will briefly present important
additional parts of this original proposal. Aldag (1998) gives a formal semantics
of LSL in the context of a typed feature logic (cf. King 1994).
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1.1.1 Introduction to the Formalism

An LSL grammar G consists of a set of nonterminals N, a set of terminals T,
a set of LSL rules P, a set of lexical entries L, and a start symbol S (G =
(N,T,P,L,S)).

A lexical entry is a pair Y — a where Y € N and a € T'. Keeping the lexical
entries separate from the rules is realistic, because in linguistic applications, this
distinction is often made, too.

Informally, an LSL rule consists of two parts, a two-place relation between a
nonterminal and a set of nonterminals (called immediate dominance), and some
linear precedence constraints (LP constraints) between those nonterminals. For
instance

S — ABCD; (1.1)
A< B,B < C,(A)

S, A, B, C, and D are nonterminals. The terms after the semicolon make state-
ments about the ordering and discontinuity of the nonterminals on the right hand
side (RHS) and left hand side (LHS) of the rule, or rather the terminal string (or
terminal yield) derived from those nonterminals. They define relations between
occurrences of nonterminals on the RHS of the rule, rather than nonterminals
as such. If the same nonterminal occurs more than once, I will use indices to
distinguish these occurrences. There are three kinds of LLP constraints:

1. (Weak) precedence (written as A < B): The terminal yield of A is com-
pletely to the left of the terminal yield of B.

2. Immediate precedence (A <« B): The rightmost terminal derived from A
stands immediately to the left of the leftmost terminal derived from B.

3. Isolation ({A)): The terminal yield of A is continuous (has no discontinu-
ities). It is also possible to isolate the LHS of a rule which means that
the terminal yield derived by a nonterminal expanded by that rule must be
continuous.

If no LP constraints are imposed (denoted by “c” after the semicolon), the rule
allows any arbitrary ordering of A, B, C, and D and discontinuities.

So suppose, the terminal yield of A is aa, that of B is bb, that of C' is ¢, and
that of D is dd. If the rule had no LP constraints, all permutations of aabbcdd
would be licensed by the rule.

For a terminal string to be grammatical according to rule 1.1, it must hold
that

1. The rightmost a must occur somewhere to the left of the leftmost b.

2. The rightmost b must occur immediately to the left of c.
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S — NP VP . NP « VP.
VP —» NP, NP, V ; NP; <V, NPy<V

<NP1>7 <NP2>
V =  gibt.

Figure 1.1: LSL grammar for a German subordinate clause. For simplicity, it is
assumed that “Fabian”, “der Lisa”, and “die Principia Mathematica” are NPs.
The VP rule allows arbitrary ordering of the two objects of the verb.

3. The two a’s must be continuous (next to each other).

These three conditions hold for the following terminal strings (there are still
more): aabbedd, aadbdbe, aadbbed, daabbed, aadbdbe. Note that D is not con-
strained in any way. On the other hand, one condition is violated in each of the
following cases:

e adabbed (A is not isolated)
e aadbbdc (B does not immediately precede (')

e bddbcaa (A does not precede B)

In what follows, I will use the term derivation tree (or parse tree) to refer
to the tree expressing only the ID relations, i.e., two derivation trees which use
exactly the same rules (but maybe have different word orders) are considered to
be the same. In this sense, the derivation trees of all the strings generated by
rule 1.1 are considered to be the same.

1.1.2 Examples

Let us now turn to more linguistically motivated examples from German which
demonstrate what the term freer word order means in the context of natural
language.

Subordinate Clauses

The LSL grammar in Fig. 1.1 generates the two subordinate clauses “(daf)
Fabian der Lisa die Principia Mathematica gibt” and “(daf) Fabian die Principia
Mathematica der Lisa gibt”. The derivation trees for these two sentences are the
same (see Fig. 1.2). Note how the VP rule allows for two orderings of the objects
of the verb.
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N‘P VP
i /\\
NP NP \%

der Lisa diePrincipia Mathematica gibt

Figure 1.2: Derivation tree for “(dafl) Fabian der Lisa die Principia Mathemat-
ica gibt” and “(daf8) Fabian die Principia Mathematica der Lisa gibt”.

S — NPVP ; ¢

NP —» DN . DN

N — NCP ; N < CP, (CP)
D — der

N — Mann

VP —  stirbt

Figure 1.3: LSL grammar for extraposition. For simplicity, it is assumed that
“der zogert” is a CP.

Extraposition

Consider the LSL grammar in Fig. 1.3 capturing extraposition phenomena.

This grammar derives the grammatical German sentences “Der Mann, der
zogert, stirbt”, “Der Mann stirbt, der zogert” and “Stirbt der Mann, der zogert”
which all have the same derivation tree (see Fig. 1.4). Note, in particular, that
the NP “der Mann, der zoegert” has a discontinuity in the two latter sentences.

On the other hand, the string “der stirbt Mann der zogert” is ruled out because
“der” is required to immediately precede “Mann”, i.e., nothing is allowed to occur
in between them.

1.1.3 Encoding CFGs as LSL Grammars

It is possible to express CFGs in LSL. Consider the simple context-free rule
S — ABC. In LSL terminology, this rule expresses the following:

1. An S consists of (immediately dominates) an A, a B, and a C.
2. A (immediately) precedes B, and B (immediately) precedes C.

3. A, B, and C are isolated.
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b

NP
AN
N
N\
D N cp VP
Der Mann der zbgert stirbt

Figure 1.4: Derwation tree of “Der Mann, der zogert, stirbt”, “Der Mann stirbt,
der zogert”, and “Stirbt der Mann, der zogert”. The three sentences only differ
w.r.t. word order but are all generated with the same rules.

4. S is isolated.

There are a couple of different ways to express these constraints. What they
all have in common is the immediate dominance part, which looks just like the
context-free rule: S — ABC;¢. And here are some possibilities for ¢ (the LP
constraints):

1. A< B,B < C,(S),(A),(B),(C)
2. A< B,B < C,(S)

3. AKX B,B<kC,(A),(B),(C)

4. AK B,B < C,(S)

Note that (1) and (2) are equivalent in that the isolation of the ordered A, B, and
C is implied by the isolation of the LHS (but not the converse). If the isolation
of S is left out, i.e., A < B, B < C,{A),(B),(C), this does not imply (2), since
there could be a “hole” between the A and B, or B and C', respectively.

1.2 Motivation

The reader might ask at this point: “Why add another beast to the formal
language zoo?”. To answer this question, I will first briefly discuss why CFGs (one
of the best known and understood grammar formalisms) are inappropriate for
describing freer word order phenomena. Secondly, I will describe some alternative
approaches to freer word order and show their weaknesses.
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1.2.1 Why not CFGs?

There are mainly two reasons why CFGs cannot be used sensibly for describing
languages with freer word order.

Expressive Power

It has often been argued that the context-free languages (C'F'L) are simply to
weak to describe some “non context-free” phenomena in natural languages like
cross-serial dependencies (cf. Shieber 1985) or copying (cf. Radzinski 1990).
Furthermore, a CFG for a language with freer word order must have a single rule
for every possible word ordering. Since word order is not completely free (thus the
term freer word order), these rules typically either overgenerate or undergenerate
severely. This is a fact that is not acceptable.

Parsing and Semantics

The ultimate goal of parsing an expression in natural language is not only to find
out if it is licensed by a specified grammar, which is a simple yes/no question,
but to somehow create the semantics of this expression. This is crucial for appli-
cations using Natural Language Processing techniques like machine translation
or database querying. The semantics' of a natural language utterance can be
computed from its derivation tree.

For expository purposes, I will use some kind of A-terms as semantics. For in-
stance, the German word “gibt” might have a semantics like AzAyAz.gives(z,y, z).
This semantics is stored somewhere in the lexicon. Consider the German sub-
ordinate clause “(dafl) Fabian der Lisa die Principia Mathematica gibt”. The
derivation tree of this sentence w.r.t. the grammar in Fig. 1.1 is shown in Fig.
1.2.

Assume that the semantics of “Fabian” is the constant “fab:i”, that of “der
Lisa” is “lisa”, and that of “die Principia Mathematica” is “principia”, respec-
tively. Then the semantics of the sentence is computed by functional application
in such a way that every inner node is assigned a A-term as follows: the semantics
of VP is the semantics of the V node successively applied to the semantics of the
two NP nodes (the two objects of the verb) in the order from right to left:

(AzAyAz.gives(z,y, z))(principia)(lisa)
= AyAz.gives(z,y, principia)(lisa)

= Az.gives(z,lisa, principia)
The semantics of the S node can be computed analogously:

(Az.gives(z, lisa, principia))( fabt) = gives( fabi,lisa, principia),

1The term “semantics” should be understood as precise, detailed semantic representation
rather than a vague conception of meaning such as keyword-occurrences.
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which is the semantics of the sentence. Now note that this semantics is the same
for a variation of this sentence, e.g., “(daf) Fabian die Principia Mathematica der
Lisa gibt”. The VP rule of the grammar in Fig. 1.1 allows both orders mentioned
above. Hence, the two sentences have the same derivation trees.

If, on the other hand, one assumes that “(dafl) Fabian der Lisa die Principia
Mathematica gibt” and “(daf) Fabian die Principia Mathematica der Lisa gibt”
have different derivation trees, the rules for the semantics composition cannot be
applied straightforwardly. One would then be forced to transform one tree into
the other? to compute the semantics. This situation would certainly arise if one
used a context-free grammar which has a different rule for every possible word
ordering. With an adequate LSL grammar, on the other hand, it is possible for
the derivation trees of all those sentences to be the same and that their respective
word orders satisfy the LP constraints of that grammar. Then, the semantics can
be computed uniformly.

1.2.2 Previous Work

This section will briefly cover a selection of previous work on formalisms (mostly
extensions of CFGs) to handle natural languages with freer word order.

ID/LP Grammars

In Gazdar et al. (1985), ID/LP grammars were introduced. These kind of gram-
mars has two kinds of rules: Immediate dominance (ID) and linear precedence
(LP) rules. ID rules have the form Xy — X;,..., X,,, which is supposed to mean
“Xy immediately dominates X; to X,,”. No statement, however, is made as to
what the linear order of the X; is. LP rules are pairs of nonterminals like A < B
saying “If A and B are sisters, i.e., if they occur both on the RHS of a rule,
then A has to precede B”. These LP statements are not attached to an ID rule
as in LSL, but are valid “globally”. Furthermore, discontinuity is not allowed,
or in LSL terminology: every nonterminal is isolated. It is easy to see that for
every ID/LP grammar one can construct an equivalent CFG. This is done by
computing every permutation of the RHS of an ID rule which satisfies all the LP
rules. The lack of the possibility to specify discontinuity, however, makes it hard
to write ID/LP grammars for languages with freer word order.

An important formal difference between ID/LP and LSL grammars is that
LP constraints are attached to a particular rule in LSL, thus define relations
between occurrences of nonterminals of that particular rule, whereas in ID/LP,
they define relations between nonterminals as such. It is thus not possible to
directly specify an LP rule like X < X3. In LSL, however, one can easily specify
aruleY — X1 X5, X; < Xo.

?In some (pure) linguistic theories this is actually done.
3What should that mean, anyway?
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UCFGs

Unordered context-free grammars (UCFGs), also called commutative context-
free grammars, are a special case of ID/LP grammars in that there are only
ID rules and no LP rules, i.e., there are no ordering constraints. Still, strings
derived by a nonterminal are continuous. In Huynh (1983) and Barton, Berwick
& Ristad (1987), it was shown that the general membership problem for UCFGs
is N'P-complete.

Johnson’s Extension of DCGs

In Johnson (1985), a natural extension of definite clause grammars (DCGs) was
proposed for parsing “non-configurational languages”, i.e., languages with com-
pletely free word order. DCGs (cf. Gazdar & Mellish 1989) are generalised
context-free grammars in that nonterminals are first order terms and that a rule
can also have procedural attachments. They are strongly connected to the Prolog
programming language, which allows direct parsing of DCGs using the built-in
depth-first search strategy. For instance, one can write the following DCG rule:

np —-> det, n.

This clause plays the role of a context-free rule, expressing the fact that an np
consists of a determiner and a noun. Internally, the Prolog compiler translates
this DCG rule into the following clause:

np(X,Y) :- det(X,Z), n(Z,Y).

The two added arguments represent string positions. This clause now means: “To
find an np from position X to Y, we have to find a det from X to some position Z,
and an n from this Z to Y”.

Generalising DCGs to languages with discontinuous constituents makes it
impossible to take just two integers as string positions. Rather, we use just
one extra argument instead of two which contains the so called location of the
nonterminal, indicating which string positions belong to the constituent to be
parsed. This location is implemented as a bit pattern (bit vector) (see also section
3.2.1). All locations on the RHS of a rule may be combined to yield the location
of the LHS, i.e., the bit patterns are ORed bitwise. This is done by the three
place predicate combines. So, the example from above would be rewritten as

np(L) :- det(L1l), n(L2), combines(L1,L2,L).

where L, L1, and L2 are bit patterns, implemented as e.g. lists.

Writing a grammar in this fashion, it is easy to construct a parser. One can
either use Prolog’s built-in strategy or any other strategy for processing Prolog
programs, e.g., Earley Deduction. No specialised parser needs to be written.
Furthermore, one can modify the definition of combines so as to suit other needs.
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For instance, it is very straightforward to implement a predicate that checks if
two bit patterns precede or immediately precede each other. Hence, one can
simulate LSL with such predicates.

However, Johnson’s framework does not have any notion of derivation nor any
formal backbone. It describes how a parser might be implemented using Prolog
as the programming language, no more and no less*.

Generalisations of Known Parsing Algorithms

In Reape (1991), some common parsing algorithms are generalised for the pars-
ing of so called permutation complete languages®. A language L is permutation
complete if w € L implies that every permutation of w is also in L.

Starting with simple parsing algorithms, like top-down, left corner, and shift
reduce parsers, chart parsers like CYK which use codes (another word for bit
patterns) are also investigated. For all generalisations, it is proven that they
have the minimality (all parses are found exactly once), soundness (a found parse
is licensed by the grammar), and completeness (if the language is decidable, all
parses are found) properties. As one can easily imagine, the complexity of all
those algorithms is exponential.

Instead of giving up here, Reape tries to analyse the complexity of languages
with a “nonconcatenative” nature, i.e., where the string of a mother might be
created in a more complicated way than being simply the concatenation of the
strings of the daughters. He therefore uses the linear context-free rewriting sys-
tems (LCFRS) of Vijay-Shanker, Weir & Joshi (1987). It turns out that the
complexity then depends on what these “string combining” operators look like.
If the operator is a function, e.g., append in the context-free case, we have polyno-
mial complexity. If this operator, on the other hand, is relational, i.e., may have
several solutions, it seems® that this makes the problem NP-complete. An ex-
ample of such a relational operator is shuffle, which “nondeterministically” mixes
two lists.

Since LSL languages are not permutation complete in the general case, the
results of Reape (1991) are of restricted value to us. Furthermore, trying to
define operators to embed LSL into the mentioned LCFRS does not work in a
straightforward way because it is not enough to order the string of a mother
satisfying some LP constraints and then forget about those constraints for a
reason described in section 2.2.

*To see how Johnson’s framework can be described more formally, see section 3.4.
% Johnson (1985) does also but his framework does not rely on this property.
6Reape does not give formal proof for this, in fact he uses the word “seems” himself.
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Dependency Grammars

In Holan, Kubon & Platek (1995), non-projective context-free dependency gram-
mars (NCFDGs) are introduced. Generally, dependency grammars are quite
popular for Slavic languages which have a high degree of freedom of word order.
NCFDGs have rules of the form A —; BC or A —p BC which mean that a sen-
tential form like ajas AB1Bs can be rewritten as a; BasCpB18s or ayas BB1C B,
respectively, i.e., the left (right) nonterminal on the RHS can be inserted some-
where to the left (right) of the rewritten nonterminal.

NCFDGs have a notion of discontinuity but a different notion of precedence
than LSL. This is because a rule A —; BC does not imply that B (weakly)
precedes C' (in LSL terminology) since with the rule C' — DE, the derivation
A = BC = DBE is possible. There is also no notion of immediate prece-
dence or isolation, it is thus impossible to enforce context-freeness for some parts
of the grammar which is no problem with LSL. Holan, Kubon, Oliva & Platek
(1998) proposes an enhancement of NCFDGs (the free order dependency gram-
mars (FODGs) introduced herein are basically equivalent to NCFDGs) by in-
troducing rules of the form A —% BC (X € {L,R}) which means that A is
isolated, i.e., A has 0 discontinuities. (Note that the isolation constraint can only
be attached to the LHS of a rule whereas in LS., any nonterminal on the RHS
can be isolated.)

Another important notion of NCFDGs and linguistic dependency theory in
general is the dependency tree of a string which is rather different from a deriva-
tion tree of CFGs or LSL.

Overall, dependency theory is a very different approach to natural language
than the kind of theories LSL builds upon.

Other Extensions of CFGs

The formal language literature is full of extensions of CFGs, which have emerged
from different needs and motivations. For instance, Dassow & Paun (1989) is
particularly concerned with adding context-sensitive features to a context-free
backbone. Examples for such extensions are indexed, matrix, programmed, and
random context grammars. However, none of those formalisms has either a notion
of discontinuity nor partial ordering of a RHS - notions likely to be needed for
natural languages with freer word order.



Chapter 2

Formal Language and
Complexity Aspects

In this chapter, I will formally define LSL grammars and investigate some of
the classic questions in formal language and complexity theory. In particular, I
will be concerned with the Chomsky hierarchy, closure properties, decidability,
and the complexity of some of the decidable problems. Although LSL languages
might seem close to the context-free languages (C'F'L), not all results of C'F'Ls
do hold for them.

Apart from the academic interest in formal language properties of LSL (since it
is, after all, a class of formal languages), there is another, maybe more interesting
aspect of this chapter. If it turns out that LSL is a (more or less) adequate
formalism to express natural language, one might get some insights into the
properties of natural languages themselves.

Note: In a lot of the definitions, I use statements like “If z € A then y € B”
to describe how to construct a set B, when a set A is given. To prevent B
from containing any “junk” which is allowed due to the implicational form of the
statement (What happens if z ¢ A?), this is always intended to mean “Let B be
the smallest set such that: If z € A, then y € B”.

2.1 LSL Grammars

In CFGs, the right hand side (RHS) of a context-free production A — BCD
implies that the yields of B, C'; and D occur in the input string in this order
and that they are adjacent to each other. In LSL, that is no longer the case.
We can have arbitrary partial orders on the RHS and must distinguish between
a weak notion of order (precedence) and a strong one (immediate precedence).
Precedence is, in some sense, weaker then immediate precedence because: If A
immediately precedes B then A precedes B, but not necessarily the converse. In
other words, immediate precedence implies weak precedence.

15
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Thus, RHSs of LSL productions are represented as directed acyclic graphs
(DAGs). There are two kinds of edges in such graphs: i-edges indicate obligatory
immediate precedence, p-edges indicate obligatory precedence which may or may
not be immediate. Lack of an edge indicates that precedence of any kind is not
obligatory, but not that it is prohibited. I will call such a graph an IP-graph.

[ assume an infinite, enumerable set Node.

Definition 1 (IP-Graph) A tuple (V, Ep, E;) is an IP-graph, where V' C Node
1s the finite set of nodes, Ep, E; C V X V are the disjoint sets of p-edges and
i-edges, and (V,Ep U E}) is a DAG.

Let IG be the set of all IP-graphs over Node. As for general graphs, one
can define the notion of a path for IP-graphs as well. It is useful to distinguish
between two different kinds of paths.

Definition 2 Let R = (V, Ep, Ey) be an IP-graph. A sequence vy ...v, € V* is
a

e Pathin R if for alli=1,...,n—1: (v;,v;11) € Ep U E.
o [-Path in R if for alli=1,...,n—1: (v;,v;41) € EJ.

Every i-path is also a path, but not necessary conversely. I will write v & v,

v ”I‘%’i v', to express that there is a path, or an i-path from v to v' in R, respectively.
Later, I will also need the following notions of start nodes and end nodes of
an [P-graph.

Definition 3 Let R = (V,Ep, E;) € IG. Define
o start(R) := {v € V|-3Ju: (u,v) € Ep U E}
o end(R) :={veV|-3Ju: (v,u) € EpUE;}

Since IP-graphs do not have cycles, these two sets are empty iff the IP-graph
itself is empty.

Given an [P-graph, one can, analogously to DAGs, define the notion of a
topological sort. This sorting can be seen as embedding the partial order given
by the DAG into a total order. Since i-edges represent immediate precedence, we
should, additionally, ensure that nodes connected by i-edges are adjacent to each
other in this topological sort.

Definition 4 Let R = ({v1,...,v.}, Ep, Ey) be an IP-graph. A topological sort
of R is a bijective function o : {1,...,n} = {v1,...,v,} such that:

1. If (vi,v;) € Ep, then o (v;) < o (v;).

2. If (v;,v) € Ef, then ail(vi) = g*l(@j) 1.
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Figure 2.1: An IP-graph which has indegree and outdegree < 1 w.r.t. Ey, but is
not topologically sortable. P-edges are drawn as single, i-edges as double arrows.

The sequence o(1)...0(n) is called the topological ordering of R w.r.t. o.

Although o is only defined by its inverse, it is well defined because ¢ is a bijection
and, thus, has a unique inverse o 1.

Not all IP-graphs have such a topological ordering. However, for the IP-
graphs to represent the partial orders of the RHSs of LSL productions, they must

be topologically sortable.

Definition 5 (Rule Graph) An IP-graph is called o rule graph iff it has a
topological ordering.

Let RG C IG be the set of all rule graphs.
One can identify a necessary condition for an IP graph to be topologically
sortable.

Proposition 1 Let R = (V,Ep,E;) € IG. If R € RG, then every v € V has
indegree and outdegree < 1 w.r.t. Ej.

Proof:
Let o be a topological sort of R. Now assume that the outdegree of V' w.r.t.
to E; is > 2, thus there are different v,v;,v5 € V such that (v,v1) € E; and
(v,v2) € E;. Since o is a bijection, o' (v;) # o7 (v2). But it must hold that
o' (v) =07 (v1) =1 and 07 (v) = 07 (v2) — 1, thus 07! (v;) = 07 '(v2), which
is a contradiction.

The proof for the indegree follows from symmetry.

By contraposition, we have the following corollary:

Corollary 1 Let R = (V,Ep,E;) € IG. If there is a v € V which has indegree
and outdegree > 2 w.r.t. Er, then R does not have a topological ordering.

The condition of Proposition 1 is only necessary, not sufficient, i.e., there are
[P-graphs with indegree and outdegree < 1 w.r.t. Ej which are, however, not
topologically sortable. For instance, consider Fig. 2.1.

If a rule graph has a topological ordering, it can be computed in polynomial
time (just as for ordinary DAGs).
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Proposition 2 There is a function topsort : IG — Node" which computes a
topological ordering of an IP-graph in polynomial time if there is one.

Proof:

Let R = (V, Ep, Er). We can assume that the indegree and outdegree of R w. r.
t. Eris < 1. Otherwise, R does not have a topological ordering (cf. Corollary
1). Furthermore, w.l.o.g. we can assume that no two nodes which are connected
by an i-path also have a p-edge between them.

It was shown in, e.g., Cormen, Leiserson & Rivest (1990) that topologically
sorting a DAG (N, E) can be done by performing a depth first search which takes
time O(|N|+ |E]). Sorting (V, Ep U Ey) with this method makes condition 1 of
Definition 4 true, but condition 2 may still be false. To get this right, one can
simply consider all maximal chains in F; as atomic nodes because for all possible
topological orderings, the order of such a chain is the same. These maximal
chains can be computed by the function maxichains:

function maxichains((V, Ep, Ef) : IG): P(V™");
S = {;
for all v € V such that there is no y s.t. (y,v) € Er do
a = v
u = v;
while 3z : (u,z) € Ef do
a = az; (* concatenate o and z *)
u = x;
endwhile
S = SU{a}l;
endfor
return S;

maxichains first examines each node (takes time O(|V|)), checks if it is a start
node w.r.t. E; (takes time O(|E;|)), and then follows the i-chain, if any. Note
that by Corollary 1, this i-chain is unique if there exists a topological ordering,
and thus, following it takes time O(|E;|). The overall runtime is thus O(|V|| E;[|*),
a polynomial.

We can now construct the graph

D = (maxichains(R), Ep)
Ep = {(vi...v,,u1...u,)| therearet € {1,...,n},j€{l,...,m}
such that (v;,u;) € Ep}

In D, all (maximal) chains in Ej are treated as a single node. Creating D can
also be done in polynomial time. If D has a cycle, R has no topological ordering
and we fail (cyclicity can be tested in polynomial time). (Due to our assumption
above, D cannot introduce loops, i.e., edges of the form (v,v).)



2.1. LSL GRAMMARS 19

Sorting this graph topologically yields a sequence of nodes of D which is also
a sequence of nodes of R, and is thus a topological ordering of R. The overall
runtime is then polynomial.
O
Having the notion of a rule graph, one can define LSL productions. Rule
graphs labelled with nonterminals are used as RHSs in an LSL production. [
assume N to be a fixed, finite set of nonterminals.

Definition 6 (LSL Production) An LSL production is of the form
(v— (V,Ep, Er),0,1)
where
o v &V is an unused symbol
e (V,Ep,E;) € RG
e 0:VU{v} >N
e ] CVU{v}

An LSL production has a partial order on the RHS, represented as a rule
graph, which is labelled with nonterminals via 6.

The edges of Ep (E; respectively) represent the < (K) relation originally
defined in the LSL formalism, see section 1.1.1. The set I plays the role of the
() relation.

As above, p-edges are drawn as single, and i-edges as double arrows. Isolated
nodes are drawn as double circles, the labels of the nodes are written within them.
For instance

s—»’@

By letting the graph on the RHS be empty (V' = (}), we have an e-production.
There can be three kinds of LP constraints on the RHS:

1. (Weak) Precedence, (z,y) € Ep: z, i.e., the terminal yield of the category
0(z), is realised to the left of y.

2. Immediate precedence, (z,y) € E;: The rightmost terminal of the yield of
x must occur immediately to the left of the leftmost terminal of y, i.e., the
yields are adjacent.

3. Isolation, z € I: z is contiguously realised. Note that also the left hand
side (LHS) of a production may be isolated.
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LSL productions are also called LSL rules. Now we are ready to define LSL
grammars.

Definition 7 (LSL Grammar) An LSL grammar is a tuple G = (N,T, P, L, S)
where N 1is the set of nonterminals, T' is the set of terminals, L C N x T is the set
of lexical entries, P is a set of LSL productions, and S € N 1is the start symbol.

Let LSLG be the set of all LSL grammars. Note that by definition, LSL
grammars are in some kind of “normal form” in that terminals do not appear in
productions other than of the form X — a. This is realistic in that grammars
used in linguistic applications are usually separated into grammar rules and the
lexicon.

From now on, I assume a fixed LSL grammar G = (N, T, P, L, S).

Next, I will define what derivations are formally and prove some properties
of this derivation relation.

2.2 Derivations

With CFGs, a derivation step works as follows: If we have a string (sentential
form) aApS where A is a nonterminal, we can choose some production A — «
out of the set of defined productions and replace A with the RHS (v) yielding
the sentential form ayf. This can be extended straightforwardly for UCFGs (cf.
section 1.2.2) in that A can also be replaced by some permutation of 7.

For LSL derivations, a similar mechanism would not work, because LP con-
straints introduced at some point in the derivation may have to be remembered
until the very end. One cannot simply order a sequence of nonterminals in a
sentential form in a way which satisfies all LP constraints currently imposed and
then forget about those constraints because, discontinuities might appear later
in the derivation.

For instance, consider the set of LSL productions S — AB;¢, A - CD;C <
D, {(C), and lexical entries C'— ¢, D — d, and B — b. This grammar can derive
the string cbd. In a “Chomsky” style sentential form, we only have two possibil-
ities of expanding S, namely AB or BA. However, the possible discontinuity of
A makes it important to somehow remember the LP constraints C < D and (C)
until the very end of the derivation.

To overcome this problem, nonterminals in a sentential form are tagged with
a finite set of integers indicating which string positions this nonterminal must
eventually derive. I will call those sets index sets. Let Fin(IN) = {M C
IN|M is finite}.

A derivation step splits the index sets among the the items on the RHS so as
to satisfy the LP constraints. When we arrive at a stage where all index sets are
singleton, we may end the derivation, apply lexical entries and in this fashion,
generate a string. I will write these two “phases” as = and ».
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I[solated nonterminals are tagged with contiguous index sets.

Definition 8 Let M € Fin(IN). M is called contiguous (written as cont(M)) iff
M =0 or for all min(M) < k < max(M), it holds that k € M.

Since the order in which the tagged nonterminals appear in a sentential form
should not matter (only the index sets determine the order in the derived terminal
string), we might use sets as containers. This would be correct for nonempty
index sets, but we might derive a nonterminal A with the empty index set at two
different points in a derivation which would only appear once in the sentential
form if we used sets. Hence, we use bags (also called “multisets”) instead.

The bags over a domain @) are written as B(Q). I use “[” and “|” as opening
and closing brackets of bags. Formally, a bag B over a domain @ is a mapping
from @Q to INy. If B(q) = 0, ¢ is not in B, and if B(q) = 4, ¢ copies of ¢ are
in B. The cardinality of a bag is defined as [B| = }_ ., B(q). The union of
two bags B, B' € B(Q) is defined such that B U B' € B(Q) and for all z € @ :
(BUB')(z) = B(z) + B'(z). The empty bag is written as [].

Here is the definition of the derivation relation =, the first phase of a deriva-
tion.

Definition 9 The derivation relation
=¢C B(N x Fin(IN)) x B(N x Fin(IV))
with respect to an LSL grammar G = (N, T, P,L,S) is defined to be such that
DU [(X,My)] = DU (X1, M1),...,(Xn, M,)]
iff
1. (v —>£{vl, oy Unt, EpyEp),0,1) € P and0(v;) = X, foralli =0,1,...,n.

=R

2. My =, M; and all M; are pairwise disjoint.
3. Foralli,j € {0,1,...,n}:
(a) If v; € I then cont(M;).

(b) Ifv; 5 v; and M; # 0 # M; then max(M;) < min(M;).

(c) If vivi, ... v v; is an i-path in R, M; # 0 # M;, and M;, = for all
g=1,...,k, then max(M;) = min(M;) — 1.

Condition 1 of the definition requires that indeed a production of G is applied.
The second condition expresses that the index set is partitioned among the non-
terminals on the RHS. Note that it is allowed that some of the M, are empty
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to enable derivations with e-productions. Finally, the index sets have to satisfy
certain conditions imposed by the LP constraints (condition 3):

(3a) If a nonterminal X is isolated, then its index set M; must be contiguous.

(3b) If a nonterminal X; tagged with index set M; precedes a nonterminal X;
tagged with M; then the biggest member of M; must be smaller than the smallest
member of M;, i.e., all terminals derived by X; occur to the left of all terminals
derived by X, provided that M; and M; are not empty.

(3c) If the rule graph has an i-path between two nodes v; and v; which have
nonempty index sets, and all nodes on this i-path have empty index sets, then
the immediate precedence relation should also hold between v; and v;. If £ =0,
there is an i-edge between v; and v;, i.e., v; immediately precedes v;.

Note that My = 0 if n = 0, i.e., if the production has an empty rule graph on
the RHS, the tagged nonterminal (X, 0) is deleted from the sentential form.

As usual, =%, denotes a derivation in exactly i steps, and =§ the reflexive
and transitive closure of =¢. When I want to express that a fixed production p
was used for a derivation step, I write =,.

For instance, the grammar G., with productions

(P1) S — ABCD ; (A),A<B,B<C

(P2) A — AA ;€

(P3) B — B|B)B; ; B| < B, B, <Bj

(P4) B — ¢ ;€

(P5) C — ' ;€

(P6) D — DD ;€
gives rise to the derivation

[(S,{1,2,3,4,5 6})]

S [(4,42)), (4, {3)), (B.{5)), (C, {6}), (D {1,4})]
= P3 [(Al7{2}>7<A,7{3}>7(B7(2))7(3, {5}) ( ) (C {6})5(D7{174})]
s (A2, (4 43), (B, 0), (B, {5}, (B',0),(C", {6}), (D, {1, 4})]
=P6 [(Al7{2})7(Ala{g})v(Blv(Z))v(B, {5})5(Bl7 ) ( ’ {6})7(D’7{1})7(D,7{4})]
ps [(A42D), (A 43)), (B0, (B {5}), (C", {6}), (D', {1}), (D', {4})
=ps [(A,{2}),(4,{3}), (B, {5}), (C",{6}), (D", {1}), (D', {4})]

Note that application of (P3) introduces two nonterminals (B’, ) which would
be “merged” if sentential forms were sets, thus the usage of bags. Those two
nonterminals are then deleted by applying (P4) twice.

The second phase of the derivation strips off the (now singleton) index sets
from the nonterminals and applies lexical entries.

Definition 10 The terminating derivation relation

>g C B(N x Fin(IV)) x T*
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with respect to G ts defined to be such that
(X1, My),...,(Xn, M) |pgw ... w,
with w; € T iff
1. [M;|=1foralli=1,...,n
2. If M; = {j}, then X, - w; € L.
Suppose G, has lexical entries

A!

— a
B — b
' = ¢
D — d

then the last sentential form from the example above derives a terminal string as
follows:

[(A5{2}), (A", {3}), (B',{5}), (C",{6}), (D', {1}), (D', {4})] pc.. daadbc

What now remains to be defined is the notion of the language generated by
an LSL grammar.

Definition 11 The language generated by an LSL grammar G = (N,T,P, L, S)
1s defined as

L(G) == {w € T*|3D € B(N x Fin(IN)) : [(S,{1,..., |w|})] =5 Dve w}.

Let LSLL be the set of all languages generated by LSL grammars.

2.2.1 A Note on Graph Grammars

Derivations of CFGs are defined as rewriting sentential forms as follows: Select a
nonterminal in a sentential form and a production which has this nonterminal on
the LHS and replace the nonterminal in the sentential form with the RHS of the
selected production. Defining derivations of LSL grammars in an analogous way
would result in some kind of graph rewriting. There is a vast amount of literature
on graph rewriting systems or graph grammars. In Nagl (1979), a very general
notion of graph grammars is introduced. Analogously to Chomsky grammars,
there are also regular, context-free and context-sensitive graph grammars. The
inclusion properties of these grammar types are, however, quite different than for
Chomsky grammars. For LSL, we would like something like context-free graph
rewriting because LHSs of LSL productions consist of only one nonterminal sym-
bol. Context-free graph grammars are, e.g., discussed in Engelfriet & Rozenberg
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(Rl) S — ABC ; AKB,BKC
(R2) B — BB ; ¢
(R3) B — ¢ ;€
(R4) B' — ¢ ;€

Figure 2.2: LSL grammar which poses a problem for graph rewriting.
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Figure 2.3: Posstble derivations with an LSL graph grammar.

(1997) (called node-replacement grammars). Intuitively, a derivation should work
as follows: We start with a graph with a single node, which is labelled with the
start symbol. A rewriting step should then remove a node which is labelled with
the same nonterminal as the LHS of some production, plug in the corresponding
RHS rule graph, and connect the rule graph to the environment of the removed
node of the original graph in a natural manner. At some point we have to convert
that graph back into a string. This should be done by “guessing” some topolog-
ical ordering of the graph yielding a sequence of nonterminals and applying a
lexical entry to each of those nonterminals. The result is then a string.

The following problem arises when one wants to define LSL derivations in
such a way. Consider the LSL grammar in Fig. 2.2 where S is the start symbol.
In Fig. 2.3 you can see two possible derivations, namely (a) =g; (b) and (a)
=p2 (c) =%, (d). In (c), the idea of how to connect the two nodes labelled with
B' with the A and C nodes is that we nondeterministically choose a (start) node
which immediately precedes A and one (end) node which immediately precedes
C. Now, whereas (b) is the desired result, (d) is not, because a further derivation
might allow terminals neither derived by A nor C to stand between them.

However, I do not claim that modifying context-free graph grammars to define
LSL derivations cannot be done but it seems that the machinery needed would
be far more complicated than the one presented in Definition 11.
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2.3 Simplifications of LSL Grammars

In this section, I will present two constructions for simplifying LSL grammars.
Special cases of these constructions are well known for CFGs. First, I will show
how to eliminate e-productions from a grammar. Secondly, an algorithm is shown
which transforms a grammar into an equivalent one which does not have unit
productions.

2.3.1 Elimination of e-Productions

[ will now show how to construct, given an arbitrary LSL grammar, an equivalent
LSL grammar without e-productions. The construction itself is quite similar to
the one presented in Hopcroft & Ullman (1979) for CFGs. Substituting ¢ for a
nonterminal on the RHS of a “Chomsky” style production is easy: Just delete
it. For LSL productions, however, this is a little bit trickier, because we have to
delete a node in a rule graph.

For this purpose, I define the function delete.

Definition 12 Define a function delete : Node x RG — RG such that
delete(v, (V, Ep, Er)) = (V', Ep, EY)

1L.veVV' =V —{v}

2. Ep—{(z,y) € Eplt=vVy=v} CEp
Er —{(z,y) € Eflr=vVy=v} C E}

3. If (z,v) € E; and (v,y) € Ej, then (z,y) € E}.

4. If (z,v) € EpU Er and (v,y) € Ep U Er (but not both (z,v) € Er and
(v,y) € Ep), then (z,y) € E'p.

For instance, consider the graph of Fig. 2.4 (a). Suppose we want to delete node
2. With condition 3, we have to connect 1 and 3 with an i-edge (Fig. 2.4 (b)).
Deleting node 3 subsequently yields Fig. 2.4 (¢) due to condition 4.

If we want to delete two nodes v; and vy from a graph, it does not matter in
which order they are deleted, in other words delete is associative.

Lemma 1 Let R = (V,Ep,E;) € RG and vi,v; € V.
delete(vy, delete(vy, R)) = delete(v;, delete(vs, R))

Proof:
Let Rl = (%,E};,E}) = delete(vl,R), ng = (‘Vm,EIl)?’E'IH) = delete(UQ,Rl),
R2 = (%, E;ZD, EIZ) = delete(UQ, R), and Rgl = (%1, E}%.l, Elm) = delete(vl, RQ) We

must now show that Ry = Ro;.
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Figure 2.4: Ezample for deleting nodes in a rule graph.

1. It obviously holds that Vis = Vo, =V — {v1,vs}.

2. Show that (z,y) € EF iff (z,y) € E%-
(=): Suppose (z,y) € E}. Then there are two cases to consider:

Case 1: (z,y) € Ep. It must be the case that vy # z # vy and vy # y # vs
which implies that (z,y) € E% since only edges adjacent to v; and v, are
affected by delete.

Case 2: (z,y) ¢ Ep. One of the following two cases must be true:
(a) (z,v1) € EpU Er and (v1,y) € Ep U Er (where at least one of those
two edges is not in Ey). Thus also (z,y) € EZ' (with Definition 12, 4).

(b) (z,v2) € Ep U E; and (vs,y) € Ep U E; (where at least one of those
two edges is not in Ey). Analogously to (a), (z,y) € E%.

(c) (z,v1),(v1,v2),(v2,y) € Ep U Er (where at least one of those edges is
not in Er). Then also (z,y) € EZ with Definition 12, 4. (Analogously
for the roles of v; and v, reversed.)

(<): Completely symmetric to (=).

3. Show that (z,y) € E}* iff (z,y) € E}":
(=): Suppose (z,y) € E7%. Then there are again two cases to consider:
Case 1: (z,y) € E;. (z,y) € E; for the same reason as above.
Case 2: (z,y) ¢ E;. Again, one of the two following cases must be true:
(a) (z,v1) € Er and (v1,y) € Er. Thus also (z,y) € E?' (with Definition
12, 3).
(b) (z,vs) € Er and (vs,y) € E;. Analogously to (a), (z,y) € E2.
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(c) (z,v1), (v1,v2),(v2,y) € E;. Then also (z,y) € E%" with Definition 12,
3. (Analogously for the roles v; and vy reversed.)

(<): Again, completely symmetric to (=).

O
With Lemma 1, delete can be extended to delete a set of nodes from a graph
in a well-defined way:

delete({vy,...,v,}, R) := delete(vy, delete(vs, ..., delete(v,, R) .. .))

If two nodes are connected by a path in a rule graph, deletion of a third node
does not influence this property.

Lemma 2 Let R = (V,Ep,E;) € RG, v € V, and R; = delete(u,R) =
(V',Ep, Ey). Let Vov£u#v €V. Then

1. v 3 iﬁvﬁiv’
2. v “’}Ei v iff v «f»ifiv’
Proof:
1. (=) Suppose, & = vv;y ... v, is a path in R.

(a) v; Zuforalli=1,...,m: Then « is also a path in R; with Definition
12, 2.

(b) v; = u for some i € {1,...,m}. Then by Definition 12, 3 and 4:
(vi—1,v41) € Ep U E}, thus v .

(<) Suppose there is no path between v and v’ in R. delete only adds an
edge between two nodes which are already connected by a path. But since
v and v’ are not, they cannot be connected in R, either.

2. (=) Suppose, a = vv; ...v,0" is an i-path in R.

(a) v; # uw for all ¢ = 1,...,m: Then « is also an i-path in R; with
Definition 12, 2.
(b) v; = uforsomei € {1,...,m}. Then by Definition 12, 3: (v;_1,v;41) €

Rg
Ej, thus v ~5; v'.
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(<) Suppose there is no i-path between v and v’ in R. delete only adds an
i-edge between two nodes which are already connected by an i-path. But
since v and v' are not, they cannot be connected in R, either.

d

The last fact we need about delete is the fact that a derivation with some

production plus a series of e-production is also possible by deleting the erased
node from that production directly.

Lemma 3 Let G be an LSL grammar. Let P 5 p = (v¢ — (V,Ep, Er),0,1)
where V. = {vy,...,v,}, n > 1, and 0(v;) = X;. Then
[(X07M0)] :>p [(XlaMl)v"'7(Xk7@)7"'a(Xn7Mn)]J
:J(E [(Xla M1)7 AR (Xk—17 Mk—l): (Xk—‘rl? Mk+l)7 Ty (Xna Mn)]

=:D’

if
[(Xo, My)] =4 D'
where p' = (vy — delete(vy, (V, Ep, Er)),0lv_fuo,3, I — {vi}).

Proof:
Let R; = delete(vy, (V, Ep, Er)) = (V', Ep, E}). In the derivation step from D to
D', the nonterminal X, was deleted by applying one or more ¢-productions.

With Lemma 2, it holds that for all v;,v; € V! C V: v; & v; iff v; & v; and
v; «gi v; iff v, «}i’li v;j. In particular, v;ov,fv; is a path (i-path) in R iff v;afv; is
a path (i-path) in Ry.

Thus, the lemma holds.

O

With Lemma 3, we can finally present the transformation of an LS grammar

into an equivalent one without e-productions.

Proposition 3 For every LSL grammar G, there is an LSL grammar G’ with
no e-productions such that L(G) — {e} = L(G").

Proof:
Let G = (N,T,P,L,S). Then construct grammar G' = (N',T, P', L, S) as fol-
lows:

1. Construct the set Ny C N (the set of nullable nonterminals, i.e., all non-
terminals which may derive the empty string) as follows: If X — ;¢ € P,
then X € N,. If there is a production X — X;...X,;¢ € P and all
X; € Ny, then X € Ny. Repeat this until no new nonterminals are added
to Ny. Then N’ := N — N,.
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2. Construct P’ as follows: If (v — (V,Ep,Er),0,1) € P where V. # 0,
then add all productions (v — R',0|y_y+,I — V*) to P', where there is
V= {vi,...,v;,} C V with m > 0, such that §(v;) € Ny, and R =
delete(V*, (V, Ep, Ey)).

[ will now prove the following claim (this proof is completely analogous to the
corresponding one in Hopcroft & Ullman (1979)).

Claim: [(A,M)]={ D iff [(A,M)] =% D and D # 0

Proof of the claim:
(<) Let [(A, M)] =% D and D # (. Induction over i:

(IB) i = 0: trivial

(IH) [(A, M)] =5 D implies [(A, M)] =& D

(IS) Let [(A, M)] =¢ [(X1, M),...,(X,, M,)] =5 D with production
(v — (V,Ep,E),0,1) € P,V = {vq,...,v,} such that 6(v;) = X;.
Write D = D, U...U D,, such that for each j: [(X;,M;)] =& D; in
fewer than ¢ steps in the derivation above. If D; # @) then by (IH) we
have [(X;, M;)] =& D;. If D; = 0 then X is nullable and M; = 0. Let
J1y -y Jm € {1,...,n} be pairwise different such that D;, # @ for all
k=1,...,m. Thus, there is a production (v — (V', E}, E}),0',I') €
P’ such that there is V* C V: (V', E}, E}) = delete(V*,(V, Ep, Ef))
such that for all j: v; € V* if M; =0 and v; € V' if M; # (. Hence,
with Lemma 3 there is a derivation

[(A’M) gel [(le’Mjl)’ SRR (Xim’M'

Im

(=) Suppose [(A, M)] =4, D. Surely D # ), since G’ has no ¢ productions.
Proof by induction over 1.

(IB) i« = 0: trivial

(TH) [(A, M)] =5 D implies [(A, M)] =& D

(IS) Let [(A, M)] = [(X1,M),...,(X,, M,)] =5 D with production
(v = (V,Ep E}),0,I') € P,V = {v],...;u.}, () = A, and
w.lo.g. 0(v)) = X;.
There must be a production p = (v — (V, Ep, Et),0,1) € P such that
thereis V* C V: (V', Ep, B}) = delete(V*, (V, Ep, Er)) (if (V, Ep, Ey) =
(V',Ep, Ey), V* is set to ). Thus with Lemma 3:

[(A’M)] =p [(Xl’Ml)a'"’(Xn’Mn)’(Yl’w)?"'a(Ysa(Z))]
=& (X1, My),... (X, M,)]

with s = |V*].
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Write D = D, U...U D, such that for all j: [(X;, M;)] =& D; by
fewer than ¢ steps in the assumed derivation above. Then by (IH):

[(X;, M;)] =¢ Dj. Thus

O

To see that the proposition holds just note that D>gw iff D>grw, because
G and G’ have exactly the same set of lexical entries.

O
As for CFGs, elimination of e-productions might add exponentially many new
productions.

2.3.2 Elimination of Unit Productions

A unit production is a production (v — (V, Ep, Et),0, 1) where |V| = 1. Asin the
previous section, the construction for eliminating unit productions is quite similar
to the one for CFGs. The idea is to construct a set U(A) for each nonterminal A
which contains all nonterminals A can be replaced by, using only unit productions.
Then we add a production A — « for every B € U(A) where B — « is a
production.

In our case, we have to be a little bit careful here, because we must distinguish
two different kinds of “unit production chains”, depending on whether one unit
production in the chain has an isolation constraint attached to it. If B € U(A)
and one of the derived productions has such an isolation constraint, then for every
production B — a; ¢, we have to add A — o5 ¢, (4). The exact construction is
shown in the proof of the next proposition.

Proposition 4 Let G = (N,T, P, L,S) be an LSL grammar. Then there is an
LSL grammar G', which can be constructed in polynomial time, such that L(G) =
L(G") and G' has no unit productions.

Proof:

In some systematic fashion, we can construct all sequences

A1P1A2P2 ces Am—lpm,—lAm,

such that all A; € N are pairwise different, there are unit productions p; =
(v; = ({u;},0,0),{v; = Ay u; — A1}, L) fori = 1,...,m, and p; = 0 if
I, = 0 and p; = 1, otherwise. These sequences represent the mentioned unit
production chains. There are only polynomially many of those chains since all A;
are required to be pairwise different. During the construction of those sequences,
we can in parallel build the following sets for each A € N. If there is a sequence
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Apy...pmBthen B e U(A)iff p,=0foralli=1,...,m and B € U;(A) iff there
isan ¢ € {1,...,m} such that p; = 1. Constructing U(A) and U;(A) can be done
in polynomial time.

We can now construct the new grammar G' = (N, T, P', L, S) as follows

1. Add all non unit productions of P to P'.

2. If there is (v = (V, Ep, Ey),0,1I) € P with |[V| > 2 and 6(v) = A. then
(a) add (v = (V, Ep, Ey),0[v — B],I) to P'if B € U(A)
(b) add (v — (V, Ep, Ey),0[v — B|,I U{v}) to P"if B € U;(A)

It should be clear that G’ “simulates” all possible unit production chains and,
additionally, takes care of the isolation constraints. Furthermore, since U(A) and
U;(A) are polynomial in size, constructing G’ takes polynomial time (in the size
of G).

O

2.4 Context-Free Subsets

It is possible to construct, for a given LSL grammar G, a context-free grammar
cf(G) with L(cf(G)) C L(G). Loosely speaking, this is done by topologically

sorting the rule graph on the RHS. This grammar has a lot of useful properties.

Definition 13 Define a function cf: LSLG — CFG as follows:
cf((N,T,P,L,S))=(N,T,P',S)
if

1. If (v — (V,Ep,Er),0,1) € P then 6(v) — 0(c(1))...0(c(n)) € P" where
o:{L,...,|V|} = V is such that o(1)...0(|V]) = topsort((V, Ep, Ey)).

2. IfX 5a€Lthen X —>a€P

cf is constructed in two steps: First, all rule graphs are sorted using topsort and,
second, all lexical entries are simply added to the set of new productions.

If X — X;...X,, isa context-free production being the result of this construc-
tion, all X; are isolated and each X; immediately precedes X;,;. In particular, the
LP constraints of the original LSL production are satisfied. Thus, the following
holds:

Proposition 5 L(cf(G)) C L(G).
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Proof:
Let G = (N,T,P,L,S) be an LSL grammar. Suppose there is a derivation
S iZf(G) w = w;...w, W.lo.g we can assume that this derivation is of the

form

S = (o) in(G) (o7} :Cf(G) . :>Cf(G) o = Al . An

:>Cf(G) a1As .. A, :>Cf(G) ajasds ... A, :>Cf(G) e :>Cf(G) ay...a, =w

with a; € N*; a; € T. Let span,(j) be the set of string positions the jth non-
terminal from the left in sentential form «; derives, e.g., span,(l) = [ for all
l=1,...,n. Construct a sequence Dy, D1,...,D;, € B(N x Fin(IV)) as follows:
Ifa; = Xy ... X, then D; = [(Xy,span;(1)), ..., (Xm,span,(m))]. Thus, Dy =
[(S,{1,...,n})], Dr =[(A1,{1}),...,(An,{n})], and Dy >ga;...a, = w.
For all 2 = 1,...,k it holds by definition of span:

1.

2.

Forall I =1,...,|a;|: cont(span;(l)).

If span,(l) # 0 # span;(q) with | < ¢ < Jo4|, then max(span;(l)) <
min(span;(q)).

If span;(l) # 0 # span,(q) with l < ¢ < |ay|, and for alld =1+1,...,¢q — L
span;(d) = (), then max(span;(l)) = min(span;(q)) — 1.

It now remains to show that Dy =¢ Dj. Proof by induction over length of
this derivation .

(IB) i=0: D, is, of course, a derivation.

(H) Dy =4 D;

(IS) Let o; = X1 .. .Xj_lXij+1 .. Xg and Qi = Xl .. .Xj_lyvl .. .Y;Xﬂ_l .. )(g

be the result of applying the production p = X; — Y7 ...Y, of ¢f(G). Then
Di — [(XlaMl)a sy (Xjan)’ ceey (XsaMs)]
and
D’H—l = [(XlaMl),' ) (YVIJM{)a SRR (Y;‘)M;): SRR (XsaMs)]

where M| = span, ;({ +j — 1) for [ = 1,...,r, by definition of the D;.
Let (v — (V, Ep, E;),8,1) € P be the production p was constructed from
~———

=R
where V = {vy,...,v,} and 0 = {v; = Yj|l =1,...,7}. It holds that

L. O(v) =Y foralll=1,...,7.
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2. M; = span;(j) = Uy span,; (I + 7 — 1) = U_; M; by definition of
span.
3. (a) cont(M]) for all i =1,...,r with (1) from above
(b) If v N v, | < g and M] # 0 # M,, then with (2) from above:
max(Mj) < min(M;).
(c) If vy, ... v,,v, is i-path in R with M] # 0 # M, and M,, = 0 for
allt =1,...,m, then with (3) from above: max(M]) = min(M,)—
1

Thus, all conditions of Definition 9 are satisfied.

1
Obviously, L(G) € L(cf(G)) in the general case, but it can be shown that
L(cf(G) is letter equivalent to L(G).

Definition 14 (Letter equivalence) Two words wi,ws € T* are called letter
equivalent if for all a € T: #,(w1) = #a.(w2) (where #,(w) is the number of
occurrences of the terminal a in word w).

Two languages Ly, Ly C T* are called letter equivalent if for each wy € L,
there is a letter equivalent wy € Lo and vice versa.

Proposition 6 L(G) is letter equivalent to L(cf(G)).

Proof:
(=) Suppose there is a derivation

[(S,{L,...,n})] =& [(A1, M1),..., (A, M,)]pgwy ... w, =w
with w; € T. Let t; = w; if M; = {j}. Then there also exists a derivation

* * o
Sin(G AlAn in(G) ti...t, =w

)
Since all M; are pairwise disjoint, it holds that w' is a permutation of w. In other
words: for all @ € T #,(w) = #.(w').

(<) If w € L(cf(G)) then with Proposition 5, w € L(G). Since w is letter
equivalent to itself, the proposition holds.
O

As direct corollaries, we have
Corollary 2 L(G) =0 iff L(cf(G)) = 0.
Corollary 3 L(G) is finite iff L(cf(GQ)) is finite.

When we consider a unary terminal alphabet, it holds that two words are
letter equivalent iff they are equal.
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Corollary 4 Let G be an LSL grammar over a unary alphabet. Then L(G) =
L(cf(@)).

In Salomaa (1973), theorem 7.3. (p. 68) proves that context-free languages
over a unary terminal alphabet are regular. Combining this with Corollary 4
yields

Corollary 5 An LSLL over a unary alphabet is reqular.

A remark about the complexity of cf is in order. With Proposition 2, it
immediately follows that

Corollary 6 cf can be computed in polynomial time.
Taken together, Propositions 5 and 6 can be used to show

Proposition 7 Let G be an LSL grammar. If for all n, it holds that |{w €
L(G)||lw|=n}| < 1, then L(cf(G)) = L(G).

Proof:
“C” follows directly from Proposition 5. We now have to show that L(G) C
L(cf(G)). Let w € L(G), |w| = n. Then there is a letter equivalent w' € L(cf(G))
to w, where |w'| = n. Since, in turn, w' € L(G) and w is the only element in
L(G) with length n, it must be the case that w = w'.

a

2.5 LSL in the Chomsky Hierarchy

First, I will take a look at where LSLL stand in relation to C'F'L. It turns out
that LSL grammars are a proper extension of CFGs.

Proposition 8 CFL C LSLL

Proof:

(C) Let G = (N, T, P,S) be a context-free grammar in Chomsky normal form.
Then it is possible to effectively construct an equivalent LSL grammar G, =

(N,T, P, L,S) as follows:

1. For all productions in P of the form X — a,a € T, add X — a to L.

2. For all productions in P of the form X — AB, A,B € N, add X —
AB; A K B to Py,
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(#) Consider the following LSL grammar G.,:

S — ABCS;e
S — ABC;e
A — a

B — b

C — ¢

G, generates the language: L., = L(G.,) = {w € (a|ble)t|#.(w) =
#y(w) = #.(w)} and this language is not context-free. This is because
CFL is closed under intersection with regular languages. So if L(G.,) were
context-free, then L(G.,) N a*b*c* would be context-free. But L(G.,) N
a*b*c* = {a"b"c"|n > 1} which is not context-free.

O

Apparently, LSL grammars can “count” more than CFGs, but they are not

able to order (more than two) terminals “globally”. As a result, a”b"c" cannot
be generated by any LSL grammar.

Proposition 9 {a"b"c"|n > 1} ¢ LSLL

Proof:
Suppose L := {a"b"c"|n > 1} € LSLL with LSL grammar G. L does not contain
two words with the same length. Then with Proposition 7, it holds that L can
be generated by the context-free grammar cf(G), which is a contradiction since
L cannot be generated by any context-free grammar.
d

It follows directly that the context-sensitive languages (C'SL) are not con-

tained in the LSL languages:

Corollary 7 CSL ¢ LSLL

2.6 Closure Properties

In this section, I want to investigate some of the “classic” formal language closure
properties of LSLL. Most of the proofs are very similar to the corresponding ones

in Hopcroft & Ullman (1979) for CFGs.

Proposition 10 LSLL is closed under union, concatenation, and Kleene clo-
sure.

Proof:
Let Ly = L(G,) and Ly = L(G4) with the two LSL grammars Gy = (Ny, Ty, Py, L1, S)
and Gy = (N2, T, P2, L5,.S5). We can assume that Ny N Ny = 0.
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For Ly U Ly we can construct the LSL grammar Gy = (N; U N, U {Sy},Th U
Ty, Py, L1ULs, Sy) where Sy is a new symbol and Py = PLUP,U{Sy — S1, Sy —
Sy }. It obviously holds that L(Gy) = L(G1) U L(Gs).

The language generated by LSL grammar Go = (N; U Ny U {S¢},Th U
Ty, Pc,Ly U Ly, Sc) where Sc is a new symbol and P = P, U P, U {S¢c —
S5159;81 € Sp} is L1Ls. The immediate precedence constraint ensures that all
terminals derived from S; appear to the left of all terminals derived from Ss.

For generating the Kleene closure of L;, consider the LSL grammar Gi =
(N1 U{Sk},Th, Pk, L1, Sk) where Sk is an unused symbol and Px = PyU{Sk —
S1Sk; 51 < Sk, Sk — €}. Analogously to above, it holds that L(Gg) = L(Gy)*.

O

Proposition 11 LSLL is not closed under intersection.

Proof:
As shown in Hopcroft & Ullman (1979), the languages L; = {a’b’c’|i,7 > 1} and
Ly = {a’b'c'|i,j > 1} are context-free. Thus they are also in LSLL (Proposition
8). Their intersection L = L; N Ly = {a’b’c’|t > 1} is not in LSLL (Proposition
9).

(]

Proposition 12 LSLL is not closed under complement.

Proof:

Let Ly, Ly € LSLL. Suppose LSLL is closed under complement. Then L; UL, =
L1 U Ly. Since LSLL is closed under union, it follows that it is closed under
intersection which is a contradiction to Proposition 11.

]
Proposition 13 LSLL s closed under substitutions.

Proof:
Let L C T* be an LSLL and for each a € T let L, be an LSLL. We have
thus LSL grammars G = (N,T,P,L,S) with L = L(G) and for each a € T
Go = (Nay T, Py, L, Sa) with Lo = L(G.).

One can then construct an LSL grammar G' = (N',T", P', L', S) with

N = NUUNa

acT
T = UTa
acT
P = PU|(JPU{A— S;(A)|A—ae L}
a€T

U = |JL

a€T
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This grammar uses the productions of G to derive some sentential form but
instead of terminating with terminal a, it “invokes” G,. Since the LHSs of the new
productions in P' are isolated, it is ensured that a is substituted by a contiguous
word of L,. More formally:

Suppose there is a derivation

(S, {1, ..., 0] =5 [(AL, {1)), ..., (A, {nD)]be a1 ... . an

Then the following is also a valid derivation
[(S, MyU...U Mn>] :>E [(Al, Ml), ceey (An, Mn)]

where the M, are contiguous index sets, pairwise disjoint, and M; U ... U M,, is
contiguous. Note that if some M; = @, this is still true. This derivation is also
possible in G' by construction.

Now if there are derivations

[(Sai» Mi)] =G Di>ar w;
for all 4, there is a derivation

(S, MyU...UM,)| =% [(A,M),...,(As M)
=o' [(SalaMl)a ey (Sam Mn)]
:>*G’ DlU...UDnDval...wn

O
Since substitutions are a generalisation of homomorphisms, it immediately
follows that

Corollary 8 LSLL is closed under homomorphism.
The last results also hold for C F'L, but unlike CF'L, LSLL is not closed under

intersection with regular sets.
Proposition 14 LSLL is not closed under intersection with reqular sets.

Proof:
This follows from the fact that L., = {(a|blc)t|#a = #b = #c} € LSLL (see
proof of Proposition 8) and L., Na*b*c* = L,, ¢ LSLL (Proposition 9).

O

This result suggests that it is difficult to find a straightforward automaton
model which recognises LSL languages.

Another important property of formal languages (especially in the context of
AFL theory) is closure under inverse homomorphism, i.e., if every member of a
class of languages is the homomorphic image of another member of that class. In
Ginsburg (1975) (theorem 3.7.2, p. 74), the following was shown:
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| U * N co subs (hom) NREG inv hom |
CFL |y y y n n y y y
LSLL|y y y n n y n n

Table 2.1:  Closure properties of LSLL.

Proposition 15 (Ginsburg) Let £ be a family of e-free languages. If L is not
closed under intersection with regular sets, then it is not true that L ts closed
under concatenation, e-free homomorphism and inverse homomorphism.

Since LSLL is not closed under intersection with regular sets and closed under
concatenation and e-free homomorphism, it cannot be the case that it is closed
under inverse homomorphism.

Corollary 9 LSLL is not closed under inverse homomorphisms.

Table 2.1 provides an overview of all of the closure properties in contrast to

CFL.

2.7 Decidability

When talking about decidability issues, we always assume that the underlying
alphabet has at least two elements, since otherwise the considered language is
regular (see Corollary 5).

As for CFGs, the emptiness, finiteness, and membership problem are decid-

able.
Proposition 16 Emptiness and Finiteness of LSL grammars is decidable.

Proof:
With Corollaries 2 and 3 one can decide emptiness and finiteness of an LSL
grammar G by computing cf(G) and deciding the problem for cf(G). Emptiness
and finiteness are decidable for context-free grammars (cf. Hopcroft & Ullman
(1979)). Since topsort and thus cf(G) is decidable, the proposition holds.

a

Proposition 17 The membership problem for LSL grammars is decidable.

Proof:

[ will show how a nondeterministic Turing machine (NTM) M can decide if a
given string = belongs to L(G) for a given LSL grammar G. First, we transform
G into a grammar G’ with no € and no unit productions. If z = ¢ and S is
nullable in G, we accept. Otherwise, z = z;...x, # €.
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M will simulate a derivation. It starts with writing (S, {1,...,|z|}) onto the
tape. A derivation step is simulated in a straightforward way: Suppose the tape
looks like this:

(X1, My) ... (X, M,)

M then nondeterministically “guesses” some production ¥ — Y;...Y,; ¢ such
that Y = X}, for some k € {1,...,n} and simulates the derivation completely
analogous to Definition 9, thus the tape will look like this:

(X1, My)...(Y,,M) ... (Yo, M) ... (X, M,)

Now the following holds: Since G’ has no unit productions, r > 2, in other words
the number of tagged nonterminals strictly increases with every simulated deriva-
tion step. Since G’ also has no e-productions, M} # () for all = 1,...,r. This
means that it will eventually be the case that every index set is singleton, thus
every possible computation will in a finite number of steps end with a situation

like this:
(C1,51) ... (Coy Sii)

where w.l.o.g. S; = {¢}. If m = |z| and there are lexical entries S; — z; € L, M
accepts, otherwise it rejects.

Since, every simulation of M halts, M can be simulated by a deterministic
Turing machine. Hence, the membership problem is decidable.

d

Note however, that the simulation of the derivation does need more than
linear space because there are n slots for nonterminals each requiring space O(n)
for storing the index sets. Thus, O(n?) space is needed overall which does not
prove that LSLL C CSL.

All undecidability results for C'F'Ls of course also hold for LSLL. The next
proposition presents some of those.

Proposition 18 Let T* D L, I/ € LSLL, R € REG. It is undecidable if L =
T, L=L,LCL, L=R,LCREG, and LNL = 0.

Proof:
That follows directly from the corresponding undecidability results for C'F'L and
that CFL C LSLL. In particular, the proof of Proposition 8 shows an effective
construction, given a context-free grammar, of an equivalent LSL grammar.
O

Until now, we basically have the same decidability results for CF'L and LSLL.
We will, however, see later that the complexity of especially the membership
problem differs remarkably.

A question that remains is this: Given an LSL grammar G, is L(G) context-
free? Unfortunately, it is not possible to answer this question in the general case.
The next Proposition was proven in Holzer (1999).
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R € REG
CFL | undec. undec. undec. undec. undec.
LSLL | undec. undec. undec. undec. undec.

LinLy=0 welL L=0 |Ll<cco LeCFL
CFL undec. dec. dec. dec. triv.
LSLL undec. dec. dec. dec. undec.

Table 2.2:  Decidability properties of LSLL (entries mean undecidable, decidable,
trivially decidable)

Proposition 19 Let G be an LSL grammar. It is undecidable whether L(G) is
context-free.

Table 2.2 provides an overview over the decidability properties.

2.8 Complexity

In this section I want to take a look at complexity theoretic aspects of LSL
grammars, especially at the problems that were shown to be decidable in section
2.7. Tt will be shown that from this point of view, LSL grammars are a “proper”
generalisation of CFGs, as LSL recognition is more difficult than the polynomial
time recognition for CFGs (in fact, the general membership problem for CFGs is
P-complete, cf. Greenlaw, Hoover & Ruzzo (1995) whereas the fixed membership
problem is LOGCF L-complete, cf. Johnson (1990) ).

First, I will take a look at the emptiness and finiteness problems.

2.8.1 Emptiness and Finiteness

Proposition 20 The emptiness and finiteness problems for LSL grammars are
P-complete.

Proof:
Let Ecrpr (Forr) be the emptiness (finiteness) problem for context-free languages
and Ersrr (Frsi), for LSL languages.

(in P): Let G be an LSL grammar. With Corollaries 2 and 3, the problem
is decidable by computing cf(G) (which is possible in polynomial time ac-
cording to Corollary 6) and solving the problem for cf(G). Since Ecpr and
Ferpp are P-complete (cf. Greenlaw et al. 1995) and thus also in P, this
algorithm needs polynomial time.
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(P-hardness): (I will only show the proof for Epgy; since the one for Frgyy
is completely analogous.) Since Ecpy is P-complete, it holds that for all
L € P, L reduces to Ecpp with a logspace reduction f such that ¢ € L <
f(z) € Ecrr, ie., f(z)is (the encoding of ) a context-free grammar G where
LG)=0iff z € L.
Let g be a function which takes (an encoding of) a context-free grammar
and “transforms” it into (an encoding of) an LSL grammar as follows:

First, a new CFG G’ is constructed which has only productions of the form
N x N* or N xT. This can be done by replacing every terminal ¢ on the
RHS of a production by a new nonterminal ¢ and adding a new production
a — a to G'. Building G’ is possible in constant space.

Secondly, an LSL grammar is constructed from G' by copying every pro-
duction of G' and connecting all nonterminals on the RHS by an i-edge in
their occurring order. To do that, the number of nonterminals on this RHS
must be counted which takes logarithmic space.

(This construction was also shown in the proof of Proposition 8).

Since it holds that
re€l < g(f(z)) € Ersii

and the composition of logspace reductions is also a logspace reduction
(Papadimitriou 1995), we have shown that every L € P is reducible to

ELSLL-

d

2.8.2 Membership

In this section I will investigate the complexity both of the general and fixed
membership problem. These two differ in that for the former, the input is con-
sidered to consist of the LSL grammar plus the string to be recognised whereas
for the latter, the input consists of the string only.

Proposition 21 The general membership problem for LSL grammars is NP-
complete.

Proof:

(e NP) Let G = (N,T,P,L,S) be an LSL grammar. We can assume that G
has no unit productions (cf. Proposition 4). The NTM M deciding if a string
r € L(G) works exactly as the one described in the proof of Proposition 17.
There is, however, a small difficulty: the grammar resulting from eliminating all
e-productions might be exponentially bigger than G. Instead, M computes the
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set of nullable symbols (in polynomial time) and each time a nonterminal (X, ()
appears on the tape, M checks if X is nullable, and if so, it is deleted from the
tape and the computation continues, otherwise M halts and rejects.

Since the derivation tree is only polynomial in size and G does not contain
unit productions, all computations of M take polynomial time.

(N'P-hardness) Proof by reduction from the general membership problem for
UCFGs (see section 1.2.2).

It is easy to see that UCFGs are a special case of LSL grammars: a UCFG
is an LSL grammar with no precedence constraints and all nonterminals be-
ing isolated. A UCFG rule X — {Xj,...,X,} (which means that X may be
rewritten by any permutation of the X;) can be simulated by the LSL rule

Since the general membership for UCFGs is N'P-complete, as was shown in
Huynh (1983) and Barton et al. (1987), the proposition holds.

d

What happens with the complexity if we hold the grammar fixed, i.e., the
grammar is no longer part of the input? One could suspect that this makes
the problem easier. For UCFGs, the fixed membership problem is indeed in P
(which for instance follows from the complexity analysis in section 3.3). But,
unfortunately, for LSL grammars this is not the case.

Proposition 22 The fized membership problem for LSL grammars is N'P-complete.

Proof:
(€ N'P) This follows directly from the fact that the general membership problem
is in NP, see Proposition 21.

(N'P-hardness) This was proven in Holzer & Suhre (1999) by reduction from the
tripartite matching problem (cf. Garey & Johnson 1979).
]

2.9 Unification-Based Grammars

Unification-Based (context-free) Grammars (UBGs) are like CFGs, but they use
more complex structures than nonterminals (complex categories). Basically, only
one operation on these structures needs to be defined: unification. In this section
[ will briefly define UBGs and show how LSL can be extended towards a similar
notion. For simplicity, I will use a well known instance of complex categories,
namely first order terms.

Definition 15 (UBG) A Unification-Based Grammar (UBG) is a tuple (F,T, P, tg)
where F 1is the set of first order terms over some fized signature, T is the set of
terminal symbols, P C F x (FUT)* is the set of rules, and tg € F is the start
term.
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Note that F which is the analogue to the set of nonterminals in conventional
CFGs, is infinite in the general case.

Derivations are defined analogously to CFGs with the difference that not only
nonterminals in a sentential form which are equal to the LHS of some rule can
be expanded, but also those who unify with it.

Definition 16 Let UG = (F,T, P,ts) be a UBG. The derivation relation =ygC
(FUT)* x (FUT)* is defined as follows: atff =yq v iff

ot/ > ty...t, is a copy of a rule in v € P such that all variables of r are
replaced by fresh ones.

o t unifies with t' with most general unifier (mgu) p.

o v=(at;...t,[)p.

If one considers strings as being constants (first order terms with no arguments
and no variables), CFGs can be considered as a special case of UBGs because two
constants unify iff they are equal. The language of a UBG is the set of strings
derived by the start term.

Definition 17 Let UG = (F,T, P,ts) be a UBG. Then the language of UG 1is
defined as L(UG) = {w € T*|ts =} w}.

2.9.1 An Example

For the following example, I will use Prolog notation, i.e., constants start with a
lowercase, variables with an uppercase letter.

np(Gen,Case) — det(Gen,Case) n(Gen,Case)

det(masc,nom) — der

n(masc,_) — mann
det(fem,nom) — die
n(fem,_) — frau

The first rule expresses the fact that the gender and case of a determiner must
match those of the noun to form a valid nominal phrase. Suppose the start term
is np(X,Y). An example derivation is then

np(X,Y) =¢ det(X,Y) n(X,Y) {X/X,Y/Y}
= det(masc,Y) mann {X/masc,Y/Y}
= der mann {X/masc,Y/nom}

On the right, you see the current instantiations of the variables.

Now, if the grammar is used for parsing, the string der mann will yield the
instantiated term np(masc,nom).

Definite clause grammars (DCGs, see Gazdar & Mellish 1989) are basically
UBGs over first order terms. Additionally, they provide the possibility to attach
arbitrary procedures, i.e., Prolog predicates, to a rule.
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2.9.2 Beyond First Order Terms

UBGs can be defined over more complex structures than first order terms. A
prominent example is the typed feature structures used in HPSG (cf. Pollard
& Sag 1994), formally described in Carpenter (1992) or King (1994). The ALE
system (cf. Carpenter & Penn 1998) is an example of an efficient Prolog imple-
mentation of UBGs using typed feature structures.

For more on UBGs, see Gerdemann (1991), Shieber (1986), Covington (1995),
or Gazdar & Mellish (1989).

It is easy to extend LSL towards a unification-based approach in a similar
fashion. Since for some structures, the unification operation might not even be
decidable, the formal language and complexity-theoretic properties of LSL with
strings as nonterminals are not applicable any more.

The next chapter presents a parsing algorithm for LSL grammars. With
Propositions 21 and 22 we cannot expect that this algorithm has less than ex-
ponential runtime. However, a reasonable condition on LSL grammars will be
identified such that the fixed recognition problem with grammars satisfying this
condition is solvable in polynomial time.



Chapter 3

Parsing

This chapter presents a parsing algorithm for LSL grammars which is based on
Earley’s algorithm for CFGs. A complexity analysis of this algorithm reveals
a sufficient condition on grammars which allows parsing grammars with this
property in polynomial time.

[ will now briefly describe Earley’s algorithm mainly to introduce the notation
[ will use later. This version is similar to the presentation in, e.g., Gazdar &

Mellish (1989).

3.1 Earley’s Algorithm

[ assume a fixed CFG (N, T, P,S’) being start-separated such that there is only
one rule S’ — S. I furthermore assume that every rule in P looks either like
X — X;...X,, where X; € N or X — w where w € T.

Earley’s algorithm operates on a chart (well-formed substring table). It makes
one single pass through the input string z. z[k] is the terminal at position k in
z. Every chart entry looks either like

1.
<i,j,X—)X1...Xm. m+1---Xn>

wherei,7 € N, X —- X;...X,, € P, or

(,i +1,X — we)
wheret: € N, X w € P,andw € T.

In the following, I write a, 8,7 for strings in (N UT)*, X,Y for nonterminals,
and w for a terminal.

45
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A chart entry of the form
(1,7, X = «e)

is called an inactive edge (or passive edge), every other entry is called an active
edge.
At initialisation, k is set to 0, and an initial edge

(0,0,S" — oS)

is inserted into the chart.
At each step, three operations are performed until there are no more to per-
form.

1. Scanning (Fig. 3.1):
If z[k] = w and there is X — w € P then add

(k,k+1,X — we)
to the chart.

2. Prediction (Fig. 3.2):
If there is an edge
(t,k, X > aeYp)

in the chart then for every rule Y — v, add edge

(k, kY — o)
to the chart
3. Completion (Fig. 3.3):
If there is an inactive edge
(J, k, X — ae)

and an active edge

(1,5,Y = B e X7)
in the chart then add edge

(1,k, Y = X o)
to the chart

At each string position k, one scanning step is performed and prediction plus
completion are repeated until they yield no new edges. Then £k is incremented by
one and these steps are repeated. When k = |z| + 1, the algorithm terminates.
If there is an edge

(0, |z| +1,5" — Se)

at that point, z is in the language and we accept.
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ORNCEY

~_

X — we

Figure 3.1: Scanning in FEarley’s algorithm: If there is w at position k, we add
the corresponding inactive edge.

X—oeYf

g - w

Y — ey

Figure 3.2: Prediction in Earley’s algorithm: If we want to find a Y starting at
position k, we add edges for all rules expanding Y.

Y - BeXy X— oe

\/

Y — BXey

Figure 3.3: Completion in Earley’s algorithm: If we have found an X from j to
k and look for an X at j, then we can extend the active edge to k.
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3.2 Parsing LSL Grammars

The proposed parsing algorithm is a natural generalisation of Earley’s algorithm.
The concept of chart edges in Earley’s algorithm must be extended to suit the
different needs. I assume a fixed LSL grammar G = (N, T, P, L, S).

3.2.1 Bit Vectors as String Positions

As shown above, Earley’s algorithm (and any chart parser which uses well-formed-
substring tables) uses chart edges to indicate substrings that have already been
or still must be parsed, cf., Gazdar & Mellish (1989), e.g., (i,j,A — B e ().
Two integers suffice because we know that the yield of nonterminal A must be
continuous and is hence defined by the start and end position in the input string.
This condition does not necessarily hold for LSL grammars.

This difference is captured in the LSL parser by using bit vectors instead of
these two integers. Using bit vectors for this purpose is a very natural idea also
considered, e.g., in Johnson (1985) or Reape (1991). Consider, again, the example
sentence from section 1.1.2 and the bit vectors associated with some nonterminals
during the parsing process:

Der Mann stirbt der zogert
(B1) D 1 0 0 0 0
(B2) N 0 1 0 0 0
(B3) CP| 0 0 0 1 1
(B4) N 0 1 0 1 1
(B5) NP | 1 1 0 1 1
(B6) VP | 0 0 1 0 0
(B7) S 1 1 1 1 1

The bit vectors have the same length as the input string. If the terminal
belongs to the yield, the corresponding entry in the bit vector is set to 1, and 0
otherwise. (B6) could occur in an inactive edge indicating that the third terminal
in the input string forms the (complete) VP ‘stirbt’, and similarly for the NP ‘Der
Mann der zogert’. Note (B5) as it does not consist of a continuous block of 1s
indicating that the NP is not continuous.

Now instead of “concatenating” the chart edges, the completion operation will
perform a bitwise OR on these bit vectors, provided they do not overlap (this
is the case iff the bitwise AND only consists of 0s). Overlapping bit vectors are
not allowed because a terminal cannot be derived by two different nonterminals.
For instance, combining (B1) and (B3) yields an NP (because NP — D N), with
bit vector (B5). Similarly, we take (B5) and (B6) (the NP and VP) to build
an S yielding (B7). Since (B7) contains only 1s, we know that this S yields the
complete input. Provided we take S to be the “start symbol” of our grammar, we
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can accept the input. It is also during completion where we check the precedence
and isolation constraints.

In what follows, I will write BV for the set of all bit vectors. Since for one
parse, the length of all bit vectors occurring in the edges is fixed I assume that
all mentioned bit vectors are of the right length. S A 8" (8 V ', respectively) is
the result of the bitwise AND (OR, respectively) of the bit vectors 8 and /. For

instance:
0100100
VvV 0011001
= 0111101

Let right(3) (left(8), respectively) be the position, i.e., an integer value, of the
rightmost (leftmost, respectively) bit set to 1 in the bit vector 5. If 5 consists just
of Os (written as 8 = 0) we define left(8) to be 0 and right(8) to be || + 1 where
|8] is the length of the bit vector. For instance (the crucial bits are underlined):

left(01001100) = 2, right(01001100) = 6

Note that bit vectors are only a different representation for the index sets
from chapter 2.

3.2.2 Edges

As in Earley’s algorithm, our edges consist of the string position information (bit
vectors in our case) and the rules. Earley’s algorithm keeps a dot in the RHS of
a rule to indicate which constituent is to be parsed next. This single dot suffices
because of the total order on the RHSs of the rules. For a rule graph representing
a partial order we must probably put the dot before more than one node, i.e.,
we have a dot set. After having completed a constituent, we can “move” the dot
over the corresponding node by adding all successors of this node to the dot set.
If the dot set is empty, i.e., all constituents were found, the edge is inactive.

Definition 18 (Edge) An edge is a tuple

(8,p, D, )
where
e 3 € BV
o p=(v— (V,Ep,E;),0,I) € P
e DCV

e Tm:V - IN

D is the dot set. m maps every node that has already been found to its rightmost
string position or if it is empty, to the rightmost string position of every nonempty
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predecessor of it. Every active edge will be initialised with 7™, the function that
maps every input to n + 1. This convention identifies every node v such that
m(v) = n+ 1 as a node which has not already been found yet. 7 is needed to
check the precedence constraints. [ will write 7|z — a] for the mapping that is
equal to 7 except that = is mapped to a.

In what follows, I will use a more readable notation for edges:

18| (v— (V,Ep,E),0,1)| D | x|

Before presenting the algorithm formally, let me work through it with the
simple example from above.

3.2.3 A Worked Example

In this section, I will show how the algorithm will parse the sentence “Der Mann
stirbt, der zogert” with the grammar of section 1.1.1. I repeat the grammar here
using rule graphs for the RHSs:

(R1) s —
(R2) NP—> (D)~(¥)

(R3) N —» @

[ will leave out € and I from the formal definition and rather write the non-
terminal into the node and use double circles to indicate isolation.

7™ is the constant function that maps every input to n+1 as mentioned above.
Since the input sentence is of length n = 5, we will use 7° mapping every input
to 6. A e’ left of a node indicates that it is in the dot set (if there is an incoming
i-edge into this node it must come next). If a node was found, the ’o’ gets shifted
over it and is then placed to the left of a succeeding node (if there is one) or the

right of it if there is no such node. So, for instance S — . . indicates
that the NP has been found where the VP is still to be.

The parser initialises the chart before the actual parsing process by inserting
an edge for every rule with dots before all start nodes with the bit vector 0. In
a way, we predict every rule at every string position.

(11) | 00000 | S — (B (VD || #°
(12) | 00000 | NP—»*(D)>(N) || #°
(13) | 00000 | N _>°@ﬂ ’

One single pass through the input is performed. Each step consists of two
operations:
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1. Scanning: skipping one terminal of the input and creating an edge from the
lexical entry. This edge has an empty rule graph on the RHS to indicate
that it is inactive.

2. Completion: combining an active edge with a matching inactive edge.

The latter is repeated until no more edges can be added to the chart (see also
section 3.2.6).

A scan operation advances a pointer on the input string. Completion just
produces new edges. These new edges are listed in each step with an identifying
number (to the left) and the edges or rules which were used creating them (to
the right).

Having initialised the chart, we start the pass over the input with the input
pointer at the very beginning:

— Der Mann stirbt der zogert

1. (a) Scan: Der — Mann stirbt der zogert
(1.1) | 10000 | D — ™ | (L1)

(b) Completion:

(1.2) | 10000 | NP— (D)-¥N) | ©°[D 1] | (L.1) + (12)

2. (a) Scan: Der Mann — stirbt der zégert
(2.1) | o1000 | N — = (L2

(b) Completion:
(2.2) | 01000 | N —» @ { N 2, CP—6} | (I3)+(2.1)

3. (a) Scan: Der Mann stirbt — der zégert
(3.1) | 00100 | VP— 7 | (L3)

(b) Completion:

(3.2) | 00100 || s —"@®B (D' { NP 6, VP 3} | (R1)

4. T assume that the CP is recognised during the next two scanning steps, i.e.,
(4.1) is inactive.

(a) Scan: Der Mann stirbt der zégert —
(4.1) | 00011 | cP— e
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(b) Completion:

(4.2) |o01011 | N — @ { CP s 5, N 2} (2.2) +

(4.3) | 11011 | NP— (D)}(N)"| {D 1, N s 5} (1.2) + (4.2)
(44) |11111 | 8 — ®D° (VD7 {NP > 5, VP = 3} | (3.2) + (4.3)

(4.2) is possible because the CP is isolated and it occurs at position 4
which is bigger than required (7(N) = 2).

Similarly, in (4.3.), the leftmost string position of N (2) is exactly
one bigger than the rightmost of D (1 = #(D)), i.e., D immediately
precedes N.

Since the bit vector of (4.4) only consists of 1s and S is the start symbol of
the grammar, we halt and accept.

3.2.4 The LSL Parsing Algorithm

In this section I will present the parsing algorithm in detail. The pseudocode for
the main parsing procedure is shown in Fig. 3.4. As shown in the last section,
the chart is initialised first. Then, a single pass over the input takes place. At
each string position, scanning (also called lexical lookup) is performed, and the
corresponding inactive edges are inserted into the chart. Then, completion is
applied as long as new edges can be added to the chart.

[ use the following functions:

e set(k,7) returns a bit vector of length k with the ith bit being set to 1 and
all other bits being set to 0.

o lex_entries(w) returns a set of nonterminals {C},...,C,,} such that C; —
we Lforalli=1,...,m

e add_edge(e) adds edge e to the chart.

Initialisation

The prediction operation in Earley’s algorithm can be seen as a kind of top down
guidance at a string position k. This is established by inserting an edge from k&
to k. With bit vectors this is not possible in the same way. An “empty” edge
would bear the bit vector 6, which gives absolutely no indication where in the
input string this edge is meant to start.

What we do instead is perform prediction “off-line”, i.e., add an edge for
every rule in R bearing 0 before making a pass over the input. The bitwise OR
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procedure parse(z:list)

1 n:=|z|;

2 initialise();

3 fori:=1tondo (* Add initial edges for xz[i] *)
4 B = set(n,i);

5 (* Scanning *)

6 for all L € lex_entries(z[i]) do

T add-edge((8, (u— (,0,0), {urs L},0),0,7));
8 repeat

9 completion();

10 until no more new edges can be added

11 endfor

12 if there is (I, (v — R, 6,1),0,7) with 6(v) = S then
13 accept; (* If S spans the whole string = accept *)
14 else reject;

Figure 3.4: Top level loop of the parser

procedure initialise()
1 for each (v — R,0,I) € P do
2 add,edge(((j, (v = R,0,I),start(R), "));

Figure 3.5:  The initialisation procedure

operation of completion will then automatically use these edges correctly!. Such
a predicted edge will be initialised with the set of start nodes as the dot set.
Note also that with this mechanism, there is an inactive edge for every e-rule
with bit vector 0. This perfectly makes sense, because an empty nonterminal
could really appear anywhere in the string.
You can see the pseudocode for initialisation in Fig. 3.5.

Completion

During the completion operation, we may check if parsed substrings are contin-
uous. For this purpose I modify the definition of cont so as to suit bit vectors.

Definition 19 The predicate cont(f3) is true iff the bit vector B contains exactly

! An actual implementation might, on the other hand, use some kind of index to be able to
do prediction at a certain string position. For the complexity analysis, however, it does not
make a difference.
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procedure completion()

1 select inactive edge (', (v' = (V', Ep, E}),0',1"),0,7);
2 select active edge (8, (v — (V, Ep, Ef),0,1), D, ),

3 UpAL # 0 then return;

4 for all z € D with §(z) = 6'(v') do

5 B := predy g, 5, ();

6 F' = succy,gp,m,)();

7 if max,cp(7(y)) > n then return;

8 D*:=(D - {z})UF;

9 Check that all of the following conditions hold, else return:
10 1. If B # 0 # B

11 a) If (y,z) € E; then n(y) = left(s') — 1

12 b) If (y,z) € Ep then n(y) < left(s’)

13 2. If z € I then cont(f’)

14 3. If v € I and D* = () then cont(5 V §')

15 7* = m[z — min(max,cp(m(y)), right(8"))];
16 add edge(3V B, (v — (V, Ep, F1),0,1), D', )
17 endfor

Figure 3.6: The completion procedure

one continuous block of 1s or B = 0.

If cont(3)? is true we know that the constituent associated with 3 is isolated.

The pseudocode of the completion procedure is shown in Fig. 3.6.

First an inactive and an active edge are selected from the chart (line 1 and 2).
These edges can only be possible candidates if their bit vectors do not overlap
which is ensured by demanding that 5 A 8’ = 0 (line 3), i.e., there is no position
where both 8 and ' have a 1. Then in line 4, every node z of the active edge
which has “the dot to the left of it”, i.e., which is in the dot set D, is examined.
The nonterminal of that node and the nonterminal of the LHS of the inactive
edge must be equal (6(z) = 6'(v')). Additionally, the m value of all predecessors
must be < n, because otherwise they have not been found yet (line 7). D* is the
set of the union of D — {z} and all the successor nodes of z, i.e., we “shift” the
dot over z (line 8). The conditions to be checked ensure that the LP constraints
are satisfied, namely

1. LP constraints need only to be checked if 5’ # 0 # 3, because otherwise, at
least one of the edges belongs to an empty category which trivially satisfies
all such constraints.

2Compare with Definition 8.
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(a) If y immediately precedes z, the 7 value of y (the rightmost position
of y) has to be exactly the value of the leftmost string position of z -
1.

(b) If y precedes x, then the = value of y has to be smaller than the
leftmost position of .

2. An isolated node must have a continuous bit vector associated with it.

3. If the last node of the active edge was found and the LHS of this edge is
isolated, combining the two edges must yield a continuous bit vector.

In line 15, the new 7* is equal to 7 except for z. 7*(z) = right(8') if 5 # 0. If
not, we let it be the value of the rightmost position of one of its predecessors.
If z has no predecessors and is empty, 7*(z) = 0. The new edge that is added
bears the bitwise OR of 8 and ', the same rule as the active edge, the new dot
set D*, and a modified 7* (line 16).

Note that empty nonterminals do not cause any problems. If there is an empty
nonterminal, the corresponding rule is just inserted during initialisation with 0.
If a rule is recognised as having only empty nonterminals, completion takes care
that the corresponding bit vector is also 0.

3.2.5 Correctness

To show the correctness of the algorithm, one must prove that it recognises exactly
those strings derived by some fixed LSL grammar G = (N, T, P, L, S) in the sense
of Definition 11. I consider a fixed string w = w; ... w, of length n. In what
follows, the term “chart” always refers to the chart after parsing w.

Every bit vector of length n can be interpreted as an index set of at most size
n and vice versa. [ will thus use bit vectors throughout this section, even in places
where, formally, index sets should occur, e.g., expressions like [(X, )] =¢ D or
j € B are well-defined. In particular, 0 is equivalent to 0.

W.l.o.g., we can assume that there is at most one lexical entry C; — w; € L
per terminal w;. Then let W(8) = [(C;,{7})|7 € B]. It holds that W(8) >g w.

From section 3.2.4, it should be clear that the completion procedure works
correctly. By an inductive argument, one can show that a certain series of com-
pletions corresponds to a single valid derivation step and vice versa.

Lemma 4 Lete, = (6, (v = R,0,I),start(R), ™) be an active edge added during

wmitialisation where v is the number of nodes of R. Let ey, ..., e, be inactive edges
where €; = </8u (Ui — Ri; 91’, ]z); @, 7I'Z‘>.
Then e, can successively be completed with eq,. .., e, yielding an inactive edge

iff there is a derivation

[(0(0), 1 U~ UBY] = [(0:(02), Br), ., (0 (01, 5.)]
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The next definition defines the inactive and active child, respectively, for some
edge e, i.e., the two edges e was created from.

Definition 20 Let e be an edge in the chart. Letic(e) and ac(e) (inactive, active
child) be the inactive and active edge, respectively, e was created from by comple-
tion. If e was created during initialisation or scanning, ic(e) = ac(e) = nail.

The notion of an inactive child can be extended to the set of inactive children
of an edge e. This set contains all inactive edges which were needed directly for

building e.

Definition 21 Let e be an edge in the chart. Define the set of inactive children
of e as follows:

: 0 if ic(e) = ac(e) = nil
ichld(e) = { {ic(e)} Uichld(ac(e)) otherwise

The depth of an inactive edge e is similar to the depth of the parse tree that
has e as a root.

Definition 22 Let e, be an inactive edge in the chart. Define the depth of e, as
follows:

0 if ic(e,) = ac(ep) = nil
depth(e,) = { 14 MAX, ichld(,) depth(e) otherwise

The next lemma proves that each inactive chart edge corresponds to a deriva-
tion and vice versa.

Lemma 5 (3,(v = R,0,I),0,7) is an inactive edge in the chart iff there is a
derivation [(8(v), 5)] =& W(B).

Proof:
(=) Induction over the depth d of the edge.

(TA) d = 0: Ife = (8,(v = R,0,1),0,7) was inserted during initialisation,
R is empty, thus § = 0 and [(8(v),0)] =& [] = W(B). If e was inserted
during scanning, R has a single node, thus g = set(n, k) for some k£ and

[(6(v), B)] = W(P).

(IH) If e = (B,(v — R,0,1),0,7) with depth(e) < d — 1 is in the chart, then
[(0(v), B)] =& W(B).

(IS) Let p = (v — R,6,I) € P and r be the number of nodes of R. Let
e = (B,p,0,7) with depth(e) = d. Let e; = (B;,(v; — R;,0;,L),0, )
for all « = 1,...,7 such that {e;,...,e,} = ichld(e) which means that
depth(e;) < d — 1 for all i. Then there must exist an active edge e, =
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(6,p, start(R), 7"), inserted during initialisation, such that e is the result
of successive completion of e, with ej,...,e,. With Lemma 4 and (IH) it

holds that

[(0(0), B)] =5 [(01(v1),51),- .., (6:(v,), Br)]
=5 W(B)U...UW(B,) = W(B)

(<) Induction over the length of the derivation k.

(IA) k =0: If [(X, B)] = W(B), it is either the case that § = 0or 8= set(n, j)
for some j. In the former case, (6, (v— R,0,I),0,7") was inserted during
initialisation. Scanning, on the other hand, ensures that the edge (3, (v —
R,0,1),0,7") is in the chart in the latter case.

(IH) [(X, 8)] =" W(B) implies that there is an edge (8, (v — R,0,1),0,7")
with 6(v) = X in the chart.

(IS) Let p = (v — R,6,1) € P where R has r nodes and 6(v) = X. Suppose

there is a derivation

[(X,,B)] =p [(Xlaﬁl)v"'v(Xraﬁr)]
= W(A)U...uW(s)=W(p)

such that each (X;, 3;) derives W(f;) in fewer than k steps. Then with (IH)
there are passive edges e; = (8;, (v; = R;,0;,I;), 0, m;) such that 6;(v;) = X;
forall e = 1,...,r. With Lemma 4 there is e, = (6,p, start(R), 7") in the
chart, inserted during initialisation, such that e = (3,p,0, 7'} is the result
of successively completing e, with ey, ..., e,.

O
[t is now easy to see that the algorithm is correct:

Proposition 23 Let G = (N,T,P,L,S) be an LSL grammar and let w € T*.
The LSL parsing algorithm recognises w iff w € L(G).

Proof:
With Lemma 5 it is the case that there is an edge < (v — R,@,]) , ) with
f(v) = S in the chart iff there exists a derivation [(S,{1,...,n})] = W(1)rgw

I:I

3.2.6 Termination

For the algorithm to terminate, it is important to show that completion does not
loop at any string position, i.e., that it does not add an infinite number of edges
to the chart. There are two things that must be ensured:
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1. Two edges that already have been combined should not be considered for

completion again which can be done easily, e.g., by marking those pairs?.

2. One must check that an edge to be inserted is not already in the chart. This
check is often called “subsumption check” in the literature. This possibility
is not ruled out by 1. because two different completions might result in the
same edge. It can simply be done by checking if any edge already in the
chart is equal to the edge to be inserted.

Thus the following holds:
Proposition 24 The LSL parsing algorithm terminates on every input.

With the naive strategy mentioned in 2., the number of comparisons is then
linear in the size of the chart and comparing two edges, particularly comparing
two bit vectors, takes linear time in the size of the input string. I will thus ignore
the subsumption check in the following since it does not “blow up” the runtime
exponentially.

3.3 Complexity Analysis

As for the presentation of the algorithm itself, I will compare the complexity
analysis of the LSL parsing algorithm with the one of Earley’s algorithm. I only
consider parsing with a fixed grammar, i.e., the input is only the string to be
parsed rather than this string plus the grammar. Since the grammar is fixed, we
assume the number of nonterminals and rules to be constant.

3.3.1 Complexity of Earley’s Algorithm

Earley’s algorithm uses three basic operations which are performed at each string
position during a parse:

1. Scanning

2. Prediction

3. Completion

We will now analyse how long each of them takes in a single step, i.e., at some
string position .

There can only be O(i) edges ending at string position ¢, because there are
only i possible starting points*, and the number of rules and nonterminals is
constant.

*In the implementation a more sophisticated strategy was used using iterators (see section
4.3).
*This will not be the case for the LSL parsing algorithm.
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1. At position ¢, only one symbol is scanned, i.e., scanning takes time O(1).

2. Prediction considers each of the O(¢) edges and since the number of rules
is constant, only O(7) edges are inserted thus, prediction takes time O(7).

3. If there is an inactive edge e, ending at ¢, we may be able to perform
completion with an active edge e, ending where e, starts (say position
i — j). At this position ¢ — j there are O(i — j) (active) edges. So we have
O(i(i — 7)) = O(4*) different possibilities for completion.

Summing over all the n string positions yields:

: 2 2 2 2 3
>2(QUL+0li)+ O()) = D201 £ 3 0r) = n0(n?) = Ofn)
Scan. Pred. Compl.

Note that it is crucial that when adding an inactive edge from j to k, we know
that only active edges ending at j are possible candidates for completion. This
will no longer be the case for the LSL parsing algorithm since the notions of start
and end point as needed for Earley’s algorithm no longer exist.

3.3.2 Complexity Analysis of the LSL Parsing Algorithm

The complexity analysis consists of three parts. First, a relationship between
space and time complexity is established that allows us to focus on space in
the following discussion. Second, I will present a measure for space complexity
which immediately gives the worst-case complexity of the algorithm (exponen-
tial). Third, a sufficient condition for parsing in polynomial time is presented.

Time and Space Bounds

In this section, I will describe a relationship between the time and space bounds
of the algorithm. In particular, the space bound can be used as a measure for
the time bound.

The space bound can be measured in terms of the number of edges in the
chart. Note that I ignore the storage needed for a bit vector which is O(n), i.e.,
the term “space” means “number of edges in the chart”.

Suppose our algorithm needs O(f(n)) space with f(n) = Q(n),i.e., for an
input string of length n, the chart contains O(f(n)) edges after the parse. Ini-
tialisation inserts an edge with 0 for every rule and an empty edge for each
nonterminal in e-rule. Since the number of rules is constant, initialisation inserts
O(1) edges.

Let us now consider the time needed for each of the two basic operations at
some string position ¢ (analogously to the analysis above).
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1. Scanning: Since scanning one terminal and adding a fixed number of rules
is independent of 7, scanning takes time O(1).

2. Completion: As mentioned above, the notions of start and endpoints of
edges no longer exist: they do not make sense for bit vectors. Instead, the
algorithm performs a simple completion strategy by trying to combine each
possible pair of edges. Since we have O(f(¢)) edges in the chart at string
position 7 and we have O(f2(i)) pairs, completion occurs O(f?(¢)) times.
The result of completion is a new edge in the chart.

As above, the overall complexity is given by summing over all string positions:

o+ 00 Z O(f(@) < Y- 0(*(m) = O(nf*(n)

Inlt =1 Scan Compl

Note that, if f(n) is a polynomial, e.g., n*, the overall runtime is also polyno-
mial, namely O(n?**1). In what follows, I will identify a condition that bounds
this f to a polynomial and thus enables parsing in polynomial time.

Again, I ignore the time needed to perform a bitwise OR of two bit vectors
(this is possible in time O(n)). Taking this time into account, however, would
yield O(n?f?(n)) which is still polynomial if f is polynomial.

A Measure for Space Complexity

As was shown in Earley (1968), Earley’s algorithm requires space O(n?). The
only content of the edges we must consider are the start and end points. The
rest is of constant size because the rule sizes and the number of nonterminals are
constant. So for input length n, we can have an edge between each pair of nodes.
And there are (n +1)* = O(n?) such pairs.

Similarly, for our algorithm, we only need to measure the possible numbers of
“string positions” which in our case are the bit vectors. As above, the rule sizes
etc. are constant and thus will not be considered Since there are 2" bit vectors
of length n, the chart might contain 20 edges in the worst case.

Cons1der the following example to see that this number can actually be
reached: Suppose we have an LSL grammar just consisting of the rule

A= A Ae
(i.e. no LP constraint on the RHS) and a lexical entry
A—a

where A is the start symbol. Then, the number of edges for the input string a”
is actually 2" (see Fig. 3.7).
Substituting this result in the above sum yields:
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A

Ao At Aou

A

A 100 A o010 A oo

a a L.

Figure 3.7:  The chart for the LSL rule A — A A;e, lexical entry A — a,
and input string aaa. The indices at the nonterminal are the corresponding bit
vectors. Note that there are other possibilities than the one shown to create Aq1y.

Proposition 25 (Worst case complexity) The LSL parsing algorithm has a
worst case time complexity of 20

One would suspect that only “pathological” grammars like the example in
Fig. 3.7 do actually need exponential time.

In the next section, I will present a sufficient condition for LSL grammars
that ensures parseability in polynomial time. A special case of this condition is
directly expressible in LSL.

3.3.3 A Sufficient Condition for Polynomial Time

As seen above, the number of possible edges in the chart correlates only with the
possible number of bit vectors for length n. If we want to reduce complexity to
polynomial time, we must impose a restriction on all bit vectors that might occur
during a parse of an LSL grammar.

Definition 23 (Block) A block in a bit vector 5 is a string of continuous 1s.

For instance, in
00'1111'000'111'0

there are two blocks.

Note that one block is exactly determined by two positions in the bit vector
(in the example indicated with a “’ ”). Thus, if we consider bit vectors of length
n with k& blocks, we can choose 2k positions out of the n 4+ 1 positions that there
are, and in this fashion completely determine the form of the bit vector.

So, for the example above n = 13 and k = 2. We chose 2k = 4 positions out
of the n 4+ 1 = 14 possible ones, namely 2 and 6 for the first block and 9 and 12
for the second.
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The next question is: How many possible bit vectors of length n with k& blocks
can there possibly be, or in other words: How many possibilities are there to pick
2k positions out of n 4+ 17 The answer is

(n;; 1>T = O((n+1)*) = 0(n™)

And this is polynomial in n.

So suppose we have input length n and know that all bit vectors occurring in
edges in the chart have (at most) & blocks, i.e., k is a constant independent of n.
The maximal number of possible bit vectors in the edges is then

3 (") - éom% - o(n*)

=1

Thus, the number of possible edges as well is O(n**). Space complexity is then
polynomial (since k is constant) and thus the run time is

O(n(nZk)2) — O(n4k+1)

This k£ depends on the LSL grammar used. For CFGs, we have £ = 1 and thus
the algorithm runs in O(n®). The difference to the O(n®) of Earley’s algorithm
stems from the fact that continuity of edges enables better indexing of the chart.

In general, the maximal number of blocks in a parse may not be constant,
i.e. independent of n, but rather be a function k(n) growing with n for some
grammars. For this case, the space is bounded by

> o("5 )=o)
=1
for k(n) = § for example. The aim is now to find a condition for LSL grammars

such that k& can be bounded by a constant.
[ will call the maximal number of blocks occurring for a fixed LSL grammar
G the block number of G.

We can summarise the last section as

Proposition 26 If the block number of an LSL grammar G = (N,T,P,L,S)
1s bounded by a constant, then for all w € T, the LSL parsing algorithm takes
polynomial time parsing w w.r.t. G (G is parseable in polynomial time).

In Holan et al. (1995), it is mentioned that, if the span of every nonterminal
is one-gap, i.e., has at most one discontinuity, then space and time complexity of

fRather than n?*. Permutation without replacement is justified because blocks do not
“overlap”.
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their parser (an extension of the CYK algorithm to parse dependency grammars,
see section 1.2.2) is polynomial. The condition of Proposition 26 is more general
and is also stated in Holan et al. (1998). It can be seen as a kind of m-gap
restriction.

In the next section, I will go further and describe a condition for LSL gram-
mars to be parseable in polynomial time which is less restrictive and more natural
than posing a one-gap or m-gap restriction on every nonterminal.

The Condition

As shown above, we must ensure that the block number £ for an LSL grammar
(G is a constant, i.e., does not grow with n. Therefore, we will first identify which
conditions are responsible for letting k& be a function of n.

Closely related to this is the question of how grammars can generate arbitrary
long sentences, i.e., the language generated by the grammar is infinite. This is
because if the language is finite, k is trivially constant. Only infinite languages
may have the property that & grows with n.

So what makes grammars generate arbitrarily long sentences? The answer is
recursion. If we did not have recursion, the language would be finite. One must
somehow restrict the properties of recursive nonterminals in such a way that &
can only be constant.

In this section I will prove that, if one can ensure that the yield of every
recursive nonterminal has at most a constant number of blocks, we know that the
block number of the grammar is a constant and thus the grammar is parseable in
polynomial time. In other words, if every recursive nonterminal has a fixed block
number, then we cannot add arbitrarily many blocks to a mother nonterminal.

The rest of this section consists of the formal proof of this proposition. I
assume a fixed grammar G = (N,T,P,L, S).

Definition 24 (Recursive nonterminal) A nonterminal X € N is called re-
cursive iff there are pairwise distinct rules

(v1 > Vi, Ep1, En), 01, Ih)
(1)2 — (%,EP2,E12),92;I2)

e P
e P

(Un — (Vn’E’PTLaEln),en)[n) € P
such that

e Foralli=1,...,n—1 there is a v € V; with 0;(v) = 0;11(vi+1)

o There is a v € V,, such that 6,(v1) = 6,,(v) = X.



64 CHAPTER 3. PARSING

Let Np C N be the set of all recursive nonterminals. Np can be constructed
as in the context-free case (cf. Hopcroft & Ullman 1979) by building a graph
(N, E) where there is an edge from X to Y if there is a rule X — ... Y ... ;.
A recursive nonterminal then is every nonterminal which lies on a cycle in this
graph.

I will now define a special notion of derivation which is a restricted form of
derivations we used thus far, in that it does not allow for expansion of recursive
nonterminals.

Definition 25 The nonrecursive derivation relation
£ 4C B(N x Fin(IN)) x B(N x Fin(IV))
w.r.t. to G is defined such that
Dy = DU[(Xo, My)] B¢ DU[(X1, My), ..., (X0, M,))] = Dy

’thl =a D> and Xy ¢ Np

It obviously holds that fng is a special case of =, formally :R>Ggig.

One can now define a normal form for an LSL derivation which consists of
three phases as opposed to the two we had before. First, all non recursive non-
terminals are expanded until only recursive nonterminals or nonterminals which
are eventually expanded by a lexical entry are in the sentential form (we will use

£ for that). The second phase is the usual derivation w.r.t. =>. The third phase
(as before) applies lexical entries and thus generates a string.

Definition 26 A derivation Dy =g D1 =¢ ... =¢ D, >g w 1s in normal form

iff
1. There is k such that D; g}g Dy foralli=0,1,...,k—1

2. For all (X, M) € Dy, it holds that X € Ng or (X, M) € D,

A derivation is in normal form, if all nonrecursive nonterminals are expanded first
until only recursive nonterminals or those nonterminals, which will eventually be
used to generate terminals, appear in the sentential form. We can w.l.o.g. assume

*
that all derivations are in normal form D, £>G Dy, =¢ D, >gw since k could also

be 0.

Lemma 6 Let M € Fin(IV). If [(A, M)] g; D =7 D'>gw is a dertvation in
normal form, then |D| is bounded by a constant.
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Proof:
. R . . . .
Since = does not expand recursive nonterminals, there is only a finite number of

possibilities to apply productions.
d

Lemma 7 If there is m € IN such that every recursive nonterminal has block
number < m then the block number of every nonterminal is bounded by a constant.

Proof:

The proposition holds trivially for all nonterminals in Ng. Let A € N. Let
bn : Fin(IN) — IN be the function such that bn(M) is the block number of M.
Define a function f : B(Fin(INV) x IN) — IN as the block number of a sentential

form as follows:

f@) =0
FIX, MU D) = bn(M) + f(D)

It holds that if [(A, M)] =7 D then bn(M) < f(D) because splitting an index

set into many index sets during a derivation step may only result in more blocks.

Let [(A4, M)] g; D = D'>g w be a derivation in normal form. It holds
that®
bn(M) < f(D) < |Dlm
Since with Lemma 6, |D| is bounded by some constant ¢, it is the case that

bn(M) < em and thus the block number of A is bounded by a constant.
a

Proposition 27 If the block numbers of all recursive nonterminals of G are
bounded by a constant then G is parseable in polynomial time.

Proof:
With Lemma 7, it holds that the block number of every nonterminal is bounded
by a constant ¢. The bit vectors of all inactive edges used during a parse then
also have at most block number ¢. Since each active edges only has a constant
number of nonterminals on the RHS (call this constant r), its bit vector has at
most rc blocks. With Proposition 26, GG is parseable in polynomial time.

O

There are two possibilities how Proposition 27 can be exploited.

1. LSL has a feature which can be used to set the block number of all recursive
nonterminals to 1: Isolation. Since this is directly expressible in LSL, it can easily
be checked. Note that it is not necessary that every occurrence of a recursive
nonterminal X is isolated but either every occurrence of X on a LHS, or every
occurrence on a RHS. If this condition is satisfied I will call X to be isolated in
the grammar G.

This is a rather rough estimate because some nonterminals that might be expanded with
lexical entries have block number 1.
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LP constraints on | Grammar type Complexity
X—-X...X,
(Xi),Vi UCFG P
X; € X1, Vi CFG P (LOGCF L-complete)
(X;), X; € Np | Restricted LSLG P
any General LSLG NP-complete

Table 3.1:  Special cases of LSL grammars and their complexity for the fixed
membership problem. The first column shows the LP constraints attached to every
rule X — Xi...X, in the grammar (N is the set of recursive nonterminals),
the second the (effective) grammar type, and the third the complezity.

Corollary 10 An LSL grammar G s parseable in polynomial time if every re-
curstve nonterminal in G s isolated in G.

Corollary 10 is a specialisation of Proposition 27 in that the required condition
can be directly expressed in LSL.

2. One could, however, pursue another (in a way the opposite) approach and
extend LSL’s notion of isolation to m-isolation. If a constituent is m-isolated that
should mean that it can have at most m blocks (or in other words at most m — 1
discontinuities). Such an extended LSL grammar where all recursive nonterminals
are m-isolated satisfies the condition of Proposition 27 and, thus, this grammar
is parseable in polynomial time.

From a linguistic point of view, the latter approach is more promising because
the requirement that every recursive nonterminal has no discontinuities might be
too strong. For a discussion see section 5.2. (Holan et al. (1998) mention a
possible extension to their dependency grammar framework by adding rules of
the form A —% BC meaning that a tree dominated by A built using this rule
may have at most ¢ discontinuities (see also section 1.2.2). It is not mentioned,
however, which (subset of ) nonterminals should appear on the LHSs of such rules
in order to decrease complexity.)

Notice that, during the whole complexity analysis, the precedence relation
never came into play. The important factor which made parsing polynomial®
is isolation. What is it then that makes parsing CFGs so efficient? Isolation,
i.e., contiguity, makes it polynomial. The total order on the RHS, additionally,
enables good indexing and thus Earley’s result of O(n?).

Fig. 3.1 summarises the complexity results for some variations and special
cases of LSL, grammars.

6Note that this is the case for the fized recognition problem.
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3.3.4 Computing the Block Number

The condition of Proposition 27 requires that the block number of every recursive
nonterminal is bounded by a constant. It is pretty difficult to take this into
consideration when writing a grammar. What one wants is an algorithm which
takes a grammar and checks if such a condition is satisfied. Furthermore, it
would be nice if one could say more about the maximal block number than just
“bounded by some constant”.

[ will now present a simple algorithm to determine the block number of a given
grammar. The block number of a grammar is the maximum of the block numbers
of all nonterminals in the grammar. We consider all nonterminals (even the ones
that are not “reachable” from the start symbol S) because the parser may find
substrings that can be derived by such a nonterminal. The block number of a
nonterminal X can be computed as follows: Consider every rule p with X on
the LHS and some nonterminals X3,...,X,, on the RHS (in some order). If X
is isolated in p, the block number is simply 1. Otherwise, we sum up all block
numbers of the X;. If X is isolated, the block number is again 1 and no recursion
is needed. If not we recurse. At the end we subtract the number of i-edges from
this sum because if two bit vectors with block numbers k; and ks, respectively,
are put together via immediate precedence, the block number of the resulting
new bit vector is k; + ko — 1. Furthermore, we must remember all nonterminals
we already tried to compute the block numbers of to avoid loops. You can see
the pseudocode of this algorithm in Fig. 3.8. The nonterminals already inspected
are stored in the argument visited which is a set.

Note that block_num() only returns the maximal number of blocks for inactive
edges. If we want to compute the block number of a grammar, we also must take
possible active edges into account (see Fig. 3.9).

Since LSL currently does not have a notion of m-isolation, this algorithm can
only check the condition of Corollary 10, i.e., that every recursive nonterminal is
isolated. If LSL is extended towards such a notion, the lines 10 and 11 in Fig.
3.8 may be modified in a straightforward way.

Note again that only a sufficient condition from above is checked, i.e., if the
algorithm returns a number k, the block number is bounded by k. If, however,
the algorithm terminates abnormally, nothing can be said about this grammar
being parseable in polynomial time.

It is easy to see that the block number computed by the function block_number
in Fig. 3.9 is large even when all recursive nonterminals are isolated, i.e., the
time complexity is a polynomial with a high degree. Nonetheless, a line is drawn
between exponential and polynomial time parsing.
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function block_num(X:N,visited:set(N)) : integer

1 if X € visited then output(”Possibly infinite block number !”); halt;

2 if there is X — a € L then max := 1; (* Lezical nonterminal *)

3 else max := 0;

4 (* For all rules expanding X *)

5 for each (v — ({vi,...,v..},Ep,Er),0,1) € P do

6 if v € I then res := 1; (* Isolation = Block number = 1 *)

7 else

8 res := 0;

9 for i=1 to m do

10 if v; € I then (* node on RHS is isolated = block number = 1 *)
11 b :=1;

12 else (* Compute block number for all non-isolated nonterminals *)
13 b := block_num(6(v;),{ X }U visited);

14 res := res + b;

15 endfor

16 res := res - |Ey|; (* Subtract blocks that “melt together” *)

17 endif

18  if res > max then max := res; (* Find mazimum *)

19 endfor

20 return(max);

Figure 3.8: Computing the block number for a nonterminal X .

function block_number((N,T, P, L, S): LSL grammar) : integer
1 b := maxxen{block num(X,0)}; (* Inactive edges *)

2 (* Now for all active edges *)

3 m:=0;

4 for each (v — (V,Ep, Ep),0,1) € P do

5 ba = maxyrcy{) .y block.num(6(z))};

6 if b4 > m then m := b;

7 endfor

8 return max(by,ba);

Figure 3.9: Compute the block number of a grammar. block_num() only returns
the block number for inactive edges. An active edge for rule (v — (V, Ep, Ey),0,1)
can have a block number which is at most the sum of all nonterminals of all proper
subsets of V.
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3.4 Generalisation of LSL Grammars

In this section, I will briefly show how LSL grammars can be generalised such
that arbitrary LP constraints (not necessarily only <, <, and ()) can be used
and how still the condition of Proposition 27 can be applied to yield polynomial
time parseability.

Definition 27 (LPC-Grammar) An LPC-Grammar is a tuple G = (N,T, P, L, S),
where N, T, L, S are defined as for LSL grammars and P is a set of rules of the
form (Xo = X;...X,, ) where X; € N and ¢ is a function from (Fin(IN))" to
{true, false}.

A rule in an LPC grammar consists of a context free rule plus a function ¢ which
checks if some LP constraints between the string positions of the nonterminals
on the right hand side hold and returns true if so, and false otherwise. ¢ is
essentially a predicate, but the functional notation should indicate its procedural
nature. It is the analogue to the combines predicate of Johnson (1985). Deriva-
tions are a generalisation of LSL derivations.

Definition 28 (LPC Derivation) Let G = (N,T,P,L,S) be an LPC gram-
mar. Then the derivation relation =g is defined such that

DU|[(Xo, My)] =¢ DU[(Xy, My),...,(X,, M,)]
if
1 (Xo=X1...X,,0) € P
2. My =U._; M; and all M; are pairwise disjoint
3. o(My,...,M,) = true

The terminating derivation relation >g is defined exactly as for LSL grammars, as
is the language of an LPC grammar. For the description of the parsing algorithm,
[ will use bit vectors instead of index sets and assume that ¢ is defined for those.

In the generalisation of the LSL chart parser, we only use inactive edges. An
edge then is simply a pair (3, X) where § is a bit vector and X € N. The
parser can also be generalised as follows: Let w = wj...w, be the string to
be parsed. After scanning which works as for the LSL parser, we choose a rule
(X = X;...X,,9) € P and look at all r-tuples of edges. If the nonterminals of
those edges match X1, ..., X, respectively, and their bit vectors satisfy ¢, i.e., ¢
maps them to true, we can add an edge with the nonterminal X and the bitwise
OR of all the bit vectors of the X;. For simplicity, [ assume that ¢ also checks
that the bit vectors do not overlap. The criterion for acceptance is also the same
as for the LSL parser. The pseudocode can be seen in Fig. 3.10.
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procedure Ipc_parse(z : T%)

1 for each (X — ¢,¢) € P do add,edge(((iX));
2 fori:=1to |z| do

scan(z;);

4 while there are edges (81, X1),...,(Bm, X,,) in the chart

5 and there is rule (Xg - X;... X,,,9) € P

6 such that ¢(B1,...,B,) = true do add_edge({f1 V ...V By, Xo));
7 endfor
8

9

w

if there is an edge (f, S) in the chart then accept;
else reject;

Figure 3.10: Pseudocode for parsing LPC grammars

Now let ¢(n) = Q(n) be the number of edges in the chart, and f,(n) be the
time complexity of the “worst” function attached to a rule. Let r be the maximal
number of nonterminals occurring on the RHS of a rule. The complexity of this
algorithm for the fixed parsing problem, using a similar argument as in section

3.3, is then

o) +Y( 01+ O fulm)

Initialisation (line 1) =1 Scan. (line 3)  Compl. (lines 4-6)

= SOl Julm) < Y- Ol(cla) o) = Ofn(etn)) Fo(m)

Note that since there are no active edges, we must search through the chart
finding all r tuples rather than all pairs, which makes complexity much worse.

Again, if ¢(n) = n" for some k > 1, and, additionally, ¢ has polynomial
complexity, i.e., f,(n) = n? for some ¢ > 0, we have

O(n(c(n))" fo(n)) = O(n(n*)"n?) = O(n'*+4)

Since k, r, and ¢ are constant, this is a polynomial in n. If there is a notion of
active edges, the algorithm must only search through all possible pairs of edges
in the chart, and thus r» = 2.

To ensure that ¢(n) is a polynomial, the same sufficient condition as above
holds: all recursive nonterminals should have at most a constant number m of
blocks, they should be m-isolated. Every ¢ attached to a rule must return false
if this property is not satisfied in the corresponding rule.

LSL grammars are a special instance of LPC grammars. One can easily
define functions implementing isolation, precedence, or immediate precedence
constraints between any of their arguments.
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The formal language results of LSL do not hold for LPC grammars in general.
[t is, for example, not even required that a function attached to a rule is decidable.

If we, however, assume that all functions attached to rules have polynomial
complexity, the exponent of the polynomial parsing complexity for LPC gram-
mars satisfying the sufficient condition from Proposition 27 is much larger due
to the lack of the notion of active edges (see above), but it is still constant, thus
parsing in polynomial time is possible.



Chapter 4

Implementation

This chapter describes an implementation of the LSL parsing algorithm (this
implementation is called LieSL). LieSL was implemented in C++ using the LEDA
library! (cf. Mehlhorn, Naher, Seel & Uhrig 1999). LEDA (Library of Efficient
Data Types and Algorithms) provides standard data types (such as lists) as well
as more complicated data structures (such as graphs). LieSL can be used on any
UNIX? system.

As described in section 2.9, LieSL implements a unification-based version of
LSL grammars. I will not describe the complete implementation in detail but
rather emphasise the design decisions of problems which were underspecified in
chapter 3 since they do not make any difference from a complexity theoretic point
of view but play an essential role in a practical system. These issues are: organisa-
tion of the chart (indexing) (section 4.3), control of the core algorithm, i.e., which
edges are selected for completion and when (section 4.4), and implementation of
complex categories (section 4.2).

4.1 General Remarks

4.1.1 Usage

It is possible to use LieSL as a standalone application (using atomic or first order
term categories), or in connection with the ConTroll/XTroll system (cf. Gotz,
Meurers & Gerdemann 1997) using its typed feature structures. In either case,
LieSL provides a terminal-based text mode or an X-interface.

Format of an LSL Grammar

LieSL grammars must satisfy the BNF in Fig. 4.1.

!LEDA is available free of charge for research purposes.
2UNIX is a registered trademark of AT&T.

72
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<Grammar> = €

| <NERules>.
<NERules> 1:= <Rule>

| <Rule> <NERules>.
<Rule> Pi= <LSLRule>

| <LexEntry>.
<LexEntry> = <Constant> ’--->’ <YVDef> ’.°.
<LSLRule> 1= <YVDef> ’==>’ <YVars> ’;’ <LPConstraints> °>.’.
<YVars> 1:= €

| <NEYVars>.
<NEYVars> 1= <YVDef>

| <YVDef> °,’ <NEYVars>.
<YVDef> 1i= <YV>?(? <Desc> ’)°.
<LPConstraints> 1:= €

| <NELPConstraints>.
<NELPConstraints> = <LPCons>

| <LPCons> ’,’ <NELPConstraints>.
<LPCons> 1= <YV> <2 <YV>

| <YV> << <YV>
| :[: <YV> J])
| >[> <YV> °]_> <Number>.

Figure 4.1: BNF for LieSL grammars.

<YV> is a yieldvariable which, by convention, looks like a Prolog constant.
<Number> is an arbitrary natural number. <Desc> is an arbitrary string (a de-
scription of a category) which can also have nested parentheses. These descrip-
tions depend on which category type was chosen. Comments are either possible
in C-style, i.e., between “/*” and “*/”, or as single line comments starting with

“0/0” .

Note that [] are the parentheses used for isolation and that LieSL also has a
notion of m-isolation written as [y]_m. See Fig. 4.2 for an example (cf. section

1.2.1).

4.1.2 LieSL-ConTroll Interface

LieSL uses the C-Prolog interface of SICStus Prolog (cf. SICS 1999) for inter-
facing with ConTroll which is implemented in SICStus. As in the standalone
application, all control stays within the C4++ part of LieSL. The only calls made
to SICStus are itself hook predicates to ConTroll routines, mainly unification
and subsumption. ConTroll’s constraint resolution interpreter is not used. It is
therefore straightforward to use a different underlying system than ConTroll by
simply changing the mentioned hook predicates.
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% rule for sentences
s( s(Sem) ) ==> np( np(X,Gen,Case) ),

vp( vp(lambda(X,Sem)) ) ;
np << vp, [Vp] .

% rule for the VP (any order of the two objects allowed)
vp( vp(Sem) ) ==> v( v(lambda(X,lambda(Y,Sem))) ),
npdo( np(X,GenDO,akk) ),
npio( np(Y,GenIO,dat) ) ;
npdo < v, npio < v,
[npdo]l, [mpio].

% rule for NPs with determiner
np( np(Sem,Gen,Case) ) ==> d( det(Gen,Case) ),

n( n(Sem,Gen,Case) ) ;
d << n.

) .
% Lexicon

der ---> 1( det(masc,nom) ).

der -—=> 1( det(fem,dat) ).

die --=> 1( det(fem,akk) ).

Fabian ---> 1( n(fabi,masc,_) ).

Lisa ---> 1( n(lisa,fem,_) ).

PrincipiaMathematica ---> 1( n(principia,fem,_) ).

gibt ---> 1( v(lambda(X,lambda(Y,lambda(Z,gives(Z,Y,X))))) ).

Figure 4.2: FEzample LieSL grammar with first order terms as categories. This
grammar generates German complement clauses. Note that the second rule li-
censes both orderings of the objects of “gqibt”. Parsing, e.g., “der Fabian die
PrincipiaMathematica der Lisa gibt” yields s(gives(fabi,lisa,principia)).
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4.2 Implementation of Complex Categories

The design of LieSL enables easy addition of a new concept of category. In
the current system, three types of categories are supported: atomic categories
(nonterminals, i.e., just strings), first order terms, and ConTroll§ typed feature
structures (see section 4.1.2). In general, all kinds of unification-based categories
can easily be integrated into the system, i.e., categories which have a notion of
subsumption and unification. For the case of atomic categories, a subsumes b iff
a = b and a unifies with b yielding ¢ iff @ = b = ¢. For first order terms, the
classical notions of term subsumption and term unification are used whereas for
typed feature structures, more complicated notions are necessary (cf. Carpenter

1992).

The Idea

Unification-based categories may have a notion of shared variables (also called
structure sharing). For instance, the terms f(a, X) and g(X) share the variable
X (if they both occur within the scope of the same rule). Once this variable is
instantiated, the X's in both terms are bound to that instantiation. Variables are,
on the other hand, only shared within the scope of one rule, i.e., if X appears
in two different rules, it may not be shared. Inspired by a WAM model for first
order terms (cf. Ait-Kaci 1991, Warren 1983), a category in LieSL is considered
as being some kind of pointer into a data structure which, in turn, realises the
sharing of variables. So for example, the terms f(a, X) and g(X) are represented
by “pointers” (in this case the integers 0 and 3, respectively) into the following

WAM style heap

0| f/2
1 a/0
2 | REF | 2
3 g/1
4 | REF |2

The identity of the second and the first argument, respectively, of the two
terms (i.e. the variable X)) is established by letting the second cell after cell 0
(thus second argument of f) and the first cell after cell 3 (first argument of g)
point to the same heap cell, namely 2.

Every rule, and thus every edge, has exactly one object realising this shared
data structure associated with it. In turn, every category appearing in this rule
(or edge) is a pointer into exactly this object.

Implementation

The abstract C++ classes CategoryCommon and Category implement the func-
tionality of a shared data structure object and a pointer into this object, respec-
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Position
Category

pos

cat —{ [J=t J= ... = [F= X

Figure 4.3: Organisation of the chart. The index (cat,pos) is mapped to a list of
edges by two indexing mechanisms (represented by triangles) - first by category,
then by string position.

tively. The parser itself only uses the (pure virtual) methods defined for those
abstract classes. Thus, new category types can be added by new subclasses,
e.g., AtomicCategory and AtomicCategoryCommon for atomic categories, with-
out making modifications to the parser code.

4.3 Chart Organisation

From a theoretical point of view, the chart may simply be a list because in the
worst case, the required access time is linear in the size of the chart. In practice,
however, one might suspect that chart organisation is crucial for the speed of
a running system. As a rule of thumb, unifications between categories must be
avoided whenever possible because the copying and complex operations involved
may slow down the runtime considerably.

4.3.1 Indexing Scheme

The chart consists of two components: the active chart and the passive chart
which contain active and passive edges, respectively. Each edge is stored and is
accessible under an indez. Such an index consists of two parts: 1. a string (which
represents a category, also called cat-index) and 2. an integer (a position in the
input string). Given such an index (cat, pos), the respective edges are retrieved
by indexing first by category, and secondly by string position. Under each index,
one can, in turn, find a linked list of edges (see also Fig. 4.3).

In general, categories with different cat-indices must not be unifiable whereas,
on the other hand, categories with the same cat-index are not guaranteed to
be unifiable. Ideally, the index should be chosen such that in most cases two
categories with the same cat-index are, in fact, unifiable.
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The cat-index depends on the category type. For atomic categories, it can
just be the category itself (since it is just a string). For first order terms, the cat-
index might for example be the functor of the term. Then the two terms f(a,b)
and f(c,d,e) have the same cat-index (namely £) but are not unifiable. A more
sophisticated scheme might take the arity also into account (in the example above,
the two cat-indices would be £/2 and £/3, respectively, and would thus (correctly)
be considered as not unifiable). For typed feature structures, an obvious choice
would be the type of the root node. However, this might be suboptimal because
when using a typical HPSG style grammar, a majority of found constituents are
just phrases. A more sophisticated scheme might thus also take feature values
into account.

[t means different things for active and passive edges to be stored under the
index iz = (cat,pos). For a passive edge it means that the category on the LHS
has cat-index cat and pos is the leftmost bit in its bit vector, in other words, it
starts at position pos. An active edge at ¢z, on the other hand, indicates that
it is looking for a category with cat-index cat, i.e., a node on the RHS labelled
with a category with cat-index cat is in the dot set, and that this category should
start at string position pos. This latter fact will typically be the result of an LP
constraint.

4.3.2 Chart Operations

There are mainly two chart operations the parsing algorithm uses for a given
edge e: inserting e and retrieving all edges which are candidates for completion
with e.

Inserting an Edge

An edge e is inserted into the chart as follows:

If e is passive, the cat-index cat of the LHS and the leftmost bit of e’s bit
vector pos is determined and e is appended to the list accessible under the index
(cat,pos) in the passive chart.

If e is active, for every node v in the dot set with cat-index cat and for every
string position pos where v might possibly start, append e to the list accessible
at (cat, pos) in the active chart. Since the dot set in general contains more than
one node, and each of those nodes may be found at more than one position, e
might be stored under many different indices.

Appending e to a list in this context means appending only if e is not subsumed
by an edge already in the list, i.e., LieSL uses a subsumption check (cf. section
3.2.6). (Two edges where one subsumes the other also have the same index.)

For instance, suppose we have typed feature structures as categories with a
type hierarchy with two types ¢t and ¢; where ¢ subsumes® ¢;. For the sake of

3This type subsumption has nothing to do with the subsumption check mentioned earlier.
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example, we will use the type of the root node as a the cat-index.
The passive edge

e, = (011,¢ — ...)

will be inserted under the index (¢,2) because it has cat-index ¢ on the LHS and
starts at string position 2 (the rule graph on the RHS is not important here,
hence the ’..."). (The problem that e, should also be accessible via t; because t;
is subsumed by t will be discussed in the next subsection.)

On the other hand, the active edge

en = (100, t —= ()3(1) )

is inserted under the indices (¢1,2) and (t;,3), because a t; may be found at
position 2 or 3 (if we ignore empty categories for now). Note that the first string
position belongs to the first node. If the edge in the rule graph of e, was an i-edge,
then (¢;,2) would be the only index because due to the immediate precedence
constraint it must occur at string position 2 and not later.

Retrieving all Candidates For Completion

At some point, the parsing algorithm wants to perform all possible completions
of a newly created edge e with all edges in the chart. The chart determines all
those candidates for completion as follows:

Suppose e is passive. Roughly speaking, we determine the index of e and use
this index to retrieve edges from the active chart*. With e, from the example
above, all active edges which can be found under the index (¢,2) would be se-
lected. With the assumed type hierarchy, however, we run into the problem that
a category with cat-index ¢ might unify with categories with cat-index t; so we
should retrieve all edges under index (¢;,2) as well. Thus, the indexing scheme
additionally provides a way to get all cat-indices for categories which might unify
with a given category. In the example, all unifiable cat-indices for ¢t would be ¢
itself and ¢;, thus e, is (correctly) chosen as a possible candidate for completion
with e, since it is stored (among others) under index (¢, 2).

For active edges, this mechanism works analogously. In the example, e, would
consider all passive edges under the indices (¢1,2), (¢1,3), (¢,2), and (¢, 3).

As demonstrated, there is, in general, more than one list that must be searched
through. To access all those lists uniformly, the chart is able to create an iterator
object (cf. Gamma, Helm, Johnson & Vlissides 1995) for an edge e. Dereferencing
this iterator object subsequently yields all those edges which are candidates for
completion with e. Additionally, the iterator is implemented such that no two
edges are tried to be completed more than once.

4The index is thus used both for storing and for retrieving.
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procedure process(A: Agenda)
1 last_successful := nil;
2 (e, it) := dequeue(A);
3 while e # last_successful do

4 while it can be dereferenced do

5 ¢ = deref(it);

6 if e and ¢ can be completed do
7 last_successful := e;

8 e. := complete(e,c);

9 add e, to the chart and to A
10 endif

11 endwhile

12 enqueue(A,(e,it));

13 (e,it) := dequeue(A);
14 endwhile

Figure 4.4: Pseudocode for processing the agenda, initialised after lexical lookup.

4.4 Control

As in classical chart parsing, LieSL uses an agenda, i.e., a queue, which keeps
track of new edges that were inserted into the chart. An agenda entry is a pair
consisting of an edge and the iterator of that edge (see section 4.3). When arriving
at string position 7, where lexical item w is found, new edges are created which
have an empty rule graph on the RHS and category C' on the LHS if C' — w is a
lexical entry (see section 3.2.4). All those edges are then stored in the chart and
enqueued into an empty agenda together with their associated chart iterators,
i.e., the iterators over all possible candidates for completion (see Fig. 4.5 for the
pseudocode of the top level loop which is modification of Fig. 3.4). After this
lexical lookup step, the agenda is processed as follows:

Dequeue (e, it) from the agenda. While there are candidates for completion
with e in the chart, perform completion with those. In other words, while it can
be dereferenced, try to perform completion with those dereferenced entries. If
such a completion successfully yields a new edge, insert it into the chart and into
the agenda. Finally, add (e, it) to the agenda again. If a complete pass through
the agenda is made without one successful completion, we are done at this string
position. See Fig. 4.4 for the pseudocode of this loop.



80 CHAPTER 4. IMPLEMENTATION

procedure parse(z:list)

1 n:=|z|;

2 initialise();

3 fori:=1to|z| do (* Add initial edges for x[i] *)
4 B = set(n,i);

5 A := emptyAgenda();

6 (* Scanning *)

7 for all L € lex_entries(z[i]) do

8 e:= (B, (u— (0,0,0), {u — L},0),0,m.));

9 add e to chart

10 insert e into A (* together with e’s chart iterator *)
11 endfor

12 process(A); (* do all possible completions *)

13 endfor

14 if there is (I, (v — R, 6,1),0,7) with 6(v) = S then
15 accept; (* If S spans the whole string = accept *)
16 else reject;

Figure 4.5:  Top level loop of the parser with an agenda

4.5 LieSL in Practice

In this section, I will first investigate what role the theoretical predictions in
chapter 3 about parseability of LSL grammars (in particular about parseability
in polynomial time) play in practice. Secondly, I will present a linguistically
motivated grammar which uses ConTroll-style typed feature structures.

Practical Effects of LP Constraints

To investigate what effects the different LP constraints have on the parsing times,
I used variations of the simple grammar (using atomic categories):

A — AAe
A = a

In particular, (almost) all possible kinds of LP constraints were substituted for ¢

and LieSL was run on the inputs a°, a®, ..

. up to a®. Since atomic categories are
implemented using a stringpool, copying and “unifying” those categories amounts
just to pointer copying, and pointer comparison, respectively. Thus, the opera-

tions on categories themselves are kept to a minimum?®.

®Profiling proved that point. On the other hand, most of the overall time when parsing with
first order categories was needed for copying, subsumption, and unification (in that order).
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See Table 4.1 for the test results. There is one column for each data set. The
column headers indicate which isolation (NI: no isolation, RI: right isol., i.e., only
nonterminals on RHS isolated, LI: left isol., i.e., only LHS isolated) and prece-
dence (NP: no precedence, WP: Weak prec., IP: Immediate prec.) constraints
were attached to the first rule in the grammar above. For instance, LI/WP cor-
responds to the rule A — A;Ay; (A), A; < A,. Each row shows the parsing times
for some input length (which, in turn, is indicated in the first column), the times
themselves are given in seconds®. Under the time the size of the chart is indicated
as (# of active edges, # of passive edges).

Note that the the first four data sets are effectively LSL encodings of context-
free grammars. In fact, the charts built in those four runs are all the same. The
first three of them have merely the same runtimes due to the fact that immediate
precedence narrows down the number of possible completion candidates more
than weak precedence (see section 4.3).

Considering this and the fact that both data sets which do not involve any
isolation (either directly or indirectly) are much slower than the others, implies
that the theoretical predictions are borne out (in this case). Furthermore, im-
mediate precedence is an important factor. Note that isolation and immediate
precedence are more closely related than isolation and weak precedence because
if the RHS of every rule is a single “immediate precedence chain”, this implies
that the LHS is isolated.

Overall, parsing times decrease as the data sets get more “restrictive”. This
observation can also be interpreted to show that weak precedence also influences
the runtime for the better which is what one might have expected. As one can see
from the chart sizes, weak precedence only reduces the number of active edges,
but there is still a substantial difference particularly between NI/WP and NI/NP
or RI/WP and WI/NP.

A Small Grammar For German

The grammar discussed in this section was written by Frank Richter (cf. Richter
& Suhre 1999). It demonstrates the possible usage of LieSL in a linguistic en-
vironment. In particular, it captures the effect of freer word order in German
sentences using ConTroll-style typed feature structures as categories. In Fig. 4.6,
a rule of the grammar is shown (see section A for the complete grammar). It is
important to note that complete freedom of word order (including discontinuities)
is never allowed, i.e., a lot of isolation and precedence constraints are used.

The parsing times for all the sentences generated by the grammar, e.g., “dass
der Mann das Buch dem Kind gibt”, are all around 0.6s. Considering the fact
that the structures built during a parse are quite large, this is acceptable.

6 As measured on a SUN SPARC Ultra Enterprise 450 with two 250 MHz Ultra II SPARC
CPUs and 512 MB of main memory running under SunOS 5.6.
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n Data Sets
(ordered by increasing runtimes in secs)
RI/IP LI/IP NI/IP | LI/WP ‘ LI/NP | RI/WP | RI/NP | NI/WP | NI/NP
5 0.01 0.01 0.01 0.01 0.02 0.01 0.02 0.01 0.05
(11,15) (32.15) (11.30) (32.30) (16,31) (64.31)
6 0.01 0.01 0.01 0.01 0.03 0.02 0.05 0.03 0.17
(16,21) (44,21) (16,56) (44,56) (32,63) (128,63)
7 0.02 0.01 0.01 0.01 0.04 0.03 0.09 0.07 0.61
(22,28) (58,28) (22,98) (58.98) (64.127) (256,127)
8 0.02 0.03 0.02 0.02 0.07 0.04 0.16 0.17 2.39
(29,36) (74,36) | (29.162) |  (74,162) (128,255) (512,255)
9 0.03 0.03 0.03 0.03 0.09 0.07 0.25 0.48 11.08
(37.,45) (9245) | (37.255) |  (92,255) (256.511) | (1024,511)
10 0.04 0.04 0.04 0.05 0.15 0.12 0.46 1.57 55.81
(46, 55) (112,55) |  (46,385) | (112,385) (512,1023) | (2048,1023)
11 0.04 0.04 0.04 0.06 0.21 0.17 0.74 5.89 310.66
(56,66) (134.66) | (56.561) | (134,561) |  (1024,2047) | (4096.2047)
12 0.06 0.06 0.06 0.08 0.27 0.27 1.19 24.62 1899.400
(67.78) (158,78) |  (67,793) | (158,793) |  (2048.4005) | (8192,4095)
13 0.07 0.08 0.08 0.10 0.37 0.42 1.84 115.12 11675.00
(79.91) (184,91) | (79,1092) | (184,1092) |  (4096,8191) | (16384.8191)
14 0.09 0.08 0.09 0.13 0.48 0.62 2.84 542.25
(92,105) (212,105) | (92,1470) | (212,1470) | (8192,16383)
15 0.12 0.11 0.10 0.17 0.61 0.93 4.26 2519.53
(106,120) (242,120) | (106,1940) | (242.,1940) | (16384,32767)
16 0.14 0.14 0.15 0.21 0.77 1.35 6.28 11032.61
(121.136) (274,136) | (121,2516) | (274.2516) | (32768,65535)
17 0.18 0.16 0.16 0.25 0.94 1.96 9.16
(137.153) (308,153) | (137.3213) | (308.3213)
18 0.20 0.20 0.21 0.29 1.17 2.73 13.11
(154,171) (344,171) | (154.4047) | (344.,4047)
19 0.24 0.25 0.24 0.37 1.40 3.91 18.57
(172,190) (382,100) | (172,5035) | (382.5035)
20 0.28 0.29 0.29 0.43 1.69 5.42 25.76
(210,401) (422,210) | (191.6195) | (422,6195)
Table 4.1:  Parsing times and chart sizes (active,passive) for variations of the

test grammar. The charts for the first four data sets are all the same.
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% Rule for flat finite verb last sentences
vp( (hf_phrase, dtr1:SU, dtr2:I0, dtr3:D0, dtr4:VE, synsem:nonloc:[],
synsem:loc:cat: (head:HD,
subcat:[])) )

==>

npl( (SU, bin_phrase, synsem: (NP1,loc:cat:head:noun))),

np2( (I0, bin_phrase, synsem: (NP2,loc:cat:head:noun))),

np3( (DO, bin_phrase, synsem:(NP3,loc:cat:head:noun))),

v( (VE, word, synsem:loc:cat: ((head:(HD,dsl:[]),
subcat: [(NP1), (NP2), (NP3)]))))

; npl < v, np2 < v, np3 < v,

[np1l, [np2], [np3]

Figure 4.6: A rule from Richter’s grammar.

Unfortunately, large scale LSL grammars were not available at the time of
writing this thesis. It is thus still an open question how LieSL performs in real
linguistic applications.

However, since Richter’s grammar uses quite a lot LP constraints, particularly
isolation, it is a reasonable assumption that this property will also hold for large
grammars and thus the odds are not too bad that LieSL performs reasonably
well.
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Conclusion

In this chapter I will summarise the basic results of this thesis and discuss some
of their consequences. After the following summary, I want to briefly discuss
how the sufficient condition for polynomial time parseability is practical from a
linguistic point of view. The last section then presents possible extensions to LSL
as proposed in G6tz & Penn (forthcoming).

5.1 Summary

In this thesis I presented the LSL. grammar formalism, a natural generalisation
of context free grammars, to express natural language phenomena which involve
freer word order. The set of LSL languages is a proper superset of the context free
languages but the same decidability results hold for the two classes. However,
they differ in their closure and complexity theoretic properties. In particular, both
the general and fixed membership problem are N'P-complete for LSL grammars
whereas for CF'L, the general is P-complete and the fixed is LOGC'F L-complete.

[ furthermore presented a generalisation of Earley’s algorithm for parsing LSL
grammars. The worst case complexity of this algorithm is exponential (as could
be expected). It can be shown, however, that parsing in polynomial time can be
ensured if the grammar satisfies the condition that the yield of every recursive
nonterminal has at most a constant number of discontinuities (at most a constant
number of “blocks”).

A unification-based extension of this parsing algorithm was implemented, pro-
viding atomic categories, first order terms, and ConTroll-style typed feature struc-
tures. Experiments with this implementation (called LieSL) showed that the the-
oretical predictions are borne out in that the more isolation there is, the shorter
the parsing times are. Furthermore, factors which were not so important in the
theroretical analysis (precedence), have a considerable influence in practice.

A grammar using typed feature structures demonstrated how LSL can be used
for writing grammars in a linguistic framework.
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5.2 The Role of m-Isolation

We have seen that the condition of Corollary 10 is directly expressible in LSL.
For natural language, however, this condition is too strong. One might want to
relax the notion of isolation to something like m-isolation, meaning at most m
blocks (or, in other words, at most m — 1 discontinuities). With Proposition 27,
this is sufficient to ensure parseability in polynomial time. I conjecture that there
is such a number for natural languages.
To see that this number might even be bigger than 2, consider the sentence:
Von dem Mann habe ich viele Bucher gelesen, der “The Hobbit” geschrieben hat.
By the man have I many books read who “The Hobbit” written has.
“I have read many books by the man who wrote ‘T’he Hobbit’. ”

Here, the discontinuous NP “Viele Biicher von dem Mann, der ‘The Hobbit’
geschrieben hat” has three blocks (two discontinuities). Holan et al. (1998) argue
that a number of 5 discontinuities is certainly enough for Czech.

Including m-isolation into the parsing algorithm is straightforward and was
actually implemented in the LieSL system. How it will influence the formal
language properties is an open question. I would suspect, however, that it does
not make a big difference.

Further linguistic research should be concerned about what this m might be
for different languages.

5.3 Outlook

In Go6tz & Penn (forthcoming), other LP constraints than isolation, weak prece-
dence, and immediate precedence are proposed. In this section, I want to present
the three most important of those and discuss them briefly. These are:

1. Liberation, written as (X)(: Y'). Liberation generalises isolation in that
components of an isolated constituent are explicitly allowed to violate the
isolation constraint. The example means that “X is isolated except for a
Y it contains”. “contains” here is equivalent to “derives”.

2. Universal Quantification (VX € Y.¢). This kind of constraint enables for-
mulating statements like: “For all X contained in Y (for all X's derived by
Y'), the constraint ¢ must hold”.

3. Existential Quantification (3X € Y.¢). Similarly, this means: “There must
be an X contained in Y which satisfies ¢”.

From a linguistic point of view, it is desirable to have such constraints. From a
processing point of view, however, it is not clear how to implement them in an
efficient manner: In LSL as presented in this thesis, LP constraints can be checked
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“locally” during parsing; the derivation tree, i.e., the “history”, of a constituent
can be ignored to check if it is isolated, or if it (weakly or immediately) precedes
another constituent. With the constraints above, however, this is no longer the
case. Those constraints require knowledge about the complete derivation tree
of a constituent to be able to check, for example, if some other constraint holds
for all contained constituents of a certain type (as would be needed for universal
quantification). Furthermore, the effects on the formal language and complexity
results are not at all obvious.

It will be an important topic in further research to integrate these new con-
straints into LSL and at the same time ensure efficient processing.
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Appendix A

An Example Grammar for LieSL

This section shows the grammar written by Frank Richter for a fragment of
German. It uses ConTroll’s typed feature structures.
Sentences parseable with this grammar are (among others):

dass der mann dem kind das buch gibt
dass dem kind der mann das buch gibt
dass das buch dem kind der mann gibt

der mann gibt dem kind das buch
der mann gibt das buch dem kind
das buch gibt der mann dem kind

A.1 The Type Hierarchy

type_hierarchy

bot

sign synsem:synsem phon:list
bin_phrase dtril:sign dtr2:sign
hf_phrase dtrl:sign dtr2:sign dtr3:sign dtr4:sign
word

synsem loc:loc nonloc:list

loc cat:cat cont:cont

cat head:head subcat:list

cont index:index

index per:num gen:gen

num
5g
pl

gen
fem

90



A.2. THE GRAMMAR

masc
neut
head
marker spec:synsem
art case:case
verb
vfinal dsl:list
verb2
noun case:case
case
nom
akk
dat
string

A.2 The Grammar

% Grammar rules

% Rules for definite NPs
np( (bin_phrase, dtril:ART,
dtr2:NP, synsem:nonloc:[],
synsem:loc:cat: (head:HD,
subcat:[])) )
==>
a( (ART, word, synsem: (X, loc:(cat:head:art,
cont:index:per:Num))) ),
n( (NP, word, synsem:loc:(cat: (head: (HD, noun),
subcat: [X]),
cont:index:per:Num)) )
; a<<n

% Rule for flat finite verb last sentences
vp( (hf_phrase, dtrl1:SU, dtr2:I0, dtr3:D0, dtr4:VE, synsem:nonloc:[],
synsem:loc:cat: (head:HD,
subcat:[])) )
==>

npl( (SU, bin_phrase, synsem:(NP1,loc:cat:head:noun))),

np2( (I0, bin_phrase, synsem:(NP2,loc:cat:head:noun))),

np3( (DO, bin_phrase, synsem: (NP3,loc:cat:head:noun))),

v( (VE, word, synsem:loc:cat: ((head:(HD,dsl:[]),
subcat: [(NP1), (NP2), (NP3)]))))

; npl < v,
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np2 < v,
np3 < v,
[np1],
[np2],
[np3]

% Rule for the dass-complementiser
s( (bin_phrase, dtri1:MA, dtr2:VP, synsem:nonloc:[],
(synsem:loc:cat: (head:HD,
subcat:SC))) )

==>

m( (MA, word, synsem:loc:cat:head:spec:SS) ),

vp( (VP, hf_phrase, (synsem:(SS, loc:cat: (head:HD,subcat:SC)))) )
; m << vp,

[vp]

% Rule for the complement of a V2 verb
vp( (bin_phrase,
synsem:nonloc:NL,
dtri1:V2, dtr2:VP,
synsem:loc:cat: (head:VH,
subcat:[])) )
==>
v2( (V2, word, synsem:nonloc:NL,
synsem:loc:cat: (head: (VH,verb2),
subcat: [SC])) ),
v( (VP, bin_phrase, synsem:nonloc:[],
synsem:SC) )
; V2 <K v,

[v]

% 2 rules for the binary complement realisation of the verb trace
vp( (bin_phrase, synsem:nonloc:[],

dtrl:NP, dtr2:V,

synsem:loc:cat: (head:dsl: (X,ne_list),

subcat: [NP1])) )
==>
np( (NP, bin_phrase, synsem:(NP2,loc:cat:head:noun)) ),
v( (V, word, synsem:loc:cat:(head:dsl:X,
subcat: [(NP1), (NP2)])) )

; [npl]
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vp( (bin_phrase, synsem:nonloc:[],
dtrl:NP, dtr2:V,
synsem:loc:cat: (head:dsl: (X,ne_list),
subcat:[])) )
np( (NP, bin_phrase, synsem:(NP1,loc:cat:head:noun)) ),
v( (V, bin_phrase, synsem:loc:cat:(head:dsl:X,
subcat:[NP1])) )
; [npl,
[v]

% Rule for topicalisation in V2 sentences
s( (bin_phrase, synsem:nonloc:[],
dtrl:NP, dtr2:VP,
synsem:loc:cat: (head: (HD,verb2),
subcat: (SC,[1))) )
==>
np( (NP, bin_phrase, synsem:loc:NLNP) ),
vp( (VP, bin_phrase, synsem:(loc:cat: (head:HD,
subcat:SC),
nonloc: [NLNP])) )
; np << vp,
[np],
Lvp]

%% Trace, empty category
v( (word, synsem:nonloc:[], phon:[],
synsem:loc:cat: (head:dsl:SC,
subcat: (SC, [(loc:cat:head:noun),
(loc:cat:head:noun)]))) ) ==>

%% Lexicon

% Nouns
buch ---> 1( (word, (synsem:loc:((cat:(head: (noun,case:CA),
subcat: [(loc:((cat:head: (art,case:C4)),
(cont:index:IN)))1)),
cont:index: (IN,gen:neut))),
phon: [buch],
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synsem:nonloc:[]) ).
kind ---> 1( (word, (synsem:loc:((cat:(head: (noun,case:CA),
subcat: [(loc:((cat:head: (art,case:CA)),
(cont:index:IN)))1)),
cont:index: (IN,gen:neut))),
phon: [kind],
synsem:nonloc:[]) ).
mann ---> 1( (word, (synsem:loc:((cat:(head: (noun,case:CA),
subcat: [(loc:((cat:head: (art,case:CA)),
(cont:index:IN)))]1)),
cont:index: (IN,gen:masc))),
phon: [mann],
synsem:nonloc:[]) ).

% determiner
der ——-> 1( (word, (synsem:loc:((cat:(head:(art, case:nom),
subcat:[])),
cont:index: (per:sg,
gen:masc))),
phon: [der],
synsem:nonloc:[]) ).
das ---> 1( (word, (synsem:loc:((cat:(head:(art, case:(nom;akk)),
subcat:[])),
cont:index: (per:sg,
gen:neut))),
phon: [das],
synsem:nonloc:[]) ).
dem ---> 1( (word, (symsem:loc:((cat:(head:(art, case:dat),
subcat:[])),
cont:index: (per:sg,
gen: (masc;neut)))),
phon: [dem] ,
synsem:nonloc:[]) ).

% verbs
% vfinal version of gibt
gibt ---> 1( (word, (synsem:loc:cat:(head:dsl:[],
subcat: [(loc:cat: (head: (noun, case:nom),
subcat:[]1)),
(loc:cat:(head: (noun, case:dat),
subcat:[1)),
(loc:cat: (head: (noun, case:akk),
subcat:[]))])),
phon: [gibt],
synsem:nonloc:[]) ).
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% verb2 versions of gibt
gibt ---> 1( (word, (synsem:loc:cat:(head:verb2,
subcat: [(loc:cat:(head:dsl: [

(loc:cat:(head: (noun, case:dat),
subcat:[]1)),

(loc:cat: (head: (noun, case:akk),
subcat:[]))],
subcat:[]1))1)),

phon: [gibt],
synsem:nonloc: [(cat: (head: (noun, case:nom),
subcat:[]1))]1) ).
gibt ---> 1( (word, (synsem:loc:cat:(head:verb2,
subcat:[(loc:cat:(head:dsl: [

(loc:cat: (head: (noun, case:nom),
subcat:[]1)),

(loc:cat:(head: (noun, case:dat),
subcat:[]))],
subcat:[]1))1)),

phon: [gibt],
synsem:nonloc: [(cat: (head: (noun, case:akk),
subcat:[]1))]1) ).
gibt ---> 1( (word, (synsem:loc:cat:(head:verb2,
subcat: [(loc:cat:(head:dsl: [

(loc:cat: (head: (noun, case:nom),
subcat:[]1)),

(loc:cat:(head: (noun, case:akk),
subcat:[]1))],
subcat:[]1))]1)),

phon: [gibt],
synsem:nonloc: [(cat: (head: (noun, case:dat),

subcat:[]1))]1) ).

% complementiser
dass ---> 1( (word, (synsem:loc:cat:((head:spec:loc:cat:(head:vfinal,
subcat:[]),
subcat:[]))),
phon: [dass],
synsem:nonloc:[]1)).



