
A Web-based Course in Grammar Formalisms and

Parsing

Frank Richter

Seminar für Sprachwissenschaft

Abteilung Computerlinguistik
Eberhard-Karls-Universität Tübingen

August 11, 2006

ii

Contents

Summary . 1

1 Introduction 7
1.1 Historical Overview . 7
1.2 The Structure of HPSG Grammars . 10
1.3 The Grammar of English of Pollard and Sag 1994 13

2 Grammar Formalisms 19
2.1 Introduction . 19

2.1.1 An Initial Syntax . 20
2.1.2 Signatures: Partitions and Feature Declarations 24

2.2 Initial Grammars . 30
2.2.1 The Syntax of Initial Grammars . 30
2.2.2 Meaning . 35

2.2.2.1 Concrete Feature Structures 38
2.2.2.2 Satisfaction . 43
2.2.2.3 Admission . 45
2.2.2.4 Formalization . 49

2.3 Complex Grammars and their Meaning . 61
2.3.1 The Syntax of Complex Grammars 65
2.3.2 The Meaning of Complex Grammars 70
2.3.3 A Notational Convention . 82

2.4 Grammars and their Meaning . 84
2.4.1 Syntax . 88
2.4.2 Meaning . 94
2.4.3 An Extended Example for Grammars 105

2.5 Wrapping up: Summary and Open Issues 109
2.5.1 The Lexicon . 113
2.5.2 Parametric Sorts . 114
2.5.3 Notation for Lists . 116

3 Grammar Implementation 121
3.1 Computing with HPSG Grammars . 123

3.1.1 A Minute Grammar . 127

iii

iv CONTENTS

3.1.2 The Second TRALE Grammar . 137
3.1.3 The Third TRALE Grammar . 145
3.1.4 Relations as Definite Clauses in TRALE 161

3.2 Grammar Development . 174
3.2.1 Fragment I – The Core fragment 175

3.2.1.1 Specification of the Core Fragment 179
3.2.1.2 Implementation of the Core Fragment 191

3.2.2 Lexical Generalizations: Fragment II 198
3.2.2.1 Specification of Fragment II 199
3.2.2.2 Theories of Lexical Rules in HPSG 206
3.2.2.3 Implementation of Fragment II 209

3.2.3 Unbounded Dependencies: Fragment III 215
3.2.3.1 Specification of Fragment III 217
3.2.3.2 Implementation of Fragment III 224

4 The Appendix of Pollard and Sag (1994) 233
4.1 The Sort Hierarchy . 233
4.2 The Principles . 237
4.3 The ID Schemata . 256
4.4 The Raising Principle . 259

5 Resources: MoMo, TRALE, MERGE 261
5.1 MoMo . 261
5.2 TRALE . 262
5.3 MERGE . 263

6 Grammars 265
6.1 Grammar 1 . 265

6.1.1 Signature . 265
6.1.2 Theory . 266

6.2 Grammar 2 . 268
6.2.1 Signature . 268
6.2.2 Theory . 269

6.3 Grammar 3 . 271
6.3.1 Signature . 271
6.3.2 Theory . 272

6.4 Grammar 4 . 276
6.4.1 Version 1 . 276

6.4.1.1 Signature . 276
6.4.1.2 Theory . 278

6.4.2 Version 2 . 282
6.4.2.1 Signature . 282
6.4.2.2 Theory . 283

CONTENTS v

6.4.3 Version 3 . 288
6.4.3.1 Signature . 288
6.4.3.2 Theory . 290

6.5 Spook . 294
6.5.1 Signature . 294
6.5.2 Theory . 296

6.6 Core Fragment . 299
6.6.1 Signature . 299
6.6.2 Theory . 301

6.7 Fragment with Lexical Generalizations . 314
6.7.1 Signature . 314
6.7.2 Theory . 316

6.8 UDC Grammar . 333
6.8.1 Signature . 333
6.8.2 Theory . 336

6.9 The MERGE . 357

7 Glossary 359

Bibliography 373

Summary

Abstract

This electronic course book is an introduction to the development of grammars,
based on a constraint-based grammar formalism, Head-driven Phrase Structure
Grammar (HPSG). Special emphasis is placed on the combining of several top-
ics in the field of HPSG, which are usually treated separately. These topics
are the practical development of grammar fragments, linguistic theory forma-
tion, modern programming methods, mathematical foundations of constraint-
based grammar frameworks and the implementation of linguistic theories with
the methods of computational linguistics. An integrated study of these seem-
ingly heterogeneous issues will provide new perspectives and will lead to a better
understanding of how they are related. The mathematical foundations of con-
straint based grammar formalisms are presented in the format of interactive
teaching software. This course is an instance of the paradigm of web based
training. This means that students of this course are expected to work through
the lessons on their own, using the educational software provided by the course.
They should regularly work through exercises on their computers, which will
help them to check their progress. Communication with lecturers and among
students takes place on an electronic learning platform. However, the course
materials can also be used in a traditional classroom setting or for self-study.

This course uses the interactive web based instructive software MorphMoulder
(MoMo) to teach the formal foundations of HPSG, and the grammar develop-
ment environment TRALE for grammar implementation. These software tools
were created, or significantly extended, within the framework of the MiLCA-
Consortium located at the Seminar für Sprachwissenschaft in Tübingen, in col-
laboration with Professor Detmar Meurers from Ohio State University and Pro-
fessor Gerald Penn from the University of Toronto.

In this seminar we will take a closer look at the constraint-based grammar framework
of HPSG from at least three significantly different perspectives. At the beginning of the
course, we will study the mathematical structure of HPSG grammars. What is an HPSG
grammar from a formal point of view, and what is the meaning of an HPSG grammar?
Then our task will be to write grammars of natural languages in the HPSG formalism,
and to do that, we will have to review a few basic linguistic notions which will be treated

1

2 CONTENTS

in our grammars. We will learn how to use our HPSG specifications of natural languages
as input to a computational system, in order to make queries to the system about the
natural language which we have specified. We will see how we can do this on one par-
ticular implementation platform, and we will learn to recognize and pay attention to the
procedural aspects and problems which occur when a powerful declarative language of the
kind employed by HPSG is used in a general computational environment.

In the mathematical section of this course we will identify the most important com-
ponents of a constraint-based grammar by investigating a prominent example, the HPSG
grammar of English specified by Carl Pollard and Ivan Sag in the appendix of Head-Driven
Phrase Structure Grammar [Pollard and Sag, 1994]. We will clarify the notion of Sort Hi-
erarchy, and explain in which sense Pollard and Sag’s Partitions and Feature Declarations
provide the essential syntactic vocabulary for formulating their Principles of grammar. We
will also define a certain kind of Feature Structures, which will serve as the modeling do-
main for grammars. We will briefly discuss the relationship between our modeling domain
of feature structures and empirical (observable, measurable) phenomena, and we will men-
tion alternative ways of defining a model theory for HPSG grammars and the motivation
behind existing alternative proposals.

Among the notions which we will clarify in this first section of the course are: sort
hierarchy, attribute, multiple inheritance, feature structure, sort-resolvedness, total well-
typedness, grammar, constraint satisfaction and feature structure admission. All of them
will be visualized, and some of them can be explored interactively in the Morph Moulder
(MoMo), which is a teaching software for the formal foundations of constraint-based HPSG.
The screen shot below shows a feature structure in MoMo.

With a precise understanding of HPSG grammars, we can then turn our attention to
linguistic theories formulated in HPSG. Assuming some familiarity with the most impor-
tant notions of current linguistic theorizing in syntax, we will briefly review how they are
expressed. Step by step we will increase the number of phenomena covered in our gram-
mars. The phenomena which will be covered include a theory of syntactic selection, phrase
structure, agreement, government, raising constructions, thematic roles, word order, and
unbounded dependency constructions. Another important topic will be the issue of lex-
ical generalizations, and we will look at mechanisms such as lexical rules, which play an
important role in the discussion in the syntactic literature.

Our introduction to linguistic phenomena and their analysis will go hand in hand with
their implementation in TRALE. As Detmar Meurers recently put it in the description of
a course he taught at The Ohio State University, Columbus:

From the linguistic perspective, the development of grammar fragments can
be an important means of obtaining feedback on the empirical consequences
of a linguistic theory and the compatibility of the various theories which are
integrated in the grammar fragment. I would argue that one can go one step
further by stating that comprehensive grammar fragments integrating the state-
of-the-art of syntactic theorizing are essential for reestablishing the credibility
of generative syntax as a science with a measurable criterion for progress.

CONTENTS 3

Figure 1: A screen shot of MoMo

We will first familiarize ourselves with the technical necessities and tools which the user
of an implementation platform for grammars will be working with. We will also discuss the
properties that an implementation platform of HPSG should have in order to be maximally
useful in the sense expressed by Meurers, and we will see which fundamental limits the
mathematical results on the properties of our HPSG formalism impose on computing with
HPSG grammars. In developing fragments of English we will then gain practical experience
with grammar implementation, and we will learn basic grammar implementation skills. The
seminar will finish open-ended with an overview of a large fragment of English exemplifying
the techniques of large-scale grammar development and providing the course participants
with a wealth of material for studying grammar implementation on their own after the end
of the course.

Structure of the Course Material Chapter 1 provides an overview of HPSG for-
malisms and HPSG implementation platforms, and briefly reviews the most important
assumptions about grammars of human languages in the HPSG framework. The first
chapter should also give readers an idea about the level of background knowledge needed

4 CONTENTS

Figure 2: A screen shot of TRALE output

to work successfully through the course.
Chapter 2 is an introduction to the formal foundations of constraint-based grammar

formalisms. A succession of three grammar formalisms leads from a simple feature logic
to a very expressive class of formal languages, which is adequate for formalizing complete
HPSG grammars. Chapter 3 investigates the relationship between grammars specified in
logical languages and the needs and necessities of computational grammar implementa-
tion. The readers will learn how to use HPSG grammars as specifications of grammar
implementations. Successively larger and more comprehensive grammars will explain how
HPSG grammars can be used for computation.

Chapter 4 contains a symbolization of the grammar of English presented in
[Pollard and Sag, 1994], in the last formalism from the sequence of formalisms in Chap-
ter 2, which illustrates how its abstract mathematical concepts are applied in practice.
This chapter offers a complete and precise specification of the grammar from the appendix
of Pollard and Sag’s book. This chapter might also serve as an illustration for grammar
specification, as well as providing an initial overview of HPSG grammars and their formal
structure. It will be useful to consult this chapter occasionally while systematically working
through the materials in the textbook.

Chapter 5 and Chapter 6 provide important resources for the course. Chapter 5 contains
links to the user’s manuals of MoMo and TRALE, and gives online users access to the
software packages of MoMo and TRALE for downloading and installing them on their
computers. Together with these resources, a link to the MERGE grammar for TRALE
is available. Chapter 6 contains all teaching grammars which belong to the chapter on
grammar implementation, Chapter 3. The last grammar available in this chapter is once
again the MERGE, which is the largest and final grammar of this course.

CONTENTS 5

Document Formats The present document exists in two electronic formats; firstly, it is
integrated in the ILIAS learning platform on the MiLCA server at the Seminar für Sprach-
wissenschaft in Tübingen as an electronic textbook (ILIAS edition). The ILIAS edition
takes advantage of various functions provided by the ILIAS environment. In ILIAS the
present course materials are seamlessly connected to an online edition of MoMo, to pre-
pared exercise files in the file format of MoMo, to grammars and documentation resources
of TRALE, and to the downloadable source code of TRALE. The TRALE resources in-
clude a large grammar of English, the MERGE. For using MoMo and TRALE, the reader
should consult the respective online manuals or download them in appropriate file formats
for printing. For information on how to use the functions of ILIAS, we refer the reader to
the online system manual.

This textbook is also available in PDF format, which is a better choice if you prefer
to read the texts offline (PDF edition). Of course, using the textbook offline also means
not having direct access to all the interactive features of the materials. The PDF edition
is, however, also linked to the same MoMo and TRALE resources as the ILIAS edition. If
you read the PDF edition on a computer connected to the Internet, you are able to access
the same documents by clicking on links in the text as you can access through the ILIAS
edition. The only feature not available in the PDF edition besides the functionalities of
the electronic learning environment themselves, is an interactive flash animation of the
signature of Pollard and Sag’s 1994 grammar of English, which is included in Chapter 4.1
of the ILIAS edition. An alphabetical list of the glossary entries of the ILIAS edition
is contained in the PDF edition as an additional chapter. The glossary entries of each
section can be accessed in the PDF edition (when used online) by clicking on the glossary
link at the end of each section. Working with the PDF edition online is thus a workable
approximation to using the ILIAS edition.

Acknowledgments Many people have contributed to the creation of this course; many
of them have made such significant contributions that it is fully justified to say that without
them, it would either not have happened, or the result would have been very, very different.

Beata Trawiński solved the intricate problems which had to be overcome in order to
integrate the present text with all its mathematical symbols and clickable pictures on the
ILIAS platform; she set up procedures for all the necessary data transformations from
and into various different file formats for ‘learning objects,’ quite often making up for the
lack of adequate tools by giving additional time and effort. Without Beata’s immense
contribution there would be no ILIAS edition, and without her support in teaching the
first three classes with the present materials, the course could never have been developed
as far as it has been. She always managed to keep the big picture in view, steering me
towards the most urgent tasks when I got lost in the overwhelming plethora of everyday
problems. Her ideas and suggestions permeate this textbook. Last but not least Beata
translated the TRALE grammars of Section 3.1 from original teaching grammars in the
ConTroll system by Detmar Meurers and Erhard Hinrichs.

Ekaterina Ovchinnikova designed and wrote MoMo, adding functionalities to it beyond

6 CONTENTS

my wildest dreams. For those who already know MoMo, nothing else needs to be said.
Whenever there was another crazy idea about what else MoMo could do, it did not take
long until it came to exist. Katja also gave emergency support for using MoMo in class,
took over the tedious and time-consuming task of maintaining the ILIAS edition after
Beata had left, and supported almost every aspect of creating these course materials with
creative ideas and technical solutions. Finally, Katja helped planning the conversion of the
ILIAS edition of the textbook to the PDF edition, wrote the necessary xml and html code
to link the PDF edition to the glossary files she had created and set it up for the complete
integration with all the online resources of the course.

Obviously, there could not be a TRALE system and a MERGE grammar without the
people who wrote them. W. Detmar Meurers, Gerald Penn and their students and col-
leagues in Columbus and Toronto did everything they could to make it happen. Needless
to say, they gave permanent feedback on every aspect of this project, and their collab-
oration shaped everything from the original project proposal to the final result. Holger
Wunsch wrote the graphical user interface of TRALE, GRISU, and made many very useful
comments on the course materials. Gianina Iordãchioaia, as a teaching assistant, helped
to teach the first truly web based course with these materials. Ashley Brown and Levente
Barczy came for a summer internship from Stanford to Tübingen and did a fantastic job
in supporting Katja’s MoMo development. They implemented the first version of MoMo’s
note pad, and with their great enthusiasm and expertise in Java and software development
brought in many new ideas and suggestions.

Lothar Lemnitzer, coordinator and driving force behind the MiLCA consortium, pro-
vided advice whenever it was needed; Erhard Hinrichs gave significant additional financial
support. Manfred Sailer co-authored first versions of the fragment grammars of Section 3.2
for a class on grammar writing in HPSG, which we taught together. Adam Przepiórkowski
carefully read early versions of the textbook, tested MoMo and TRALE, and gave extensive
and very detailed comments which led to many improvements.

Carmella Payne and Guthrun Love were resourceful and very conscious proofreaders,
who not only took care of the grammar, but also forced me in many places to reformulate
and rethink unclear argumentations. I am very grateful to all who supported this project.

GLOSSARY

http://milca.sfs.uni-tuebingen.de/A4/Course/PDF/glossary/glossar.html?admission&attributes&constraint_satisfaction&feature_declarations&feature_structures&grammar&implementation_plattform&lexical_rules&multiple_inheritance&partitions&principles&satisfaction&sort_hierarchy&sort-resolvedness&totally_well-typed&unbounded_dependency_constructions

Chapter 1

Introduction

Abstract

In the introductory section of our seminar we want to get an overview over
HPSG in general, before we go into the mathematical details of it. To gain
a broader perspective, we will first look at the history of HPSG and mention
the grammar frameworks that influenced it. We will also learn to distinguish
between different kinds of HPSG. Then we will investigate the HPSG grammar
of English that Pollard and Sag present in [Pollard and Sag, 1994]. The main
purpose of our investigation will be to find out what kinds of phenomena are
treated in their fragment of English, and what kind of structure their grammar
has. Most importantly, we will discuss in which form the principles of grammar
are stated and what kind of formal status they have.

1.1 Historical Overview

Abstract

In the historical overview we are interested in getting a general perspective on
when and how HPSG developed. We will also say something about how the
history of the HPSG framework is related to a few grammar implementation
platforms for computing with HPSG grammars.

Before we begin the enterprise of formalizing the grammar framework of HPSG, it is nec-
essary to survey the field in order to determine whether this is a feasible enterprise in the
first place. The main question is: Is there such a thing as one single coherent HPSG frame-
work that was created sometime in the early days of HPSG, remained unchanged until the
present days, is employed by all linguists working in HPSG, and targeted by programmers
who create implementation platforms for HPSG-style grammars?

As the rhetorical nature of the question already reveals, the situation is, of course,
not quite as simple as in such an idealistic picture. To begin with, at least two different
HPSG formalisms have been informally presented by Carl Pollard and Ivan Sag themselves:

7

8 CHAPTER 1. INTRODUCTION

One was presented in their first book of 1987, Information-based Syntax and Semantics
[Pollard and Sag, 1987]; and the other one in their second book of 1994, Head-Driven
Phrase Structure Grammar [Pollard and Sag, 1994]. The question of what linguists work-
ing in HPSG use, often tacitly and implicitly, is an entirely different matter again (and
quite often it turns out to be hard to answer). Finally, the practical constraints on im-
plementation platforms and particular reasons for creating them as well as their purpose
might even lead to computational systems which, formally speaking, have very little to do
with any of the two HPSG formalisms informally described by Pollard and Sag, although
their appearance on the surface might be close enough to let the user implement gram-
mars in the style of HPSG, whatever that may turn out to mean when investigated with
mathematical rigor.

Under these circumstances, how can we formalize the linguistic framework of HPSG
at all? Which HPSG is the right HPSG that we should consider? Which version of the
HPSG framework is relevant? A short overview of the history of HPSG indicates what the
answers to these questions are.

HPSG began in the mid 1980s as an eclectic linguistic framework that was inspired
by several other frameworks. Among its spiritual ancestors we find the then current ver-
sions of the Chomskian paradigm, Government and Binding theory, often referred to as
the GB framework [Chomsky, 1981]. Since many linguists were working in that framework
at the time, it was important for a new framework to show that it could at least handle
the data that were discussed in the GB literature. Some of the ideas of the combinato-
rial system of HPSG were inspired by Categorial Grammar; and the ideas about using
feature structures besides something akin to phrase structure were inspired by Lexical
Functional Grammar (LFG, [Bresnan, 1982]) and Generalized Phrase Structure Grammar
(GPSG, [Gazdar et al., 1985]). GPSG in particular also contributed a significant number
of analytical ideas, with GPSG’s slash percolation mechanism for unbounded dependencies
being only the most prominent example. GPSG’s relatively strong mathematical rigor was
certainly another target for the creators of HPSG.

The first incarnation of HPSG was published in [Pollard and Sag, 1987]. Henceforth
we will refer to the framework presented in that book as HPSG 87. HPSG 87 is a typical
instance of a unification-based or information-based grammar formalism. The basic un-
derlying intuition is that linguists specify pieces of partial information about language in
their grammars. All the pieces of partial information about a language that are specified
in a grammar are then combined by algebraic operations such as unification to obtain all
available information about the language of a mature speaker of that language.

In their second HPSG book [Pollard and Sag, 1994], published in 1994, Pollard and Sag
outline a radically different architecture of grammar: HPSG 94, as we will call it in our
overview, can be called an object-based grammar formalism, or, as Carl Pollard prefers
to call it, a constraint-based grammar formalism. HPSG 94 is not concerned with the
specification of pieces of partial information. Instead, it envisions an architecture in which
linguists use a logical language in order to specify language as a collection of total objects.
HPSG 94 can thus be said to proceed model theoretically.

The following figure shows how the development of formalisms for HPSG branches out

1.1. HISTORICAL OVERVIEW 9

after HPSG 87. Besides HPSG 94 with its new, model theoretic foundations, there is a
second tradition that pursues and refines the formalism of 1987:

It is necessary to know about the radical change of the underlying formalism between
1987 and 1994 to be able to appreciate the nature of current implementation platforms for
HPSG. As the figure above shows, in the second branch of developments after 1987 (besides
Pollard and Sag’s switch from unification-based to constraint-based HPSG), there is a book
that Bob Carpenter published in 1992 under the title The Logic of Typed Feature Structures
[Carpenter, 1992]. In this book Carpenter presents a class of logics that can be viewed
as a refinement of the unification-based formalism of [Pollard and Sag, 1987]. In other
words, Carpenter’s logics support a unification-based variant of HPSG. This is particularly
important, since Carpenter’s book laid the formal foundations to the creation of a number
of implementation platforms for HPSG. In the figure above we mention only two very
influential implementation platforms, ALE and LKB. ALE was initially co-developed by
Bob Carpenter and Gerald Penn, but fairly soon Gerald Penn became the main developer
of ALE, which he still is today. LKB was originally conceived by Ann Copestake and then
further developed with many collaborators. Because ALE and LKB follow Carpenter’s
theoretical ideas, they adopt the partial-information paradigm of HPSG 87. With them,
this brand of HPSG extends to the present and still exerts significant influence, although
theoretical HPSG has moved away from the unification framework.

There is another tradition of implementation platforms for HPSG grammars which took
HPSG 94 as its point of reference. The first of those that we want to mention here is the
ConTroll system, whose chief developer was Thilo Götz, who worked in a team with many
collaborators. ConTroll was an experimental system. Its development ended roughly in
1997, with upgrades to new versions of software and operating systems still being done.
The idea of ConTroll was to try to get as close to HPSG 94 as possible but not to use any

10 CHAPTER 1. INTRODUCTION

computational means not inherent in that formalism. Its successor, the TRALE system,
inherited the idea to be as faithful to HPSG 94 as possible and to combine that with all
means of efficient processing that are available under those premises. With Gerald Penn
being the chief developer of TRALE, TRALE inherited the core of the ALE system, but
with the underlying logic specialized to the case where it becomes a logic in the tradition
of HPSG 94. Later in the course, when we implement grammars in TRALE, we will learn
many more details about the system, and we will investigate how considerations of efficient
parsing lead to the introduction of various techniques that are not inherent in the HPSG 94
formalism per se, but maintain a transparent relationship between the specification of a
grammar in the formalism of HPSG 94 and its implementation in TRALE. However, for
reasons of tractability, the formal language of TRALE does not contain all the syntactic
and semantic constructs of HPSG 94. When we specify HPSG 94 and then compare
it with TRALE, we will see exactly where the differences are, and we will discuss their
consequences for grammar implementation.

In our brief overview, we saw that there is more than one formalism for HPSG, and
more than one formalism is used in ongoing work on HPSG. In this course, we follow the
newer, constraint-based version of HPSG rather than Pollard and Sag’s first proposal of
1987 of unification-based formal foundations. With that decision, we adopt the version of
HPSG that is nowadays most prevalent in theoretical linguistic work. At the same time, we
must keep in mind that there are current implementation platforms for HPSG grammars
that follow the old paradigm.

Recommended Reading

In the introduction of [Pollard and Sag, 1994, p. 1–6] you find more information on which
other grammar frameworks directly influenced HPSG 94.

GLOSSARY

1.2 The Structure of HPSG Grammars

Abstract

We will give a brief summary of the architecture of grammar that Pollard and
Sag proposed in their HPSG book in 1994. We will introduce the most im-
portant keywords and concepts that we will formalize in Section 2, Grammar
Formalisms, of our course.

[Pollard and Sag, 1994] does not present a formalism of HPSG. The reason they give for
this lack of explicitness is that in their book they want to keep the technical tools in the
background, and instead focus on the linguistic theories that can be expressed within their
framework. However, they give a rather precise outline of the formalism they envision and
they refer to the relevant underlying logical literature at the time of writing. If we consider
the following three sources we will obtain sufficient information to decide whether a given

http://milca.sfs.uni-tuebingen.de/A4/Course/PDF/glossary/glossar.html?ALE&constraint-based_grammar_frameworks&ConTroll&LKB&model_theory&TRALE&unbounded_dependency_constructions&unification&unification-based_grammar_frameworks

1.2. THE STRUCTURE OF HPSG GRAMMARS 11

formalism is a good candidate for a mathematical rendering of Pollard and Sag’s ideas:
Citations in Pollard and Sag’s book from various articles and other books; Pollard and
Sag’s detailed description of the formalism; and the appendix of their book, whose concise
statement of their grammar of English is particularly helpful. In this section we want to
introduce the most relevant parts of Pollard and Sag’s terminology and concepts. This
gives us an initial idea about what we will have to formalize later in the first part of our
course.

Pollard and Sag distinguish two levels of their grammatical architecture. First of all,
there is a level of linguistic description. This is the level at which linguists state their
observations and generalizations about human language(s). Traditionally these observa-
tions would be phrased in natural language itself, being a collection of statements about
the syntax, phonology, morphology or semantics of a particular language or of language in
general. A familiar example of a grammar of that kind is the Duden grammar of German.
In addition, Pollard and Sag introduce a second level, a level of meaning of grammars.
Since they have a formal language in mind in which they want to state their observations,
they are in a position to envision a mathematically exact interpretation of their formal-
ized statements. As the meaning of their statements they envision collections of so-called
feature structures.

What do the collections of feature structures correspond to when we compare an HPSG
grammar of English to the Duden grammar of German? It is clear that the interpreting
structures of an HPSG grammar are supposed to give us the denotation or meaning of
the grammar. But the informal meaning of the Duden grammar is certainly the German
language. In other words, the the purpose of the Duden grammar is to give us a description
of German. The problem with the Duden grammar is of course that it only gives us
informal, general rules, written in natural language. It is therefore often hard or impossible
to pinpoint the exact predictions of that theory of German. In HPSG, on the other hand,
a precise definition will be given of formal description languages and of the meaning of our
principles and observations (written in those description languages) in terms of collections
of feature structures. We thus obtain precise predictions of our theories of language, and
we can falsify our predictions by looking at the feature structure models that are admitted
by them. For this idea of the architecture of grammar to work we have to assume that
the feature structure models are mathematical models of the language that we want to
describe. The feature structures are in some sense mathematical idealizations of expressions
of natural language. For example, the feature structures in the denotation of Pollard and
Sag’s grammar are mathematical idealizations of corresponding expressions in the English
language.

Summarizing what we have said so far, HPSG distinguishes two levels of linguistic
theories, the level of description and the level of denotation. HPSG grammars consist of
descriptions of (or generalizations about) natural languages. The natural languages are
modeled in terms of mathematical structures called feature structures, which are viewed
as idealizations of linguistic expressions.

A closer look at the structure of HPSG grammars reveals that there are a number of
notions which we have to explain to understand what a grammar is. The appendix of

12 CHAPTER 1. INTRODUCTION

Pollard and Sag consists of two main parts (there are two more, which we will ignore for
the moment – we will come back to them in the next section): The first, A.1, is called
The Sort Hierarchy and comprises two subsections, Partitions and Feature Declarations.
The second part, A.2, is called The Principles, and contains statements about the English
language. Those two parts, essentially, make up their grammar of English. The Sections
The Sort Hierarchy and The Principles of the present textbook quote (and elaborate)
these two parts of Pollard and Sag’s appendix. We can observe that what is introduced
in A.1 are the symbols or syntactic means that the statements in part A.2 use to express
generalizations about English: The sort symbols of Partitions and the attribute symbols of
Feature Declarations reoccur throughout the statements in the Principles section. One of
our first tasks will be to determine what the sort hierarchy and the feature declarations are
from a mathematical point of view, and how the relevant mathematical constructs enter
into the theory of English.

This still leaves the theory of the modeling domain, the feature structures, to be dis-
cussed. We are given some hints on what these feature structures look like in the intro-
ductory notes of the appendix (p. 396) and in various sections of this book. From these
remarks we will have to reconstruct the relationship of feature structures to the sort hier-
archy and the feature declarations. The reconstruction of that relationship will finally lead
us to a definition of the meaning of formally defined well-formed descriptions of the de-
scription language(s) of HPSG in the domain of totally well-typed and sort-resolved feature
structures. For this to make sense, we will of course also have to explain what it means for
a feature structure to be totally well-typed and sort-resolved.

To summarize, our main task of the formal part of our class will be to provide a
mathematical reconstruction of the notion of grammar of HPSG. We will have to define
what partitions and feature declarations are, and how we can use these to write descriptions.
This will allow us to fully formalize the principles of grammar that Pollard and Sag state
in natural language in the appendix of their book. In Section 4 of our course materials,
you can already get an impression about what the principles will look like in some formal
language (we will, however, use a formal language that is slightly different from the one
that you see in Section 4, and we will explain why and what the relationship between the
two is). With these definitions in hand, we will know precisely what an HPSG grammar
is. In order to understand what it means in the eyes of Pollard and Sag, we will also have
to formalize the modeling domain of HPSG grammars. For that purpose, we have to give
a definition of totally well-typed, sort-resolved feature structures, and it is necessary to
define an interpretation function that assigns meaning to expressions of our description
language in the domain of feature structures.

Before we move on to that, however, we will first have a closer look at the principles
of the grammar of English of Pollard and Sag. Our goal is to get a feeling for what
kind of linguistic phenomena they describe in their grammar, and how they phrase their
observations of English.

1.3. THE GRAMMAR OF ENGLISH OF POLLARD AND SAG 1994 13

Recommended Reading

Along with this section, you should read pp. 6–14, The Nature of Linguistic Theory, and
take a look at the Appendix, pp. 395–403, of [Pollard and Sag, 1994].

GLOSSARY

1.3 The Grammar of English of Pollard and Sag 1994

Abstract

We will give an overview over the principles and the empirical coverage of the
grammar of Pollard and Sag 1994. Rather than trying to go into details, we
want to give the reader an intuitive sense of what their grammar is like.

In Section 1.2, The Structure of HPSG Grammars, we focused on HPSG as a formalism
for linguistic theories. By contrast, in the current section we are interested in HPSG as a
formal linguistic theory. As our example we take Pollard and Sag’s grammar of English.
It is a concrete example of how linguistic theorizing can be formulated within the confines
of the formal assumptions outlined in the last section.

HPSG as a linguistic theory has been attributed a number of characteristic properties.
Usually it is perceived as a member of the family of linguistic frameworks that are called
generative grammars. In this context, generative does not mean a grammar that describes
a language as the set of strings that can be derived by applying phrase structure rules
to a given start symbol, but a grammar which is formalized to a high degree and thus
makes exact predictions about the collection of objects that are considered to belong to
a language. In contrast to the original theories of generative transformational grammar
of the 1950s and 1960s, HPSG does not have phrase structure rules and transformations
that are applied to phrase markers that are constructed by the successive application of
phrase structure rules to a start symbol. Instead, it is declarative, non-derivational and
constraint-based. Sets of constraints which hold simultaneously determine the collections
of admissible linguistic structures without defining an order of the derivation or generation
of signs. In its choice of tools, HPSG is decidedly eclectic. It uses insights of various other
linguistic frameworks and analyses and reconstructs them in its own specific way. We have
mentioned GB theory, LFG, and Categorial Grammar already in Section 1.1, Historical
Overview.

HPSG is often called a lexicalist framework. This means that HPSG stresses the impor-
tance of lexical descriptions and generalizations over the lexicon of natural languages. It has
developed various techniques of stating generalizations over the words of a language, and it
postulates a rich, fine-grained structure of words, which allows elaborate descriptions of the
properties of lexical signs. Much of the explicit development of these techniques followed
only after the publication of [Pollard and Sag, 1994], and surprisingly, the book discusses
little about how to integrate the lexicon with its theory of English. What is evident is an
elaborate structure of words, which tended to increase in complexity in subsequent work.

http://milca.sfs.uni-tuebingen.de/A4/Course/PDF/glossary/glossar.html?attributes&constraint_based&ConTroll&feature_declarations&feature_structures&grammar&model_theory&partitions&principles&sort_hierarchy&sort_symbols&sort-resolvedness&theory&totally_well-typed

14 CHAPTER 1. INTRODUCTION

Pollard and Sag use that structure in particular for their largely lexical analysis of English
case assignment, in their analysis of subject verb agreement in Chapter 2, and in their
analysis of raising and control verbs in Chapter 3.

The concept of signs, which are divided into words and phrases, is central to many HPSG
analyses of linguistic phenomena. Words form the major building blocks of phrases, which
are signs that recursively contain additional words or phrases as their components. Signs
are central in HPSG, since they are considered to be those elements of a language which
are empirically observable and whose linguistic properties can be described by the various
sub-disciplines of linguistics. This brings us to another very important aspect: HPSG
was designed as a grammar framework that can integrate theories of different aspects of
linguistic expressions. In that sense, it is designed as a framework for the comprehensive
description of language. By now, HPSG theories are based in the various subjects of
the phonology, morphology, syntax, semantics, pragmatics, and even certain discourse
phenomena of linguistic expressions. However, first and foremost HPSG has been applied
in the area of syntax, which is the aspect of English that Pollard and Sag describe in their
book, although they comment briefly on the areas of semantics and pragmatics. Although
syntax was initially the main area of application of HPSG, the original architecture of signs
already clearly indicates the interfaces to a broader theory of language. This is illustrated
in Figure 1.1 with a description of the English personal pronoun she.

Linguistic structure concerning different aspects of signs is distributed under certain
attributes. Clearly the representation of the phonology of the pronoun under the attribute
phon as an orthographic string is a gross oversimplification. The immediate justification
for this simplistic initial approach is that the given structure can and should be replaced
by a much more elaborate representation that can take phonological theories into account.
A theory of that kind was later developed in [Höhle, 1999] (and elsewhere). In much the
same sense the grammar of English of Pollard and Sag leaves much of pragmatics, all
of morphology and considerable parts of semantics unspecified, the idea being that these
aspects of language can be incrementally added to the syntactic structures that they do
specify.

The attribute synsem unites syntactic and semantic aspects of signs, which are in turn
divided in local and non-local properties, as distinguished by two more attributes. For
Pollard and Sag, non-local properties of signs are those that are typically associated with
theories of unbounded dependency constructions, illustrated by the following sentences:

(1) a. Mary Peter adores t.

b. I wonder who Mary saw t last night.

c. This is the actor who Mary wanted to see t all her life.

d. Mary is easy to please t.

The sentences (1a)–(1d) are of course instances of phrases, formed from other phrases,
which are ultimately composed of words.

1.3. THE GRAMMAR OF ENGLISH OF POLLARD AND SAG 1994 15

Figure 1.1: AVM description of the pronoun she

word

phon
〈
she
〉

synsem

synsem

local

local

category

category

head

[
noun

case nom

]

subcat 〈〉

content

ppro

index 1

ref

per 3rd

num sing

gend fem

restr {}

context

context

backgr

{[
female

inst 1

]}

nonlocal

nonlocal

inherited

nonlocal1

slash {}

rel {}

que {}

to-bind

nonlocal1

slash {}

rel {}

que {}

qstore {}

For a more explicit illustration, consider the description of the English phrase She sings
in Figure 1.2.

We can see that the phrase has an attribute dtrs (short for daughters). Under that
attribute, we find two more attributes head-dtr (for the syntactic head of the phrase)
and comp-dtrs (for the syntactic complement daughters of the phrase). In our example,
a projection of the verb sings is the syntactic head of the construction, and she is its only
complement daughter. As a consequence, the list of complement daughters is of length
one. Note also that the constituent structure as encoded by the two syntactic daughters of
the phrase does not by itself determine the word order of the sentence. The only place in
the description that tells us about the relative order of sings and she in the overall phrase
is the order in which the phonologies of the two words are stated on the phon list of the
overall phrase.

16 CHAPTER 1. INTRODUCTION

Figure 1.2: AVM description of the phrase She sings

phrase

phon
〈
she, sings

〉

synsem

synsem

local

local

category

head 1

[
verb

vform fin

]

subcat 〈〉

content 3

[
sing

singer 4

]

nonlocal nonlocal

qstore {}

dtrs

head-comp-struc

head-dtr

phrase

phon
〈
sings

〉

synsem

synsem

local

local

category

[
head 1

subcat
〈

2

〉

]

content 3

dtrs

head-comp-struc

head-dtr

word

phon
〈
sings

〉

synsem

local

local

category

category

head 1

subcat
〈

2

〉

content 3

comp-dtrs 〈〉

comp-dtrs

〈

word

phon
〈
she
〉

synsem 2

synsem

local

category

[
head noun

subcat 〈〉

]

content

[
ppro

index 4

]

〉

Let us briefly return to our first description, the description of the word she. The local
properties of signs, which are mentioned under the attribute local, comprise contextual
aspects (under the attribute context), their semantic properties (under the attribute
content) and properties such as their syntactic category (under the attribute category).
The pronoun she considered here is, of course, a noun, and nouns bear case, which is
nominative in this instance. If you take a closer look at the description of the phrase She
sings, you may discover that the syntactic category of verbs has a different attribute, called
vform, whose value is finite for the verb form of sings.

Another important feature of HPSG that can be seen in the description above is the
idea of structural identities, depicted in the form of tags, which are boxed numbers. For

1.3. THE GRAMMAR OF ENGLISH OF POLLARD AND SAG 1994 17

example, we learn from the description that the single element on the subcat list of sings
is identical to the synsem value of the complement daughter of the overall phrase, she.
In the grammar, this identity is enforced by the interaction of the Subcategorization
Principle and the way syntactic structures are formed. The Subcategorization Prin-
ciple says essentially that the synsem values of complement daughters must be identical
with corresponding elements of the subcat list of the syntactic head, and the subcat list
of the mother phrase is shortened relative to the one of the head daughter by exactly those
elements which are realized as syntactic complement daughters of the phrase. In our case
that means that the subcat list of the overall phrase is empty.

Moreover, every phrase is licensed by an ID Schema: If a phrase is a headed phrase,
it must be described by one out of six ID Schemata. Given the available ID Schemata
of Pollard and Sag’s grammar, we can determine that sings first has to project to a phrase
and can then combine with its subject to form the phrase She sings.

Pollard and Sag’s grammar also provides an analysis of relative clauses, it introduces a
simple theory of semantic structures and quantifier scope, and it develops a complex Bind-
ing Theory. Binding Theory is concerned with the distribution of certain pronouns,
reflexive and non-reflexive, as illustrated by the following sentences:

(2) a. Shei likes herselfi.

b. Shei likes herk. (with i is not equal to k)

Binding Theory predicts that in (2a), she and herself must refer to the same entity
in the world. They are said to be coindexed, as indicated by the subscript i. By contrast
she and her in sentence (2b) must not be coindexed, and, under normal circumstances,
they cannot refer to the same entity in the world. Formally the principles of the Binding
Theory belong to the most complex principles that Pollard and Sag formulate in their
grammar.

We have given a very short overview of the phenomena that are treated in Pollard and
Sag’s grammar of English. Before we look at their principles of grammar in more detail, we
will turn to the formalization of HPSG. With an increasingly expressive formal language in
hand, we will come back to some of the principles of their grammar and investigate what
it is exactly that they say.

Exercises

The following exercises are meant to encourage you to go and investigate the form and
structure of Pollard and Sag’s grammar of English. You should not feel obliged to study
Pollard and Sag’s theory of unbounded dependency constructions in depth. The aim of the
exercises is to get an overview and an intuitive understanding of how their HPSG grammar
works, taking an important module of any formal syntactic theory as a representative
example.

Exercise 1 Which constituents of the sentences (3)–(6) are involved in the unbounded
dependency construction of each sentence?

18 CHAPTER 1. INTRODUCTION

(3) Mary Peter adores t.

(4) I wonder who Mary saw t last night.

(5) This is the actor who Mary wanted to see t all her life.

(6) Mary is easy to please t.

Exercise 2 Which principles and components of Pollard and Sag’s grammar are involved
in licensing the unbounded dependency aspects of the sentences (3)–(6)? Name them, and
briefly characterize the function they have in the analysis of the sentences (keywords will
suffice).

GLOSSARY

http://milca.sfs.uni-tuebingen.de/A4/Course/PDF/glossary/glossar.html?constraint-based_grammar_frameworks&declarative&non-derivational&tag&unbounded_dependency_constructions

Chapter 2

Grammar Formalisms

Abstract

In this section we will investigate the formal foundations of constraint-based
HPSG. Starting with a simple feature logic formalism, we will develop a series
of increasingly complex formalisms for formalizing constraint-based grammars.
Our most important tool for understanding these formalisms will be MoMo,
which we will use to study the syntax of our languages, the well-formedness
of feature structures, the notion of constraint satisfaction and the modeling
relation between (sets of) descriptions and (sets of) feature structures.

2.1 Introduction

Abstract

This section gives a brief overview of the course section on grammar formalisms.

The course section on grammar formalisms proceeds in four steps. First we will work out
a basic syntax for the description of natural languages, we will motivate its design, and
we will discuss the basic ingredients of a syntax for HPSG. MoMo will help us to get an
informal understanding of the underlying issues before we give the first formal definitions.

With a basic syntax in hand, we will then enter into a sequence of three increasingly
more powerful formalisms for writing grammars. The first of them takes the syntax of
our introductory discussion and augments it with a semantics of standard feature logics.
Observations about missing concepts relative to standard HPSG principles then motivate
extensions of the syntax and semantics. To make these extensions as digestible as possible,
they are broken down into two parts: In the first stage, our extension is mainly an ex-
tension of syntax, with the interpreting structures staying the same. In the second stage,
the syntactic extension is very simple, but there is a non-trivial extension concerning the
interpreting structures.

Altogether we will see three increasingly expressive grammar formalisms of the family
of constraint-based grammars. Whereas the simplest one is close to standard languages

19

20 CHAPTER 2. GRAMMAR FORMALISMS

of feature logics, the more complex ones are specifically geared towards formalizing HPSG
grammars in the style of [Pollard and Sag, 1994].

GLOSSARY

2.1.1 An Initial Syntax

Abstract

In this section, we discuss basic design issues of the syntax of the formal lan-
guages that we will want to use for notating the principles of grammars. We
introduce an initial, simple syntax by giving examples.

In constraint-based grammar we need a formal language that is suitable to talk about a
domain of objects. A statement in the formal description language is a statement about
what the objects in the domain look like. Formalisms that provide that kind of formal
languages are sometimes called logics of description. The idea is that expressions of these
logics do not denote True or False when interpreted over a domain of objects as they do
in First Order Predicate Logic. Instead expressions are thought of as denoting sets of
objects. At first glance, the difference seems very subtle. Technically speaking, it has some
important ramifications, which we can put aside for now.

At the moment it is sufficient to keep in mind that we want to formulate generalizations
about some empirical domain that denote sets of objects. Our ultimate sets of objects will
be natural language expressions. For the sake of simplicity and concreteness, we may pick
any other appropriate empirical (or ontological) domain to illustrate our enterprise. In the
beginning we will work with a small zoo: We will talk about pets like dogs and cats, and
about various birds such as parrots, canaries, and woodpeckers. They will be distinguished
by color and their number of legs, and we will order them on lists.

What we need to be able to say with our formal language can be extracted from the
principles of grammar of the HPSG book and from the numerous descriptions of linguistic
objects that we find throughout the HPSG literature. From the principles of grammar
that we have seen we know that we need to be able to say that objects are of some sort.
We want to be able to say that an object is a sign, a phrase, or a word. In addition, we
want to say that objects have certain attributes, which have certain objects as values. And
again we might want to say that those attribute values are of a certain sort and might have
certain attributes.

The antecedent of the Head Feature Principle in Section 4.2, The Principles,
provides an example for these observations:

(7)
[
phrase
dtrs headed-struc

]

The intended interpretation of this AVM is that it denotes the set of all objects such
that they are of sort phrase, they have an attribute dtrs (which is just an abbreviation for

http://milca.sfs.uni-tuebingen.de/A4/Course/PDF/glossary/glossar.html?constraint-based_grammar_frameworks

2.1. INTRODUCTION 21

the full name of the attribute, daughters), and the value of that attribute is an object
of sort headed-struc (short for headed-structure).

Even this small example is already a bit more complex than what we have made explicit
so far, not to mention the complete structure of the entire Head Feature Principle. We
haven’t really said in which way we want to notate complex statements where we mention
several properties of an object such as it being a phrase and having a dtrs attribute with
a certain value. Of course, the AVM in the example above presents one possible solution
by arranging the two statements in a matrix between square brackets. It is easy to see
how we can extend such a matrix to make any finite number of statements by inserting as
many statements as we need. A concrete example of how that works is provided by our
description of the phrase She sings in Figure 1.2 of Section 1.3, The Grammar of English
of Pollard and Sag 1994, where we also see that matrices can be embedded into each other.
However, the Head Feature Principle shows that there are other logical connectives
like implication in our target description language which are not as easily integrated in
a graphical matrix notation like the logical connective AND. In the common notation of
AVM matrices, the symbol for logical implication, →, is placed between two AVM matrices
in a way that is reminiscent of the infix notation for implication in First Order Logic.

A second look at logical connectives in the principles of grammar of Section 4.2, The
Principles, shows that our initial observation about implication generalizes to other logical
connectives. We also find disjunction (symbolized as ∨) and equivalence (↔) as well as
negation. A simple example for disjunction is the consequent of the ID Principle, which
says that for an object with attribute dtrs and dtrs values of sort headed-struc, it must
also be the case that the object is described by one of six ID Schemata. A simple example
of negation can be found in the Head Subject Schema, which says, among other things,
that either the value of synsem loc cat head inv is an object of sort minus or the value
of synsem loc cat head is not of sort verb, i.e., the description that it is a verb is not
true of the object.

Obviously, the AVM notation of Section The Principles is one possible notation for
the originally informally stated principles of grammar of Pollard and Sag. Due to its two-
dimensional representation of conjunction in matrices the AVM notation is fairly readable,
and it is close to a notation that linguists are used to. However, the readability of the
notation comes at a price. Typesetting AVMs using a standard computer keyboard is
non-trivial and requires a relatively high number of conventions. For very much the same
reasons, a recursive definition of a language of AVM matrices needs a relatively high number
of base cases and a fairly complex structure in order to achieve the kind of flexible notation
that linguists use. Of course, if we take that route, we will have to mirror this complexity
in the number of clauses with which we define the interpretation function of the expressions
of the description language. The resulting formal language would be considerably more
complex than appropriate for an introductory study of a formalism for constraint-based
grammar.

On the other end of the scale we could design formal languages that are mathematically
elegant, have a completely non-redundant definition of base cases and a straightforward
recursive structure, only use standard symbols from computer keyboards and have a linear

22 CHAPTER 2. GRAMMAR FORMALISMS

notation that is easy to typeset. However, this mathematical elegance also comes at a
price. In this case, the price is readability. Whereas the resulting syntactic structure of
the language is very simple and, in that sense, easy to study, languages of that kind turn
out to be very hard to read for the human user once the descriptions become as big as in
our example of the English phrase She sings in Figure 1.2.

For an introduction to the topic, it seems to be reasonable to take a middle road that
takes into account that our ultimate goal is the implementation of grammars in a particular
computational system, namely in TRALE. In short, our syntax should be a syntax to
talk about objects in terms of their sorts and the attributes that they might bear; for
readability and familiarity the syntax should resemble the AVM notation of the linguistic
literature as much as possible while avoiding the typesetting problems of AVM languages
and an unnecessarily complex and highly redundant recursive structure; it should lead us
towards the description language of TRALE; and it should only use symbols from standard
computer keyboards. In particular, while the symbols ∧, ∨, → and ¬ are graphically very
satisfying representations of logical connectives, they should be replaced by symbols taken
from standard keyboards. The similarity of the layout of our formal languages to the
common AVM matrices of linguistics should allow us to get a firm grasp of how those two
notations are related and to be able to switch between the two whenever it is convenient
for us. That means that for our specifications we will use our own syntax, but for linguistic
examples from the literature we may choose to refer to AVMs.

Let us introduce our initial syntax by way of simple examples. In the following list, you
see pairs of expressions in a language of AVM matrices and of our syntax. We will refer to
our syntax as MoMo syntax.

AVM expressions MoMo expressions

sort sort
[
sort

]
(sort)

[
attribute sort

]
attribute:sort

[
sort1
attribute sort2

]

(sort1, attribute:sort2)

sort1

attribute1 sort2

attribute2
[
attribute3 sort3

]

(sort1, attribute1:sort2,

attribute2:attribute3:sort3)

sort1 ∨
[
attribute sort2

]
(sort1; attribute:sort2)

[
attribute ¬ sort

]
attribute:∼sort

sort1 →
[

attribute1

[
sort2
attribute2 sort3

]]
sort1 *>

(attribute1:(sort2,attribute2:sort3))

sort1 ↔
[

attribute1

[
sort2
attribute2 sort3

]]
sort1 <*>

(attribute1:(sort2,attribute2:sort3))
[
attribute sort1

]
→ (¬ sort1 ∧ ¬ sort2) attribute:sort1 *> (∼sort1,∼sort2)

2.1. INTRODUCTION 23

As can be inferred from these examples, we represent conjunction as ‘,’, disjunction as
‘;’, implication as ‘*>’, bi-implication as ‘<*>’, and negation as ‘∼’. We use colon, ‘:’, to
separate attributes (and sorts) in sequences of attributes (and sorts). In summation, we
now have a syntax using a set of attribute symbols and a set of sort symbols, which have to
be declared by the user, and a small number of logical connectives, colon, and brackets to
state our generalizations about some domain of objects. For each pair of a set of sorts and
attribute symbols, we get a different language, but they all use the same logical symbols.

From the above discussion of the syntax that we want to use to formalize HPSG, we
learn an important lesson about logical languages in general. Each formal language has
alternatives for a given formalism: For one and the same formalism, we can design different
kinds of logical languages. Design decisions are made on the basis of theoretical goals and
of practical requirements, and are strongly influenced by the purpose that one has in mind
for the formal language. For our feature logic formalism of HPSG, we might want to use
a different notation when we intend to prove new theorems, when we want to use it in
a linguistics paper, and when we specify a grammar for implementation in TRALE. As
a consequence, we should not be confused by differences in look and feel of the syntax in
which statements of a theory are made. Ultimately what counts is the semantics that we
assign to the syntax. This is probably a good point to remember that there are many
different ways to notate expressions of First Order Predicate Logic, although we might
nowadays be used to one particular standard notation.

In our course we will use two notations. For illustrating examples, we will occasionally
use an AVM notation, because it is the most readable notation, and we will stick to
conventions that will always allow us to translate the examples into MoMo syntax in our
minds. When the emphasis is on rigorous specifications, we use MoMo and TRALE, and
for online communication we use MoMo syntax.

Before we conclude this section, we should make a few remarks about terminology.
Readers that are familiar with implementation platforms for HPSG from the unification-
based tradition, and have seen papers influenced by that tradition, might have noticed that
we consistently use the word sort where they use the term type. This might be particularly
obvious in the phrase sort hierarchy vs. type hierarchy. The reason for the difference lies
in the different foundational sources of the two terminologies: Unification-based HPSG
started out with the term type and kept it. Constraint-based HPSG makes a distinction
between sorts, which replace the original types, and the term type, which is now used for a
different philosophical concept that has nothing to do with sorts and sort hierarchies. We
will briefly discuss the use of the term type in constraint-based HPSG when we introduce
a semantics for our formal languages. An even simpler remark concerns the attributes.
Occasionally, they are called features in the literature. The two expressions are simply
used as synonyms.

In the next section we will formalize our initial MoMo syntax, and we will add Pollard
and Sag’s partitions and feature declarations to the picture. This will put us in a posi-
tion to use MoMo to explore the properties of our formal languages and their intended
interpretation in a domain of feature structures.

GLOSSARY

http://milca.sfs.uni-tuebingen.de/A4/Course/PDF/glossary/glossar.html?attributes&constraint-based_grammar_frameworks&feature_declarations&features&partitions&principles&sort_hierarchy&sort_symbols

24 CHAPTER 2. GRAMMAR FORMALISMS

2.1.2 Signatures: Partitions and Feature Declarations

Abstract

We will make our informal notion of the initial syntax of description languages
explicit by giving an inductive definition. The definition leads to a discussion of
the sets of sorts and attributes that our languages depend on, and we will discuss
how Pollard and Sag’s partitions and feature declarations introduce additional
structure to our formalism.

In the previous section we have motivated the design of our initial description language, and
we introduced it by looking at some examples. While introducing a notation by example
may actually be enough to work reasonably well with it, it does not suffice for our purpose
of defining formalisms for constraint-based grammar. To be emphatically precise about
our syntax, we need an inductive definition of our languages.

The following definition makes the languages that we have introduced by example fully
explicit:

Definition 1 For each set G of sorts, for each set A of attributes, for each Σ = 〈G,A〉,1

DΣ is the smallest set such that2

for each σ ∈ G,3

σ ∈ DΣ,4

for each α ∈ A, for each δ ∈ DΣ,5

α : δ ∈ DΣ,6

for each δ ∈ DΣ, ∼ δ ∈ DΣ,7

for each δ1 ∈ DΣ, for each δ2 ∈ DΣ, (δ1, δ2) ∈ DΣ,8

for each δ1 ∈ DΣ, for each δ2 ∈ DΣ, (δ1; δ2) ∈ DΣ,9

for each δ1 ∈ DΣ, for each δ2 ∈ DΣ, (δ1*>δ2) ∈ DΣ, and10

for each δ1 ∈ DΣ, for each δ2 ∈ DΣ, (δ1<*>δ2) ∈ DΣ.11

As usual, we use parentheses liberally and omit them where no confusion can arise. In
the case of missing parentheses, we assume the following operator precedence (in decreasing
order): ‘:’, ‘∼’, ‘,’, ‘;’, ‘*>’, ‘<*>’. That means that the colon, ‘:’, binds more tightly than
the tilde, ‘∼’, (for negation), and so on. These conventions reflect the conventions for First
Order Predicate Logic.

In the above definition we can plainly see that we do not introduce just one formal
language, but an entire collection of formal languages: Each formal language depends on
the choice of a set of sort symbols, G, and a set of attribute symbols, A, and for each
chosen pair we get a different description language. In logic, the set of symbols from

2.1. INTRODUCTION 25

which a language is constructed is called an alphabet. We call the tuples Σ = 〈G,A〉 the
signatures of the languages. The tuples consist of sets of sort symbols and sets of attribute
symbols, which are the non-logical symbols of the respective description language. When we
compare our terminology to the situation in First Order Logic as introduced in textbooks
(e.g., [Ebbinghaus et al., 1992]), our signature plus the logical symbols and brackets of
the above definition (i.e. the set of symbols {(,), :,∼, ,, ;, *>, <*>}) corresponds to the
alphabet of a first order language. The symbols in our signature correspond to the n-ary
relation symbols, n-ary function symbols, and the set of constants of a first order language,
i.e., to its non-logical symbols.

HPSG chooses more complex signatures than our initial signatures, Σ. The additional
structure on the sort symbols and attribute symbols comes from the partitions and the
feature declarations. The idea of partitions is to impose some order or hierarchy on the
sort symbols. This hierarchy of the sorts will be used in a certain way when we interpret
expressions of the description language. Similarly the feature declarations introduce a re-
lationship between sorts and attributes by declaring attributes appropriate to certain sorts
and demanding certain sorts as values for particular attributes. Again, these specifications
will become relevant when we interpret our signatures.

This is best explained by a simple and intuitive example. In Figure 2.1, we see a
complete signature specification. Appealing to a number of notational conventions, the
figure actually specifies a set of sorts, a set of attributes, a sort hierarchy (Pollard and
Sag’s partition) and appropriateness conditions (Pollard and Sag’s feature declarations).
When we talk about them, we will stick to the common conventions of notating sort
symbols in italics and attribute symbols in capitals. In our signature declaration of the
figure below, however, we have used simple keyboard typesetting. Of course, our reason
for this is that we will very soon specify signatures for software programs, and we will then
need notational conventions that are easy to follow using a computer keyboard.

At the top of our sort hierarchy we have the sort bot, which subsumes all other sorts. It
immediately subsumes the sorts list, animal, number, and color, as indicated by indentation.
In the same way, indentation indicates that list immediately subsumes nelist and elist,
animal immediately subsumes bird and pet, and so on. Sorts that do not subsume any
other sorts (except for themselves) are called maximally specific sorts or species. In our
signature nelist, elist, parrot, woodpecker, canary, cat, dog, one, two, three, four, green, red,
yellow and brown are species.

The set of attributes is specified by notating each attribute behind the highest sort in
the sort hierarchy for which we want to consider it appropriate. For example, animal is
the highest sort in the hierarchy to which legs and color are considered appropriate.
By convention, they are then considered appropriate to each subsort of animal, and the
specification will not be repeated there. By this so-called attribute inheritance, color is
also appropriate to bird, parrot, woodpecker, canary, pet, cat, and dog. A colon is positioned
between an attribute and the sort which is considered appropriate for the attribute at
the sort which is positioned at the beginning of the line. For example, the sort color is
appropriate for color at animal. These values are also inherited downwards in the sort
hierarchy, unless some more specific sort is specified further down. For example, the value

26 CHAPTER 2. GRAMMAR FORMALISMS

type_hierarchy

bot

list

nelist head:animal tail:list

elist

animal legs:number color:color

bird legs:two

parrot

woodpecker

canary

pet legs:four

cat

dog

number

one

two

three

four

color

green

red

yellow

brown

.

Figure 2.1: A signature specification

of legs at animal is specified as number. Further down the hierarchy, however, the legs
value becomes two (a species subsumed by number) at bird, and it becomes four (another
species subsumed by number) at pet. By our convention of attribute inheritance, this means
that the legs value at dog is four, and two for woodpecker.

Figure 2.1 shows one (particularly compact) way of notating HPSG signatures compris-
ing partitions and feature declarations. As with the syntax of the description languages,
many alternatives are conceivable, the most prominent example being the notation in which
the signature of the HPSG book is presented and repeated in Section 4.1, The Sort Hier-
archy, of our course material (which is already a slight variation of the presentation in the
book!). Another particularly nice mode of presentation is a graph notation that depicts the
sort hierarchy as a taxonomic tree. A part of such a specification can be found in the HPSG
book, [Pollard and Sag, 1994], on page 391, which shows headed-struc and its immediate
subsorts.1 In the following figure we illustrate that notation with a taxonomic tree showing

1When looking at that example you should keep in mind that in the last chapter, Pollard and Sag
discuss possible revisions of their grammar that differ from the grammar of the appendix; the piece of sort

2.1. INTRODUCTION 27

the subsorts of head as given by the partitions of Section 4.1, The Sort Hierarchy:

In graphically even more elaborate presentations of signatures, a sort hierarchy graph
can be decorated with appropriateness conditions. The resulting depiction is very reader
friendly and at least as compact as our computer friendly version above. In comparison to
our version, its major drawback is that we need software that is much more elaborate than
a simple editor to create such decorated graphs.

Another option for the notation of signatures will become available as soon as we give
a mathematical definition. We may then follow the definition and write down a particular
signature by using some mathematical notation for the sets of sorts and attributes, for a
partial order on sorts, and for a partial function that formalizes the appropriateness re-
quirements. However, for reasons of readability it is advisable to prefer one of the available
graphical notations.

With a first definition of an initial syntax and a first understanding of signatures, we
are now ready to enter into the sequence of formalisms of constraint-based grammar that
we promised in the introduction. In the next section, we will formalize our first notion
of an HPSG signature and revise the definition of our initial syntax by referring to the
more complex signatures that we have just introduced. With those definitions we will
immediately be able to define our first notion of a grammar. This will put us in a position
to write our first, fully defined constraint-based grammar. The only difference to an HPSG
grammar like Pollard and Sag’s grammar of English will be that we do not have all syntactic
means yet that are necessary to express that grammar completely. For example, we have
not included tags and relational expressions like append in our syntax.

Before we can extend the syntax accordingly, we will have to face another inevitable
question: What do our grammars mean? To give an answer to that question, we will have
to consider the various proposals that have been advanced for formalizations of constraint-
based HPSG grammars so far, and we will have to make a choice between them. This
choice will lead us to an informal discussion of feature structures and interpretations of
signatures in terms of feature structures.

Exercises

Exercise 3 We presuppose the signature presented earlier in this section. Which ones of
the following expressions are syntactically well-formed, and which ones are not? For those
which are ill-formed, indicate what is wrong with them (keywords suffice).

hierarchy on page 391 thus differs from the corresponding part of the sort hierarchy in the appendix

28 CHAPTER 2. GRAMMAR FORMALISMS

1. nelist,head:(cat;three).

2. elist;(nelist,tail):elist.

3. ~yellow;brown.

4. (~color):black.

5. woodpecker;legs.

6. (list,head:bird:legs:number,color:number);elist.

7. nelist,head:(pet:cat);dog.

8. head:(parrot,legs:two,color:(yellow;green,~brown)).

9. head:bird;pet *> color:color,legs:number.

10. color:red;legs:three <*> ~(bird),green,two.

11. head,tail *> nelist.

12. (head:green,color:one);(head:cat,color:cat).

13. animal:pet:(cat;dog).

14. ~elist <*> nelist:(first,rest).

15. nelist,head:legs:(two;four),color:(green;red;yellow;brown),

tail:nelist,head:canary,legs:two,color:yellow,tail:elist.

Note that in MoMo notation, each description ends with a full stop.
We suggest that you first solve this exercise with paper and pencil, and then check with

MoMo whether your answers are correct. For this purpose, we have prepared an mmp file,
syntax-exercise.mmp, which you may download.

The file already contains the signature and description cards with all descriptions of
the exercise. However, be warned that the syntax checker of MoMo will only tell you
about the first syntax error it finds in any given expression. When you analyze ill-formed
descriptions, please consider all mistakes that you can detect in them.

Exercise 4 The signature of Pollard and Sag’s grammar of English is fairly big. In this
exercise, we want to translate a small part of it into the notation for signatures that we
have introduced in this section.

Assume that there is a sort object which subsumes all other sorts of the signature that we
want to design. Then take Pollard and Sag’s sort head as immediate subsort of object and
complete the sort hierarchy under head as it is given by Pollard and Sag. Add all appropriate
attributes to the sorts under head as well as the sorts that are in turn appropriate for them.

http://milca.sfs.uni-tuebingen.de/A4/Course/Momo/Online-Edition/Links/links.html?http://milca.sfs.uni-tuebingen.de/A4/Course/Momo/mmps/Section212/syntax-exercise.mmp

2.1. INTRODUCTION 29

Hint: Attributes will introduce attribute values that may not be in the sort hierarchy of
your signature yet, since they may not be subsorts of head. Introduce them in your sort
hierarchy as additional immediate subsorts of object. However, you do not have to complete
the sort hierarchy under those additional sorts.

To illustrate this exercise, we have prepared the file nominalobjects.mmp, in which we
have done the task we are asking you to do for the sort head for the sort nom-obj.

Use MoMo to verify that you have created a well-formed signature. You can check that
by typing your signature into the signature window and then pressing the Check Syntax but-
ton above that window. Don’t forget to precede the type hierarchy by the line type hierarchy
and to finish it with a full stop in the last line.

Sketch of the solution:

type_hierarchy

object

head

subsort-of-head1 attribute1:new-sort1

moresorts1 ...

subsort-of-head2 attribute2:new-sort2

moresorts2 ...

new-sort1

new-sort2

.

Exercise 5 This exercise is quite challenging, since we have not yet talked about the mean-
ing of descriptions. However, on the basis of the descriptions of the grammar of English
that we already saw and of intuitions that we get from the form of the descriptions, we cer-
tainly have some idea about what they mean. Based on those intuitions, try to translate the
following statements of natural language into descriptions under the signature introduced
in Section 2.1.2.

1. Parrots are green, or red, or yellow.

2. Lists are brown.

3. If something is a pet, then it has four legs and it is not green.

4. If something is a list, then it is an empty and non-empty list.

5. Something is a list if and only if it has a head and a tail.

6. No animals have one leg and are green.

7. The first element of a list is not brown, and the third one has two legs.

8. The second element of a list does not have six legs.

http://milca.sfs.uni-tuebingen.de/A4/Course/Momo/Online-Edition/Links/links.html?http://milca.sfs.uni-tuebingen.de/A4/Course/Momo/mmps/Section212/nominalobjects.mmp

30 CHAPTER 2. GRAMMAR FORMALISMS

9. Everything.

10. Nothing.

GLOSSARY

2.2 Initial Grammars

Abstract

In this section, we will formalize the syntactic concepts that we have been using
informally, and we add a semantics. Our goal is to make mathematically precise
what a grammar is, and what a grammar means. To achieve that, we need to
define signatures, the set of descriptions of a signature, a certain kind of feature
structures, and the meaning of descriptions and sets of descriptions in a domain
of feature structures.

2.2.1 The Syntax of Initial Grammars

Abstract

This section contains a definition of initial signatures, defines the description
languages with respect to initial signatures and explains what a grammar is.

We begin with defining the essential components of grammars that we extracted from the
form of the principles of Pollard and Sag’s grammar of English. As we saw before, the
Partitions and the Feature Declarations of Pollard and Sag can be interpreted as belonging
to what is more traditionally called the Signature of a logical language. When we now
define signatures for HPSG grammars, we will not include everything immediately that is
needed to formalize a typical HPSG grammar entirely. Initially, we omit everything that
has to do with relations in the description language. Our first formalism for constraint-
based grammars will allow us to explore constraint-based grammars and their meaning
using MoMo and get a fuller understanding of how they work.Then we will augment our
technical machinery in two phases of fattening up our mathematical foundations of HPSG.

To distinguish the smaller signatures that we start with terminologically from later
signatures, we call them initial signatures. The definition of initial signatures does not
really contain anything new. All of its components were already contained in our previous
characterization of signatures, and when reading the definition the first time, it might be
useful to try to guess what each line corresponds to in our example signature of birds and
pets.

http://milca.sfs.uni-tuebingen.de/A4/Course/PDF/glossary/glossar.html?appropriateness_function&attributes&feature_declarations&partial_function&partial_order&partitions&set&signature&smallest_set&sort_hierarchy&sort_symbols&species

2.2. INITIAL GRAMMARS 31

Definition 2 Σ is an initial signature iff1

Σ is a quintuple 〈G,⊑,S,A,F〉,2

〈G,⊑〉 is a partial order,3

S =

{

σ ∈ G

∣
∣
∣
∣
∣

for each σ′ ∈ G,
if σ′ ⊑ σ then σ = σ′

}

,
4

A is a set,5

F is a partial function from the Cartesian product of G and A to G,6

for each σ1 ∈ G, for each σ2 ∈ G and for each α ∈ A,7

if F (〈σ1, α〉) is defined and σ2 ⊑ σ18

then F (〈σ2, α〉) is defined and F (〈σ2, α〉) ⊑ F (〈σ1, α〉).9

We call each element of G a sort, 〈G,⊑〉 the sort hierarchy, each element of S a species,
each element of A an attribute, and F the appropriateness function. If for two sorts σ1

and σ2, σ2 ⊑ σ1, then we say that σ2 is at least as specific as σ1. Alternatively, we say
that σ1 subsumes σ2, or σ2 is a subsort of σ1. Note that subsumption is a reflexive relation
(by the definition of which properties the relation in a partial order must have). In other
words, each sort is assumed to subsume itself. As we said before, species are sorts that
subsume no other sort besides themselves. S is of course a subset of G, and it is always
possible to recover S from G by looking at the sort hierarchy. In fact, this is exactly how
S is defined in line 4: S contains exactly all of those elements of the set of sorts, G, that
are only subsumed by themselves and no other sort. When we introduce a symbol for the
set of species in the signature, we do it simply for later convenience: We will often refer to
the set of species, and having a name for that set in the signature makes it easier for us to
do it.

The condition on F (lines 7–9) enforces attribute inheritance: If an attribute α is
appropriate to some sort σ1, then it is also appropriate to all subsorts of σ1, and the value
of F at the subsorts of σ1 and α is at least as specific as F (〈σ1, α〉). This is the attribute
inheritance that we have observed in our example signature of Section 2.1.2, Signatures:
Partitions and Feature Declarations, where birds and pets (and their subsorts) inherited
the attributes legs and color from their supersort animal; and the attribute values at
these sorts were at least as specific as at their respective supersorts. Note that the definition
of an initial signature does not enforce the presence of a top or bottom sort in the sort
hierarchy, and leaves the decision of whether to include or omit them to the grammar
writer.

Computational systems for the implementation of HPSG grammars are usually less
general and impose stricter conditions on the form of the sort hierarchy. Sometimes the
sort hierarchy necessarily contains some pre-defined sorts together with some appropriate
attributes and attribute values. They also might enforce additional restrictions on where
you are allowed to introduce attributes as appropriate to a sort in the hierarchy.

32 CHAPTER 2. GRAMMAR FORMALISMS

Let us illustrate the definition of initial signatures by stating the small example signa-
ture of lists, pets, and birds of Section 2.1.2, Signatures: Partitions and Feature Declara-
tions, in its mathematical notation:

G =

{

bot , list , nelist , elist , animal , bird , parrot ,woodpecker , canary , pet ,
cat , dog , number , one, two, three, four , color , green, red , yellow , brown

}

⊑= {(σ, σ) | σ ∈ G} ∪ {(σ, bot) | σ ∈ G} ∪

(nelist , list), (elist , list), (bird , animal), (parrot , animal),
(woodpecker , animal), (canary , animal), (pet , animal),
(cat , animal), (dog , animal), (parrot , bird),
(woodpecker , bird), (canary , bird), (cat , pet), (dog , pet),
(one, number), (two, number), (three, number), (four , number),
(green, color), (red , color), (yellow , color), (brown, color)

S =

{

nelist , elist , parrot ,woodpecker , canary , cat , dog ,
one, two, three, four , green, red , yellow , brown

}

A = {head,tail, legs,color}

F =

((nelist ,head), animal), ((nelist,tail), list), ((animal, legs), number),
((bird , legs), two), ((parrot , legs), two), ((woodpecker , legs), two),
((canary, legs), two), ((pet , legs), four), ((cat , legs), four),
((dog , legs), four), ((animal ,color), color), ((bird ,color), color),
((parrot ,color), color), ((woodpecker,color), color),
((canary,color), color), ((pet ,color), color), ((cat ,color), color),
((dog ,color), color)

Based on the definition of initial signatures, we can now define the notion of descriptions
relative to a given initial signature:

Definition 3 For each initial signature Σ = 〈G,⊑,S,A,F〉, DΣ is the smallest set such1

that2

for each σ ∈ G,3

σ ∈ DΣ,4

for each α ∈ A, for each δ ∈ DΣ,5

α : δ ∈ DΣ,6

for each δ ∈ DΣ, ∼ δ ∈ DΣ,7

for each δ1 ∈ DΣ, for each δ2 ∈ DΣ, (δ1, δ2) ∈ DΣ,8

for each δ1 ∈ DΣ, for each δ2 ∈ DΣ, (δ1; δ2) ∈ DΣ,9

for each δ1 ∈ DΣ, for each δ2 ∈ DΣ, (δ1*>δ2) ∈ DΣ, and10

for each δ1 ∈ DΣ, for each δ2 ∈ DΣ, (δ1<*>δ2) ∈ DΣ.11

2.2. INITIAL GRAMMARS 33

We call each element of DΣ an initial Σ description. Although our new definition of the
syntax of our formal language now refers to initial signatures instead of just to a set of sorts
and a set of attributes, nothing has really changed in our previous definition. The reason
for having changed very little is that our descriptions do not depend on the sort hierarchy or
on the appropriateness function, which are the new elements in the signatures. Obviously,
our syntax of initial Σ descriptions is not sufficient yet to notate all principles of a typical
HPSG grammar of a natural language. For example, there is no syntax to write down the
boxed integers called tags, and there are no relation symbols. Once we have explored the
meaning of grammars in the given fragment of a syntax for HPSG, we will extend it by
plugging in missing elements of a complete syntax and semantics. For the moment, we
will build our definition of initial grammars on initial signatures and descriptions. In the
definition below of an initial grammar we use the insight that the principles of an HPSG
grammar are a set of descriptions. We use the Greek letter Θ to refer to a set of initial Σ
descriptions:

Definition 4 Γ is an initial grammar iff1

Γ is a pair 〈Σ, θ〉,2

Σ is an initial signature, and3

θ ⊆ DΣ.4

An initial grammar is simply an initial signature, Σ, together with a set of initial Σ
descriptions. To write a grammar, we have to define a signature, and we have to state
a set of descriptions. Pollard and Sag did that in their grammar of English by notating
the signature in the form of Partitions (which comprised the declaration of a set of sorts
and the sort hierarchy) and Feature Declarations (comprising the declaration of the set of
attributes and the appropriateness function), and stating the set of descriptions as a set of
Principles of Grammar in natural language. To turn the Principles into a formal theory,
we have to rephrase them in an appropriate formal language based on Pollard and Sag’s
signature.

Exercises

Exercise 6 In the present section, we showed how a MoMo signature can be rewritten
in a standard set notation of mathematics: We saw the MoMo signature with lists and
animals of Section 2.1.2, Signatures: Partitions and Feature Declarations, in a notation
that follows Definition 2 of initial signatures.

In Exercise 4 of Section 2.1.2, Signatures: Partitions and Feature Declarations, we
asked you to reconstruct a small part of Pollard and Sag’s signature of English in MoMo
notation. The relevant part of the signature was the sort hierarchy under head plus that
part of the overall appropriateness function that concerns head and its subsorts. Take
the signature that you constructed in MoMo (where you had to use MoMo’s notation for
signatures) and write it down in the notation of our definition of initial signatures (as given
at the beginning of this section).

34 CHAPTER 2. GRAMMAR FORMALISMS

Exercise 7 In this exercise, you will write your first grammar:
Take the MoMo version of the signature of the previous exercise and write three ar-

bitrary, well-formed descriptions for that signature in MoMo. Your descriptions should
consist of at least five symbols (a sort name and an attribute name count as one symbol
only). Please upload the resulting mmp-file to ILIAS.

Exercise 8 We said that we did not want to introduce a potentially complicated definition
of a syntax of AVM descriptions as Pollard and Sag use in their HPSG book. Nevertheless,
we will often appeal to a correspondence between the syntax of descriptions that we use in
MoMo and the AVM notation that is standard in linguistics. With a bit of practice, you
will in fact find that this correspondence is fairly obvious. This exercise is meant to help
you get some of the necessary practice.

In the file momo-avms.mmp you find MoMo descriptions that correspond to the first
three AVM descriptions below. Complete this file with corresponding MoMo descriptions
for the last three AVMs and upload the completed file to ILIAS.

a.
[
cat
color yellow ∨ brown

]

b.
[
dog
legs ¬ three

]

c.

list

head

[
canary

color yellow

]

tail

head

[
woodpecker

color brown

]

tail elist

d.
[
parrot

color green ∨ red ∨ yellow ∨ brown

]

e.
[
canary

]
→
[
color yellow

]

f.
[
nelist
tail tail elist

]

↔

head

[
canary

color yellow

]

tail

head

[
parrot

color green

]

tail elist

GLOSSARY

http://milca.sfs.uni-tuebingen.de/A4/Course/Momo/Online-Edition/Links/links.html?http://milca.sfs.uni-tuebingen.de/A4/Course/Momo/mmps/Section221/momo-avms.mmp
http://milca.sfs.uni-tuebingen.de/A4/Course/PDF/glossary/glossar.html?appropriateness_function&attributes&Cartesian_product&feature_declarations&iff&pair&partial_function&partial_order&partitions&quintuple&set&signature&smallest_set&sort_hierarchy&sort_symbols&species&tag

2.2. INITIAL GRAMMARS 35

2.2.2 Meaning

Abstract

We discuss three ways of defining the meaning of grammars that have been
proposed in the development of constraint-based HPSG. We will see that a choice
between them must be based on a decision between different views on what a
scientific theory does, and is thus ultimately based on one’s preferred philosophy
of science. For the purposes of our course, we will not take a position but make
a pragmatic choice.

When we define the meaning of grammars, we first have to decide what the objects in
the denotation of grammars are supposed to stand for. In the evolution of the HPSG
formalisms following the tradition of Pollard and Sag’s HPSG book, different answers were
given to this fundamental question.

Pollard and Sag themselves envisioned a formalism in which grammars are about the
object types of a language. A grammar admits a collection of object types, which are
constructed as a collection of a specific kind of feature structures. [King, 1999] presented a
formalism in which a grammar delineates a class of what King calls exhaustive models. The
exhaustive models of a grammar are mutually indiscernible, and one of them contains ex-
actly all possible tokens of the natural language that the grammar is about. [Pollard, 1999]
presented a formalization of HPSG in which the strong generative capacity of a grammar is
defined as an isomorphism class of structures that are mathematical idealizations of natural
language tokens. Neither the formalization of King nor the formalization of Pollard uses
feature structures.2

The crucial difference between the three approaches is their views about how the objects
in the denotation of a grammar (or a scientific theory in general) are related to the empirical
domain of observable and measurable data. Grossly oversimplifying, one might say that
Pollard and Sag believe that knowledge of language is knowledge about the object types
of a language, object types are real objects, and a theory of grammar should include
mathematical entities that function as models of object types. King denies that, at the
current stage of linguistic research, object types are a scientifically useful concept, and
claims that a grammar should talk directly about the domain of observable data, which are
language tokens. Pollard abandons Pollard and Sag’s claim about the ontological reality of
object types but maintains the view that grammars should be about mathematical models
of language that do not contain structurally isomorphic members. They contain exactly one
structurally isomorphic member for each utterance token that will be judged grammatical.

Let us consider an example to illustrate the consequences of the different views on
the meaning of grammars. We look at the sentence There are four CDs on my desk.
According to Pollard and Sag, there is a unique object type of that sentence in the real
world, and this object type can be mathematically constructed as some kind of feature

2Pollard still calls the structures in the strong generative capacity of grammars feature structures.
However, his feature structures are construed differently from any kind of classical feature structures, and
some of their important properties differ from those of traditional feature structures.

36 CHAPTER 2. GRAMMAR FORMALISMS

structure. Of course, when we observe occurrences of that sentence in the real world (for
example, if Beata asks me at 7.45pm on November 18th, 2002, how many CDs I have on
my desk, and I answer There are four CDs on my desk), we do not directly observe the
feature structure that is the mathematical structure of that object type. We observe an
acoustic phenomenon or an utterance token of the sentence, which we assume to stand in a
conventional correspondence to the abstract feature structure representing that sentence in
the denotation of our grammar of English. The conventional correspondence is not part of
our theory of English. We assume that a linguist recognizes that correspondence and that
linguists agree on the correspondences. If they do not, data become immune to empirical
falsification. The following figure illustrates Pollard and Sag’s architecture:

In this picture, we see how Pollard and Sag use the term type in constraint-based HPSG:
It is reserved for object types of natural language expressions and is now understood
in opposition to the notion of utterance tokens, concrete utterances of sentences by a
specific person at a specific coordinate in space and time. Entire feature structures may
be object types, whereas the most specific sorts of the sort hierarchy provide the labels
of the nodes in feature structures, which is something entirely different from types. The
connection between sorts and feature structures will be explained in detail when we define
the architecture of feature structures.

[Pollard, 1999] tightens the relationship between the denotation of a grammar and the
empirical domain of observable, measurable data. This is done by replacing the conven-
tional correspondence between the domain of the grammar and the domain of empirical
phenomena by a relationship of isomorphism. The entities in the denotation of a grammar
become isomorphic mathematical idealizations of concrete utterance tokens. Technically,
this cannot be done with the kind of feature structures that are standardly used to formalize
Pollard and Sag’s architecture. Therefore Pollard replaces them with different mathemat-
ical structures that function as models of grammars. Pollard’s view can be visualized as
follows:

2.2. INITIAL GRAMMARS 37

Pollard maintains that there is a mathematical modeling domain that intervenes be-
tween grammars and the empirical domain. Moreover, a sentence like There are four CDs
on my desk receives a unique mathematical representation in the denotation of the gram-
mar.

[King, 1999] challenges the view that types are an interesting and justifiable concept in
the scientific description of language, and he replaces models that contain types with models
that contain utterance tokens. In King’s opinion, grammars directly denote collections of
possible utterance tokens:

According to King, the grammar of English denotes as many tokens of the sentence
There are four CDs on my desk as there were, are, and will be, utterances of this sentence
in the real world, including me uttering that sentence to Beata at 7.45pm on November
18th, 2002 in the Seminar für Sprachwissenschaft in Tübingen. According to this view,
there are no intervening mathematical structures between the grammar and the domain of
observable linguistic data. The tight connection between the two is supposed to close any
possible escape hatches that anyone might want to use in order to avoid the falsification
of their theory of English by observable data.

We will not delve deeper into the comparison of the respective advantages and the prob-
lems of these three explanations of the meaning of constraint-based grammars. A choice

38 CHAPTER 2. GRAMMAR FORMALISMS

between the three views about the meaning of grammars is first of all a choice between
different views of the nature of scientific theories. This choice has nothing to do with
technical matters; it is about philosophical arguments. As for the underlying mathematics,
[Richter, 2004] shows how all three views can be integrated within one unifying formalism
of HPSG, and how the three different modeling domains are mathematically related. In
effect, it is possible to switch arbitrarily from any one of the models suggested above to
the others. From a mathematical point of view, feature structure models are just a very
specialized kind of model; the model theory of King is more general and follows standard
ideas of logical models. Pollard’s models are defined on the basis of King’s denotation
functions, combining them with a variation of the techniques usually employed in defining
feature structure models.

When we use feature structures in our formalization of the meaning of grammars, we do
not intend to express a preference as to which idea about the nature of scientific theories is
correct. Our decision is purely pragmatic in nature: Computational theories of constraint-
based grammars have traditionally relied on feature structure models of grammars and on
processing methods for feature structures. In the context of grammar implementations,
feature structure models are no more than an efficient tool for computational purposes.
On a theoretical level, we know that feature structure models are mathematically closely
related to a precise version of each of the other views about the meaning of grammars.
Thus, we know that feature structure models of grammars can always be reinterpreted in
light of the other two model-theoretic interpretations of grammars.

GLOSSARY

2.2.2.1 Concrete Feature Structures

Abstract

We will introduce concrete feature structures as interpreting structures of constraint-
based grammars and explain their most important properties. In particular we
will focus on the connection between signatures and feature structures.

The original idea of feature structures as some kind of graph came to linguistics from
theoretical computer science. In the theory of finite state automata, it is common to think
of the states of a machine as nodes in a graph, postulate a distinguished start state and
picture the transitions between the states of an abstract machine as arcs from one state
to another. Two alphabets are often associated with these automata, one for the arcs
(modeling input strings) and one for the states (modeling output strings). Additionally,
there can be result states in automata, and the architecture of the automata can vary
from the one we have just sketched in many ways, depending on what the purpose of the
automata is.

From early on linguists have found these graph representations useful for modeling
the interpreting structures of so-called feature-value grammars, and HPSG inherited that
tradition. The start state of the automata becomes the root node of feature structures,

http://milca.sfs.uni-tuebingen.de/A4/Course/PDF/glossary/glossar.html?exhaustive_models&feature_structures&Strong_Generative_Capacity

2.2. INITIAL GRAMMARS 39

where the root node is defined as a node from which all other nodes in the feature structure
can be reached by following a finite sequence of arcs. The nodes of feature structures are
of course derived from the states of the automata. The input alphabet of automata turns
into the set of attributes, which now label the arcs. Elements of the species subset of the
set of sorts label the nodes of the feature structure. We say that the nodes in the feature
structure have certain sorts (the sorts that label them). Similarly, we also say that an entire
feature structure is of some sort σ, meaning that the root node of the feature structure is
labeled by σ.

Feature structures of the kind envisioned here consist of four defining constructs. First,
a set of nodes. Second, a distinguished root node. Third, a transition function whose task
it is to tell us which nodes can be reached from which other nodes by following an arc
labeled by a particular attribute. And finally, a labeling function that assigns each node a
(maximally specific) sort label.

Pollard and Sag’s requirement that not just any sort may be used as a label for the
nodes of feature structures is to be understood as an ontological assumption about linguistic
objects. The fact that feature structures must be sort-resolved, which means that all
nodes must be labeled by species, formalizes the idea that linguistic objects themselves are
entities of maximally specific sorts whose components (as given by the nodes that we can
reach by following the arcs from the root node) are again of maximally specific sorts. To
draw an example from Pollard and Sag’s grammar of English, remember that word and
phrase are immediate subsorts of sign and have no proper subsorts. With these signature
specifications, we can talk about signs in the description language (because sign is a sort,
and any sort can occur in descriptions), but in the real world we only find feature structures
of the maximally specific sorts word or phrase. There is no such thing as a feature structure
of sort sign, because Pollard and Sag believe that there is no linguistic entity of sort sign.

Sort-resolvedness is by no means a necessary property of feature structures. For exam-
ple, sort-resolvedness is not a property of the feature structures of HPSG 87. In general
we observe that the feature structures of HPSG 87 have very different mathematical prop-
erties from the feature structures of HPSG 94, and it is very important to keep those two
formalisms cleanly separate when working with HPSG.

Sort-resolvedness is the first point where we can see that feature structures depend on
the structure of signatures even more than descriptions. Not only do we need to know the
set of sorts and the set of attributes (to label nodes and arcs) as we did for descriptions,
we also need to know the sort hierarchy in order to determine which sorts are species. The
appropriateness function (the Feature Declarations) is equally crucial as the sort hierarchy
for the feature structures of HPSG, due to a completeness assumption that Pollard and Sag
make regarding linguistic objects. This assumption says that all or none of the objects of
a certain sort may have certain properties, where properties are represented by attributes
(or, more precisely, arcs labeled by attributes). The properties of the entities of each sort
are declared by the appropriateness function. A node of some species σ has an outgoing
arc labeled by some attribute α if and only if the attribute is appropriate to the species;
and the node that we reach by that arc must be of a species that is either the sort σ′

appropriate for α at σ, or some subsort of σ′ (in case σ′ is not a species). Again, we have

40 CHAPTER 2. GRAMMAR FORMALISMS

to stress that the reason for this completeness assumption about feature structures is an
assumption about the empirical domain of linguistic objects. It is not given by the use of
feature structures per se. Feature structures that are complete in the way discussed here
are called totally well-typed. Well-typedness means that every node has only outgoing arcs
labeled by attributes appropriate to the species of the node. Total well-typedness means
that it has arcs for exactly all of those attributes that are appropriate to its species.

Since feature structures are defined relative to a given signature Σ (a property which
they share with descriptions), strictly speaking we always have to refer to them as Σ feature
structures in order to say which underlying signature we have in mind. In practice this
turns out to be very cumbersome. For that reason, we will usually omit the reference to a
signature wherever possible without causing any confusion.

The properties of feature structures, sort-resolvedness and total well-typedness, that
the linguist imposes by the sort hierarchy and the appropriateness conditions of the signa-
ture, express ontological assumptions about natural language. By declaring a signature, a
linguist declares what kind of linguistic entities she expects to exist in the world, and what
attributes they all have. If the kind of ontology envisioned here is not the kind of ontology
that one has in mind for linguistic entities, then constraint-based HPSG does not provide
the right framework to express one’s theories of language.

There is one final consideration about feature structures that we need to discuss. Why
do we call them concrete feature structures in this section’s heading? The reason is trivial,
but it will have mathematical consequences: The feature structures derived from automata
theory that we have talked about so far are concrete objects. They consist of nodes and
arcs, and we can even build real models of them out of wood and wire. In MoMo we
draw paintings or pictures of them that are also quite concrete. However, this concreteness
has drawbacks. Nothing stops us from having two concrete feature structures of the same
shape. To evoke our signature of birds and pets, we can easily have two distinct concrete
feature structures of a green parrot with two legs. This is clearly not what Pollard and Sag
had in mind for feature structure representations of object types, which where supposed to
be unique representations of linguistic expressions. To construct a more linguistic example
than parrots, with concrete feature structures, we may construct two structurally isomor-
phic but distinct concrete feature structure representations of the sentence There are four
CDs on my desk. How should we precede?

The answer is quite simple. When we get to the formalization of feature structures, we
will formalize them in such a way that two structurally isomorphic feature structures will
necessarily be identical. Instead of using the concrete, automata theoretic graph construc-
tion we have worked with in this section, we will use a construction involving equivalence
classes, which will result in so-called abstract feature structures. Abstract feature structures
will have exactly those properties that Pollard and Sag had in mind. For our illustrations
however (and for our work with MoMo), concrete feature structures are better suited, sim-
ply because of their tangible concreteness. We will thus go on using them, but keep in
mind that our mathematical reformulation will abstract away the very concreteness that
we like about these objects.

2.2. INITIAL GRAMMARS 41

It is time to get some experience with the effects of signatures on the possible shapes
of feature structures, and the best way to acquire it is to construct some feature structures
and see what they are like. The file birdsandpets2221.mmp gets us started with a number
of examples that we now discuss in turn.

The file birdsandpets2221.mmp contains the familiar signature of birds, pets and lists,
and six interpretations with one feature structure of that signature in each. Two of the
feature structures are well-formed, but four are not. The reason for why it is not a well-
formed feature structure is different in each case.

The feature structure in well-formed1 depicts a cat of color brown with four legs. The
node labeled cat is marked as the root node. According to the signature, legs and color
are the appropriate attributes to cat, with the values restricted to four and a maximally
specific subsort of color, respectively. Since our feature structure respects these restrictions,
we say it obeys the signature. Moreover, since it has a root node from which all other nodes
can be reached by following a sequence of arcs, we say that this configuration of objects
(consisting of labeled nodes and labeled arcs) is a well-formed feature structure.

The configuration of objects in well-formed2 is particularly trivial. It consists of a node
labeled red, which is a maximally specific atomic sort of the signature. Sorts are called
atomic if no attributes are appropriate to them. Since there are no outgoing arcs on red,
this trivial configuration of objects obeys the signature. Since our only node is marked as
the root node of the configuration, we have a well-formed feature structure.

The configuration of objects in ill-formed1, which fails to be a well-formed feature
structure, is much bigger than the ones that we have seen so far. The root node is of sort
nelist, and the first element of the list—which we reach from the root node by following
the arc labeled head—is a feature structure representation of a yellow canary. The second
element of our list, which we could also call the first element of the tail of the list, is a
(representation of a) yellow cat. So far, we can easily check that everything is well: The
canary node has exactly those outgoing arcs that are required by appropriateness in the
signature, and so does the cat node. The nodes that these arcs point to have labels that
also agree with appropriateness. Since they are all atomic, the lack of any outgoing arcs
from any of them is correct. Moreover, the present configuration of objects is a well-formed
feature structure in the sense that each node in the configuration may be reached from the
distinguished root node by following some sequence of arcs. However, there is a problem
with completeness. The second nelist node does not have an arc labeled tail besides the
head arc that leads to the yellow cat. But according to the signature, it should have one
to be well-formed.

MoMo tells us about the problem when we press the key Obeys Signature. The com-
munication window displays a message that names the node at which MoMo detected the
missing arc. MoMo displays the names that it automatically assigns to each node next to
them on the canvas if you set the display options accordingly as explained in the MoMo
manual. After a well-formedness check with respect to the requirements of the signature,
MoMo colors the part of the feature structure (starting from the root node) that it found
to be well-formed.

http://milca.sfs.uni-tuebingen.de/A4/Course/Momo/Online-Edition/Links/links.html?http://milca.sfs.uni-tuebingen.de/A4/Course/Momo/mmps/Section2221/birdsandpets2221.mmp
http://milca.sfs.uni-tuebingen.de/A4/Course/Momo/Online-Edition/Links/links.htmlhttp://milca.sfs.uni-tuebingen.de/A4/Course/Momo/mmps/Section2221/birdsandpets2221.mmp

42 CHAPTER 2. GRAMMAR FORMALISMS

The configuration of objects in ill-formed2 fails to be a feature structure for a different
reason. According to the connectedness condition on the nodes and reachability from the
root node, it is fine. In contrast to the previous example, this configuration also contains
all correct arcs: The canary node has a color and a legs arc. The problem is that the
label of the target node of the legs arc, three, violates the signature, which says that the
value of legs at canary must be two. Again, MoMo tells us exactly what is wrong when
we press the button Obeys Signature.

The structure in ill-formed3 is well-formed with respect to the signature. This time,
however, there is a problem with the basic properties that feature structures possess in
general, since there is no distinguished root node.

The configuration in ill-formed4 suffers from a similar flaw. There is a root node, but
it is not the case that all other nodes in the structure that are connected to it can be
reached from it by following some sequence of arcs. Therefore, the structure cannot be a
well-formed feature structure, although it fulfills the requirements of the signature.

The following exercises give you an opportunity to get some hands-on experience in
constructing concrete feature structures. However, a small number of exercises are only a
start, and it would be very useful to go beyond those exercises and experiment a bit with
MoMo. It is fairly easy to construct a signature of any empirical domain that you can
imagine and construct feature structures for it, and doing so remains the best way to study
our feature structure formalism.

Exercises

We use our familiar signature with lists, birds and pets, which we have prepared for this
exercise in the file birdsandpets-exs2221.mmp.

Exercise 9 Create an interpretation called two parrots. Draw two green parrots in MoMo
(on one canvas). Use the functions of MoMo to make sure that you created two well-formed
feature structures.

Exercise 10 Create a second interpretation (while keeping the old one) called list of length 2.
Draw a list with two elements, the first being a yellow canary and the second being a brown
dog.

Recall that nonempty lists are represented as nelist nodes, with an outgoing arc labeled
head that leads to the first element of that nonempty list and a second outgoing arc labeled
tail that leads to the remainder of that list. The remainder might either be an elist node
(the list ends here) or another nelist node (the list continues).

Exercise 11 Create three graphs that are not well-formed feature structures, either because
they violate the signature or other conditions on what constitutes a feature structure. In-
dicate briefly why each one of them is ill-formed. Please use a new interpretation window
for each ill-formed graph and assign meaningful names to the interpretation windows.

http://milca.sfs.uni-tuebingen.de/A4/Course/Momo/Online-Edition/Links/links.html?http://milca.sfs.uni-tuebingen.de/A4/Course/Momo/mmps/Section2221/birdsandpets-exs2221.mmp

2.2. INITIAL GRAMMARS 43

When you finish the exercises, please save your results as an mmp-file with the name
exercises-sec-2221.mmp and upload the file to your group in ILIAS.

GLOSSARY

2.2.2.2 Satisfaction

Abstract

We introduce an intuitive notion of constraint satisfaction.

What does it mean for a feature structure to satisfy a description? Clearly we want to
say that for the satisfaction relation to hold between a feature structure and a description,
the feature structure should in some intuitive sense be described by the description, or the
description should be true of the feature structure.

Working once more with the signature of Section 2.1.2 Signatures: Partitions and Fea-
ture Declarations, it seems to make sense to say that the description yellow describes
feature structures with root label yellow. Since there are no attributes appropriate to yel-
low, we know in addition that there will not be any arcs leaving that root node. When
we add negation and say ~yellow, it then makes sense to say that all feature structures
that do not satisfy yellow should satisfy ~yellow. This would of course be all well-formed
feature structures except the one that consists only of a root node labeled yellow. Consid-
ering the fact that the feature structures representing lists of animals can be of arbitrary
size due to the length of lists, it follows immediately that ~yellow is satisfied by infinitely
many feature structures of different form.

Let’s consider the description pet, which, intuitively, should be satisfied by all feature
structures that represent pets. Which ones are they? Since feature structures are of a
maximally specific sort, and the maximally specific subsorts of pet are cat and dog, it must
be the feature structures with root nodes labeled cat or dog. These feature structures have
outgoing arcs according to the signature: one arc is labeled legs and leads to a node
labeled four (due to the appropriateness function). The other one is labeled color and
leads to a node labeled by one of the four speciate colors. Since the color species and four
are atomic, i.e., there are no attributes appropriate to them, this exhausts the cases that
we have to consider.

What about (dog,legs:three)? Is this a well-formed description at all? It certainly
is according to our definition of the initial syntax in Section 2.2.1, The Syntax of Initial
Grammars. First of all, according to line 8 of the definition, it is a description if dog is a
description δ1 and legs:three is a description δ2. But dog is a description according to
lines 3 and 4, because dog is a sort. legs:three is a description if legs is an attribute
(according to lines 5 and 6), which it is, and if three is a description (still according to
lines 5 and 6). But three is a description, because it is a sort (lines 3 and 4). Therefore,
(dog,legs:three) is a description.

Why would anyone want to claim that something is wrong with (dog,legs:three)?
This claim would probably have to do with the signature, more precisely with the appro-
priateness conditions. In our signature we say that legs is appropriate to dog, and the

http://milca.sfs.uni-tuebingen.de/A4/Course/PDF/glossary/glossar.html?appropriateness_function&atomic_sort&feature_structures&root_node&signature&sort-resolvedness&theory&totally_well-typed

44 CHAPTER 2. GRAMMAR FORMALISMS

value of legs at dog is four. However, the appropriateness conditions of the signature
do not have any effect on well-formed descriptions. If we look at the definition of our
initial syntax, we see that descriptions are built from attributes, sorts, and logical symbols
without any reference to the sort hierarchy or the appropriateness conditions.

This is of course different for feature structures. We introduced well-formed feature
structures with respect to the sort hierarchy (nodes are only labeled by those sort symbols
that do not have any proper subsorts) and the appropriateness conditions (arcs have to
respect appropriateness with respect to the node where they originate and the node they
lead to). Therefore there cannot be a feature structure with a node labeled dog and
an outgoing arc labeled legs that leads to a node labeled three: it would violate the
appropriateness function of our signature. What we can conclude from all of this is that
although (dog,legs:three) is a well-formed description, there cannot be any feature
structure that satisfies it, because there is no well-formed feature structure that represents
a dog with three legs. In that sense, we are in a similar situation to the first order expression
p ∧ ¬p, which will always denote False, because a sentence cannot simultaneously hold
together with its negation.

With a bit of classical logic as background, it is now easy to infer how the satisfac-
tion function for more complex descriptions is defined. (δ1;δ2) is satisfied by all feature
structures that satisfy δ1 or δ2. (δ1*>δ2) is satisfied by all feature structures such that
if they satisfy δ1 then they also satisfy δ2, which is classically equivalent to saying that
(δ1*>δ2) is satisfied by all feature structures such that they satisfy ~δ1 or they satisfy δ2.
It is particularly important to keep that in mind, since all our principles of grammar will
be formulated as implications (you may want to go and check the principles of Pollard and
Sag, and you will find that they are all formulated as implications as well). We can leave
it to the reader to figure out which feature structures satisfy the description (δ1<*>δ2).

Exercises

Once more we take the signature that we first introduced in Section 2.1.2, Signatures: Par-
titions and Feature Declarations with lists, birds, and pets. We also refer to the well-formed
descriptions of Exercise 3 of Section 2.1.2, Signatures: Partitions and Feature Declarations.
For your convenience, you may want to download the file satisfaction-exercise.mmp, which
already contains the signature and the relevant descriptions.

Use MoMo to create a file exercises-2222.mmp containing the solutions to the follow-
ing exercises.

Exercise 12 Create interpretations with feature structures that satisfy the description in
(1) and in (8).

Exercise 13 Is the description in (12) satisfiable? If it is, draw a feature structure satis-
fying it. If not, give a short explanation why it is not.

Exercise 14 This exercise is a bit tricky but lots of fun if you like syntactic puzzles. It
may take some time to solve it.

http://milca.sfs.uni-tuebingen.de/A4/Course/Momo/Online-Edition/Links/links.html?http://milca.sfs.uni-tuebingen.de/A4/Course/Momo/mmps/Section2222/satisfaction-exercise.mmp

2.2. INITIAL GRAMMARS 45

The description in (15) is well-formed but not satisfiable. It is possible to turn the
description into a satisfiable description by modifying it in such a way that all non-logical
symbols (attributes and sorts) are kept exactly in the order in which they appear in the
description, none is added or removed, and other than that only the bracketing is changed
and commas (,) may be turned into colons (:) or vice versa. Do that and draw a feature
structure satisfying your description.

GLOSSARY

2.2.2.3 Admission

Abstract

We will discuss why constraint satisfaction is not the right notion of meaning
for interpreting generalizations over the shape of feature structures. To capture
the intended meaning of descriptions that are generalizations over domains of
objects, we will introduce a second notion of the meaning of descriptions. We
will also say what it means for a constraint to license a feature structure.

It might seem strange that we return to the question of the meaning of descriptions again
after having introduced satisfaction functions. Doesn’t satisfaction tell us everything we
need to know about the denotation of descriptions? In order to see that it does not,
consider the following situation that is typical for the type of generalizations we want to
state in grammars:

Assume that we enumerate the animals that a person owns on a list. Since we want to
keep that enumeration as economical as possible, we do not want to describe every single
animal in full detail when we can generalize over common properties of all members of some
classes of animals. For example, if all dogs happen to be brown, all canaries are yellow, and
all parrots are green, we would like to state these facts only once without having to repeat
them in the descriptions of every dog, canary, and parrot. As it turns out, we cannot do
that using the satisfaction function as our notion of the meaning of descriptions!

Why is it not possible? Let us focus on the generalization that all canaries are yellow.
An obvious try to make that statement seems to be to say (canary,color:yellow). How-
ever, this description is true of a feature structure exactly if its root node is of sort canary,
and its color value is yellow. Clearly, we cannot make the intended statement about all
canaries on a feature structure representing lists, which is a feature structure of sort nelist,
that way.

What about an implicational statement, then? After all, we have already noted that
the principles of linguistic grammars are of that form. Unfortunately, that doesn’t help
us much either. Consider (canary *> color:yellow). This description is satisfied by
all feature structures that are either not of sort canary, or their color value is yellow.
Because of the antecedent, it thus holds of any list, no matter what elements are on that
list. For example, a list with red canaries will do just fine.

http://milca.sfs.uni-tuebingen.de/A4/Course/PDF/glossary/glossar.html?appropriateness_function&constraint_satisfaction&feature_structures&root_node&satisfaction&signature

46 CHAPTER 2. GRAMMAR FORMALISMS

While the problem with our first attempt, (canary,color:yellow), had to do with the
form of the description itself, the problem that we observe with the implicational statement
is a problem with the use of constraint satisfaction as the interpretation of descriptions:
Under constraint satisfaction the descriptions are always interpreted with respect to the
root node of feature structures. What we need to do to get the right interpretation for our
generalization is a notion of the meaning of descriptions that allows us to impose restrictions
on entire feature structures, comprising the root node and all nodes inside of the feature
structure. With our generalizations, we want to say something about feature structures
representing canaries and about representations of canaries inside a bigger overall feature
structure, for example about canaries on lists.

We observe the very same situation in linguistic examples. Consider the Head Fea-
ture Principle, which says that in headed structures, the head values of mother and
head daughter must be identical. It is evident that this constraint should not just hold for
the topmost phrase in a sentence, but for each headed phrase that might occur embedded
more deeply in phrase structure. The situation is thus exactly parallel to the situation we
found ourselves in with our statement that every canary on the list must be yellow.

The solution to this problem is to come up with a stronger notion of denotation, and this
is what feature structure admission is designed for. As we have just seen in the examples
of yellow canaries on lists and the Head Feature Principle, we want a denotation
function that in a sense generalizes constraint satisfaction: For admission, it is not simply
the root node that is relevant, but all nodes in the feature structure. We want to say
that a feature structure is admitted by a constraint if and only if its root node and all the
nodes that occur in the feature structure satisfy the constraint. Note that the definition of
admission is directly based on satisfaction. We could characterize admission as some kind
of super-satisfaction that generalizes satisfaction from the root node to all nodes of feature
structures. From this perspective, it is also immediately obvious why admission is a more
powerful notion of denotation.

The notion of admission solves our problem with yellow canaries. The root node of a list
satisfies the constraint (canary *> color:yellow), because it is not a canary. Assume the
head of the list is a canary. Then the entire list can only be admitted by the constraint
if that canary is yellow. If the head value is not a canary, on the other hand, then it
satisfies the constraint by satisfying the negation of the antecedent of the constraint (since
A → B is equivalent to ¬A ∨ B). We can pursue this reasoning through the entire feature
structure: Whenever we see a node that is not of sort canary, it satisfies the negation
of the antecedent of the constraint. Whenever we see a node that is of sort canary, the
consequent must hold for the node to satisfy the constraint: The canary must be yellow. In
short, the feature structure is only admitted by the constraint if all its component canaries
are yellow, which is the effect that we wanted.

Feature structure admission is not the only terminology for the function that we have
just described. Alternatively, it is often said that a feature structure is licensed by a
constraint if it is admitted by the constraint. Another way of expressing the same fact is
to say that the feature structure models the constraint. Generalizing this way of speaking,
saying that a set of feature structures models a (set of) constraint(s) means that every

2.2. INITIAL GRAMMARS 47

feature structure in the set is admitted by each constraint in the constraint set: Each
node in each feature structure satisfies each constraint. That is precisely the effect that we
want to achieve with sets of grammatical principles, which—together with a signature—
constitute a grammar.

We are now ready to define simple abstract feature structures, constraint satisfaction
relative to simple abstract feature structures and simple abstract feature structure ad-
mission in the next course section. However, before we proceed we should look at a few
examples of satisfaction and admission.

Examples for Satisfaction and Admission

The file satis-admis2223 contains our familiar initial signature, generating a description
language in which we can talk about lists of animals, birds and pets. It also contains a
number of interpretations and three initial descriptions. In what follows we discuss which
interpretations satisfy or model which description in these examples.

The description card canaries 1 contains a description which says:

If something is a canary then its color is yellow.

The description in canaries 2 says:

It is a canary, and its color is yellow.

The feature structure in the interpretation canary interpretation 1 satisfies the con-
straint canaries 1. It is a feature structure with a root node of sort four and no attribute
arcs. It must not have arcs, because no attributes are appropriate to four. Thus, it is a
well-formed feature structure. It satisfies the initial description in canaries 1, because it
is not a canary at all, thus satisfying the negation of the antecedent. Since the feature
structure consists of one node, satisfaction also implies that it models the constraint.

The feature structure in the interpretation canary interpretation 1 does not satisfy the
initial description on the description card canaries 2, because it is not a yellow canary.
Since it does not satisfy that description, it cannot model it either.

The feature structure in canary interpretation 2 is a well-formed feature structure which
obeys all requirements of the signature: Canaries must have two legs and some color.
Moreover, it satisfies the initial description in canaries 1, because it satisfies the antecedent
of the implication and it satisfies its consequent: The canary is yellow. It also models that
initial description: All canary nodes in the feature structure have a color arc pointing to
a node labeled yellow.

The feature structure in canary interpretation 2 satisfies the description on the de-
scription card canaries 2: It represents a yellow canary. However, it does not model that
initial description. The reason is that this yellow canary contains components that are not
yellow canaries themselves, namely the nodes labeled yellow and two. Under admission,
the conjunctive description requires by its first conjunct that all nodes be labeled canary
(which is impossible, by virtue of the appropriateness function of the signature!).

http://milca.sfs.uni-tuebingen.de/A4/Course/Momo/Online-Edition/Links/links.html?http://milca.sfs.uni-tuebingen.de/A4/Course/Momo/mmps/Section2223/satis-admis2223.mmp

48 CHAPTER 2. GRAMMAR FORMALISMS

canary interpretation 3 contains again a well-formed feature structure, a list with a
red canary on it. And it also satisfies the initial description in canaries 1! Why? After
all, it is a red canary that is on the list. The reason is that the feature structure as a
whole is of sort nelist, thus satisfying the negation of the antecedent of the description.
That is all that is needed for satisfaction. However, the simple feature structure in canary
interpretation 3 is not a model of the initial description in canaries 1. Upon pressing the
button Check Modeling, a black circle appears around the canary node. This black circle
indicates that the node of sort canary does not satisfy the description. Remember that
for admission (which is another expression for modeling and for licensing), all nodes of a
feature structure must satisfy the constraint(s). In this case, there is exactly one node that
does not satisfy the description, namely the node of sort canary, because it has a color
arc with a node of sort red as value. Thus the canary node satisfies the antecedent of the
constraint but not the consequent, and thus fails to satisfy the constraint as a whole.

The feature structure in canary interpretation 3 neither satisfies nor models the initial
description of the card canaries 2. It does not satisfy it, because as a list it is not a canary,
as the first conjunct of the description requires. And since the feature structure fails to
satisfy the description, it does not model it either: With the root node, we have already
found one node that does not satisfy it, and for modeling all nodes would have to satisfy
it.

The initial description in the description card list says:

It is a list whose first element is a dog.

The simple feature structure in list interpretation 1 satisfies this initial description. It
is a well-formed feature structure with all required arcs and the required arc values. It
represents a list with one element, the element being a brown dog (an arbitrary color is
required by the signature) with four legs (as required by the signature). Finally, the nelist
node has the two required arcs with appropriate values.

The feature structure in list interpretation 1 does not model the description. Why?
Upon pressing the button Check modeling, the black circles that appear around some
nodes on the canvas indicate which nodes do not satisfy the description. It is all nodes
except for the root node. They cannot satisfy the description, because they are not of sort
nelist.

The crucial difference to the description on the description card canaries 1 is that the
present description is not an implication. With implications, we use admission to express
restrictions on all those nodes in feature structures that satisfy the antecedent. With a
conjunctive description like the present one, admission requires that all nodes in the feature
structure satisfy the entire conjunctive description. Since the present description describes
a non-empty list (by virtue of its first conjunct), no feature structure at all can possibly be
admitted by it under the given signature. The reason is that our signature requires that a
list contain animals, and animals are not lists. But for a feature structure to be admitted
by the present description, it would have to consist exclusively of nodes of sort nelist, due
to its first conjunct.

2.2. INITIAL GRAMMARS 49

list interpretation 2 contains another feature structure satisfying but not modeling the
description. With the Check Modeling function, MoMo is prompted to show which nodes
do not satisfy the initial description of the description card list. The root node satisfies it,
since all the description requires is that it be a list, and its first element be a dog. That
does not say anything about the length of the list, and it does not say anything about the
other elements on it, if there are any. The only restriction about them comes from the
signature, which requires that they all be animals. The root node is the only node that
satisfies the initial description of list, since no other node in the entire feature structure is
a node of sort nelist with a head arc pointing to a node labeled dog.

Exercises

Again we take the signature introduced in Section 2.1.2, Signatures: Partitions and Feature
Declarations, and the well-formed descriptions of Exercise 3 of the same section.

To answer Exercise 15, please create a file admission.mmp and upload it to your group
in ILIAS.

Exercise 15 Are there any well-formed descriptions that admit a feature structure? If so,
name at least one of them and give an example of a feature structure admitted by it.

Exercise 16 From the exercises of the last section we already know that description (8)
is satisfiable, and we have drawn one of the feature structures that satisfy it. Give a short
reasoning why there are no models of that description. (This can be done in three or four
sentences!)

Hint: You may want to play with the modeling function of MoMo to get some feedback
on your ideas when you think about this question.

GLOSSARY

2.2.2.4 Formalization

Abstract

We will define totally well-typed and sort-resolved abstract feature structures,
show how they correspond to the concrete feature structures of MoMo, and
use them as the modeling domain of initial grammars. For that purpose we will
first define a satisfaction function relating initial descriptions to sets of abstract
feature structures. Building on the satisfaction function, we will then define an
admission function that relates sets of initial descriptions to sets of abstract
feature structures.

Our first understanding of the meaning of descriptions and grammars in MoMo was based
on an informal notion of totally well-typed and sort-resolved feature structures that can be
extracted from Pollard and Sag’s book. Following linguistic tradition, we described feature
structures based on finite state automata. Due to their tangible nature, this kind of feature

http://milca.sfs.uni-tuebingen.de/A4/Course/PDF/glossary/glossar.html?admission&feature_structures&licensing&modeling&root_node&satisfaction&signature

50 CHAPTER 2. GRAMMAR FORMALISMS

structure is sometimes called concrete feature structure. To be able to define the meaning
of initial grammars with respect to feature structures, it is necessary to go beyond our first
informal characterization and to give an exact definition of feature structures. This is what
we will do in this section.

Guided by the remarks on feature structures and on the explanation of the meaning
of grammars in [Pollard and Sag, 1994] (see Section 2.2.2, Meaning), we define them as
totally-well typed, sort-resolved and abstract feature structures. We call our new feature
structures abstract because they are built in such a way that two structurally isomorphic
feature structures are necessarily identical, which captures one of the intuitions underlying
Pollard and Sag’s concept of feature structure models: The members of the set of feature
structures admitted by a grammar are mathematical representations of the object types
of a language. On the other hand, the feature structures pictured in MoMo correspond to
so-called concrete feature structures: Two structurally identical concrete feature structures
may well be different entities.3

What is the idea behind abstract feature structures? The construction that we use (and
the name for these feature structures) was first introduced to linguistics by [Moshier, 1988].
It starts from the insight that if we want to force two feature structures of the same shape
to be always identical, then they should not have individual nodes. As soon as there
are individual nodes we can always choose other nodes as the nodes of the next feature
structure of the same shape, and we will get two feature structures that look the same. We
can easily imagine this situation as the one that we have in MoMo when we draw feature
structures. Nothing can stop us from drawing two non-identical feature structures of the
same shape on the canvas, since we can always choose to place more nodes and arcs from
a potentially infinite resource on the canvas.

The alternative to individual nodes is to use equivalence classes of appropriate mathe-
matical entities to represent what we thought of as nodes before. In order to appeal to our
intuitions and to our practical experience with concrete feature structures in MoMo, let us
call these equivalence classes abstract nodes, in analogy to the “abstract feature structures”
that we define using abstract nodes.

Before we give this further thought, let us remind ourselves what equivalence classes
are. First of all, they build on the notion of equivalence relations. Equivalence relations are
relations with three important properties: They are reflexive, transitive, and symmetric.
We can formulate that as follows:

Definition 5 η is an equivalence relation iff1

η is an ordered pair, 〈S, ◦〉,2

S is a set,3

3Concrete feature structures are thus closer to the concept of utterance tokens and to King’s idea of
the meaning of grammars in terms of collections of possible utterance tokens. However, there are some
philosophically important differences, since concrete feature structures are defined as mathematical objects,
and King envisions natural languages in the denotation of grammars. Natural languages are presumably
not mathematical objects.

2.2. INITIAL GRAMMARS 51

◦ is a binary relation on S,4

for each x ∈ S, x ◦ x (◦ is reflexive),5

for each x ∈ S, for each y ∈ S, for each z ∈ S,6

if x ◦ y and y ◦ z then x ◦ z (◦ is transitive),7

for each x ∈ S, for each y ∈ S, if x ◦ y then y ◦ x (◦ is symmetric).8

We can then define an equivalence class of an equivalence relation η = 〈S, ◦〉 as a
non-empty subset S ′ of S such that for each x ∈ S ′ and each y ∈ S ′, x ◦ y, but for no
element z of S\S ′ and any x ∈ S ′, z ◦ x. Equivalence classes of equivalence relations have
some properties that are very interesting for our purpose. Given an equivalence relation,
η = 〈S, ◦〉, the union of all its equivalence classes equals the carrier set of η, S. On the
other hand, any equivalence class of η can be uniquely identified by one of its elements.
Assume that S ′ is an equivalence class of η. Then the last property of equivalence classes
allows us to pick any element of S ′, say x, and write |x|〈S,◦〉 for the equivalence class of η
to which x belongs. That means, for any x ∈ S ′, we get S ′ = |x|〈S,◦〉.

The key idea of abstract feature structures is to take the sequences of attributes that
label the arcs that we need to traverse in concrete feature structures from the root node to
a given node as the representations of the abstract nodes. To simplify our terminology, let
us call a (possibly empty) sequence of attributes a path. An abstract node ν in an abstract
feature structure is then an equivalence class of paths that we could travel along on from
the root node to ν in its concrete counterpart. The property of unique identifiability of
equivalence classes discussed above will now give us a way to identify an abstract node of
an abstract feature structure by any of the paths that lead to its concrete counterpart.

It is time for a few simple examples. To avoid getting too used to a single signature,
we will take the signature in Figure 2.2 for the examples below.

Note that in contrast to the signature that we used before, animal and its subsorts
do not have any attributes appropriate to them in the signature of Figure 2.2. The new
signature is designed to talk about what people like best, it distinguishes between men and
women, and it may be used for talking about two kinds of cars and their owners and drivers.
You find the concrete feature structures of our examples in the mmp-file animalscars.mmp,
and we recommend looking at those feature structures while working through the examples.

Take the concrete feature structure consisting of a single node labeled penguin. How
could we represent the single node of this concrete feature structure in an abstract feature
structure? There is exactly one possibility to travel from the root node of this concrete
feature structure to its root node, namely not to travel at all. We could call this trivial case
the empty traversal from one node to another, and we write ε for this special case. Our
new representation of the single node of the concrete feature structure is then the abstract
node where ε is in the equivalence relation with itself. Call the equivalence relation ̺, and
its carrier set (which we will characterize later) β. Then we may take |ε|〈β,̺〉 to be the
representation of the abstract node.

Let’s look at a less trivial case and consider a concrete feature structure representing the
fact that a dog is a man’s best friend. The feature structure has a root node labeled man, a
second node labeled dog and an arc labeled likes-best from the first node to the second.

http://milca.sfs.uni-tuebingen.de/A4/Course/Momo/Online-Edition/Links/links.html?http://milca.sfs.uni-tuebingen.de/A4/Course/Momo/mmps/Section2224/animalscars.mmp

52 CHAPTER 2. GRAMMAR FORMALISMS

type_hierarchy

top

car owner:person driver:person

vw

bmw

person likes-best:top

man

woman

animal

pet

dog

cat

bird

canary

parrot

penguin

.

Figure 2.2: A signature with people, cars and animals

As before, the abstract root node will be represented as |ε|〈β,̺〉, since the empty path is
the only possibility to get from the root node to the root node. But for the second node,
the situation is also quite simple: Following the likes-best arc from the root node is the
only way to get to it. Therefore, we represent it by the equivalence class |likes-best|〈β,̺〉

Let’s make the feature structure even more complex. Take a VW whose owner is a
woman and whose driver is a man. The man and the woman are each other’s best friends.
The reason that this case is more tricky than the previous one is not just that a feature
structure representing the depicted situation has three nodes. It also introduces a cyclic
sequence of arcs, meaning that for some nodes there is a sequence of arcs that allows us to
always return to a node that we started from. The root node is of sort vw, and it has two
outgoing arcs. The one labeled owner leads to a node of sort woman, and the one labeled
driver leads to a node labeled man. From the node of sort woman and from the node of
sort man there is a likes-best arc leading to the other node. Starting from the root node
along the owner arc, we can thus return to the woman node by traversing likes-best
arcs any even number of times. Similarly, starting from the root node along the driver
arc, we return to the man node by following likes-best arcs any even number of times.
Following likes-best arcs an odd number of times from the man node or the woman node
will always get us to the other node.

Representing the abstract nodes in the abstract feature structure is now a bit more
interesting than before. For the root node, we keep |ε|〈β,̺〉. The representation of the
woman node can be given by any path that leads to its concrete counterpart as before, and
|owner|〈β,̺〉 indicates the relevant equivalence class. Note, however, that this equivalence

2.2. INITIAL GRAMMARS 53

class is now an infinite set, since there is an infinite number of ways to get from the root
node to the woman node. Of course, the same reasoning applies to the man node, whose
equivalence class can be given by |driver|〈β,̺〉.

The so-termed infinite feature structures are another interesting case. A feature struc-
ture is called infinite if it has infinitely many nodes. Imagine the situation where every
woman likes some other woman best without ever running into a cycle. We get an infinite
concrete feature structure, because we have infinitely many nodes labeled woman, and we
traverse from each node to another one by following an arc labeled likes-best. Since
the set of nodes is infinite, we cannot picture this feature structure in MoMo, because we
can never finish drawing it (moreover our computing resources are still finite, preventing
us from obtaining enough computer memory to store an electronic representation of an
infinitely large picture with infinitely many, physically distinct nodes). However, for each
concrete node we can still name its abstract representation: It is the equivalence class of
〈β, ̺〉 named by a sequence of likes-best attributes that is as long as the distance of the
respective node from the root node measured in the number of traversals of likes-best
arcs.

Looking at the representations of the abstract nodes in the previous examples one
may already see what the carrier set of the equivalence relations for the representations of
abstract nodes will be. Clearly, for any given feature structure, we do not need the entire
range of possible paths that we can obtain from the signature. We only need those that
actually occur in the respective feature structures as sequences of arcs that we can traverse
starting from the root node. In our first example, this was only the empty path, which
we represented as ε. In the second example, the path likes-best was added. The third
example was the first to comprise an infinite set of paths, due to its cyclicity: All paths
(with the exception of the empty path) either started with the driver or the owner
attribute, followed by any finite sequence of likes-best attributes.

With the examples of what we want to do in mind, we can now define a first version of
abstract feature structures. To do this, we must define the carrier sets and the equivalence
relations that are supposed to represent our abstract nodes; we must build in a labeling
function for the abstract nodes in order to assign exactly one species to each abstract
node; and we must make sure that our abstract feature structures are totally well-typed
as required by our target formalism. For convenience, we introduce a special notation for
the set of paths generated by a given signature. If S is a set (like our sets of attributes),
we will write S∗ for the set of sequences of symbols from S. For a set of attributes, A,
the notation A∗ thus stands for the set of paths that we can construct from the attributes,
including the empty path.

Definition 6 introduces our abstract feature structures as simple abstract feature
structures. They are called simple, because they will ultimately have to be augmented along
with the syntax of the description language in order to achieve a complete formalization of
a feature structure-based interpretation of HPSG.

54 CHAPTER 2. GRAMMAR FORMALISMS

Definition 6 For each initial signature Σ = 〈G,⊑,S,A,F〉, A is a simple abstract1

feature structure under Σ iff2 A is a triple 〈β, ̺, λ〉,3

β ⊆ A∗,4

ε ∈ β,5

for each π ∈ A∗, for each α ∈ A,6

if πα ∈ β then π ∈ β,7

̺ is an equivalence relation over β,8

for each π1 ∈ A∗, for each π2 ∈ A∗, for each α ∈ A,9

if π1α ∈ β and 〈π1, π2〉 ∈ ̺ then 〈π1α, π2α〉 ∈ ̺,10

λ is a total function from β to S, and11

for each π1 ∈ A∗, for each π2 ∈ A∗,12

if 〈π1, π2〉 ∈ ̺ then λ(π1) = λ(π2).13

for each π ∈ A∗, for each α ∈ A,14

if πα ∈ β then F (〈λ(π), α〉) is defined and λ(πα) ⊑ F (〈λ(π), α〉),15

for each π ∈ A∗, for each α ∈ A,16

if π ∈ β and F (〈λ(π), α〉) is defined then πα ∈ β,17

If Σ is an initial signature, we write AFSΣ for the set of simple abstract feature structures
under Σ. If A = 〈β, ̺, λ〉, we call β the basis set in A, ̺ the re-entrancy relation in A, and
λ the label function in A. The basis set in A is a prefix closed set of paths, the re-entrancy
relation in A is a right invariant equivalence relation on the basis set in A, and the label
function in A is a total function from the basis set in A to the set of species, S, which
respects the re-entrancy relation in A. In other words, if two paths in β are re-entrant then
they are assigned the same species.

For each simple abstract feature structure 〈β, ̺, λ〉, 〈β, ̺〉 is the equivalence relation
that we use to represent the abstract nodes. As discussed for our examples, the carrier
set is a subset of the set of paths generated by the signature (line 4), always including the
empty path (line 5). The set of paths in the basis set is prefixed closed, because if we can
get to a node by some path, then we get to some other node by any shorter path that we get
by chopping away the last attribute of the path (lines 6 and 7). In line 8 we require that ̺
really be an equivalence relation. Lines 9 and 10 enforce another property of ̺ that we see
in concrete feature structures: If two paths lead to the same node, then traversing the same

2.2. INITIAL GRAMMARS 55

arc after traversing those two paths necessarily leads to the same node again. Otherwise
our representation of simple abstract feature structures would not match our intuitions.
Lines 11–13 introduce the sort labeling of our abstract nodes by assigning each path a
species. Naturally, paths that lead to the same abstract node, i.e., paths that stand in
the re-entrancy relation must be assigned the same species (lines 12–13). Finally, we have
to make sure that the sort labeling obeys the appropriateness conditions of the signature
(lines 14 and 15), and our simple abstract feature structures are totally well-typed (lines
16 and 17).

We can now repeat our previous examples by giving the full mathematical represen-
tations of the simple abstract feature structures that correspond to the concrete feature
structures that we saw in MoMo, and the one that we were not able to draw in MoMo
because it was infinite:

1. A0 = 〈β0, ̺0, λ0〉, where

β0 = {ε},

̺0 = {〈ε, ε〉}, and

λ0 = {〈ε, penguin〉},

2. A1 = 〈β1, ̺1, λ1〉, where

β1 = {ε, likes-best},

̺1 = {〈ε, ε〉 , 〈likes-best, likes-best〉}, and

λ1 = {〈ε,man〉 , 〈likes-best, dog〉}.

3. First we state the infinite sets that represent the non-root nodes. Let

n2 =
{

owner likes-best . . . likes-best
︸ ︷︷ ︸

2∗n times

∣
∣
∣n ∈ IN

}

∪

{

driver likes-best . . . likes-best
︸ ︷︷ ︸

n times

∣
∣
∣
∣
∣

n is an odd
natural number

}

and

n3 =
{

driver likes-best . . . likes-best
︸ ︷︷ ︸

2∗n times

∣
∣
∣n ∈ IN

}

∪

{

owner likes-best . . . likes-best
︸ ︷︷ ︸

n times

∣
∣
∣
∣
∣

n is an odd
natural number

}

.

With the sets n2 and n3, we define A2 as follows:A2 = 〈β2, ̺2, λ2〉, where

β2 = {ε} ∪
{

owner likes-best . . . likes-best
︸ ︷︷ ︸

n times

∣
∣
∣n ∈ IN

}

∪
{

driver likes-best . . . likes-best
︸ ︷︷ ︸

n times

∣
∣
∣n ∈ IN

}

,

̺2 = {〈ε, ε〉} ∪
{

〈π1, π2〉
∣
∣
∣π1 ∈ n3, and π2 ∈ n3

}

∪
{

〈π1, π2〉
∣
∣
∣π1 ∈ n2, and π2 ∈ n2

}

, and

56 CHAPTER 2. GRAMMAR FORMALISMS

λ2 = {〈ε, vw〉} ∪
{

〈π,woman〉
∣
∣
∣π ∈ n2

}

∪
{

〈π,man〉
∣
∣
∣π ∈ n3

}

.

4. A3 = 〈β3, ̺3, λ3〉, where

β3 =
{

likes-best . . . likes-best
︸ ︷︷ ︸

n times

∣
∣
∣n ∈ IN

}

,

̺3 =
{

〈π, π〉
∣
∣
∣π ∈ β3

}

, and

λ3 =
{

〈π,woman〉
∣
∣
∣π ∈ β3

}

.

Whereas the nodes of concrete feature structures are real objects that are accessible
from the root node by following sequences of arcs labeled by attributes, the attribute paths
obtained from the labels of the sequences of arcs take over the role of representing the
formerly concrete nodes in abstract feature structures. The basis set in A specifies the
shape of A, because it specifies which paths belong to A. The re-entrancy relation in A
specifies the set of abstract nodes of A as the set of equivalence classes of the equivalence
relation 〈β, ̺〉. Each equivalence class represents an abstract node. Since the label function
in A assigns each path in β that belongs to the same equivalence class in 〈β, ̺〉 the same
sort, it effectively assigns each abstract node a sort label.

Now we know our modeling domain of simple abstract feature structures. All we need
to do to complete our formalization of the meaning of initial grammars is to define a
constraint satisfaction function and an admission function from initial descriptions to sets of
simple abstract feature structures. Before we can state the simple abstract feature structure
satisfaction function, we need to introduce the auxiliary notion of reducts of simple abstract
feature structures. The reason for that is that with statements like owner:man we say
something about non-root nodes. About the root node, we say that it has an outgoing
owner arc. About a particular non-root node, namely the one we reach following the
owner arc, we say that it is of sort man. Metaphorically speaking, reducts of simple
abstract feature structures allow us to traverse a sequence of arcs and treat the node that
we reach that way as a new root node. We can then see whether that root node satisfies
a given constraint. For example, taking the second simple abstract feature structure from
above (the one representing the fact that a man’s best friend is a dog), the likes-best
reduct of the feature structure is the simple abstract feature structure with the abstract
root node of sort dog (and no outgoing arcs).

Definition 7 For each initial signature Σ = 〈G,⊑,S,A,F〉, for each A = 〈β, ̺, λ〉 ∈1 AFSΣ, for each π ∈ A∗,2

β/π = {π′ ∈ A∗ | ππ′ ∈ β},3

̺/π = {〈π1, π2〉 ∈ A∗ ×A∗ | 〈ππ1, ππ2〉 ∈ ̺},4

λ/π = {〈π′, σ〉 ∈ A∗ × S | 〈ππ′, σ〉 ∈ λ}, and5 A/π = 〈β/π, ̺/π, λ/π〉.6

2.2. INITIAL GRAMMARS 57

We observe that if a Σ path π is in the basis set of a simple abstract feature structure
under Σ, A, then the π reduct of A is also a simple abstract feature structure under Σ.
This is important enough to keep it in mind as a proposition:

Proposition 1 For each initial signature Σ = 〈G,⊑,S,A,F〉, for each A = 〈β, ̺, λ〉 ∈AFSΣ, for each π ∈ A∗,

if π ∈ β then A/π ∈ AFSΣ.

After all these lengthy preliminaries, we finally get to a first rigorous definition of
constraint satisfaction. The simple abstract feature structure satisfaction function in Σ,
∆Σ, is defined inductively over all initial Σ descriptions:

Definition 8 For each initial signature Σ = 〈G,⊑,S,A,F〉, ∆Σ is the total function from1

DΣ to Pow(AFSΣ) such that2

for each σ ∈ G,3

∆Σ(σ) =

〈β, ̺, λ〉 ∈ AFSΣ

∣
∣
∣
∣
∣
∣
∣

for some σ′ ∈ S,
〈ε, σ′〉 ∈ λ, and
σ′ ⊑ σ

,
4

for each α ∈ A, for each δ ∈ DΣ,5

∆Σ(α : δ) =

{

〈β, ̺, λ〉 ∈ AFSΣ

∣
∣
∣
∣
∣

α ∈ β, and
〈β, ̺, λ〉/α ∈ ∆Σ(δ)

}

,
6

for each δ ∈ DΣ, ∆Σ(∼ δ) = AFSΣ\∆Σ(δ),7

for each δ1 ∈ DΣ, for each δ2 ∈ DΣ, ∆Σ ((δ1, δ2)) = ∆Σ(δ1) ∩ ∆Σ(δ2),8

for each δ1 ∈ DΣ, for each δ2 ∈ DΣ, ∆Σ ((δ1; δ2)) = ∆Σ(δ1) ∪ ∆Σ(δ2),9

for each δ1 ∈ DΣ, for each δ2 ∈ DΣ, ∆Σ((δ1*>δ2)) =
(AFSΣ\∆Σ(δ1)

)

∪∆Σ(δ2),10

and11

for each δ1 ∈ DΣ, for each δ2 ∈ DΣ,12

∆Σ((δ1<*>δ2)) =
((AFSΣ\∆Σ(δ1)

)

∩
(AFSΣ\∆Σ(δ2)

))

∪ (∆Σ(δ1) ∩ ∆Σ(δ2)).13

We call ∆Σ the simple abstract feature satisfaction function under Σ, and say A satisfies
δ in Σ if and only if A ∈ ∆Σ(δ). The power set of a set S, which we write as Pow(S), is
the set of all subsets of S.4

Although the definition may look complicated at first, it does not introduce anything
that we have not thoroughly discussed yet. It is really only a way to make our intuitions

4The power set of {1, 2} is thus the set {{}, {1}, {2}, {1, 2}}. Note that the empty set is contained in
the power set of any set.

58 CHAPTER 2. GRAMMAR FORMALISMS

about constraint satisfaction mathematically precise. The first clause says that for any
sort σ, σ is satisfied by any simple abstract feature structure whose abstract root node is
labeled by a maximal subsort of σ (or σ itself, in case σ is a species). The second clause,
α : δ, is the reason we needed reducts of simple abstract feature structures: α : δ, where
α is an attribute and δ any initial description, is satisfied by each simple abstract feature
structure whose abstract root node has an α arc and whose α reduct satisfies the initial
description δ.5

The interpretation of the logical symbols of our languages follows standard classical
logic: The negation of δ is satisfied by all simple abstract feature structures that do not
satisfy δ (set complement); the conjunction of two initial descriptions is satisfied by all
simple abstract feature structures that satisfy both of them; and the disjunction of two
initial descriptions is the set union of the simple abstract feature structures that satisfy
them; and δ1*>δ2 is the set complement of the simple abstract feature structures that
satisfy δ1 merged with the set of simple abstract feature structures that satisfy δ2. The
denotation of equivalence may look difficult, but it can be derived from the denotation of
the other logical symbols in the usual way.

With simple abstract feature structure admission we want to make precise what it means
for a set of simple abstract feature structures to be admitted by a set of initial descriptions.
We can characterize our intentions as follows: The set of simple abstract feature structures
admitted by a set of initial descriptions, θ, should be the set of simple abstract feature
structures such that each one of them satisfies each initial description contained in θ; and
each possible reduct of each one of them also satisfies each element of θ. The second
condition can be rephrased as: each abstract node within each of the simple abstract
feature structures also satisfies each initial description in θ. Definition 9 expresses this
idea:

Definition 9 For each initial signature Σ,1

MΣ is the total function from Pow(DΣ) to Pow(AFSΣ) such that for each θ ⊆ DΣ,2

MΣ(θ) =

〈β, ̺, λ〉 ∈ AFSΣ

∣
∣
∣
∣
∣
∣
∣

for each π ∈ β, and
for each δ ∈ θ,

〈β, ̺, λ〉/π ∈ ∆Σ(δ)

.
3

For each initial signature Σ, we call MΣ the simple abstract feature structure admission
function in Σ. A simple abstract feature structure under Σ, A, is in the set of simple
abstract feature structures under Σ admitted by a Σ theory θ exactly if A and every
possible π reduct of A satisfy every description in θ.

Given an initial grammar, 〈Σ, θ〉, we can regard the set of feature structures admitted
by θ, MΣ(θ) as the intended meaning of 〈Σ, θ〉. Pollard and Sag say that the members

5This is where Proposition 1 is important, because it guarantees the existence of the α reduct of the
relevant simple abstract feature structures.

2.2. INITIAL GRAMMARS 59

of MΣ(θ) are mathematical representations of the object types of the language that the
grammar is about.

Abstract feature structures are clearly harder to understand at first than concrete fea-
ture structures. If you are not quite sure about them, it is very helpful and perfectly
legitimate to picture them in your mind as concrete feature structures and work with
intuitions about them. The intuitions about their correspondence will rarely fail.

Examples

To acquire better intuition about simple abstract feature structures and their reducts, we
will provide a few examples. The underlying signature is the signature of lists and animals
(birds and pets) of Section 2.1.2. We start with A0, a list of length one, whose single
element is a brown dog. A1 is the tail reduct of A0, which we can write as A1 = A0/tail.
It is a single abstract root node of sort elist. A2 is the head reduct of A0, which we can
write as A2 = A0/head. It is a simple abstract feature structure representing a brown dog.A3 is a rather odd case: It is a list whose head value is a brown dog and whose tail
value is the list itself. In other words, it is a cyclic list. If you are not careful about your
grammars, you can get them rather easily in the set of abstract feature structures admitted
by the grammar. The tail reduct of A3 equals A3, whereas its head reduct equals the
head reduct of A0.

1. A0 = 〈β0, ̺0, λ0〉, where

β0 = {ε,tail,head,head color,head legs},

̺0 =

{

〈ε, ε〉 , 〈tail,tail〉 , 〈head,head〉 , 〈head color,head color〉 ,
〈head legs,head legs〉

}

, and

λ0 =

{

〈ε, nelist〉 , 〈tail, elist〉 , 〈head, dog〉 , 〈head color, brown〉 ,
〈head legs, four〉

}

.

2. A0/tail = A1 = 〈β1, ̺1, λ1〉, where

β1 = {ε},

̺1 = {〈ε, ε〉}, and

λ1 = {〈ε, elist〉}.

3. A0/head = A2 = 〈β2, ̺2, λ2〉, where

β2 = {ε,color, legs},

̺2 = {〈ε, ε〉 , 〈color,color〉 , 〈legs, legs〉}, and

λ2 = {〈ε, dog〉 , 〈color, brown〉 , 〈legs, four〉}.

4. A3 = 〈β3, ̺3, λ3〉, where

β3 = {tail}∗ ∪
{

πhead
∣
∣
∣π ∈ {tail}∗

}

∪
{

πhead color
∣
∣
∣π ∈ {tail}∗

}

∪
{

πhead legs
∣
∣
∣π ∈ {tail}∗

}

,

60 CHAPTER 2. GRAMMAR FORMALISMS

̺3 =
{

〈π1, π2〉
∣
∣
∣π1 ∈ {tail}∗, π2 ∈ {tail}∗

}

∪
{

〈π1head, π2head〉
∣
∣
∣π1 ∈ {tail}∗, π2 ∈ {tail}∗

}

∪
{

〈π1head legs, π2head legs〉
∣
∣
∣π1 ∈ {tail}∗, π2 ∈ {tail}∗

}

∪
{

〈π1head color, π2head color〉
∣
∣
∣π1 ∈ {tail}∗, π2 ∈ {tail}∗

}

λ3 =
{

〈π, nelist〉
∣
∣
∣π ∈ {tail}∗

}

∪
{

〈πhead, dog〉
∣
∣
∣π ∈ {tail}∗

}

∪
{

〈πhead color, brown〉
∣
∣
∣π ∈ {tail}∗

}

∪
{

〈πhead legs, four〉
∣
∣
∣π ∈ {tail}∗

}

.

5. A3/tail = A3

6. A3/head = A2 = A0/head

Exercises

Exercise 17 Submit an mmp file in which you have saved graphs of concrete feature struc-
ture counterparts of the six abstract feature structures in the preceding examples.

Exercise 18 Try to write up the following simple abstract feature structures, where A1,A2 and A3 are the examples from pages 55–56, by stating their basis set, their re-entrancy
relation and their label function:

1. A1/likes-best (the likes-best reduct of A1),

2. A2/owner (the owner reduct of A2),

3. A3/likes-best (the likes-best reduct of A3.)

Hint and remark: It might be useful to start with drawing the corresponding concrete feature
structures in MoMo and then to think about their abstract counterparts. If you find these
exercises difficult, it would be good if you tried to formulate questions and post them to
the seminar forum. Remember that the forum can be the on-line version of classroom
discussions!

GLOSSARY

http://milca.sfs.uni-tuebingen.de/A4/Course/PDF/glossary/glossar.html?admission&basic_set&binary_relation&constraint_satisfaction&equivalence_class&equivalence_relation&feature_structures&iff&infinite_feature_structure&label_function&object_types&ordered_pair&path&power_set&re-entrancy_relation&reducts&root_node&set&signature&sort-resolvedness&total_function&totally_well-typed&triple

2.3. COMPLEX GRAMMARS AND THEIR MEANING 61

2.3 Complex Grammars and their Meaning

Abstract

We will extend the languages of our initial formalism of a basic feature logic.
The new syntax is more complex and closer to the special requirements of HPSG.
To interpret the more complex descriptions, we will still be able to use simple
abstract feature structures. Once more this demonstrates that the structure of
a description language is fairly independent of the structure of the domain of
objects in which it is interpreted.

With initial descriptions, the notion of initial grammars and the interpretation of sets of
initial descriptions in a domain of simple abstract feature structures, we have faithfully
reconstructed the architecture of grammar that [Pollard and Sag, 1994] envisions for lin-
guistic theories. Moreover, we have done it in such a way that we will be able to use the
syntax of our descriptions and of the specifications of signatures directly in a computa-
tional environment. However, as soon as we try to formalize actual HPSG grammars with
our current means, we immediately discover serious shortcomings: Although our general
architecture is adequate, the expressiveness of our formal languages is not up to the task.
We simply cannot express the grammatical principles of real grammars yet.

For that reason we now turn to an extension of the description languages. The extension
will introduce variables and a special form of universal and existential quantification. The
extension of the basic formal languages will make it possible to express the identity (or
inequality) of substructures in principles like the Head Feature Principle, the Spec
Principle and the Control Theory of [Pollard and Sag, 1994], which were beyond the
expressive power of our initial formalism. With the additions to the formalism of this
section we will, for the first time, be able to formulate real principles of a grammar of
English in a mathematically completely explicit way.

To see what is at stake, we start by briefly reviewing the aforementioned principles
as they are stated in Pollard and Sag’s book, followed by their formulation in an AVM
notation. Since we are interested in their formal properties rather than in their empirical
predictions at the moment, we will focus on their logical structure and ignore their linguistic
significance. You should not be worried if it is not entirely clear to you what these principles
do in the theory of English. The original formulations in natural language will give us an
idea about the intended meaning of the principles in a domain of abstract feature structures,
no matter what exactly they are supposed to correspond to in the empirical domain of the
English language. The re-formulation of the principles in some kind of AVM syntax appeals
to our prior knowledge of linguistic notation and, at the same time, demonstrates which
constructs are missing in our current syntax. The AVM syntax will also be quite helpful
for explaining the structure of our own extended syntax.

The Head Feature Principle says that, in a headed phrase, the value of synsem |
local | category | head and daughters | head-daughter | synsem | local | cat-
egory | head are token-identical [Pollard and Sag, 1994, p. 399]. The Head Feature
Principle is often notated as depicted in (8).

62 CHAPTER 2. GRAMMAR FORMALISMS

(8) The Head Feature Principle in AVM notation

[
phrase

dtrs headed-struc

]

→
[
synsem loc cat head 1

dtrs head-dtr synsem loc cat head 1

]

The boxed integer, 1 , conventionally called a tag, of (8) is a new construct. Tags do
not have any counterpart in our initial descriptions. In our initial syntax we do not have
the means yet to say that the values of two paths must be identical, which is the intended
interpretation of the use of 1 . Nor can we say that two path values are necessarily distinct.
For example, when we say6 head:parrot,tail:(head:parrot,tail:elist), we describe
a list whose first and second element are parrots. Nothing forces them to be the same parrot,
but nothing prevents them from being the same parrot either. As you can see for yourself,
using MoMo and our signature with lists of various animals, feature structures representing
both situations (identity and non-identity of the parrots) satisfy the description. In the
mmp-file possible-identities23.mmp, you find the relevant example. From the observed
properties and the intended interpretation of tags we conclude preliminarily that they
behave like variables in logical languages.

At this point, it is still undecided whether or not we should introduce explicit quantifi-
cation over variables. Since classical logical theories usually do not have free variables, we
might at first assume that we have to bind a variable like the tag 1 by some quantifica-
tional device. On the other hand, it might be possible to leave quantification implicit if it
is used consistently in one and the same way in all grammatical principles. The remaining
two examples for the use of tags show us that this is not the case and that we really need
explicit quantification in a description language that expresses these principles directly.

The Spec Principle says that, in a headed phrase whose non-head daughter (ei-
ther the marker-daughter or complement-daughters | first) has a synsem | lo-
cal | category | head value of sort functional, the spec value of that value must
be token-identical with the phrase’s daughters | head-daughter | synsem value
[Pollard and Sag, 1994, p. 400]:

(9) The Spec Principle in AVM notation

∀ 1 ∀ 2

[

dtrs
[[
marker-dtr 1

]
∨
[
comp-dtrs 〈 1 | list〉

]]]

∧ 1

[

ss loc cat head

[
functional
spec 2

]]

→

[
dtrs head-dtr ss 2

]

As indicated in (9), it makes sense to assume that we see some kind of universal quan-
tification going on in the Spec Principle: For all entities 1 such that they are either
a marker daughter or the first complement daughter, and for all spec values 2 of such
an entity 1 (which also has a head value of sort functional), we require that the spec

6Assuming the signature of lists and animals first introduced in Section 2.1.2

http://milca.sfs.uni-tuebingen.de/A4/Course/Momo/Online-Edition/Links/links.html?http://milca.sfs.uni-tuebingen.de/A4/Course/Momo/mmps/Section23/possible-identities23.mmp

2.3. COMPLEX GRAMMARS AND THEIR MEANING 63

value 2 of 1 be the synsem value of the head daughter of the headed phrase that we are
talking about. The quantificational situation is thus parallel to a first order formulation
of a sentence like Every woman works, which is usually rendered as ∀x (woman′(x) →
work′(x)). In contrast to the Spec Principle, the variable binding of the Head Fea-
ture Principle has an existential flavor: The identity statement there says something
like for each headed phrase, there exists an object in the denotation of the sort head such
that it is the value of the head attribute of the phrase and of its head daughter.

In the Control Theory we can observe both kinds of quantification in a single
principle. The Control Theory says that, if the soa-arg value of a control-qfpsoa is
token-identical with the content value of a local entity whose category | subcat value
is a list of length one, then the member of that list is (1) reflexive, and (2) coindexed with the
influenced (respectively, committor, experiencer) value of the control-qfpsoa if the
latter is of sort influence (respectively, commitment, orientation) [Pollard and Sag, 1994,
p. 401]:

(10) The Control Theory in AVM notation

∀ 1 ∀ 2 ∀ 3

∃ 4

 1

[
influence
soa-arg 4

]

∧ 2

local

cat subcat 〈 3 〉
cont 4

→

∃ 5

(

3

[

loc cont

[
reflexive
index 5

]]

∧ 1
[
influenced 5

]

)

∧

∀ 1 ∀ 2 ∀ 3

∃ 4

 1

[
commitment
soa-arg 4

]

∧ 2

local
cat subcat 〈 3 〉
cont 4

→

∃ 5

(

3

[

loc cont

[
reflexive

index 5

]]

∧ 1
[
committor 5

]

)

∧

∀ 1 ∀ 2 ∀ 3

∃ 4

 1

[
orientation

soa-arg 4

]

∧ 2

local
cat subcat 〈 3 〉
cont 4

→

∃ 5

(

3

[

loc cont

[
reflexive
index 5

]]

∧ 1
[
experiencer 5

]

)

The syntax of the AVM notation of the principles in (8)–(10) reveals what we need to
integrate into our formal language: We need to introduce a way to notate existential and
universal quantification (of some kind), and we need variables. But at which places in our
syntax do we need them?

A closer look at the Spec Principle and the Control Theory gives us crucial
hints. From the Head Feature Principle we know that variables (tags) may occur in
descriptions at the same place where sort symbols occur. Quantifier symbols, however, seem
to take scope over AVM matrices, they do not occur inside them: Both universal quantifiers
in the Spec Principle quantify over the entire expression. Similarly, in the Control
Theory the universal quantifiers scope over entire conjuncts of the expression (which

64 CHAPTER 2. GRAMMAR FORMALISMS

consists of three implicational conjuncts), with an additional existential quantification over
the antecedent and over the consequent of each of the three implications. In the Spec
Principle we can also see that variables may precede AVM matrices: The tag 1 precedes
the AVM matrix that is the second conjunct of the complex antecedent of the implication.

We can summarize our observations as follows. Our initial syntax apparently provided
a language that can best be understood as corresponding to simple AVM matrices. We
can think of an initial description as corresponding to a single (potentially complex) AVM
matrix as shown in (11):

(11) a.

parrot

legs number
color red

 corresponds to parrot,legs:number,color:red

b.

list

head

parrot

legs number

color red

tail nelist

corresponds to

list,head:(parrot,legs:number,color:red),tail:nelist

The parallel syntactic structure becomes even clearer when we notate the initial de-
scriptions with the line-breaks of the AVM matrices. This is also legitimate in MoMo and
makes descriptions much more readable: You can see the descriptions in that format in
the MoMo file box-syntax23.mmp that we have prepared for inspection.

Call the initial descriptions that we have been working with boxes, in analogy to the
matrix notation of AVMs. Inside these boxes, at the places where sort symbols could
appear, and in front of these boxes, we should be able to write variables, analogous to the

matrices
[
dtrs head-dtr ss 2

]
and 1

[

ss loc cat head

[

functional

spec 2

]]

in the Spec Principle

in (9). Entire boxes of that form should then be combinable by standard logical connectives
(conjunction, disjunction, implication, equivalence) in order to form bigger expressions.
And finally, we would like to write quantifiers in front of boxes or in front of complex
expressions formed by combining several boxes by logical symbols.

This picture suggests two levels of syntax. On the lower level, we have the initial
descriptions we have already been using, augmented by the option of placing variables
inside them. Conjunction inside this box syntax is similar to starting new lines in AVMs
(see (11a), where each line-break in the AVM is translated into a “,” in the description).
Besides conjunction, disjunction is occasionally used in AVM matrices (

[
color red ∨ yellow

]
),

whereas implication and equivalence rarely occur there—we only admit them for reasons
of generality. In the file new-syntax-examples23.mmp, you will find examples of our initial
syntax augmented with variables. The example var value illustrates the case where a
variable occurs inside of a box. Note that variables in MoMo start with an upper case
letter, just like in the Prolog programming language.

http://milca.sfs.uni-tuebingen.de/A4/Course/Momo/Online-Edition/Links/links.html?http://milca.sfs.uni-tuebingen.de/A4/Course/Momo/mmps/Section23/box-syntax23.mmp
http://milca.sfs.uni-tuebingen.de/A4/Course/Momo/Online-Edition/Links/links.html?http://milca.sfs.uni-tuebingen.de/A4/Course/Momo/mmps/Section23/new-syntax-examples23.mmp

2.3. COMPLEX GRAMMARS AND THEIR MEANING 65

Then there will be a second syntactic layer of formulae, where we can combine boxes
syntactically to form bigger expressions. On this outer layer, we allow the placement of
variables in front of boxes, and we allow symbols for existential and universal quantifi-
cation. Those formulae can be combined with each other using conjunction, disjunction,
implication, and equivalence. The implication symbols of our three principles all belong to
this outer layer of the syntax of descriptions (after all, they do not occur inside of boxes).

The example var prefixed in new-syntax-examples23.mmp shows a variable preceding
a box and, as already familiar from the previous example, a variable inside a box. quan-
tification shows the use of a quantifier. MoMo notates the universal quantifier as V and
the existential quantifier as ^. The details of our new syntax will of course be presented in
detail in the next section.

There is one more syntactic construct in the AVM syntax that we should point out
before we define our new syntax. The AVM notation uses a special notation for lists,
〈δ1, . . . , δn〉, which may be combined with variables. What is meant with this notation
should be fairly transparent in light of the signature for lists that we have been using so
far. Assume that δavm1, δavm2, and δavm3 are AVMs, and δ1, δ2, and δ3 are corresponding
descriptions of our syntax. Then the AVM notation 〈δavm1, δavm2, δavm3〉 can be translated
to (head:δ1, tail:(head:δ2, tail:(head:δ3, tail:elist)).

GLOSSARY

2.3.1 The Syntax of Complex Grammars

Abstract

We will add variables and quantification to the syntax of initial descriptions
and get a language of initial formulae. Along the way, we will need to introduce
a few new concepts known from first order predicate logic. The syntax that we
obtain is considerably more complex than our initial syntax. Analogies with the
AVM syntax of the linguistic literature will help us to understand its structure.

From our observations about the AVM notation we already know what kind of description
languages we would like to have at our disposal. Fortunately, we do not have to change
anything about the initial signatures that we have been working with: Our syntactic ex-
tension of the initial syntax of descriptions is still based on initial signatures, since they
provide almost all the symbols that we need. The only additional symbols that we use now
come from a countably infinite set of variables, VAR, augmented by the reserved symbol
$. For the sake of simplicity, we will write VAR$ when we refer to the set VAR∪{$}. We
use capital Latin letters like X, Y , and Z for the members of VAR. $ is a reserved symbol,
which is used as a special kind of variable. The basic intuition is that for satisfaction, $ is
a reserved variable that always refers to the root node. We will have to say more about it
when we define the semantics for our extended syntax.

Based on the definition of initial signatures, we define initial formulae relative to a given
initial signature. The first part of the definition is concerned with the syntax of boxes, and
then comes the syntax of formulae that are built from boxes:

http://milca.sfs.uni-tuebingen.de/A4/Course/Momo/Online-Edition/Links/links.html?http://milca.sfs.uni-tuebingen.de/A4/Course/Momo/mmps/Section23/new-syntax-examples23.mmp
http://milca.sfs.uni-tuebingen.de/A4/Course/PDF/glossary/glossar.html?boxes&tag&path

66 CHAPTER 2. GRAMMAR FORMALISMS

Definition 10 For each initial signature Σ = 〈G,⊑,S,A,F〉, BOXΣ and DΣ are the small-1

est sets such that2

for each X ∈ VAR$,3

X ∈ BOXΣ,4

for each σ ∈ G,5

σ ∈ BOXΣ,6

for each α ∈ A, for each δ ∈ BOXΣ,7

α : δ ∈ BOXΣ,8

for each δ ∈ BOXΣ, ∼ δ ∈ BOXΣ,9

for each δ1 ∈ BOXΣ, for each δ2 ∈ BOXΣ, (δ1, δ2) ∈ BOXΣ,10

for each δ1 ∈ BOXΣ, for each δ2 ∈ BOXΣ, (δ1; δ2) ∈ BOXΣ,11

for each δ1 ∈ BOXΣ, for each δ2 ∈ BOXΣ, (δ1*>δ2) ∈ BOXΣ,12

for each δ1 ∈ BOXΣ, for each δ2 ∈ BOXΣ, (δ1<*>δ2) ∈ BOXΣ,13

for each δ ∈ BOXΣ,14

δ ∈ DΣ,15

for each X ∈ VAR$, for each δ ∈ BOXΣ,16

X : δ ∈ DΣ,17

for each X ∈ VAR$, for each Y ∈ VAR$,18

X = Y ∈ DΣ,19

for each X ∈ VAR, for each δ ∈ DΣ,20

∃X δ ∈ DΣ,21

for each X ∈ VAR, for each δ ∈ DΣ,22

∀X δ ∈ DΣ,23

2.3. COMPLEX GRAMMARS AND THEIR MEANING 67

for each δ ∈ DΣ, ∼ δ ∈ DΣ,24

for each δ1 ∈ DΣ, for each δ2 ∈ DΣ, (δ1, δ2) ∈ DΣ,25

for each δ1 ∈ DΣ, for each δ2 ∈ DΣ, (δ1; δ2) ∈ DΣ,26

for each δ1 ∈ DΣ, for each δ2 ∈ DΣ, (δ1*>δ2) ∈ DΣ, and27

for each δ1 ∈ DΣ, for each δ2 ∈ DΣ, (δ1<*>δ2) ∈ DΣ.28

We call each element of BOXΣ a Σ box, and each element of DΣ an initial Σ formula.
Initial Σ formulae of the form X = Y , where X and Y are variables, are called equations.
An expression of the form X : δ, with X as a variable and δ as a Σ box, is called a tagged
Σ box. If a variable occurs to the right of the colon, ‘:’, in a Σ box or Σ formula of the
form α : δ or X : δ, we say that it occurs in a Σ box. The only kind of syntactic expression
missing in initial Σ formula compared to what we will finally need is relational expressions.
Note that the lines 3–13 of Definition 10 are almost identical to the definition of initial
descriptions. The only addition there is, is the addition of variables in lines 3 and 4, which
will allow us to write boxes of the form color:X (analogous to

[
color 1

]
). In the lines

14–28 we then get the outer syntactic layer with equations, quantification, and, again, the
logical connectives.

Initial Σ formulae are clearly more complex than the initial Σ descriptions of our first
syntax. This is due to the fact that they are built from other possibly complex expressions,
Σ boxes. Roughly speaking, Σ boxes correspond to the familiar AVM matrices, the expres-
sions between angled brackets in the principles (8)–(10). More complex initial Σ formulae
can be built out of them by prefixing them with variables (tags), combining expressions
with the logical connectives, by quantifying over complex expressions, and by forming equa-
tions between variables. The special nature of the reserved symbol, $, is emphasized by its
syntactic distribution. In contrast to normal variables, it may not be quantified over. We
cannot write ∀$ or ∃$ to quantify over a formula.

A few examples may be found in examples-231.mmp. box 1 illustrates the fact that the
special variable, $, like any ordinary variable, is a box. In box 2, the simple sort symbol
list, is a box as we knew it before. Similarly, the formulae in box 3 and box 4, describing a
canary and a parrot, respectively, are boxes of the type that we are already familiar with,
except that a variable is used in the place of a sort symbol describing the value of legs in
each of them. Note that, according to our definition, each of these boxes may alternatively
be viewed as a formula: The definition says that each complete box is also a formula (lines
14 and 15).

With form 1 and form 2 we proceed from boxes to formulae: We prefix the boxes from
box 3 and box 4, respectively, with a variable. In form 3, finally, the resulting formulae
are combined in a conjunction, together with an additional conjunct, a negated equation
formula. All variables in this conjunctive formula are bound by existential quantifiers.

Our last example, form 4, illustrates a syntactic property of initial Σ formulae which
tends to be surprising when first encountered: If a feature value which we refer to by a
variable inside a box receives any further description, that description is added conjunc-
tively. In form 4 the color value of the parrot is referred to by the variable Y, and then

http://milca.sfs.uni-tuebingen.de/A4/Course/Momo/Online-Edition/Links/links.html?http://milca.sfs.uni-tuebingen.de/A4/Course/Momo/mmps/Section231/examples-231.mmp

68 CHAPTER 2. GRAMMAR FORMALISMS

further described as being yellow. The sort yellow is the second conjunct of the box (Y,

yellow). The color of the canary, which is described as the second element on the list, is
identified with the color value of the parrot. Note that we cannot write (Y:yellow) for
describing the color value of the parrot, because (Y:yellow) would be a formula, and
a formula cannot occur inside a box. A hypothetical box, such as “color:(Y:yellow)”
would, therefore, be syntactically ill-formed. The reader may try this out using MoMo.

Our new notion of grammars will not use arbitrary initial formulae but only a restricted
subset of them. The relevant subset is the set of those initial formulae that do not contain
any free occurrences of variables. An instance of a variable occurs free in an initial formula
if and only if it is not in the scope of any quantifier binding the variable in the initial
formula. We formalize this idea using the function FV :

Definition 11 For each initial signature Σ = 〈G,⊑,S,A,F〉, FV is the total function1

from BOXΣ ∪ DΣ to Pow (VAR) such that2

FV ($) = ∅,3

for each X ∈ VAR, FV (X) = {X},4

for each σ ∈ G, FV (σ) = ∅,5

for each α ∈ A, for each δ ∈ BOXΣ, FV (α : δ) = FV (δ),6

for each X ∈ VAR$, for each δ ∈ BOXΣ, FV (X : δ) = FV (X) ∪ FV (δ),7

for each X ∈ VAR$, for each Y ∈ VAR$, FV (X = Y) = FV (X) ∪ FV (Y),8

for each X ∈ VAR, for each δ ∈ DΣ, FV (∃X δ) = FV (δ)\{X},9

for each X ∈ VAR, for each δ ∈ DΣ, FV (∀X δ) = FV (δ)\{X},10

for each δ ∈ BOXΣ ∪ DΣ, FV (∼ δ) = FV (δ),11

for each δ1 ∈ BOXΣ ∪DΣ, for each δ2 ∈ BOXΣ ∪DΣ, FV ((δ1, δ2)) = FV (δ1) ∪ FV (δ2),12

for each δ1 ∈ BOXΣ ∪DΣ, for each δ2 ∈ BOXΣ ∪DΣ, FV ((δ1; δ2)) = FV (δ1) ∪ FV (δ2),13

for each δ1 ∈ BOXΣ∪DΣ, for each δ2 ∈ BOXΣ∪DΣ, FV ((δ1*>δ2)) = FV (δ1)∪FV (δ2),14

for each δ1 ∈ BOXΣ∪DΣ, for each δ2 ∈ BOXΣ∪DΣ, FV ((δ1<*>δ2)) = FV (δ1)∪FV (δ2).15

The function FV yields for each Σ box and for each initial Σ formula the set of variables
that occur free in them. For example, in the formulae in (11), no variables occur free
(because there are no variables at all). In the formula color:X, however, X is free, thus
FV (color:X)={X}; and in Y:color:X both X and Y are free: FV (Y:color:X)={Y, X}. As
soon as we quantify over one of the variables that occur free in a formula, it is no longer in
the set of free variables of the overall expression: FV (∃Y Y:color:X)={X}. If we quantify
over all variables in the expression the set of variables that occur free in it becomes empty:
FV (∀X ∃Y Y:color:X)={}.

For grammars we are interested in Σ descriptions, the set of initial Σ formulae that do
not contain any unbound variables:

Definition 12 For each initial signature Σ,1

DΣ
0 = {δ ∈ DΣ | FV (δ) = ∅}.2

2.3. COMPLEX GRAMMARS AND THEIR MEANING 69

In other words, in grammatical principles we want to bind all occurrences of variables
by some quantifier.

For each initial signature Σ, we call each member of DΣ
0 a Σ description. Our new notion

of a grammar is based on initial signatures and on Σ descriptions. In Definition 13, we
use the insight that the principles of an HPSG grammar are a set of descriptions. The
Greek letter θ now refers to a set of Σ descriptions:

Definition 13 Γ is a complex grammar iff1

Γ is a pair 〈Σ, θ〉,2

Σ is an initial signature, and3

θ ⊆ DΣ
0 .4

A complex grammar is an initial signature, Σ, together with a set of Σ descriptions.
Complex grammars are closer to real HPSG grammars than our initial grammars were.
Complex grammars provide enough to formalize a significant number of the principles
of Pollard and Sag’s grammar of English, including our three examples for the use of
variables and quantification, the Head Feature Principle, the Spec Principle, and
the Control Theory.

At this point you might be wondering about the Head Feature Principle in (8).
How can we claim that this is a description in the theory of Pollard and Sag’s grammar of
English? Isn’t there a free variable, 1? But with a free variable, it is a formula and not a
description, and it should not be allowed in the theory!

That observation is completely correct, and we cannot leave the Head Feature Prin-
ciple as it stands. Either we have to add an existential quantification or we have to say
something more. For the time being, we assume that we add an existential quantification.
Later in our discussion (Section 2.3.3), we will make our lives a bit easier by introducing
convenient conventions for our notation of grammatical principles. These conventions will
make it possible to leave existential quantification implicit in some cases. At the moment,
we are not quite that far yet: We first have to understand the meaning of our unabbreviated
notation, which is what we will do next.

Exercises

Exercise 19

(a) We presuppose the signature of lists and animals first given in Section 2.1.2. How
many simple abstract feature structures satisfy the following description?

pet, color:∼green.

Create a MoMo file non-green-pets231.mmp with an interpretation window that con-
tains (MoMo counterparts of) all these feature structures. Using the link just given
you may download an mmp file that already contains the necessary signature.

http://milca.sfs.uni-tuebingen.de/A4/Course/Momo/Online-Edition/Links/links.html?http://milca.sfs.uni-tuebingen.de/A4/Course/Momo/mmps/Section231/non-green-pets231.mmp

70 CHAPTER 2. GRAMMAR FORMALISMS

(b) How many simple abstract feature structures satisfy the following description?

pet *> color:∼green.

Add three examples to your mmp file (in a second interpretation window).

Exercise 20 Translate the Spec Principle, (9), and the Control Theory, (10), into
our syntax of descriptions (under Pollard and Sag’s signature).

Recall that MoMo does not use the symbols ∃ and ∀ as quantifier symbols, since they
do not belong to the standard symbols of keyboards. ∃ is written as ^, and ∀ is written as
V (capital V). ∃X thus becomes ^X and ∀X is written as VX. Following the conventions of
the Prolog computer language, variables are written with an initial capital letter and may
consist of strings of letters. Some examples for variables in MoMo are: H, Z, W, Head,
Color.

Please test the well-formedness of your translations in MoMo on the basis of an ad-
equately large fragment of the signature of [Pollard and Sag, 1994] in MoMo. For the
purpose of this exercise, we have prepared an mmp-file, signature-fragment231.mmp that
already contains the necessary fragment of Pollard and Sag’s signature for downloading.
You may notice that Pollard and Sag use sorts of the shape list(synsem) (so-called “para-
metric sorts”). For simplicity, we leave out the specification in brackets for now. Instead
of “list(synsem)”, we write “list”. We will discuss this topic later in the course, in Sec-
tion 2.5.2, Parametric Sorts.

Please upload the mmp files with your solutions to your forum in ILIAS, and either put
an extra text file there with the additional answers or send an ILIAS message with them.

GLOSSARY

2.3.2 The Meaning of Complex Grammars

Abstract

We will define what it means for a simple abstract feature structure to satisfy
a complex formula, and say what it means for a set of simple abstract feature
structures to be admitted by a set of complex descriptions. The definition pro-
ceeds in parallel to the corresponding definitions of satisfaction and admission
relative to simple descriptions in Section 2.2.2.4. This will allow us to focus on
those constructs that are new.

Fortunately, we do not have to modify our interpreting structures for grammars when
we now proceed from interpreting initial descriptions and initial grammars to interpreting
complex descriptions and complex grammars. Our syntactic inventory has become richer,
and the expressiveness of the languages of our formalism will increase with the semantic
extensions, but the abstract feature structures that we are using as interpreting structures
do not change at all.

http://milca.sfs.uni-tuebingen.de/A4/Course/Momo/Online-Edition/Links/links.html?http://milca.sfs.uni-tuebingen.de/A4/Course/Momo/mmps/Section231/signature-fragment231.mmp
http://milca.sfs.uni-tuebingen.de/A4/Course/PDF/glossary/glossar.html?boxes&description&grammar&iff&ordered_pair&pair&power_set&root_node&signature&smallest_set&total_function

2.3. COMPLEX GRAMMARS AND THEIR MEANING 71

Although we do not change our definition of abstract feature structures, we still need
to explain how we want to interpret our extended languages over the old and familiar
domain of simple abstract feature structures. In particular, we must give meaning to the
new pieces of syntax, variables, equations, and quantifiers. For the other constructs, on the
other hand, we will simply keep the old semantics. In the beginning, this continuity might
be slightly obscured by the fact that with the distinction between boxes and formulae,
our entire syntax has become more complex. To avoid getting unnecessarily distracted or
confused by the new “look and feel” of the old constructs, the reader should always keep
in mind that the only substantial changes concern the addition of variables. In fact, if we
subtract those boxes and formulae from our syntax that concern variables, having both
boxes and formulae in the syntax becomes entirely redundant and we may as well return
to our initial syntax without any loss in the set of well-formed expressions.

From what we have said about our syntactic extensions, it follows that when we start
to think about interpreting our new syntax we have to start by thinking about how we
want to interpret variables. Before we can define a new satisfaction function from Σ
descriptions to sets of simple abstract feature structures under Σ, we must understand
what variables should do for us. What do we mean by the boxed integers in the Head
Feature Principle or in the Control Theory, or by the corresponding variables in
our MoMo and TRALE syntax?

To approach our problem gently, it might be useful to recall how variables are inter-
preted in a classical logic without the specialized interpreting domain of abstract feature
structures. Standard logical languages employ variable assignment functions that assign
entities in the structures that serve as their interpretations to variables. In our case, the
entities that serve as interpreting structures are abstract feature structures. However, it
does not seem right to let variables refer to only entire feature structures! As we have seen
in our examples from a grammar of English, variables typically occur at the end of paths,
like in the Head Feature Principle. Since we know that path values are nodes inside
of feature structures, an adequate choice for the interpretation of variables are the nodes
of feature structures: Informally, variables point to nodes in feature structures.

This is very easy to see when we think about where variables occur in typical examples,
and what they are supposed to do. If the same variable occurs at the end of two different
paths, it is supposed to signal that these two paths lead to the same node in the feature
structures that satisfy the description. If two different variables, X and Y, occur at the
end of two paths, and they are inequated (∼ X=Y), then this is supposed to signal that, in
feature structures which satisfy the description, the two paths lead to different nodes of the
feature structure. Since we use abstract feature structures, whose nodes are represented by
equivalence classes of an equivalence relation over sequences of attributes, it makes sense
to assign sequences of attributes to variables. A variable then denotes the abstract node
represented by an equivalence class of paths. To refer to an equivalence class of paths,
it suffices to assign any path that is a member of the equivalence class to the variable.
Naturally, the assignment functions that do this are defined relative to initial signatures:
Since we associate variables with paths, we have to refer to the set of attributes in a
signature.

72 CHAPTER 2. GRAMMAR FORMALISMS

Definition 14 For each initial signature Σ = 〈G,⊑,S,A,F〉,1

IΣ is the set of total functions from VAR$ to A∗ such that for each ι ∈ IΣ, ι($) = ε.2

For each initial signature Σ, we call each member of IΣ a Σ insertion. The empty path,
ε, is always inserted for the special symbol, $.

With Definition 14, each variable is assigned exactly one sequence of attributes. By
definition, $ is a special variable with a fixed value. It will always refer to the root node of
abstract feature structures. In a sense it helps us to “find” the root node when we need it.

For quantification over variables we need to adopt another technique that is familiar
from predicate logic. With quantification, we find ourselves in a situation where we occa-
sionally want to have the value of a particular variable X range over all paths π, or we want
to say that there exists some path π that we can insert for a particular variable X such that
a description is satisfied. In the new notation whose meaning we are going to define next,
we can employ the syntax ι[π

X
] to express this:

Definition 15 For each initial signature Σ = 〈G,⊑,S,A,F〉, for each ι ∈ IΣ, for each1

π ∈ A∗, for each X ∈ VAR, for each Y ∈ VAR,2

ι[π
X

](Y) =

{

π if X=Y

ι(Y) otherwise.3

This definition is saying that ι[π
X

] is exactly the same function as the function ι except
that the value of the former at X is π (whereas we do not know anything about the value
of ι at X—its value at X is simply not relevant for us). We will see in a minute how this
notation is used for the definition of the satisfaction function of quantificational formulae.

Before we can define a satisfaction function for Σ boxes and Σ formulae, we need to
consider one more peculiarity of the new syntax. In the definition of our extended syntax,
we saw that variables may occur in both layers of our syntax: They occur in boxes, which
correspond to AVM matrices; and they occur on the syntactic level of formulae in front of
boxes, behind quantifier symbols, and in equations. The reason for a certain complication
in the following interpretation of variables that occur in boxes is that, informally speaking,
we want to interpret all variables on the formula level, even those that occur inside of
boxes. Since we cannot know the position of the box from inside, we need to get out of the
box before we can locate the position of the variables in the box in the overall formula. In
effect, we look from the formula level into the boxes and collect the sequences of attributes
which are syntactically followed by variables.

This outside perspective on the location of variables in boxes will be realized by keeping
track of the attribute path that we traverse during the stepwise interpretation of boxes and
by also storing (parts of) the feature structure of the formula level in order to check later
whether variables inside boxes refer to some node of this feature structure. A simple
example, in which we employ the AVM notation, illustrates this basic idea nicely.

The consequent of the Head Feature Principle, repeated in (12), is a box in our
syntax.

2.3. COMPLEX GRAMMARS AND THEIR MEANING 73

(12) The consequent of the Head Feature Principle in AVM notation

[
synsem loc cat head 1

dtrs head-dtr synsem loc cat head 1

]

Two paths lead to occurrences of the variable 1 in (12): synsem loc cat head and
dtrs head-dtr synsem loc cat head. Assuming that 1 is bound existentially and
that the box corresponding to the AVM in (12) is not part of a larger box, an abstract
feature structure, 〈β, ̺, λ〉, that satisfies (12) must include the set

{

〈synsem loc cat head, ι′(1)〉 ,
〈dtrs head-dtr synsem loc cat head, ι′(1)〉

}

in its re-entrancy relation, ̺. Here, ι′(1) is, of course, a path that can be inserted for the
variable 1 by virtue of how we will handle existential quantification.

In slightly more general terms, we may say that the purpose of keeping track of the
paths inside of boxes and of the re-entrancy relation of the formula level in the satisfaction
function for boxes is to tell us, for each Σ formula of the form α : δ or X : δ, which variables
occur in the Σ box δ and which paths lead to them in the description δ. Informally speaking,
our satisfaction functions will then require that, for a simple abstract feature structure to
satisfy an expression, each path ending in a variable leads to the same abstract node to
which the corresponding variable refers. In other words, for a variable X occurring in a box
δ, the insertion function has to insert a path that is in the same equivalence class of ̺ as
the path that syntactically leads to the variable X in δ in order for δ to be satisfiable by a
simple abstract feature structure 〈β, ̺, λ〉.

The definition of the semantics for Σ formulae follows the syntactic structure of our
complex expressions. It uses two separate satisfaction functions, Ξι

Σ and ∆ι
Σ, for interpret-

ing the two levels of our syntax, boxes and formulae, respectively. For each initial signature
Σ and each Σ insertion ι ∈ IΣ, the complex abstract feature structure satisfaction func-
tion under ι in Σ, ∆ι

Σ, is defined inductively over all initial Σ formulae, and the auxiliary
function Ξι

Σ is defined inductively over the structure of Σ boxes. This is to say that the
second feature structure satisfaction function under ι in Σ for Σ boxes, Ξι

Σ, gives us the
feature structure denotation of Σ boxes under ι. Since the task of interpreting expressions
is divided between ∆ι

Σ for the formula level and Ξι
Σ for the box level, the interpretation

of a formula starts with ∆ι
Σ and continues with Ξι

Σ as soon as we enter the box level of
our syntax by breaking down the formula into small enough subparts. Ξι

Σ stores the re-
entrancy relation of the formula level (̺0) and keeps track of the path which is traversed
in the stepwise interpretation of the box (π). The only times when the information kept in
̺0 and accumulated in π becomes immediately relevant is when a variable is encountered
in a box and is interpreted (lines 4 and 5 of Definition 16).

Following the structure of the definition of the syntax, the definition of abstract fea-
ture structure satisfaction proceeds the other way round, bottom-up, from the smallest
pieces of syntax (boxes) to the bigger expressions (formulae). Therefore, the clauses of
Definition 16 define Ξι

Σ before we get to ∆ι
Σ:

74 CHAPTER 2. GRAMMAR FORMALISMS

Definition 16 For each initial signature Σ = 〈G,⊑,S,A,F〉, for each Σ insertion ι ∈ IΣ,1

Ξι
Σ is the total function from the threefold Cartesian product of Pow(A∗ × A∗), A∗ and2 BOXΣ to Pow(AFSΣ), and ∆ι

Σ is the total function from DΣ to Pow(AFSΣ) such that3

for each ̺0 ∈ Pow(A∗ ×A∗), for each π ∈ A∗, for each X ∈ VAR$,4

Ξι
Σ(̺0, π, X) =

{

〈β, ̺, λ〉 ∈ AFSΣ
∣
∣
∣〈ι(X), π〉 ∈ ̺0

}

,5

for each ̺0 ∈ Pow(A∗ ×A∗), for each π ∈ A∗, for each σ ∈ G,6

Ξι
Σ(̺0, π, σ) =

〈β, ̺, λ〉 ∈ AFSΣ

∣
∣
∣
∣
∣
∣
∣

for some σ′ ∈ S,
〈ε, σ′〉 ∈ λ, and
σ′ ⊑ σ

,
7

for each ̺0 ∈ Pow(A∗ × A∗), for each π ∈ A∗, for each α ∈ A, for each8

δ ∈ BOXΣ,9

Ξι
Σ(̺0, π, α : δ) =

{

〈β, ̺, λ〉 ∈ AFSΣ

∣
∣
∣
∣
∣

α ∈ β, and
〈β, ̺, λ〉/α ∈ Ξι

Σ(̺0, πα, δ)

}

,
10

for each ̺0 ∈ Pow(A∗ ×A∗), for each π ∈ A∗, for each δ ∈ BOXΣ,11

Ξι
Σ(̺0, π,∼ δ) = AFSΣ\Ξι

Σ(̺0, π, δ),12

for each ̺0 ∈ Pow(A∗ × A∗), for each π ∈ A∗, for each δ1 ∈ BOXΣ, for each13

δ2 ∈ BOXΣ,14

Ξι
Σ(̺0, π, (δ1, δ2)) = Ξι

Σ(̺0, π, δ1) ∩ Ξι
Σ(̺0, π, δ2),15

for each ̺0 ∈ Pow(A∗ × A∗), for each π ∈ A∗, for each δ1 ∈ BOXΣ, for each16

δ2 ∈ BOXΣ,17

Ξι
Σ(̺0, π, (δ1; δ2)) = Ξι

Σ(̺0, π, δ1) ∪ Ξι
Σ(̺0, π, δ2),18

for each ̺0 ∈ Pow(A∗ × A∗), for each π ∈ A∗, for each δ1 ∈ BOXΣ, for each19

δ2 ∈ BOXΣ,20

Ξι
Σ(̺0, π, (δ1*>δ2)) =

(AFSΣ\Ξι
Σ(̺0, π, δ1)

)

∪ Ξι
Σ(̺0, π, δ2),21

for each ̺0 ∈ Pow(A∗ × A∗), for each π ∈ A∗, for each δ1 ∈ BOXΣ, for each22

δ2 ∈ BOXΣ,23

Ξι
Σ(̺0, π, (δ1<*>δ2)) =24
((AFSΣ\Ξι

Σ(̺0, π, δ1)
)

∩
(AFSΣ\Ξι

Σ(̺0, π, δ2)
))

∪25

(Ξι
Σ(̺0, π, δ1) ∩ Ξι

Σ(̺0, π, δ2)), and26

for each X ∈ VAR$,27

2.3. COMPLEX GRAMMARS AND THEIR MEANING 75

∆ι
Σ(X) =

{

〈β, ̺, λ〉 ∈ AFSΣ
∣
∣
∣ι(X) ∈ β

}

,28

for each σ ∈ G,29

∆ι
Σ(σ) =

〈β, ̺, λ〉 ∈ AFSΣ

∣
∣
∣
∣
∣
∣
∣

for some σ′ ∈ S,
〈ε, σ′〉 ∈ λ, and
σ′ ⊑ σ

,
30

for each α ∈ A, for each δ ∈ BOXΣ,31

∆ι
Σ(α : δ) =

{

〈β, ̺, λ〉 ∈ AFSΣ

∣
∣
∣
∣
∣

α ∈ β,
〈β, ̺, λ〉/α ∈ Ξι

Σ(̺, α, δ)

}

,
32

for each X ∈ VAR$, for each δ ∈ BOXΣ,33

∆ι
Σ(X : δ) =

{

〈β, ̺, λ〉 ∈ AFSΣ

∣
∣
∣
∣
∣

ι(X) ∈ β, and
〈β, ̺, λ〉/ι(X) ∈ Ξι

Σ (̺, ι(X), δ)

}

,
34

for each X ∈ VAR$, for each Y ∈ VAR$,35

∆ι
Σ(X = Y) =

{

〈β, ̺, λ〉 ∈ AFSΣ
∣
∣
∣〈ι(X), ι(Y)〉 ∈ ̺

}

,36

for each X ∈ VAR, for each δ ∈ DΣ,37

∆ι
Σ(∃X δ) =

{

〈β, ̺, λ〉 ∈ AFSΣ

∣
∣
∣
∣
∣

for some π ∈ β,

〈β, ̺, λ〉 ∈ ∆
ι[π

X
]

Σ (δ)

}

,
38

for each X ∈ VAR, for each δ ∈ DΣ,39

∆ι
Σ(∀X δ) =

{

〈β, ̺, λ〉 ∈ AFSΣ

∣
∣
∣
∣
∣

for each π ∈ β,

〈β, ̺, λ〉 ∈ ∆
ι[π

X
]

Σ (δ)

}

,
40

for each δ ∈ DΣ, ∆ι
Σ(∼ δ) = AFSΣ\∆ι

Σ(δ),41

for each δ1 ∈ DΣ, for each δ2 ∈ DΣ, ∆ι
Σ((δ1, δ2)) = ∆ι

Σ(δ1) ∩ ∆ι
Σ(δ2),42

for each δ1 ∈ DΣ, for each δ2 ∈ DΣ, ∆ι
Σ((δ1; δ2)) = ∆ι

Σ(δ1) ∪ ∆ι
Σ(δ2),43

for each δ1 ∈ DΣ, for each δ2 ∈ DΣ, ∆ι
Σ((δ1*>δ2)) =

(AFSΣ\∆ι
Σ(δ1)

)

∪∆ι
Σ(δ2),44

and45

for each δ1 ∈ DΣ, for each δ2 ∈ DΣ,46

∆ι
Σ((δ1<*>δ2)) =

((AFSΣ\∆ι
Σ(δ1)

)

∩
(AFSΣ\∆ι

Σ(δ2)
))

∪ (∆ι
Σ(δ1) ∩ ∆ι

Σ(δ2)).47

76 CHAPTER 2. GRAMMAR FORMALISMS

We call ∆ι
Σ the simple abstract feature structure satisfaction function under ι in Σ, and

say A satisfies δ under ι in Σ if and only if A ∈ ∆ι
Σ(δ).

The definition of Ξι
Σ is almost identical to our previous simple abstract feature structure

satisfaction functions of initial grammars. This fact is, however, slightly obscured by the
two additional arguments of Ξι

Σ, symbolized as ̺0 and π, which serve only as an aid in the
interpretation of variables inside of boxes, as already explained above. If you are initially
confused by the complexity of the notation, it might be useful to entirely ignore these two
additional arguments of Ξι

Σ at first and to concentrate on what is identical to the former
simple abstract feature structure satisfaction functions.

Except for the very first clause concerning variables in lines 4 and 5, no variables occur,
and the Σ insertion does nothing. A Σ box consisting of a sort symbol (lines 6–7) is
interpreted just as before, and ̺0 and the traversed path π are irrelevant. A Σ box of
the form α : δ, with α an attribute and δ another Σ box, is satisfied by a simple abstract
feature structure on whose root node α is defined and whose α reduct satisfies δ (lines
8–10). In the recursion of this case, ̺0 is passed on and the concatenation of π and α is the
new path relevant for the interpretation of variables that might be embedded in δ. For the
cases of Σ boxes involving negation and all two place logical connectives (lines 11–26), ̺0

and π are simply passed on to the recursive case, since in none of these cases we traverse
any attribute. The one clause that is different concerns the interpretation of variables, X, in
lines 4–5. In this case, the simple abstract feature structure satisfies the Σ box if and only
if the Σ insertion assigns a path π′ to X such that the inserted path π′ and the traversed
path π are in the re-entrancy relation ̺0 that we stored at the point we went from the
formula level to the box level of the satisfaction function. The reason for this indirect way
of handling variables inside of Σ boxes is that the restrictions that come with them can be
evaluated only relative to the formula level of a description.

The interpretation of variables at the formula level achieves a parallel effect much more
directly. We can see this immediately when we look at the definition of ∆ι

Σ. For each
variable X, ∆ι

Σ(X) is the set of simple abstract feature structures such that ι inserts a path
for X that is in the basis set of the feature structure (lines 27–28). Since the elements of
the basis set are all paths that characterize an abstract node of the feature structure (by
virtue of characterizing an equivalence class of the re-entrancy relation), we can take this
to mean that X denotes the set of simple abstract feature structures in which it refers to
an abstract node.

Why that makes sense is best explained by looking at the denotation of quantificational
expressions. Understanding quantification is essential for understanding variable denota-
tions. The reason is the crucial condition that we imposed on the formulae that may occur
in grammars when we extended our syntax to comprise variables: We demanded that com-
plex grammars consist of sets of descriptions, where a description is a formula without free
variables. This means that in complex grammars, each variable in each member of the
theory of the grammar, θ, is bound by a quantifier.

With that in mind, let us look at the value of the satisfaction function for expressions
with existential quantification: For each Σ formula δ, ∆ι

Σ(∃X δ) is the set of simple abstract
feature structures such that we can find some path π to insert for all occurrences of X in the

2.3. COMPLEX GRAMMARS AND THEIR MEANING 77

scope of the existential quantifier such that the simple abstract feature structure satisfies
δ. But as we have already seen, this means that we can find an abstract node in the
denotation of X in the simple abstract feature structure, such that X referring to that node
is consistent with the other restrictions that δ imposes.

To see more clearly what is going on, suppose we quantify existentially over the variable
1 of the consequent of the Head Feature Principle in (12). A feature structure that
satisfies this description must appear as follows: There must be a node X in it that we
can reach from the root node by following a sequence of arcs labeled synsem loc cat
head; and we reach the very same node X by alternatively following a sequence of arcs
labeled dtrs head-dtr synsem loc cat head from the root node.7 In non-technical
terms that means that the consequent of the Head Feature Principle with existential
quantification over its single variable is satisfied by all feature structures in which synsem
loc cat head and dtrs head-dtr synsem loc cat head are structure-shared—which
is exactly what linguists intend to express with that notation.

What about universal quantification, then? According to our definition, ∀X δ is satisfied
by all simple abstract feature structures, A, such that for each denotation that we can choose
for X in A, i.e., for X referring to any abstract node in A, A also consistently satisfies δ.

To see how this interpretation of universal quantification can be used productively,
consider the Spec Principle of Section 2.3, Complex Grammars and their Meaning. As
every principle of grammar, the Spec Principle is an implicational description. An
implicational description is true of all feature structures that fail to satisfy the antecedent,
and of all those feature structures that satisfy both the antecedent and the consequent.

Let us first consider the case in which feature structures fail to satisfy the antecedent.
Feature structures fail to satisfy the antecedent under universal quantification over the
variables 1 and 2 in the following circumstances: They have neither a marker daughter
nor a list of complement daughters with at least one complement daughter on the list (first
line of the Spec Principle); or it is not the case that 1 refers to the marker daughter
or the first complement daughter; or 1 either refers to a marker daughter or the first
complement daughter, but is not a sign whose synsem loc cat head value is of sort
functional; or 1 refers to a marker daughter or the first complement daughter, and its
synsem loc cat head value is of sort functional, but the value of the spec arc of the
functional node in the feature structure is not referred to by 2 .

The second case to consider is the case where feature structures satisfy the antecedent.
As we have just seen, a simple abstract feature structure A may satisfy the antecedent if 1

refers either to a functional marker daughter or to the first complement daughter (which is
then also functional), and the synsem loc cat head spec value of the daughter that 1

designates is referred to by 2 . For A to satisfy the entire principle, it must also satisfy the
consequent, which is in the scope of the universal quantifiers as well. This means that the
synsem value of the head daughter of the phrase is identical to the synsem loc cat head
spec value of 1 . But according to the antecedent, 1 is a functional marker daughter or the

7Here we have switched to the terminology of concrete feature structures, since its metaphors seem to
be easier to picture than the equivalence classes of paths of abstract feature structures.

78 CHAPTER 2. GRAMMAR FORMALISMS

(functional) first complement daughter. We have thus used the combination of universal
quantification and implication to keep the referents of 1 and 2 constant for those situations
in which we want to express a restriction on the satisfiers of the antecedent.

The definition of ∆ι
Σ for α : δ shows how the interpretation of box-internal variables is

initialized when we go from the interpretation of formulae to the interpretation of boxes:
The case ∆ι

Σ(α : δ) is one of the cases where this happens. As is clear from its definition,
δ is then interpreted under Ξι

Σ, i.e., we arrive at the box level. Unsurprisingly, we demand
that α be a path defined on the abstract root node, and that the α reduct of the simple
abstract feature structure satisfy δ. The interesting thing is what the first two arguments
of Ξι

Σ contain. This is the re-entrancy relation, ̺, whose satisfaction conditions we are
checking, and the attribute α, which we traverse to check whether the α reduct of the
simple abstract feature structure satisfies δ. Whenever we go a level deeper in δ, the
recursion in Ξι

Σ records the traversed attribute by appending it to the path built up in the
preceding steps. In this way, it collects paths that lead to occurrences variables, if there
are any. Then it requires for each pair, 〈π, X〉, of a path, π, leading to a variable, X, and the
variable X at its end that π be in the equivalence relation with the insertion for the variable.
Informally, the variable must denote the node to which the path leads. Intuitively, this is
clearly how we understand variables in boxes.

The satisfaction function for formulae of the form X : δ is a similar case: X takes over
the role of α of the previously discussed case. Now a simple abstract feature structure that
satisfies the formula must have the path π inserted for X in its basis set, and we require that
the π reduct of the abstract feature structure also satisfy δ. Simultaneously we have to
make sure that the variables that occur in δ denote the same abstract node in the abstract
feature structure as the paths that lead to them. These paths must now be reconstructed
from the insertion for X plus the paths in δ that lead to each variable Y. Again, we use the
recursive structure of Ξι

Σ to record the paths in δ that lead to occurrences of variables.
The interpretation of equations, our final new syntactic construct, is quite straightfor-

ward. It is obvious that with X=Y we want to say that X and Y refer to the same abstract
node in those abstract feature structures that satisfy the equation. For example, an alter-
native formulation of the consequent of the Head Feature Principle using an equation
could be rendered as:

(13) The consequent of the Head Feature Principle in AVM notation with an equa-
tion

∃ 1 ∃ 2

([
synsem loc cat head 1

dtrs head-dtr synsem loc cat head 2

]

∧ 1 = 2

)

The idea behind equations is captured by saying that an abstract feature structure
satisfies the equation X=Y iff the paths inserted for X and Y belong to the same equivalence
class in the feature structure: They are alternative ways of getting to the same abstract
node.

Concluding our discussion of the denotation of complex formulae, we should stress that
quantification is always quantification over the substructure of the (abstract) root node to

2.3. COMPLEX GRAMMARS AND THEIR MEANING 79

which the special symbol, $, refers. It follows that existential and universal quantification
in HPSG does not behave like existential and universal quantification in first order logic,
where quantification ranges over the entire universe of entities. In terms of the feature
structure models of HPSG grammars that we are considering here, quantification is al-
ways quantification within feature structures, never across different, structurally unrelated
feature structures. An existential statement is thus not a statement about the existence
of a feature structure in the domain of feature structures. It is rather a statement about
the existence of a node in a feature structure. Similarly, a universal statement or a state-
ment that uses universal quantifiers is not a statement about all feature structures, at least
not by way of being a statement with universal quantifiers.8 Universal quantification is
quantification over all nodes in a feature structure.

Simple abstract feature structure admission of sets of complex descriptions is parallel
to our previous definition with initial descriptions. The only difference is that we are now
working relative to complex descriptions, which forces us to mention Σ insertions. However,
Σ insertions are irrelevant for expressions without free occurrences of variables, since their
meaning is independent of the Σ insertion we choose. As a consequence of this observation,
our final definition of the admission function does not contain anything that we haven’t
seen before:

Definition 17 For each initial signature Σ,1

MΣ is the total function from Pow(DΣ
0) to Pow(AFSΣ) such that for each θ ⊆ DΣ

0 ,2

MΣ(θ) =

〈β, ̺, λ〉 ∈ AFSΣ

∣
∣
∣
∣
∣
∣
∣
∣
∣

for each π ∈ β,
for each ι ∈ IΣ, and
for each δ ∈ θ,

〈β, ̺, λ〉/π ∈ ∆ι
Σ(δ)

.

3

For each initial signature Σ, I call MΣ the simple abstract feature structure admission
function in Σ. A simple abstract feature structure under Σ, A, is in the set of simple
abstract feature structures under Σ admitted by a Σ theory θ if and only if A and every
possible π reduct of A satisfy every description in θ. This is precisely the definition that
we already had before with our simpler description language.

Just as before, given a complex grammar, 〈Σ, θ〉, we can regard the set of feature
structures admitted by θ, MΣ(θ), as the intended meaning of 〈Σ, θ〉. Pollard and Sag say
that the members of MΣ(θ) are mathematical representations of the object types of the
language that the grammar is about.

8Any statement in a grammar is universal in the sense that it makes a statement about all nodes of all
feature structures admitted by the grammar. But that is an independent property of all descriptions in a
grammar and has nothing to do with (universal) quantification.

80 CHAPTER 2. GRAMMAR FORMALISMS

Examples

It is again time to consider a few examples, and to practice our understanding of the mean-
ing of variables and quantification in our description languages. The file synsem-232.mmp
uses our signature of lists, pets and birds. It contains a few description cards and two
interpretations with a feature structure.

With the description cards and and colon we are going to investigate the difference
in our description languages between variables that occur in front of boxes and variables
that occur embedded somewhere within boxes. The difference is far from obvious when we
think of the standard AVM notation for HPSG descriptions.

Consider the following two AVM matrices, which are instances of each case:

(14) a. 1
[
parrot

]

b.

nelist

head 1
[
parrot

]

tail list

At first it might seem as if in our own syntax, the translation of (14a) will occur
somewhere embedded into the translation of (14b), preserving the intended meaning of
the formula. However, upon closer inspection, this will turn out not to be the case. As
an investigation of the semantics of our formulae shows, variables that occur in front of
complete AVM matrices of the AVM notation are translated to variables followed by colon
(‘:’) in MoMo syntax: From a formal point of view, these are variables that precede Σ
boxes (which is the construct of MoMo syntax that emulates AVM matrices). Variables
that occur inside of AVM matrices occur with the same syntactic distribution as sort
symbols in MoMo syntax.

This means that (14a), 1
[
parrot

]
is translated to X:parrot, (occurrence of a vari-

able in front of a Σ box). Example (14b), on the other hand, is translated as nelist,

head:(X,parrot), tail:list (occurrence of a variable inside a Σ box).
The difference in meaning that comes with the notational distinction between variables

in front of Σ boxes and variables inside Σ boxes is best understood by considering an exam-
ple like the one provided in our mmp file. Note that since MoMo works with descriptions,
we have bound the variables existentially.

In the interpretation list with one parrot, you find a feature structure representing a
singleton list with one red parrot. This feature structure does not satisfy the description
^X(X,parrot) on the card and. Why not? Under satisfaction, ^X(X,parrot) means:
There is some X, and the root node of the feature structure is of sort parrot. The first
part (there is some X) is trivially true of any feature structure. The second restriction
(the feature structure is of sort parrot), however, is relevant: The feature structure we are
looking at is of sort nelist, which cannot satisfy parrot. In AVM notation, we would have

to express our description as ∃ 1

(

1 ∧
[
parrot

]
)

(in contrast to (14a)).
Now consider ^X(X:parrot) on the description card colon. Under satisfaction, this

means the following: There is a node X in the feature structure, and X is of sort parrot.

http://milca.sfs.uni-tuebingen.de/A4/Course/Momo/Online-Edition/Links/links.html?http://milca.sfs.uni-tuebingen.de/A4/Course/Momo/mmps/Section232/synsem-232.mmp

2.3. COMPLEX GRAMMARS AND THEIR MEANING 81

Of course, our singleton list does contain a parrot and thus satisfies ^X(X:parrot). The
corresponding AVM description is (14a).

Let us make our example even more complex, and consider a description with a variable
both in front and inside a box: ^X^Y(X:(parrot, legs:(Y,two))), as contained on the
description card two quantifiers. What does that mean under satisfaction? It means: There
is a parrot, and it has the legs value two. Variable Y doesn’t even do anything interesting
here, because we already know (from the signature) that there exists a node that we reach
following the legs arc from the parrot node. However, we see again that the combination
of a variable with some further box inside a bigger box (like Y in our case) usually comes
with a conjunctive interpretation and thus syntactically with a comma. By the way, our
feature structure of course satisfies the description, as you may want to try out yourself in
MoMo.

The AVM description corresponding to (14b) is on the description card ten-b (where
we have again added explicit existential quantification over the variable). If we replace the
comma for conjunction between the variable X and parrot in that description by a colon,
we get an ill-formed expression (as witnessed by ill-formed): An expression of the form
X:parrot is a formula, and a formula must not occur inside a box!

Let us close with a few remarks on differences between satisfaction and admission with
variables and quantification, and on the use of the reserved variable, $.

As we have already seen, the feature structure in list with one parrot satisfies the
description on the card colon, because there is a node of sort parrot in the feature structure.
However, the feature structure is not a model of that description. To be admitted by the
description, every node of the feature structure would have to satisfy the description.
As you can check, there are three nodes in the feature structure that do not satisfy the
description. The reason is that, if we consider those three nodes as root nodes, they do
not contain any node of sort parrot.

The description on the card dollar illustrates universal quantification and the symbol $.
The description says that for each node of sort nelist, its tail value is the root node. The
feature structure in list with one parrot does not model this description: Clearly, the tail
value of the root node is not the root node itself. The feature structure in cyclic list with
one parrot, however, models the description: The tail arc of each nelist node points to the
root node. Closer inspection shows that we may simplify the description dollar as given in
dollar without V to obtain an equivalent description (under admission) that is formulated
without variable X and universal quantification.

GLOSSARY

http://milca.sfs.uni-tuebingen.de/A4/Course/PDF/glossary/glossar.html?admission&basic_set&binary_relation&boxes&Cartesian_product&description&equivalence_class&equivalence_relation&feature_structures&insertion&object_types&path&power_set&reducts&root_node&satisfaction&set&signature&total_function

82 CHAPTER 2. GRAMMAR FORMALISMS

2.3.3 A Notational Convention

Abstract

We introduce a notational convention that allows us to leave existential quan-
tifiers implicit in some cases in principles of grammar.

Complex grammars only allow descriptions as principles. This means that we must quantify
explicitly over all variables (tags) in all principles of grammar. In the linguistically oriented
HPSG literature, this is not typically done. The difference between common practice and
formal explicitness becomes clear when we look at the Head Feature Principle in our
current notation. It translates to the following description:

(15) The Head Feature Principle in our syntax

∃X ((phrase, dtrs:headed-struc)*>

(synsem:loc:cat:head:X, dtrs:head-dtr:synsem:loc:cat:head:X))

To be able to be a bit lazy with simple cases of existential quantification like the Head
Feature Principle, we can introduce a notational convention: We will assume that
whenever a variable in an initial Σ formula that is meant to be a principle of grammar
is not explicitly bound by a quantifier, it is bound by an implicitly intended existential
closure over the entire initial Σ formula. Note that this leads to wide scope existential
quantification over the variables in question. This is exactly the convention that MoMo
follows if you omit (or forget!) quantifiers: MoMo always obeys the convention of existential
closure with wide scope of the existential quantifiers over the entire formula.

Convention 1 If in a principle of grammar, a variable is not explicitly bound by a quan-
tifier, we assume that it is captured by an implicit existential closure with wide scope over
the entire initial Σ formula.

With Convention 1, we can simplify the notation of the Head Feature Principle:

(16) The Head Feature Principle again

((phrase, dtrs:headed-struc)*>

(synsem:loc:cat:head:X, dtrs:head-dtr:synsem:loc:cat:head:X))

As a principle of grammar, (16) is a notational abbreviation of its fully explicit rendering
in (15).

In complex principles of grammar, it is necessary to be careful when we use this nota-
tional convention. In particular for beginners it is a good idea to write down all quantifiers
explicitly if there is an interaction between several quantifiers in a principle. For example,
we cannot appeal to Convention 1 to simplify the notation of the Control Theory

2.3. COMPLEX GRAMMARS AND THEIR MEANING 83

of Section 2.3, because all of its existential quantifiers are in the scope of some universal
quantifiers with wider scope. Omitting the existential quantifiers would lead to an interpre-
tation with existential quantifiers that take scope over the universal quantifiers. But then
the meaning of the principle changes entirely, and it no longer means what it is supposed
to mean according to Pollard and Sag’s formulation in natural language.

Let us close with a second, general observation about notational conventions. The defi-
nition of the syntax of boxes and initial formulae succinctly prescribes how the expressions
of our logical languages must be bracketed in order to be well-formed. However, being
pedantic about the bracketing typically results in unreadable notation for larger descrip-
tions. We will therefore follow general conventions and typically relax our notation in
examples. We omit brackets where this cannot lead to confusion. MoMo follows the very
same common bracketing conventions. Conversely, it may sometimes enhance readability
to insert brackets in places where they are not strictly permitted syntactically. One such
place involves expressions after quantifiers. For example, the brackets after the existential
quantifier in ^X(X:parrot) are not in accordance with the syntax, since the tagged box
X:parrot is not a complex box. Nevertheless, we occasionally employ this notation for
clarity, and this is accepted by MoMo as well.

Exercises

Exercise 21 Let Σ be our familiar initial signature of Section 2.1.2 with lists, birds, and
pets. Write a complex grammar using that signature such that for feature structure models
of your grammar the following conditions hold:

1. Each list contains at least one parrot.

2. There are at least two distinct canaries on each list.

3. Every list is finite.

By writing the descriptions that express these statements on a single description card,
we obtain a grammar consisting of our signature and of the set of these three principles in
MoMo. Feature structures in the graph window for which the modeling test succeeds are
feature structure models of this grammar. Upload the file with your grammar to ILIAS.

Consider the statements (1) and (2) in your grammar in turn. For each of the two
descriptions, characterize the simple abstract feature structures that satisfy it and the ones
that model it.

What do your previous observations tell us about the meaning of the entire grammar?

Exercise 22 Let Σ again be our familiar initial signature of lists, birds, and pets. Take a
simple abstract feature structure under Σ representing a singleton list with a green parrot
on it. quant-exercise-233.mmp is a prepared file.

Consider the following Σ descriptions and decide for each one whether our simple ab-
stract feature structure under Σ satisfies it or is admitted by it. In the descriptions, V

http://milca.sfs.uni-tuebingen.de/A4/Course/Momo/Online-Edition/Links/links.html?http://milca.sfs.uni-tuebingen.de/A4/Course/Momo/mmps/Section233/quant-exercise-233.mmp

84 CHAPTER 2. GRAMMAR FORMALISMS

stands for the universal quantifier, and ^ for the existential quantifier (MoMo notation for
quantifiers).

1. (a) ^X(X,color:green).

(b) ^X(color:green).

2. (a) VX((X:parrot)*>(X:color:green)).

(b) ^X((X:parrot)*>(X:color:green)).

3. (a) VX((X:parrot)*>(color:green))

(b) VX((X:parrot)*>(^Y(Y:color:yellow))).

2.4 Grammars and their Meaning

Abstract

Here, we will extend our formalism for constraint-based grammars one more
time. By adding relational expressions and their interpretation in a domain of
relational abstract feature structures, we arrive at a formalism that is adequate
for the complete formalization of constraint-based HPSG grammars.

With a mathematical characterization of complex grammars and their models in a domain
of simple abstract feature structures we have already achieved a significant part of our
goals: We started with a language of a rather simple feature logic and augmented it in
such a way that we are able to formalize some fairly complex principles of Pollard and Sag’s
grammar of English. However, going through the informal presentation of that grammar
in the appendix to [Pollard and Sag, 1994], we can easily observe that we are still missing
our target by one important type of expression: Whenever lists (or sets) are involved in
grammatical principles (which is rather often the case), the authors quite often observe
some interdependency of shape between two or more list values at syntactic mothers and
daughters, and they express it in terms of their mutual relationship. Another typical
statement of a very similar kind occurs when they sometimes say that an entity of a
certain kind must be a member of some list (or set). From these statements it is clear
that we need some general means that enables us to formulate arbitrary relations between
entities in linguistic signs.

The good news is that in at least one respect, we are almost there. Equipped with
a syntax and semantics that already comprise variables and quantification, the final syn-
tactic extension of our language is trivial. The introduction of a new distinction between
boxes and formulae, and of constructs like path insertions and functions to determine
free variables in formulae which made the syntactic step from initial grammars to com-
plex grammars a rather difficult affair has no counterpart when we move from complex
grammars to full grammars (which we will simply call grammars).

2.4. GRAMMARS AND THEIR MEANING 85

The other side of the coin is the interpretation of the new expressions. Extending our
feature structure semantics in a way appropriate for the intended usage of relational ex-
pressions in grammatical principles of the HPSG literature is not as simple as the extension
from a variable-free fragment of the formalism to a fragment with variables and quantifi-
cation, where we were able to maintain the modeling domain of simple abstract feature
structures. This time we need to add more structure to our modeling domain, and we
need abstract feature structures with a richer internal structure. To obtain an adequate
semantics, we will need to proceed from simple abstract feature structures under a given
signature to relational abstract feature structures under a given signature. Once we have
done that, we will focus on how to write and interpret principles of grammar that restrict
the meaning of relation symbols like member and append to their intended interpretation
in feature structure models of grammars, and on how the meaning of relational expressions
like these two is then used in principles of grammar.

A few introductory examples of prominent grammatical principles with relations of
the HPSG grammar of English of Pollard and Sag will remind us of the importance of
relational expressions and will give us a fairly good idea of what relations are meant to
do in the description of natural languages. The Subcategorization Principle ensures
the correct valency of projections of lexical functors when (some of) their arguments are
realized as syntactic daughters in phrasal structures: In a headed phrase, the list value
of daughters | head-daughter | synsem | local | category | subcat is the
concatenation of the list value of synsem | local | category | subcat with the list
consisting of the synsem values (in order) of the elements of the list value of daughters
| complement-daughters [Pollard and Sag, 1994, p. 399].

(17) The Subcategorization Principle in AVM notation

[
phrase

dtrs headed-struc

]

→

phrase
ss loc cat subcat 1

dtrs

headed-struc

head-dtr

[
sign

ss loc cat subcat 3

]

comp-dtrs 2

∧ sign-ss-append(1 , 2 , 3)

The relation sign-ss-append is supposed to ensure the correct relationship between
the subcat list of a headed phrase (a list of synsems), the list of complement daughters
(a list of signs), and the subcat list of the head daughter (again a list of synsems) as
verbosely described by Pollard and Sag. The relation sign-ss-append is clearly a close
relative of the relation append, which is familiar from logic programming. Essentially,
append says about the relationship between three lists X, Y , and Z that Z starts with
exactly the elements of X (ordered as on X), immediately followed by list Y as its final

86 CHAPTER 2. GRAMMAR FORMALISMS

part. The slight variation on the append theme of sign-ss-append hints at the flexibility
that grammarians expect to be given by the logical formalism for their use of relations:
They want to be able to define their own, non-standard relations when they need them.
Note also that the AVM notation in (17) appeals to the existential closure convention that
we introduced for complex grammars in Section 2.3.3. We will observe appeals to this
convention throughout many examples of principles without pointing them out any more.

The ID Principle is in many respects HPSG’s counterpart to the phrase structure
rules of classical phrase structure grammars and to the phrase structural base of various
versions of transformational grammar. The purpose of the ID Principle is to restrict
the structural makeup of headed phrases in the same way as phrase structure rules dictate
the possible nature of syntactic daughters. According to the ID Principle every headed
phrase must satisfy exactly one of the ID schemata [Pollard and Sag, 1994, p. 399 and
p. 402–403]. Pollard and Sag assume that there are six ID schemata for English. Schema 6,
which we want to investigate more closely, is the Head-Filler Schema. The authors
characterize head filler phrases in the following way: The daughters value is an object
of sort head-filler-struc whose head-daughter | synsem | local | category value
satisfies the description [head verb[vform finite], subcat 〈〉], whose head-daughter |
synsem | nonlocal | inherited | slash value contains an element token-identical to
the filler-daughter | synsem | local value, and whose head-daughter | synsem
| nonlocal | to-bind | slash value contains only that element [Pollard and Sag, 1994,
p. 403]. In (18), we see a schematic representation of the ID Principle, where the AVM
formulae that express the six ID schemata are represented by six place holders in a
disjunction in the consequent of the principle. The AVM formula for Schema 6, the
Head-Filler Schema, is spelled out in AVM notation.

(18) The ID Principle

[
dtrs headed-struc

]
→

(Schema1 ∨ Schema2 ∨ Schema3 ∨ Schema4 ∨ Schema5 ∨ Schema6)

where Schema6 stands for

dtrs

head-filler-struc

filler-dtr ss loc 1

head-dtr ss

loc cat

[
head vform finite

subcat 〈〉

]

nonloc

[

inherited slash 2

to-bind slash
{

1
}

]

∧ member(1 , 2)

The property of the Head-Filler Schema that is of interest to us is the use of
the member relation, expressing the membership of the filler’s local value in the inher-
ited slash set of the head daughter. And again, just like in the case of the relation
sign-ss-append for the Subcategorization Principle, it is fairly straightforward to

2.4. GRAMMARS AND THEIR MEANING 87

read and to understand the intended meaning of the relational expression at the end of the
formula without knowing anything of the mathematical background necessary to spell it
out explicitly. Especially later, in Section 2.4.2, when we get to technical explanations that
might seem difficult at first, we should not lose sight of our original, informal understanding
that might then guide our understanding of its mathematical reconstruction.

The most complex example of a principle that relies on relations in the theory of English
of Pollard and Sag is their Binding Theory. Its relative complexity derives from the rich
interaction of quantification, negation, and relations that is a peculiar property of the
Binding Theory. The upshot of it is summarized in the binding principles A–C:

(19) The Binding Theory of [Pollard and Sag, 1994, p. 401] informally stated

Principle A. A locally o-commanded anaphor must be locally
o-bound.

Principle B. A personal pronoun must be locally o-free.
Principle C. A nonpronoun must be o-free.

Without going into any details, we can observe that the Binding Theory is expressed
in terms of relations (o-command, (local) o-binding, (local) o-freedom) that must or must
not hold for different kinds of pronouns in syntactic structures. Ultimately it is formulated
in terms of relationships between synsem entities on subcat lists. Bearing in mind that
(local) o-freedom is described by Pollard and Sag as holding between two elements if and
only if (local) o-binding does not hold, their binding principles can be rendered as AVM
descriptions in the following way:

(20) The Binding Theory in AVM notation

Principle A:

∀X
(

∃Y loc-o-command
(

Y, X[
loc cont ana

]
)

→ ∃Z loc-o-bind(Z, X)
)

Principle B:

∀X
(
X[

loc cont ppro
]
→ ¬∃Y loc-o-bind(Y, X)

)

Principle C:

∀X
(
X[

loc cont npro
]
→ ¬∃Y o-bind(Y, X)

)

Concerning the notation of variables in (20), we have adopted a mixture of notation of
the syntax that we have defined and of the informal AVM syntax. If you prefer, you may
imagine that the capital letters for variables are replaced by the usual boxed integers.

Independent of the linguistic significance of the binding principles, we can observe
the full range of interaction between quantification, negation and relational expressions in
them. Moreover, the relations of the Binding Theory are idiosyncratic, linguistically
motivated relations that, unlike member and append, do not at all belong to the standard

88 CHAPTER 2. GRAMMAR FORMALISMS

inventory of logical languages or of programming languages in computer science. Again we
are led to conclude that linguists require great freedom in using relational expressions with
idiosyncratic meanings that they want to be able to define themselves in their grammars.
Their relations are supposed to express linguistic generalizations about languages, and as
such their formulation is subject to linguistic research and should not be limited by the
formal tools used for that research. It does not seem to be sufficient to provide an inventory
of standard relations with their corresponding meaning as part of the logical formalism
itself, since it might not provide what a linguist needs for a particular descriptive purpose.
The formalism has to provide the means to define the meaning of relation symbols as part
of linguistic grammars to fit the linguistic needs of grammarians.

The language and model theory that we will define in the following two sections cor-
responds almost completely to a feature structure based version of the RSRL (Relational
Speciate Re-entrant Language) formalism for HPSG. For sake of simplicity, it omits chains,
a more flexible interpretation of variables which allows for expressing certain grammati-
cal principles which employ relations with quasi-list arguments more directly than the
restricted version of RSRL presented here.

GLOSSARY

2.4.1 Syntax

Abstract

We will add relational expressions to the syntax of formulae. For this simple and
straightforward extension, we will also need to extend our notion of signatures,
and indicate what the set of free variables of an expression of the extended
languages is.

In order to work with relational expressions, we need to extend the initial signatures that
we have been working with up to now. Just as was required for attribute symbols, relation
symbols must be declared in signatures. In contrast to attributes, it is not sufficient to
just declare the names of the relation symbols. We also need to say how many arguments
each relation has. For example, the member relation usually has two arguments (the entity
given as first argument is a member of the set given in the second argument),9 whereas
the standard append relation of grammars has three arguments (the concatenation of the
two lists given as the first and second argument is the list in the third argument). In our
definition of signatures in Definition 18, the set of relation symbols is symbolized as R,
and the arity function, AR, assigns each relation symbol a positive natural number as the
arity of the respective relation.

9Occasionally variants of this occur, in particular in the HPSG literature. The member relation is also
used to indicate membership of elements on lists.

http://milca.sfs.uni-tuebingen.de/A4/Course/PDF/glossary/glossar.html?anaphor&feature_structures&grammar&loc-o-bind/2&loc-o-command/2&member/2&nonpronoun&o-bind/2&personal_pronoun&relation&sign-ss-append/3

2.4. GRAMMARS AND THEIR MEANING 89

Definition 18 Σ is a signature iff1

Σ is a septuple 〈G,⊑,S,A,F ,R,AR〉,2

〈G,⊑〉 is a partial order,3

S =

{

σ ∈ G

∣
∣
∣
∣
∣

for each σ′ ∈ G,
if σ′ ⊑ σ then σ = σ′

}

,
4

A is a set,5

F is a partial function from the Cartesian product of G and A to G,6

for each σ1 ∈ G, for each σ2 ∈ G and for each α ∈ A,7

if F (〈σ1, α〉) is defined and σ2 ⊑ σ18

then F (〈σ2, α〉) is defined and F (〈σ2, α〉) ⊑ F (〈σ1, α〉),9

R is a finite set, and10

AR is a total function from R to IN+.11

For MoMo signatures, we need new notational conventions to declare relations and their
arity. Figure 2.3 illustrates how we do this: The declaration of the sort hierarchy and the
appropriateness conditions is followed by the keyword relations in a new line, which is
in turn followed by the declaration of the relation symbols. The arity of the relations is
indicated by notating it behind the relation symbols, separated from them by a slash.

For variety, the signature of Figure 2.3 is new and contains some modifications of
declarations that we saw before. One of the purposes of these variations is that we should
learn to pay close attention to the details of a signature declaration. Within the bounds
of the definition of what signatures are, the symbols we introduce and the appropriateness
conditions we specify are completely arbitrary, and we should not be tempted to think that
anything is fixed.

In this spirit, note the new way in which we have specified lists in the new signature.
Instead of using the features head and tail on nelist, we used first and rest. first
and rest are actually the attribute names that Pollard and Sag employ in their grammar
of English for the purpose of encoding lists. In the extensive example of a grammar over
a non-linguistic domain in Section 2.4.3, we will take the signature of Figure 2.3 to state
a few insightful observations about the relationship between owners and drivers of certain
types of cars (or a truck), and to say something about the relationship between the owner,
the driver, the passengers in the front seats, the passengers in the back seats, and all the
passengers of cars.

Based on the definition of signatures, we define boxes and formulae relative to a given
signature. The only difference to the previous definition is the addition of relational ex-
pressions to Σ formulae. Σ boxes do not change at all. The two new lines are marked by
an asterisk (*) on the margin.

90 CHAPTER 2. GRAMMAR FORMALISMS

type_hierarchy

top

person likes-best:top

man

woman

car owner:person driver:person passengers:interior

bmw

mercedes

vw

magirus

interior front-seats:list back-seats:list total:list

list

elist

nelist first:person rest:list

relations

append/3

member/2

no-repetitions/1

.

Figure 2.3: A signature with relations in MoMo notation

Definition 19 For each signature Σ = 〈G,⊑,S,A,F ,R,AR〉, BOXΣ and DΣ are the1

smallest sets such that2

for each X ∈ VAR$,3

X ∈ BOXΣ,4

for each σ ∈ G,5

σ ∈ BOXΣ,6

for each α ∈ A, for each δ ∈ BOXΣ,7

α : δ ∈ BOXΣ,8

for each δ ∈ BOXΣ, ∼ δ ∈ BOXΣ,9

for each δ1 ∈ BOXΣ, for each δ2 ∈ BOXΣ, (δ1, δ2) ∈ BOXΣ,10

for each δ1 ∈ BOXΣ, for each δ2 ∈ BOXΣ, (δ1; δ2) ∈ BOXΣ,11

for each δ1 ∈ BOXΣ, for each δ2 ∈ BOXΣ, (δ1*>δ2) ∈ BOXΣ,12

for each δ1 ∈ BOXΣ, for each δ2 ∈ BOXΣ, (δ1<*>δ2) ∈ BOXΣ,13

2.4. GRAMMARS AND THEIR MEANING 91

for each δ ∈ BOXΣ,14

δ ∈ DΣ,15

for each X ∈ VAR$, for each δ ∈ BOXΣ,16

X : δ ∈ DΣ,17

for each X ∈ VAR$, for each Y ∈ VAR$,18

X = Y ∈ DΣ,19

* for each ρ ∈ R, for each X1 ∈ VAR, . . . , for each XAR(ρ) ∈ VAR,20

ρ
(

X1, . . . , XAR(ρ)

)

∈ DΣ,21

for each X ∈ VAR, for each δ ∈ DΣ,22

∃X δ ∈ DΣ,23

for each X ∈ VAR, for each δ ∈ DΣ,24

∀X δ ∈ DΣ,25

for each δ ∈ DΣ, ∼ δ ∈ DΣ,26

for each δ1 ∈ DΣ, for each δ2 ∈ DΣ, (δ1, δ2) ∈ DΣ,27

for each δ1 ∈ DΣ, for each δ2 ∈ DΣ, (δ1; δ2) ∈ DΣ,28

for each δ1 ∈ DΣ, for each δ2 ∈ DΣ, (δ1*>δ2) ∈ DΣ, and29

for each δ1 ∈ DΣ, for each δ2 ∈ DΣ, (δ1<*>δ2) ∈ DΣ.30

We call each element of BOXΣ a Σ box, and each element of DΣ a Σ formula. The new
Σ formulae of the form ρ

(

X1, . . . , XAR(ρ)

)

consist of a relation symbol together with as
many variables as the arity of the relation is within round brackets. We call them relational
Σ formulae. Here is an example of their usage:

92 CHAPTER 2. GRAMMAR FORMALISMS

(21) The Head Filler Schema in MoMo notation10

^Local ^Set (

dtrs:(head-filler-struc,

filler-dtr:synsem:local:Local,

head-dtr:synsem:(local:cat:(head:vform:finite,

subcat:elist),

nonlocal:(inherited:slash:Set,

to-bind:slash:element:Local,

rest-set:eset))),

member(Local,Set))

Remember that the Head Filler Schema is not a principle of grammar; it is only
a disjunct in the consequent of the ID Principle. Since, according to the way we intro-
duced it, appealing to the existential closure convention is strictly speaking only permitted
in complete principles of grammar, we made the existential quantification over the two
variables Local and Set explicit in (21).

Just as with complex grammars, our final notion of grammars will not use arbitrary
formulae but only the subset of formulae that do not contain any unbound occurrences
of variables. We formalize this idea using the function FV . Definition 20 differs from its
preliminary version for complex grammars only in the additional base case for relational Σ
formulae.

Definition 20 For each signature Σ = 〈G,⊑,S,A,F ,R,AR〉, FV is the total function1

from BOXΣ ∪ DΣ to Pow (VAR) such that2

FV ($) = ∅,3

for each X ∈ VAR, FV (X) = {X},4

for each σ ∈ G, FV (σ) = ∅,5

for each α ∈ A, for each δ ∈ BOXΣ, FV (α : δ) = FV (δ),6

for each X ∈ VAR$, for each δ ∈ BOXΣ, FV (X : δ) = FV (X) ∪ FV (δ),7

for each X ∈ VAR$, for each Y ∈ VAR$, FV (X = Y) = FV (X) ∪ FV (Y),8

for each ρ ∈ R, for each X1 ∈ VAR, . . . , for each XAR(ρ) ∈ VAR,9

FV
(

ρ
(

X1, . . . , XAR(ρ)

))

= FV (X1) ∪ . . . ∪ FV
(

XAR(ρ)

)

,10

for each X ∈ VAR, for each δ ∈ DΣ, FV (∃X δ) = FV (δ)\{X},11

for each X ∈ VAR, for each δ ∈ DΣ, FV (∀X δ) = FV (δ)\{X},12

for each δ ∈ BOXΣ ∪ DΣ, FV (∼ δ) = FV (δ),13

for each δ1 ∈ BOXΣ ∪DΣ, for each δ2 ∈ BOXΣ ∪DΣ, FV ((δ1, δ2)) = FV (δ1) ∪ FV (δ2),14

for each δ1 ∈ BOXΣ ∪DΣ, for each δ2 ∈ BOXΣ ∪DΣ, FV ((δ1; δ2)) = FV (δ1) ∪ FV (δ2),15

10For the purposes of this example, we have assumed a set-signature where a supersort set has two
immediate, maximally specific subsorts, eset (without any appropriate attribute) and neset. element
and rest-set are appropriate to neset, with appropriate values object (the top sort of the signature of
[Pollard and Sag, 1994]) and set, respectively.

2.4. GRAMMARS AND THEIR MEANING 93

for each δ1 ∈ BOXΣ∪DΣ, for each δ2 ∈ BOXΣ∪DΣ, FV ((δ1*>δ2)) = FV (δ1)∪FV (δ2),16

for each δ1 ∈ BOXΣ∪DΣ, for each δ2 ∈ BOXΣ∪DΣ, FV ((δ1<*>δ2)) = FV (δ1)∪FV (δ2).17

The function FV yields for each Σ box and for each Σ formula the set of variables that
occur free in them. In relational expressions, the variables in the argument slots behind
the relation symbol occur free. It follows that in grammatical principles they always have
to be bound by some quantifiers. Sometimes we can leave it to our notational convention
of existential closure to bind the variables. Most notably, the fact that a principle with
relations is stated without any kind of explicit quantification somewhere in the linguistically
oriented (and, for the most part, quite informal) HPSG literature is by no stretch of the
imagination sufficient to believe that existential closure is the right interpretation!

As we have said repeatedly, for grammars we are interested in Σ descriptions, the set
of Σ formulae that do not contain any unbound variables:

Definition 21 For each signature Σ,1

DΣ
0 = {δ ∈ DΣ | FV (δ) = ∅}.2

For each signature Σ, we call each member of DΣ
0 a Σ description. Our final notion of

a grammar is based on signatures and on Σ descriptions:

Definition 22 Γ is a grammar iff1

Γ is a pair 〈Σ, θ〉,2

Σ is a signature, and3

θ ⊆ DΣ
0 .4

Just as before, a grammar is a signature, Σ, together with a set of Σ descriptions. With
this definition of our final notion of constraint-based grammars, we can now turn to the
task of assigning our relational expressions an adequate meaning in a domain of abstract
feature structures.

Exercises

Exercise 23 Translate the Subcategorization Principle from the AVM notation as
given in (17) to MoMo syntax. For this and the following exercise you may want to use
the mmp file two-principles-ex241.mmp, which already contains the necessary fragment of
the signature of Pollard and Sag to write the Subcategorization Principle and the
principle of the next exercise in MoMo.

Exercise 24 Translate Principle A of the Binding Theory from the AVM notation as
given in (20) to MoMo syntax. Be careful about the kinds of expressions that are allowed
in the argument slots of relational expressions in our syntax!

http://milca.sfs.uni-tuebingen.de/A4/Course/Momo/Online-Edition/Links/links.html?http://milca.sfs.uni-tuebingen.de/A4/Course/Momo/mmps/Section241/two-principles-ex241.mmp

94 CHAPTER 2. GRAMMAR FORMALISMS

Exercise 25 In this exercise we want to think again about the meaning of grammars, i.e.,
the meaning that we ascribe to tuples consisting of a signature and a set of descriptions.

We are working with the signature that we have favored so far, the signature of Sec-
tion 2.1.2 with lists, birds and pets (birdsandpets-ex-241.mmp). First we will formulate a
set of descriptions over that signature. Together they form our grammar of lists of birds
and pets. We have the following principles:

1. Woodpeckers are red.

2. Canaries are yellow.

3. Parrots are green.

4. Pets are brown.

5. Non-empty lists contain one or two elements.

6. The first element of each non-empty list is a canary.

(a) Write this grammar down in MoMo notation. (you may do this immediately in
MoMo by either creating description cards separately for each principle of grammar,
or one card that contains all of them. If you do this exercise directly in MoMo, please
indicate separately what precisely your grammar is.)

(b) State the (complete!) set of feature structures admitted by the grammar. (To keep this
readable, use pictures of concrete feature structures that correspond to the abstract
feature structures admitted by the grammar according to our definitions. The easiest
way to create and submit your solution is to use MoMo. With MoMo you can of
course also check whether each of your feature structures is really admitted by your
grammar. To check whether your feature structures model your grammar, all the
descriptions of the grammar have to be on one single description card of MoMo.)

GLOSSARY

2.4.2 Meaning

Abstract

We will extend our simple abstract feature structures from triples 〈β, ̺, λ〉 to
relational abstract feature structures, which are quadruples 〈β, ̺, λ, ξ〉. The new
component, ξ, of our feature structures is the relational extension of feature
structures. We can interpret a fully formalized version of Pollard and Sag’s
grammar of English in a domain of relational abstract feature structures by
defining a satisfaction function and an admission function for the descriptions
and grammars of the previous section, parallel to our former definitions of the
semantics of constraint-based grammars.

http://milca.sfs.uni-tuebingen.de/A4/Course/Momo/Online-Edition/Links/links.html?http://milca.sfs.uni-tuebingen.de/A4/Course/Momo/mmps/Section241/birdsandpets-ex-241.mmp
http://milca.sfs.uni-tuebingen.de/A4/Course/PDF/glossary/glossar.html?attributes&boxes&Cartesian_product&description&finite_set&&iff&loc-o-bind/2&loc-o-command/2&pair&partial_function&partial_order&power_set&septuple&set&sign-ss-append/3&signature&smallest_set&total_function&|N+

2.4. GRAMMARS AND THEIR MEANING 95

The real work of defining a relational extension of a feature logic with an interpretation
in a domain of feature structures lies in finding an appropriate extension of the notion
of feature structures. Standard definitions of feature structures simply do not foresee a
representation of arbitrary relations. But this is exactly what we need in order to be able
to determine what it means for a feature structure to satisfy a description that contains a
relational formula.

In this situation it is a good idea to be very precise about what we want to achieve. In
the linguistic examples we saw that relations in HPSG are supposed to express the idea
that certain relationships hold between the components of a linguistic structure. In terms
of our feature structure semantics of HPSG this means that certain nodes of a feature
structure stand in some relationship. Moreover, the nodes are in the relationship if and
only if certain properties hold of a certain number of nodes in a feature structure. These
relationships between nodes with certain properties are the kind of situation that is best
captured in terms of the mathematical concept of relations. Relations are sets of tuples
of objects: For example, a three-place relation like append is a set of triples. The first
element of each triple is in the first argument of the relation, the second element of each
triple in the second, and the third element of each triple in the third.

As we have seen, linguists might come up with arbitrary relations. We cannot predict
in advance which ones linguists might find useful, since they will want to be able to define
for themselves what kinds of nodes in a feature structure stand in these relations. We
may view the problem of providing the means to express arbitrary relations between tuples
of nodes as another instance of what we always see in our constraint-based grammars:
The users of the formalism want to make well-formedness statements about a domain
of objects such that, somewhat loosely speaking, the sum of all feature structures that
satisfy the given requirements in all their components constitute the intended model of the
statements over a signature. The same holds now for relations. The grammar writers tell us
with statements (usually called principles) in their grammars which nodes in each feature
structure are required in a given relation in order for the relation symbol to mean what
the users intend. All feature structures that are admitted by the set of these statements
fulfill the relevant requirements and exhibit the right behavior of the relations. At the end
of the day, a relation symbol like member means the right thing according to the grammar
writer in all feature structure models of her grammar since feature structure models are
licensed by the set of all principles of grammar, including those “principles” that tell us
which nodes are supposed to stand in a membership relation. We will see how this works
below in an example, after we clarify our technical representation of relations in abstract
feature structures.

How can we represent relations in abstract feature structures? Well, we have said that
an n-ary relation is a set of n-tuples of objects. For us, an n-ary relation is a set of n-tuples
of abstract nodes in abstract feature structures. We know that we might have an arbitrary
number of relation symbols in a grammar. Under these circumstances it will work for us if
we collect the n-tuples of nodes for our relations and attach a label to each n-tuple in order
to signal which n-ary relation is meant by it. This label distinguishes between different
relations in case we have several relations of the same arity in our grammar, like member

96 CHAPTER 2. GRAMMAR FORMALISMS

and loc-o-command in the grammar of English of Pollard and Sag. As a name tag of each
tuple we can of course use the respective relation symbol. A relation in a feature structure
is then the set of all n-tuples of nodes with the respective name tag attached to them. As
is always the case in our abstract feature structures, the abstract nodes in relation tuples
will be represented by the attribute paths that lead to them from the abstract root node.

Definition 23 extends simple abstract feature structures (triples consisting of a basis
set, a re-entrancy relation, and a label function) to quadruples. We call the extensions
relational abstract feature structures. They comprise all components of simple abstract
feature structures, defined in exactly the same way as before; plus a relation extension,
ξ, whose elements are tuples consisting of a relation symbol (the name tag) together with
n paths, one in each argument slot, where the number of arguments is given by the arity
of the respective relation as stated in the signature by means of the arity function AR.
As developed above, the idea behind this representation is that the paths indicate the
abstract nodes that stand in the relation. For each relation symbol ρ of the signature,
each relational abstract feature structure under that signature may contain tuples in ξ in
which the (abstract) nodes that are in ρ are represented as the paths π that lead to them.
These ideas result in the form 〈ρ, π1, . . . , πAR(ρ)〉 of these tuples, in which the symbol ρ
indicates to which relation the following AR(ρ)-tuple of paths belongs, and each AR(ρ)-
tuple of paths indicates which abstract nodes are a tuple of arguments in the relation ρ.
Lines 3 through 17 of Definition 23 repeat our old definition of simple abstract feature
structures. Lines 18 through 26 are new and concern the relational extension:

Definition 23 For each signature Σ = 〈G,⊑,S,A,F ,R,AR〉, A is a relational ab-1

stract feature structure under Σ iff2 A is a quadruple 〈β, ̺, λ, ξ〉,3

β ⊆ A∗,4

ε ∈ β,5

for each π ∈ A∗, for each α ∈ A,6

if πα ∈ β then π ∈ β,7

̺ is an equivalence relation over β,8

for each π1 ∈ A∗, for each π2 ∈ A∗, for each α ∈ A,9

if π1α ∈ β and 〈π1, π2〉 ∈ ̺ then 〈π1α, π2α〉 ∈ ̺,10

λ is a total function from β to S, and11

for each π1 ∈ A∗, for each π2 ∈ A∗,12

if 〈π1, π2〉 ∈ ̺ then λ(π1) = λ(π2).13

2.4. GRAMMARS AND THEIR MEANING 97

for each π ∈ A∗, for each α ∈ A,14

if πα ∈ β then F (〈λ(π), α〉) is defined and λ(πα) ⊑ F (〈λ(π), α〉),15

for each π ∈ A∗, for each α ∈ A,16

if π ∈ β and F (〈λ(π), α〉) is defined then πα ∈ β,17

ξ ⊆ R× β∗,18

for each ρ ∈ R, for each π1 ∈ β,. . . , for each πn ∈ β,19

if 〈ρ, π1, . . . , πn〉 ∈ ξ then n = AR(ρ), and20

for each ρ ∈ R, for each π1 ∈ β, . . ., for each πn ∈ β, for each π′
1 ∈ β, . . ., for each21

π′
n ∈ β,22

if 〈ρ, π1, . . . , πn〉 ∈ ξ, and23

for each i ∈ {1, . . . , n},24

πi ∈ β and 〈πi, π
′
i〉 ∈ ̺,25

then 〈ρ, π′
1, . . . , π

′
n〉 ∈ ξ.26

The last condition (in the last 6 lines of Definition 23 (lines 21–26)) on the tuples in
ξ is saying that if a path π occurs in the nth argument position of a relation then all other
paths π′ that lead to the same abstract node must also occur in that position, all other
argument slots being equal. Of course, this has to happen for all argument slots, which
means that in the end, every argument occurs with all possible paths for each abstract
node, and in all possible combinations with all other paths representing the abstract nodes
in the other argument positions. Another way of expressing the same idea is to say that if
one member of an equivalence class in ̺ occurs in an argument position of a relation ρ, then
all other members of that equivalence class must also occur with the same combination
of the other arguments of the relation ρ, since it is the entire equivalence class in ̺ that
represents the abstract node.11

Let us look at what this means in more detail in a very simple MoMo example. As-
sume that we have a signature that contains sorts and appropriateness conditions for the
description of lists. Also assume that we have a sort element for atomic objects that we
want to use as elements on lists, and the relation symbol member. We can see in Figure 2.4
what this looks like in MoMo.

Now assume we have a feature structure representing a list with three elements (you can
look at the following example in MoMo by downloading and opening the file

11This observation suggests that we might have formalized the relational extension of abstract feature
structures just as well by using the equivalence classes of ̺ as arguments of each relation. In a sense, we
would thus have built the conditions of the lines 21–26 directly into a reformulation of the lines 19–20.

98 CHAPTER 2. GRAMMAR FORMALISMS

type_hierarchy

top

list

elist

nelist first:element rest:list

element

relations

member/2

.

Figure 2.4: A simple signature for lists in MoMo notation

membership-princ242. Choose the interpretation Example for list membership. You must
activate the menu option “Show Node Numbers” in the interpretation window of Example
for list membership in order to see the node numbers that we will keep referring to).12 A
list feature structure with three elements has three nelist nodes, which we will call A0, A1
and A2. A0 is the root node of the feature structure, A1 is the rest value of A0, and A2
is the rest value of A1. From A2 a rest arc leads to an elist node signaling the end of
the list. Each nelist node has an outgoing first arc leading to an element node. We call
the first value of A0 A4, the first value of A1 is A5, and the first value of A2 is A6.

Given this basic scaffold of our relational feature structure, what should be in the
representation of member so that it corresponds to our intuitive understanding of a list
membership relation?

The description fixing the intended meaning of member would probably say something
like: ‘A node is on a list if it is the first value of a node that we can reach following a
(possibly empty) sequence of rest arcs.’ Which nodes are then the members of the list
A0? Well, it should be A4 (its direct first value), A5 (because it is the first value of
A1, which we can reach from A0 following one rest arc), and A6, because it is the first
value of A2, which we can reach from A0 following two rest arcs. But that is not all,
since there are more nelist nodes in our feature structure! We also have to list the members
of the nelist nodes A1 and of A2 in order to get an intuitively correct representation of
the membership relations in the overall feature structure. Thus, we also put the tuples
〈A5, A1〉, 〈A6, A1〉, and 〈A6, A2〉 in our representation of member. This being completed,
we have constructed a feature structure representation of a list with three elements and an
intuitively correct representation of the list-membership relation in it. Whereas the tuples
in the relation are represented by paths in abstract feature structures, the concrete feature
structure representation of them is accomplished by referring to the concrete nodes and
indicating which of them are in the member relation.

Note that it was completely left to us to decide which nodes we would put into the

12Once more we are introducing a concept for abstract feature structures using the more gentle concrete
feature structures. By now it should be obvious to the reader how to translate the terminology of concrete
feature structures into the terminology of corresponding abstract feature structures.

http://milca.sfs.uni-tuebingen.de/A4/Course/Momo/Online-Edition/Links/links.html?http://milca.sfs.uni-tuebingen.de/A4/Course/Momo/mmps/Section242/membership-princ242.mmp

2.4. GRAMMARS AND THEIR MEANING 99

tuples of member: Any pair of nodes may occur there according to the signature and the
definition of relational abstract feature structures. We decided to put certain nodes into
the pairs and leave others out because of our understanding of what the member relation
should be. Later we will have to write a Membership Principle as part of our theory
of grammar. Relational abstract feature structures representing lists with three elements
that are licensed by that principle will then have to look just like the one that we have just
investigated: Only if the nodes that we put into the member relation are in the relation
and no others, will the feature structure be admitted by the Membership Principle.
However, before we present and discuss a Membership Principle for lists, we have to
say how relational abstract feature structure satisfaction works.

In the definition of the satisfaction functions, we must refer to Σ insertions. Fortunately,
upon inspection, we find that we do not have to change anything substantial in their
definition. It is sufficient to minimally modify the old definition by changing the former
reference to initial signatures to a reference to signatures. Since the new components of
signatures, R and AR, are referred to nowhere else in the definitions, the definitions do
not change in any significant way, and we do not repeat them here.

What we have to modify, though, is the definition of π reducts of feature structures,
since we need to say what the π reduct of the representations of relations in the relational
extension of feature structures is. To get the π reduct of ξ, we take each tuple in it and
remove the initial string π from each path in the paths representing the nodes that stand
in the relation. Tuples that contain an argument with a path that does not start with π
get thrown out and are not in the π reduct of ξ. This is entirely parallel to what happens
in π reducts of the re-entrancy relation, ̺, except that the re-entrancy relation is always a
pair, whereas a relation is a tuple with an arbitrary positive finite number of arguments.

Definition 24 For each signature Σ = 〈G,⊑,S,A,F ,R,AR〉, for each A = 〈β, ̺, λ, ξ〉 ∈1 AFSΣ, for each π ∈ A∗,2

β/π = {π′ ∈ A∗ | ππ′ ∈ β},3

̺/π = {〈π1, π2〉 ∈ A∗ ×A∗ | 〈ππ1, ππ2〉 ∈ ̺},4

λ/π = {〈π′, σ〉 ∈ A∗ × S | 〈ππ′, σ〉 ∈ λ},5

ξ/π = {〈ρ, π1, . . . , πAR(ρ)〉 ∈ R× (β/π)∗} | 〈ρ, ππ1, . . . , ππAR(ρ) ∈ ξ〉}, and6 A/π = 〈β/π, ̺/π, λ/π, ξ/π〉.7

As before, we can show that if a relational abstract feature structure under some sig-
nature Σ, A, contains path π as an element of its basis set then the π reduct of A is also a
relational abstract feature structure under Σ.

We can now immediately proceed to the final definition of the satisfaction functions.
For each signature Σ and each Σ insertion ι ∈ IΣ, the relational abstract feature structure
satisfaction function under ι in Σ, ∆ι

Σ, is defined inductively over all Σ formulae. As in
the previous version, the definition of the semantics for Σ formulae follows the syntactic
structure of our expressions and uses a second feature structure satisfaction function under

100 CHAPTER 2. GRAMMAR FORMALISMS

ι in Σ for Σ boxes, Ξι
Σ, which gives us the relational feature structure denotation of Σ

boxes under ι. Since the structure of Σ boxes has not changed at all, Ξι
Σ does not change

either. The only difference to the previous satisfaction functions is the additional clause
for relational Σ formulae in lines 27 and 28.

Definition 25 For each signature Σ = 〈G,⊑,S,A,F ,R,AR〉, for each Σ insertion ι ∈ IΣ,1

Ξι
Σ is the total function from the threefold Cartesian product of Pow(A∗ × A∗), A∗ and2 BOXΣ to Pow(AFSΣ) and ∆ι

Σ is the total function from DΣ to Pow(AFSΣ) such that3

for each ̺0 ∈ Pow(A∗ ×A∗), for each π ∈ A∗, for each X ∈ VAR$,4

Ξι
Σ(̺0, π, X) =

{

〈β, ̺, λ, ξ〉 ∈ AFSΣ
∣
∣
∣〈ι(X), π〉 ∈ ̺0

}

,5

for each ̺0 ∈ Pow(A∗ ×A∗), for each π ∈ A∗, for each σ ∈ G,6

Ξι
Σ(̺0, π, σ) =

〈β, ̺, λ, ξ〉 ∈ AFSΣ

∣
∣
∣
∣
∣
∣
∣

for some σ′ ∈ S,
〈ε, σ′〉 ∈ λ, and
σ′ ⊑ σ

,
7

for each ̺0 ∈ Pow(A∗ × A∗), for each π ∈ A∗, for each α ∈ A, for each8

δ ∈ BOXΣ,9

Ξι
Σ(̺0, π, α : δ) =

{

〈β, ̺, λ, ξ〉 ∈ AFSΣ

∣
∣
∣
∣
∣

α ∈ β, and
〈β, ̺, λ, ξ〉/α ∈ Ξι

Σ(̺0, πα, δ)

}

,
10

for each ̺0 ∈ Pow(A∗ ×A∗), for each π ∈ A∗, for each δ ∈ BOXΣ,11

Ξι
Σ(̺0, π,∼ δ) = AFSΣ\Ξι

Σ(̺0, π, δ),12

for each ̺0 ∈ Pow(A∗ × A∗), for each π ∈ A∗, for each δ1 ∈ BOXΣ, for each13

δ2 ∈ BOXΣ,14

Ξι
Σ(̺0, π, (δ1, δ2)) = Ξι

Σ(̺0, π, δ1) ∩ Ξι
Σ(̺0, π, δ2),15

for each ̺0 ∈ Pow(A∗ × A∗), for each π ∈ A∗, for each δ1 ∈ BOXΣ, for each16

δ2 ∈ BOXΣ,17

Ξι
Σ(̺0, π, (δ1; δ2)) = Ξι

Σ(̺0, π, δ1) ∪ Ξι
Σ(̺0, π, δ2),18

for each ̺0 ∈ Pow(A∗ × A∗), for each π ∈ A∗, for each δ1 ∈ BOXΣ, for each19

δ2 ∈ BOXΣ,20

Ξι
Σ(̺0, π, (δ1*>δ2)) =

(AFSΣ\Ξι
Σ(̺0, π, δ1)

)

∪ Ξι
Σ(̺0, π, δ2),21

2.4. GRAMMARS AND THEIR MEANING 101

for each ̺0 ∈ Pow(A∗ × A∗), for each π ∈ A∗, for each δ1 ∈ BOXΣ, for each22

δ2 ∈ BOXΣ,23

Ξι
Σ(̺0, π, (δ1<*>δ2)) =24
((AFSΣ\Ξι

Σ(̺0, π, δ1)
)

∩
(AFSΣ\Ξι

Σ(̺0, π, δ2)
))

∪25

(Ξι
Σ(̺0, π, δ1) ∩ Ξι

Σ(̺0, π, δ2)), and26

for each X ∈ VAR$,27

∆ι
Σ(X) =

{

〈β, ̺, λ, ξ〉 ∈ AFSΣ
∣
∣
∣ι(X) ∈ β

}

,28

for each σ ∈ G,29

∆ι
Σ(σ) =

〈β, ̺, λ, ξ〉 ∈ AFSΣ

∣
∣
∣
∣
∣
∣
∣

for some σ′ ∈ S,
〈ε, σ′〉 ∈ λ, and
σ′ ⊑ σ

,
30

for each α ∈ A, for each δ ∈ BOXΣ,31

∆ι
Σ(α : δ) =

{

〈β, ̺, λ, ξ〉 ∈ AFSΣ

∣
∣
∣
∣
∣

α ∈ β,
〈β, ̺, λ, ξ〉/α ∈ Ξι

Σ(̺, α, δ)

}

,
32

for each X ∈ VAR$, for each δ ∈ BOXΣ,33

∆ι
Σ(X : δ) =

{

〈β, ̺, λ, ξ〉 ∈ AFSΣ

∣
∣
∣
∣
∣

ι(X) ∈ β, and
〈β, ̺, λ, ξ〉/ι(X) ∈ Ξι

Σ (̺, ι(X), δ)

}

,
34

for each X ∈ VAR$, for each Y ∈ VAR$,35

∆ι
Σ(X = Y) =

{

〈β, ̺, λ, ξ〉 ∈ AFSΣ
∣
∣
∣〈ι(X), ι(Y)〉 ∈ ̺

}

,36

for each ρ ∈ R, for each X1 ∈ VAR, . . ., for each XAR(ρ) ∈ VAR,37

∆ι
Σ(ρ(X1, . . . , XAR(ρ))) =

{

〈β, ̺, λ, ξ〉 ∈ AFSΣ
∣
∣
∣〈ρ, ι(X1), . . . , ι(XAR(ρ))〉 ∈ ξ

}

,38

for each X ∈ VAR, for each δ ∈ DΣ,39

∆ι
Σ(∃X δ) =

{

〈β, ̺, λ, ξ〉 ∈ AFSΣ

∣
∣
∣
∣
∣

for some π ∈ β,

〈β, ̺, λ, ξ〉 ∈ ∆
ι[π

X
]

Σ (δ)

}

,
40

for each X ∈ VAR, for each δ ∈ DΣ,41

∆ι
Σ(∀X δ) =

{

〈β, ̺, λ, ξ〉 ∈ AFSΣ

∣
∣
∣
∣
∣

for each π ∈ β,

〈β, ̺, λ, ξ〉 ∈ ∆
ι[π

X
]

Σ (δ)

}

,
42

102 CHAPTER 2. GRAMMAR FORMALISMS

for each δ ∈ DΣ, ∆ι
Σ(∼ δ) = AFSΣ\∆ι

Σ(δ),43

for each δ1 ∈ DΣ, for each δ2 ∈ DΣ, ∆ι
Σ((δ1, δ2)) = ∆ι

Σ(δ1) ∩ ∆ι
Σ(δ2),44

for each δ1 ∈ DΣ, for each δ2 ∈ DΣ, ∆ι
Σ((δ1; δ2)) = ∆ι

Σ(δ1) ∪ ∆ι
Σ(δ2),45

for each δ1 ∈ DΣ, for each δ2 ∈ DΣ, ∆ι
Σ((δ1*>δ2)) =

(AFSΣ\∆ι
Σ(δ1)

)

∪∆ι
Σ(δ2),46

and47

for each δ1 ∈ DΣ, for each δ2 ∈ DΣ,48

∆ι
Σ((δ1<*>δ2)) =

((AFSΣ\∆ι
Σ(δ1)

)

∩
(AFSΣ\∆ι

Σ(δ2)
))

∪ (∆ι
Σ(δ1) ∩ ∆ι

Σ(δ2)).49

We call ∆ι
Σ the relational abstract feature structure satisfaction function under ι in Σ,

and say A satisfies δ under ι in Σ if and only if A ∈ ∆ι
Σ(δ). Intuitively speaking, a relational

feature structure satisfies a relational expression if and only if the paths inserted for the
variables in the relational expression lead to abstract nodes that stand in the relation
according to the representation of the relation given by the elements of ξ.

Before we take a look at how the satisfaction function works for relational expressions
in grammars, let us first define the corresponding admission function. It does not change
at all compared to our previous version in Section 2.3 for complex grammars:

Definition 26 For each signature Σ,1

MΣ is the total function from Pow(DΣ
0) to Pow(AFSΣ) such that for each θ ⊆ DΣ

0 ,2

MΣ(θ) =

〈β, ̺, λ, ξ〉 ∈ AFSΣ

∣
∣
∣
∣
∣
∣
∣
∣
∣

for each π ∈ β,
for each ι ∈ IΣ, and
for each δ ∈ θ,
〈β, ̺, λ, ξ〉/π ∈ ∆ι

Σ(δ)

.

3

For each signature Σ, we call MΣ the relational abstract feature structure admission
function in Σ. A simple abstract feature structure under Σ, A, is in the set of relational
abstract feature structures under Σ admitted by a Σ theory θ exactly if A and every
possible π reduct of A satisfy every description in θ. Except for the extended notion of
abstract feature structures, this is the definition that we already had before with simpler
description languages. Given a grammar, 〈Σ, θ〉, we regard the set of relational abstract
feature structures admitted by θ, MΣ(θ), as the intended meaning of 〈Σ, θ〉. Pollard and
Sag say that the members of MΣ(θ) are mathematical representations of the object types
of the language that the grammar is about.

How do we use the semantics of relational expressions to write principles that give
relation symbols the meanings we want them to have in feature structure models of our
grammars? It is clear that once we provide an answer to this question and are able to
force relation symbols to have the meanings we want them to have, it is no longer difficult
to use the relation symbols appropriately in the Subcategorization Principle and in
the Head-Filler Schema, or even in principles as complex as the Binding Theory.
Indeed, we have already seen how Pollard and Sag do that in their grammar of English.

2.4. GRAMMARS AND THEIR MEANING 103

VX VY(member(Y,X) <*> X:first:Y;

^Z (X:rest:Z,

member(Y,Z)))

Figure 2.5: A Membership Principle for lists

In Figure 2.5 we see an example of the relevant new type of grammatical principle, the
Membership Principle, which we state relative to the signature of Figure 2.4.

What does the Membership Principle mean? Its effect on feature structure models
of a grammar that contains it can be characterized as follows. Under the feature structure
admission function, it says that a feature structure A is admitted by it exactly if the follow-
ing holds: For each pair Y and X of (abstract) nodes in A, they are in the member relation
if and only if Y is the first value of X (i.e., Y is the first element on list X), or there is a
Z which happens to be the rest value of X, and Y is in the member relation with Z (i.e.,
we find Y on the rest of the list).13 But that means that if the Membership Principle
is satisfied for each node in a relational abstract feature structure, all of those nodes that
we want, and, mind you, only those nodes, are, indeed, in the relation. In other words,
the relational abstract feature structure admission function will take care of enforcing the
right meaning of the member symbol. We can see this by activating the description card
membership principle in the MoMo file membership-princ242.mmp and pressing the button
Check modeling in the interpretation window Example for list membership, which contains
a feature structure representation of a list with a correct relational extension represent-
ing the member relation: Our feature structure is indeed admitted by the Membership
Principle.

The situation changes immediately and the feature structure becomes ill-formed under
admission when we take out tuples of nodes or add other tuples to the relational feature
structure. Then the Membership Principle is no longer valid, because there are either
pairs missing in the relation or there are pairs in it that do not belong there according to
this principle. You can easily check this effect yourself by doing model checking in MoMo
relative to the description membership principle in membership-princ242.mmp with the
relational feature structures in missing pairs and too many pairs.

From our discussion we conclude that the full grammar of English of Pollard and Sag
must in fact contain more principles of grammar than they actually state in their appendix.
For each relation that they use in their grammar, we must add a principle that fixes its
intended meaning in models of the grammar. Before we can do that, we also have to
augment their signature with declarations of the necessary relation symbols and the arity
of the relations, just as we have done it in our own definitions and examples. In this
respect, the signature in the appendix to [Pollard and Sag, 1994] is incomplete.

Our syntax and semantics gives us a complete formalization of HPSG as it was presented

13This description also applies to nodes that are both the first member of a list and re-occur at some
later point on the list.

http://milca.sfs.uni-tuebingen.de/A4/Course/Momo/Online-Edition/Links/links.html?http://milca.sfs.uni-tuebingen.de/A4/Course/Momo/mmps/Section242/membership-princ242.mmp
http://milca.sfs.uni-tuebingen.de/A4/Course/Momo/Online-Edition/Links/links.html?http://milca.sfs.uni-tuebingen.de/A4/Course/Momo/mmps/Section242/membership-princ242.mmp

104 CHAPTER 2. GRAMMAR FORMALISMS

informally in [Pollard and Sag, 1994]. The way we defined our formal language and its
interpretation in a domain of relational abstract feature structures in Section 2.4 allows a
fairly direct formalization of the entire grammar of English of [Pollard and Sag, 1994]. As
things stand at the moment, there is only a very small number of open questions or minor
complications left. These open issues concern the description of sets, so-called parametric
sorts (or parametric types, according to the usual terminology of computer science), certain
relations between lists that require an extension of what counts as list-values in our abstract
feature structures (for directly expressing these relations as they are stated in the linguistic
literature), and certain conventional notational devices that one will want to be able to
use.

Some of these remaining issues will be addressed in the next section, such as parametric
sorts and special notational conventions for the description of lists. Others, such as chains
for non-standard uses of list-like structures in the arguments of relations, and an explana-
tion of how to describe set values, fall outside the scope of the present course. Therefore,
we must refer the interested reader to the relevant literature outside of this course to find
information on satisfactory solutions to these remaining problems.

Exercises

Exercise 26 Write down the relational abstract feature structure whose concrete counter-
part we discussed in the text below Figure 2.4 (Example for list membership in the MoMo
file membership-princ242.mmp) in the set notation of the definition of relational abstract
feature structures above, i.e., state its sets β, ̺, λ, and ξ.

Exercise 27 Let us call the relational abstract feature structure of the previous exerciseA1. State the rest reduct of A1, A1/rest in the set notation of the definition.

Exercise 28 The relational feature structure in the interpretation window too many pairs
of membership-princ242.mmp is not admitted by the Membership Principle. MoMo tells
us with black circles around the relevant nodes which nodes do not satisfy the description.
Give a very short explanation for each of these nodes saying why it does not satisfy the
Membership Principle.

Exercise 29 Take the signature of the file append-exercise242.mmp. It contains the rela-
tion symbol append, which is assigned arity 3 by AR.

Write an Append Principle over that signature in MoMo notation that says that
in every feature structure model of a grammar containing that principle, all the following
triples of nodes are in the append relation: The third element in the triple represents a
list that starts with the elements of the list represented in the first argument (if this list
has any elements) and continues as the list represented in the second argument. If the list
represented in the first argument slot of the tuple has no elements, then the list represented
in the third argument slot is identical with the list represented in the second argument slot.
If you like, you are welcome to submit your solution in an mmp file, but you are not required

http://milca.sfs.uni-tuebingen.de/A4/Course/Momo/Online-Edition/Links/links.html?http://milca.sfs.uni-tuebingen.de/A4/Course/Momo/mmps/Section242/membership-princ242.mmp
http://milca.sfs.uni-tuebingen.de/A4/Course/Momo/Online-Edition/Links/links.html?http://milca.sfs.uni-tuebingen.de/A4/Course/Momo/mmps/Section242/membership-princ242.mmp
http://milca.sfs.uni-tuebingen.de/A4/Course/Momo/Online-Edition/Links/links.html?http://milca.sfs.uni-tuebingen.de/A4/Course/Momo/mmps/Section242/append-exercise242.mmp

2.4. GRAMMARS AND THEIR MEANING 105

to do so.

GLOSSARY

2.4.3 An Extended Example for Grammars

Abstract

To illustrate our final formalism for constraint-based grammars, we will discuss
an example from a grammar of a non-linguistic domain.

In Exercise 25 of Section 2.4.1 we investigated a complex grammar by taking a signature,
formalizing a set of six principles as descriptions and then writing up the set of feature
structures licensed by the resulting grammar.

Now we want to look at another example, but this time with a different signature. The
crucial difference is that the present signature includes relations. The grammar that we
will investigate contains the full range of syntactic constructs that occur in the grammar
of English of Pollard and Sag. Figure 2.6 shows the signature that we assume:

type_hierarchy

top

person likes-best:top

man

woman

car owner:person driver:person passengers:interior

bmw

mercedes

vw

magirus

interior front-seats:list back-seats:list total:list

list

elist

nelist first:person rest:list

relations

append/3

member/2

no-repetitions/1

.

Figure 2.6: A signature for a theory of people and cars

We can now formulate a theory regarding our small domain of cars, people, people who
own and drive cars, and people in cars. First we state this theory in plain natural language.

http://milca.sfs.uni-tuebingen.de/A4/Course/PDF/glossary/glossar.html?admission&basic_set&equivalence_class&Cartesian_product&feature_structures&grammar&iff&insertion&label_function&object_types&path&power_set&principles&quadruple&re-entrancy_relation&reducts&relation&relation_extension&satisfaction&signature&total_function&triple&tuple

106 CHAPTER 2. GRAMMAR FORMALISMS

Then we think about a possible formalization of our statements on the basis of the signature
in Figure 2.6. The complete example is available in the file cars-and-people243.mmp.

(22) a. The driver always sits in the front seat.

b. At most two people sit in the front seats.

c. Nobody sits in two different seats at the same time.

d. At most three people sit in the back seats.

e. The total number of people in a car equals the number of people in the front seats
plus the number of people in the back seats.

f. A mercedes owner is always the driver.

g. A truck owner is never the truck driver.

h. Everybody likes a person or some car best.

i. A male BMW driver likes his car best.

Let us first state descriptions that we may use to formalize the statements in (22). We
will discuss them afterwards.

(23) a. VD(driver:D *> ^ L(passengers:front-seats:L,member(D,L)))

b. car *> passengers:front-seats:(rest:elist;rest:rest:elist)

c. car *> passengers:total:X,no-repetitions(X)

d. car *> passengers:back-seats:(elist;rest:elist;

rest:rest:elist;rest:rest:rest:elist)

e. car *> passengers:front-seats:X,passengers:back-seats:Y,

passengers:total:Z,append(X,Y,Z)

f. mercedes *> (owner:X,driver:X)

g. magirus *> ∼ ^ X(owner:X,driver:X)

h. person *> likes-best:(person;car)

i. (bmw,driver:man) *> $:driver:likes-best:X,X=$

http://milca.sfs.uni-tuebingen.de/A4/Course/Momo/Online-Edition/Links/links.html?http://milca.sfs.uni-tuebingen.de/A4/Course/Momo/mmps/Section243/cars-and-people243.mmp

2.4. GRAMMARS AND THEIR MEANING 107

Ad (23a): The formalization says that the driver is one of the persons on the list of
people in front seats. Using the member relation, we do not make any assumptions as to the
position of the driver on that list. An alternative formalization without a relation might
use a different principle which says that the driver is always the first person on the front
seats list.

Ad (23b): This is a trivial way of saying that the front seats list is either of length
one or of length two. Why don’t we allow lists of length zero, since the natural language
formulation only says at most two? The answer is that we are a little loose here, and
assume, justified by the previous principle, that there is always at least one person in the
front seats, namely the driver.

Ad (23c): Note the implicit wide scope existential quantification over the variable X.
The relation no-repetitions is supposed to hold for all lists on which no element occurs
twice. Why do we say this about the list value of total only, but not about the values of
front-seats and back-seats? Again we are relying on the effects of a different principle:
Principle (23e) says that the total of all people is the sum of people in the front and back
seats. As we will see below, we achieve this by appending the list of people in back seats
to the list of people in front seats to get the list of all people in the car. That nobody
appears twice on the total list will thus be sufficient to ensure that nobody sits in more
than one seat.

This kind of economy in formulating generalizations according to observations about
natural languages is found quite often in grammars.

Ad (23d): The formalization of the restriction of the number of people on the back
seats corresponds to the formalization of the restriction of the number of people in the
front seats, except that this time we allow zero passengers.

Ad (23e): We use the append relation to say that the list of all people in a car is
composed of the list of the people in the front and back seats.

Ad (23f): Note again the appeal to the existential closure convention for binding off
the variable X.

Ad (23g): In this case we cannot appeal to the existential closure convention for the
intended reading: We want to say that there exists no X, and in this statement the negation
takes scope over the existential quantification. Therefore we have to make the existential
quantifier in the scope of the negation operator, ∼, explicit.

Ad (23h): In the signature there is no sort that allows us to generalize exactly over cars
and people. For that reason we need the disjunction person;car in the consequent.

Ad (23i): Note the use of the reserved symbol $. Remember that we said that this
is a special variable whose denotation we defined as referring to the root node. Thus the
consequent of this principle says that X, which is the driver likes-best value of the
described feature structure, is identical to the root node. In the relevant case, when the
antecedent is true, $ refers to the bmw in question.

Have we finished formalizing the grammar expressed by the signature of Figure 2.6
and the informal principles in (22a)–(22i)? We have, after all, expressed all principles by
descriptions of the description language generated by the signature. But that isn’t all!
What about the relations and their meaning? To enforce the intended meaning of append,

108 CHAPTER 2. GRAMMAR FORMALISMS

member, and no-repetitions, we have to make explicit what we mean by these relational
symbols in models of our grammar. Therefore, to complete our formalization we have to
write three principles which determine the correct meaning for our relation symbols in
models of the grammar.

VXVY(member(X,Y) <*> (Y:first:X;

^Z(Y:rest:Z,member(X,Z))))

VX(no-repetitions(X) <*> (X:elist;

^Y^Z(X:(first:Y,rest:Z),

~member(Y,Z),no-repetitions(Z))))

VXVYVZ(append(X,Y,Z) <*> (X:elist,Y:list,Z:list,Y=Z;

^U^W^A(X:first:U,Z:first:U,

X:rest:W,Z:rest:A,append(W,Y,A))))

Having added these descriptions, which we may call the Member Principle, the
Append Principle and the No Repetitions Principle, to the principles of grammar,
we have completed the formulation of the set of descriptions, θ, of our grammar.

In the file cars-and-people243.mmp you may examine one of the feature structures which
are licensed by our theory. The feature structure in the interpretation window included
in cars-and-people243.mmp shows a feature structure representing a BMW with a male
driver, who is also the owner of the car. There are two persons in the back seats, a man
and a woman who like each other best.14

The reason for omitting the Append Principle from the description card which oth-
erwise contains the complete theory is that computing the denotation of append as stated
above is computationally very expensive, and we want to restrict our example to a theory
which even relatively slow computers can evaluate fairly quickly.15 The principles for the
relations member and no-repetitions are a lot less costly and are still suitable even for
slow machines. You may note, however, that we still entered those triples into the append

relation that are necessary for making the feature structure a model of the Append Prin-
ciple. Even if we omitted the Append Principle, we would have to put at least the
triple consisting of the node representing the front-seats value, the node representing
the back-seats value, and the node representing the total value into the append rela-
tion. It is necessary to do this in order to meet the requirements of the principle which
states that in feature structures admitted by the grammar, the total list must be in the
append relation with the front-seats list and the back-seats list. Without the afore-
mentioned triple in append our feature structure would not be admitted, not even by the
theory without the Append Principle.

14Depending on what kind of computer you are using, expect to have to wait some time for MoMo to
answer a model checking query about the theory provided in the mmp file.

15This means that it is perfectly all right to work with the Append Principle in MoMo if you wish.
With feature structures of the size of our example it may take a few minutes on a fast machine with enough
memory to return an answer to a model checking query.

http://milca.sfs.uni-tuebingen.de/A4/Course/Momo/Online-Edition/Links/links.html?http://milca.sfs.uni-tuebingen.de/A4/Course/Momo/mmps/Section243/cars-and-people243.mmp

2.5. WRAPPING UP: SUMMARY AND OPEN ISSUES 109

All list nodes are in the no-repetitions relation, since none of the lists contain any
element twice. The driver of the car occurs on two lists, the front-seats list (in which he
is the only element) and on the total list (in which he is the first element). The member

relation comprises all pairs of nodes with the following properties: The first element of the
pair is a first value of an nelist node, and the second is an nelist node from which we can
reach the respective first value by following only rest arcs (including the possibility of
following no rest arc at all), and one single first arc.

It would be a good exercise for the reader to take the given feature structure and modify
it in such a way that the modified feature structure represents a significantly different
situation, but is still licensed by the grammar. You will quickly develop your own strategies
for checking whether any modification you make results in a well-formed structure, and
you will improve your intuitions about the meaning of grammars. An even better but more
demanding task would be to build a new feature structure from scratch and to turn it into
a well-formed feature structure licensed by the theory.

Constructing a well-formed feature structure which is licensed by a fairly small and
uncomplicated looking theory, such as our grammar, is a surprisingly time-consuming and
demanding task. Constructing a model of the Append Principle alone, which is a
standard relation in HPSG grammars, can easily become daunting if a feature structure
comprises several lists with shared elements. This observation gives us a good impression
of the complexity of the task faced by a grammar writer in the constraint-based framework
of HPSG. After all, it is exactly the set of all relational abstract feature structures licensed
by their grammar that linguists try to characterize. That means that linguists need to
have a clear idea of the feature structures that they want to characterize, and they need
to understand which feature structures are licensed by their grammar (and where the
difference is and how it might be eliminated). Trying to construct a single feature structure
licensed by our grammar is thus only a very small part of the real challenge!

GLOSSARY

2.5 Wrapping up: Summary and Open Issues

Abstract

In this section we will review what we have achieved in our formalization
of constraint-based grammars in general, and of the particular version of a
constraint-based grammar which is presented in [Pollard and Sag, 1994]. We
will comment on a few open issues which we mentioned at the end of the pre-
vious section.

In the course of constructing a rigorous formalization of the formalism that is implic-
itly underlying the HPSG framework of [Pollard and Sag, 1994], we saw three consecutive
grammar formalisms that fall within the framework of constraint-based grammar. On the
syntactic side we started with initial grammars and augmented them with variables and

http://milca.sfs.uni-tuebingen.de/A4/Course/PDF/glossary/glossar.html?admission&description&feature_structures&grammar&licensing&principles&signature

110 CHAPTER 2. GRAMMAR FORMALISMS

a particular form of quantification to get complex grammars. We then ended up with
grammars which are a relational extension of complex grammars.

All three types of constraint-based grammar had exactly the same structure: They
consisted of a signature which provided the non-logical symbols for the constraint-languages
generated by each type of grammar, and a set of constraints which we called descriptions.
In linguistic applications of these constraint-based grammars, the elements of the set of
descriptions are conventionally called the principles of grammar.

For the interpretation of constraint-based grammars, we initially considered three op-
tions that concerned assumptions about the interpretation of formalized scientific theories
in general. According to the theory of Paul King, constraint-based grammars should de-
note collections of possible utterance tokens (directly observable and measurable empirical
phenomena). According to the theory of Carl Pollard, constraint-based grammars should
denote collections of mathematical idealizations of natural language expressions, where
each mathematical entity in the denotation of a grammar is isomorphic to the hypothesized
structure of a natural language expression. According to the theory of Carl Pollard and
Ivan Sag in their HPSG book of 1994, constraint-based grammars should denote collections
of feature structures that stand in an intuitive correspondence relationship to observable
and measurable occurrences of natural language tokens in the real world. Each of these
three views of the meaning of constraint-based grammars requires its own model theory,
and the mathematical structures that are used to implement them look quite different.
Each one of these views can be fully formalized as a theory of the meaning of grammars
on top of our three notions of constraint-based grammars.

In our formalization we opted for the theory of Carl Pollard and Ivan Sag. We stressed
that our choice was purely pragmatic in nature and should not at all be understood as
the result of an evaluation of the three opinions about the nature of formal scientific
theories. A justifiable and rational evaluation would be a rather difficult and very complex
task and would have to draw its arguments from philosophy of science. The underlying
reasons for our pragmatic choice, on the other hand, were threefold: A feature structure
semantics of constraint-based grammars was the first to be formulated and is still the
mainstream tradition in constraint-based grammars in general and in the HPSG community
in particular. Second, feature structure models are fairly simple and can easily be employed
in mathematical investigations of all model theories of constraint-based grammars of the
HPSG-type. It is thus quite useful to know how feature structures work as a modeling
domain. Finally, feature structures have been employed prolifically and successfully in
computational treatments of HPSG, and are the structures closest to the way in which
computational theories think of the semantics of constraint-based grammars. In a course
in which we want to address the computational implementation of HPSG grammars, it
only makes sense to start with the kind of declarative semantics that uses mechanisms and
structures which are the most widespread on the computational side.

In spelling out a feature structure semantics for our three types of constraint-based
grammars we saw the semantic counterparts to the two components of constraint-based
grammars; signatures and sets of descriptions. The signature declares an ontology of
objects by saying which structure the entities in the denotation of a grammar may have.

2.5. WRAPPING UP: SUMMARY AND OPEN ISSUES 111

The collection of well-formed feature structures is determined by the syntactic material
provided by signatures. In our signatures we are given a certain set of attribute symbols,
sort symbols, and relation symbols, which we can use to characterize the empirical domain
of language; and the appropriateness conditions determine what kinds of structures are
possible by prescribing which sort of entity may have what kind of attribute arcs, and
what the possible values at the other end of these attribute arcs are. Similarly, the arity
of the relations in the denotation of the relation symbols is fixed by the signatures.

The task of the set of descriptions is then to narrow down the possible structures
delineated by the signature: The constraint set discards those possible well-formed feature
structures that are deemed not to correspond to any well-formed linguistic entity in the
empirical domain. The effect of the constraint set of zooming in on the set of well-formed
structures can be seen as one of the special characteristic properties of constraint-based
grammars, and is one of its distinguishing properties compared to phrase-structure rule
based grammars. Grammars that are built with phrase structure rules generate phrase
markers.

The difference between the two paradigms can best be understood by considering the
effect induced by adding a statement to the grammar. Adding a description to the set of
descriptions of a constraint-based grammar will exclude expressions from the set of entities
in the denotation of a grammar, in the case that the new description is not redundant in
relation to already existing ones. Adding a new phrase structure rule to a phrase structure
grammar, on the other hand, may only add expressions to the set of sentences that a
phrase structure grammar generates, thus potentially increasing the empirical coverage of
the grammar.

Linguists have two main tasks in the scenario of constraint-based grammars: Firstly,
they have to design a signature which adequately represents the domain of possible linguis-
tic expressions. No description will later be able to increase the coverage of the grammar
if the signature fails to allow some possible linguistic structures. Secondly, they have to
formulate the correct generalizations about their empirical observations in order to pre-
dict exactly those structures as grammatical structures which correspond to well-formed
language tokens in the empirical domain.

HPSG 94 is a particularly pure incarnation of a constraint-based grammar. Whereas
HPSG does not have any notion of phrase structure rules, related grammar frameworks
such as Generalized Phrase Structure Grammar (GPSG) and Lexical Functional Grammar
(LFG) combine a feature structure component with phrase structure rules. The resulting
grammars comprise a layer of structure-generating phrase structure rules which produce
phrase markers or phrase structure trees, such as those familiar from more traditional
linguistic theories. In addition these trees are then decorated by, or related to, feature
structures whose main task it is to enrich the information encoded in the linguistic struc-
tures. Moreover, constraint languages over feature structures and decorated trees have
the same function as the constraint languages of HPSG: Linguists use them to determine
which structures in the domain of well-formed decorated trees are licensed by their the-
ory of grammar. Some introductory textbooks to HPSG-style grammatical theory, such
as [Sag and Wasow, 1999], use the appeal to a combination of the more familiar notion

112 CHAPTER 2. GRAMMAR FORMALISMS

of phrase structure rules and phrase structure trees and a feature structure mechanism
with an accompanying constraint language, in an attempt to achieve a gentler introduc-
tion for novices to the architecture of HPSG grammars and to the concept of constraint
satisfaction. In the section on grammar implementation we will have further opportunity
to investigate the relationship between pure, theoretical HPSG grammars and mixtures
of HPSG grammars with concepts of phrase structure grammars, although for an entirely
different reason.

Our mathematical perspective on constraint-based HPSG grammars provided a number
of important insights into some of the central terminology which is frequently used in
technical talk about HPSG grammars. For example attribute inheritance is nothing but
a condition on the appropriateness functions of signatures. If we declare an attribute
appropriate to a sort in the partial order of sorts, we are forced to declare it appropriate
to all subsorts of that sort. Multiple inheritance is nothing but a consequence of this
definition of appropriateness. In informal discussions of the topic, multiple inheritance
refers to “inheritance of information” from different supersorts σ1 and σ2 of some sort σ0,
where σ1 and σ2 do not stand in a mutual subsort relationship. Thus, according to our
definitions, σ0 will “inherit” all appropriateness conditions of both σ1 and σ2. Moreover, if
there is an implicational description δ in the grammar whose antecedent is a description of
feature structures in the denotation of sort σ1 or σ2, the possible shape of feature structures
of sort σ0 will be directly restricted by it in the sense that they have to satisfy the consequent
of δ. In this sense it is sometimes loosely said that σ0 inherits the restrictions on σ1 and
σ2.

We learned a particularly important lesson about the syntax of our constraint-languages:
There are usually several alternative and perfectly reasonable syntactic ways of defining the
same class of formal languages. With being “the same”we mean that they can characterize
exactly the same classes of objects, and each formulation of a theory in one syntax can
be transformed in a formulation of the same theory in the other syntax. Thus we should
not be deceived by different appearances: It does not matter at all whether a grammar is
written in a hardly readable mathematical notation or in an implementation language such
as those of MoMo or TRALE, or in the linguistic, reader-friendly AVM notation (although
it might make the grammar more or less fun to read). What does matter a great deal is the
underlying meaning of the constraint language, and the theory of what constitutes a model
of a given grammar. These are the essential questions which we have to ask when we see
a constraint-based grammar, and the answers to these questions dictate how informative
and useful a grammar can be for us.

GLOSSARY

http://milca.sfs.uni-tuebingen.de/A4/Course/PDF/glossary/glossar.html?appropriateness_function&attributes&attributes_inheritance&constraint-based_grammar_frameworks&constraint_satisfaction&feature_structures&description&multiple_inheritance&principles&signature&sort_symbols

2.5. WRAPPING UP: SUMMARY AND OPEN ISSUES 113

2.5.1 The Lexicon

Abstract

This section will explain briefly how a lexicon can be expressed in HPSG.

We saw that the descriptions in an HPSG grammar are implicational descriptions. This
form is practically dictated by the way the meaning of grammars is defined on the basis of
a relational abstract feature structure admission function: Every (abstract) node of every
relational abstract feature structure denoted by the grammar must be described by each
element contained in the theory θ of the grammar. For non-atomic nodes, i.e., for objects
with outgoing arcs which lead to nodes of some other sort, the recursive nature of feature
structure admission dictates a complex, non-conjunctive structure of the descriptions in θ.
If an element of θ were simply a conjunctive description (of objects of a non-atomic sort),
the set of feature structures admitted by the grammar would immediately be empty. For
instance, remember that we cannot assume that the ID Schemata are descriptions in θ. If
the Head Filler Schema were a principle of grammar in Pollard and Sag’s theory of
English, the grammar could only license phrases, because only phrases satisfy the Head
Filler Schema. However, phrases necessarily contain synsem nodes as components (ac-
cording to the signature). Thus not even phrases can be licensed by the Head Filler
Schema, because their synsem components do not satisfy it. For that reason, the Head
Filler Schema is only a disjunct in the consequent of an implication (the ID-Principle)
whose purpose it is to restrict the possible shapes of headed phrases.

But what about the lexicon? How do we get words in our grammars? Pollard and Sag
say surprisingly little about the lexicon, and it is not mentioned in the appendix of their
book, although the text contains many sketches of so-called lexical entries. Lexical entries
are descriptions of words, i.e., descriptions that are satisfied by feature structures of sort
word. However, we cannot put lexical entries in the theory of a grammar, for the same
reason we cannot put the Head Filler Schema there. Words contain synsem nodes,
and synsem nodes do not satisfy descriptions of words. A lexical entry in our theory of
grammar would thus entail that only the empty set of relational abstract feature structures
is admitted by the grammar. This is not what we want.

The solution to this puzzle is rather simple. As with the ID Schemata and the ID
Principle we have to make lexical entries part of an implicational principle, conventionally
referred to as the Word Principle. A very simple version of a Word Principle can
be pictured as in (24):

(24) The logical structure of the Word Principle

word → (LE1 ∨ LE2 ∨ . . . ∨ LEn)

The meta-variables LE1 to LEn stand for the actual lexical entries in the grammar, which
are descriptions of the words that the grammar predicts. Given the Word Principle,
every feature structure of sort word admitted by the grammar must be described by at

114 CHAPTER 2. GRAMMAR FORMALISMS

least one lexical entry. The set of descriptions LE1 to LEn is the lexicon. Note that in
this formulation the lexicon is necessarily finite, since our formal languages do not allow
infinitary disjunctions. Nevertheless, depending on the formulation of the lexical entries
and on the structure of words, there might still be an infinite number of relational abstract
feature structures of sort word that are described by the lexical entries.

Finally there are techniques of integrating mechanisms for so-called lexical rules with
the word principle. According to one possible and prominent interpretation, lexical rules
say that if a word of a given shape is in the denotation of the grammar, then there is
another word of a related but slightly different shape which is also in the denotation of
the grammar. As soon as we extend the Word Principle by lexical rules of this sort,
an infinite number of substantively different words can be characterized as being in the
denotation of the grammar.

GLOSSARY

2.5.2 Parametric Sorts

Abstract

So far we have used lists as lists of entities of any sort. Many HPSG grammars
distinguish lists of different kinds of entities and use a special notation such
as list(synsem) or list(phrase) to denote respectively lists of synsem entities or
lists of phrases. In this section we will explain how this notation can be read
and interpreted.

We have treated the symbols in sort hierarchies as atomic symbols. While this agrees
with most of the sort symbols in HPSG grammars, there are some exceptions. Some sort
names are not meant to be atomic. For lists and for sets it is common practice to appeal
to so-called parametric sorts. The idea of parametric polymorphism comes from logic
programming. Pollard and Sag explain their use of parametric sorts as follows:

We employ limited parametric polymorphism for lists and sets as follows: where
σ is a meta-variable over (nonparametric) sorts, we partition list(σ) into elist
and nelist(σ) and declare nelist(σ)[first σ, rest list(σ)]; likewise we partition
set(σ) into eset and neset(σ). [Pollard and Sag, 1994, p. 396, fn. 2]

We will avoid discussing sets in our seminar—informally we can simply assume that sets
can be encoded as special kinds of lists with some special conditions imposed on them.16

Pollard and Sag’s specification of parametric lists can be pictured as follows, where σ
is a meta-variable over nonparametric sorts. For variety we will not state this signature
fragment in MoMo notation, but in a closely related notation for signatures which is often
found in the literature.

16The formalism that we have introduced can handle finite sets, which seems to cover all the sets that
are actually used in HPSG grammars.

http://milca.sfs.uni-tuebingen.de/A4/Course/PDF/glossary/glossar.html?admission&feature_structures&infinary_disjunction&lexical_entries&lexical_rules

2.5. WRAPPING UP: SUMMARY AND OPEN ISSUES 115

(25) list(σ)

elist

nelist(σ) first σ

rest list(σ)

With the specification in (25), Pollard and Sag intend to state the sort hierarchy and
the appropriateness function for all lists whose members are of exactly one nonparametric
sort.17 For example, (25) comprises the specification in the signature of their grammar of
lists of synsem entities. (26) expresses that specification without a meta-variable:

(26) list(synsem)

elist

nelist(synsem) first synsem
rest list(synsem)

Given the fact that the set of nonparametric sorts in Pollard and Sag’s grammar is
finite, (25) induces a finite number of specifications of possible lists, one specific example
being (26). [Pollard and Sag, 1994] uses parametric lists for specifying in the signature
that lists which are appropriate for certain attributes may only contain entities of a given
sort. For example, the entities on subcat lists must be of sort synsem by virtue of the
appropriateness specification for the sort category:

(27) category head head
subcat list(synsem)
marking marking

Thus the purpose of the limited use of parametric sorts in HPSG is clear. The question
remains of how we can express parametric sorts in our formalism.

One way would be to extend the formalism by a new mathematical construct. How-
ever, there is a much simpler solution. We could take the formal tools that we already
have, i.e. relations and principles of grammar, and reformulate what parametric sorts are
supposed to achieve in these terms.

Consider the specification of subcat lists as lists of synsem objects as given in (27).
We can replace that appropriateness declaration by substituting our familiar sort list for
list(synsem), and using our standard appropriateness declaration for lists: The sorts nelist
and elist are (the only) immediate subsorts of list and are species. The most general sort of
the sort hierarchy, object, is appropriate to first at nelist, and list is appropriate to rest
at nelist. elist is an atomic sort.

In the second step, we need to restrict the permitted values for subcat lists to synsem
objects.

For that purpose, we introduce a relation symbol (with arity one) list-of-synsems to
our grammar and define its meaning in the following principle:

17Note that this does not imply that the members of a list must be of the same species, because it is
not required that σ be a maximally specific sort. In fact, since σ may be the sort object, the members of
some lists can, in principle, be of any species.

116 CHAPTER 2. GRAMMAR FORMALISMS

VX (list-of-synsems(X) <*> (X:elist;

^Y(X:(first:synsem,

rest:Y),

list-of-synsems(Y))))

As you can easily check, all and only the nelist nodes that represent lists of synsem
objects (and no other objects) are in the list-of-synsems relation in feature structures
modelling grammars which contain our new principle.

But now we can exploit the meaning that we have given to the relation symbol list-of-
synsems in models of our grammar in order to say that subcat lists only contain synsem
objects:

category *> ^X (subcat:X, list-of-synsems(X))

In words: For each node of sort category in our grammar, the value of its outgoing
subcat arc is in the list-of-synsems relation. It is a representation of a list that only
contains synsem objects.

We conclude that in order to formalize the effects of parametric sort specifications, we
do not have to make our HPSG formalism more complicated. We can take parametric sort
specifications of the form list(σ), exemplified in (27), the appropriateness specifications for
the sort category, with list(synsem), simply as a shorthand notation for: (1), the assumption
that the grammar contains a generic list signature which licenses lists of arbitrary objects by
making the top sort the appropriate list value; (2), a suitable relation symbol (list-of-σ)
of arity one; (3), a principle which appropriately fixes the meaning of the new relation
symbol in models of the grammar: it denotes lists of σ objects; and (4), a second principle
of grammar which fixes the list values of the relevant attributes in the desired way, just as
we saw it for subcat lists.

GLOSSARY

2.5.3 Notation for Lists

Abstract

To make expressions which describe lists of our formal languages simpler, we
will introduce a convenient and widely used notation.

One final issue that we should at least briefly touch on concerns the notation for lists.
We have seen two fragments of signatures that are typically used for the specification of
lists in HPSG: One comprising the supersort list with speciate subsorts elist and nelist
and attributes head and tail appropriate for nelist where list is appropriate to tail,
whereas the value of head may vary according to what one might want to have on the
lists. In an alternative formulation, attributes first and rest were used instead of head
and tail. However, it is obvious that the particular names of the symbols are completely
irrelevant as long as the geometry of the partial order and the relevant relationships in

http://milca.sfs.uni-tuebingen.de/A4/Course/PDF/glossary/glossar.html?appropriateness_function¶metric_sorts&signature&sort_hierarchy&sort_symbols

2.5. WRAPPING UP: SUMMARY AND OPEN ISSUES 117

the appropriateness conditions are preserved. Henceforth we call a signature with the
appropriate feature geometry a list signature.

Using the symbols provided by a list signature, we can describe feature structures
representing lists in exactly the same way in which we describe any other feature structure
with any other non-logical symbols of the signature. However, a more perspicuous notation
would be very welcome and is quite often used. Instead of describing a singleton list
containing one green parrot as (head:(parrot,color:green),tail:elist), people prefer
to write [(parrot,color:green)], which is much more readable. The advantages of this
notation become even more striking when the lists get longer. To appreciate this, just
compare

(head:(parrot,color:green),

tail:(head:(canary,color:yellow),

tail:elist))

with an expression as transparent as

[(parrot,color:green),(canary,color:yellow)].

What can we do about this? Do we have to extend our syntax? In one sense yes,
in another no. The relationship between the two notations is so perspicuous that we do
not really have to bother about integrating an additional kind of notation into the syntax
of our formalism. In fact this would make the definition of our description languages
unduly complicated. This kind of situation is usually handled by introducing a syntactic
convention on top of the formalism itself.18 We simply state our signature of lists as we
have always done and explain how we want to use a few additional notational devices to
make our lives easier. For example we might include the head-and-tail variant of list
signatures in our signature, and then we would say that, by convention, we may sometimes
write [] for elist and enumerate the elements of lists using square brackets: [δ1, ...,

δn] stands for the expression in (28):

(28) head:δ1,
. . . ,
tail1:...:tailn−1:head:δn,
tail1:...:tailn:elist

A second abbreviatory notation which is often used together with the square bracket
notation for lists is the vertical slash, |. The vertical slash separates a description of the
first n elements on a list from a description of the tail of the list after the nth element.
The following sketch pictures the use of this notation schematically:

18Sometimes additional alternative notations which do not change anything substantial in a formal
language are called syntactic sugar.

118 CHAPTER 2. GRAMMAR FORMALISMS

(29) head:δ1,
. . . ,
tail1:...:tailn−1:head:δn,
tail1:...:tailn:BOX

may be written as

[δ1, . . . , δn| BOX]

In (29), BOX stands for an arbitrary box, which will normally be a box that describes
lists. This notation is particularly useful when we want to refer to the tail of a list with
some variable, as in the following example:

(30) [(cat), (dog)| 1]

The expression in (30) is satisfied by feature structures representing a list whose first
element is a cat and whose second element is a dog. We use the variable 1 to refer to the
tail of the list. This variable may be used again elsewhere in a larger description, of which
our description may be a part. This would allow us to say that the tail of the list stands
in a relation with other lists in feature structures which satisfy or model our description.

If we wanted to be really exact, we could describe these new notational conventions in
an appropriate standard notation of mathematics. However, as long as it is plain enough
what we want to abbreviate, and as long as we are consistent with our use of notation, an
explanation such as the one given here is sufficient.

Exercises

Exercise 30 We will take a tiny fragment of Pollard and Sag’s signature specification, but
change it slightly: We assume that the value of slash is a list of local objects rather than
a set of local objects:

type_hierarchy

object

local

nonlocal1 slash:list(local)

list(sigma)

nelist first:sigma rest:list(sigma)

elist

.

Interpret the parametric list in this signature specification the way we did in Sec-
tion 2.5.2, and create a MoMo file parametric-sorts.mmp containing an appropriate stan-
dard signature and the relevant principles which ensure that, in models of the grammar,
the slash lists may only contain lists of local objects.

2.5. WRAPPING UP: SUMMARY AND OPEN ISSUES 119

Exercise 31 Take our familiar signature of lists, birds, and pets, birds-and-pets-exs253.mmp.
In the Options menu of MoMo you find a menu item Top sort for lists. Enter the top

sort of lists in our signature. For your work with that signature, MoMo now gives you the
option of using interchangeably either the usual syntactic notation for lists or the notation
with square brackets, [,].

Draw a list feature structure containing three animals. Then write two descriptions on
separate description cards such that the feature structure satisfies them. Both descriptions
should at least describe the color of each animal. The first description should use our
normal syntax for the description of lists, the second one the new syntactic sugar with
square brackets.

GLOSSARY

http://milca.sfs.uni-tuebingen.de/A4/Course/Momo/Online-Edition/Links/links.html?http://milca.sfs.uni-tuebingen.de/A4/Course/Momo/mmps/Section253/birds-and-pets-exs253.mmp
http://milca.sfs.uni-tuebingen.de/A4/Course/PDF/glossary/glossar.html?appropriateness_function&list_signature&partial_order&signature&syntactic_sugar

120 CHAPTER 2. GRAMMAR FORMALISMS

Chapter 3

Grammar Implementation

Abstract

In this section of the course, we will learn how to implement HPSG grammars
in the TRALE system.

We know what an HPSG grammar is and what it means: An HPSG grammar is a signature
(declaring a sort hierarchy, a set of attributes, appropriateness conditions for attributes,
and a set of relation symbols with their arity) together with a set of descriptions. It can be
interpreted in a domain of relational abstract feature structures. We say that a grammar
denotes the set of relational abstract feature structures which are admitted by it.

In the present course module we will investigate how HPSG grammars of the kind that
we have just briefly characterized can be implemented on computers. Our instance of an
implementation platform for HPSG grammars will be the TRALE system. In Section 1.1,
Historical Overview, we already placed the TRALE grammar development environment
(GDE) in the context of the evolution of HPSG formalisms and implementation platforms.
Recall that TRALE is a platform in the tradition of the HPSG formalism of Pollard and
Sag 1994, as opposed to systems in the unification grammar paradigm of HPSG which
Pollard and Sag presented in their book of 1987. Standing in the tradition of constraint-
based HPSG, TRALE is a GDE closely related to the formal architecture of HPSG which is
stepwise introduced and formalized as a constraint-based grammar formalism in the course
section on Grammar Formalisms.

In this chapter we will see that the issues surrounding grammar implementation are
much more complex than one might think at first, considering the fact that we have a
complete mathematical account of constraint-based HPSG. With a rigorously defined for-
malism in hand one might quite mistakenly assume that one can take any HPSG grammar
specified in a syntax for signatures and descriptions such as the one that we introduced
together with MoMo, feed it into a computational system and perform the intended com-
putations with that grammar. Unfortunately the situation is not that simple.

First of all we have to clarify what we mean by the intended computations which we
vaguely hinted at in the previous paragraph. What is it that we want to compute on the
basis of a grammar? What kind of questions do we want to ask the system, or, more

121

122 CHAPTER 3. GRAMMAR IMPLEMENTATION

technically speaking, what are our queries to the system? After formulating precisely what
it is that we want to do, we will then have to consider the computational properties of
the computations that we want to perform based on our grammars and our queries. With
regard to this question we will quickly discover that the computational costs of working
with our theoretical, declarative grammar specifications of HPSG are very high. Even in
cases where it might be possible in principle to perform successful computations on the
basis of these grammar specifications, the computations can easily be very inefficient.

In order to achieve satisfactory results regarding computational efficiency, the speci-
fication of grammars in systems like TRALE differs to some extent from the declarative
specifications that we are used to from theoretical linguistics. Some of the descriptive
means of the full HPSG formalism of Pollard and Sag 1994 are not directly available in
the computational environment, because they would generally be too costly. On the other
hand, the system offers alternative constructs that a computational linguist can use in
order to increase the efficiency of the intended computations. As a result, not only do
we have to understand theoretical HPSG grammars and their meaning very well, we also
have to know how our theoretical grammars can be expressed in a different way, taking
advantage of the additional computationally motivated devices of TRALE. In a sense we
have to understand how we can reformulate a grammar expressed in one formal language in
a different—but closely related—formal language. If we are careful and understand what
we are doing, we can be certain that our computational grammar means the same thing as
the original, purely linguistically motivated specification.

The tensions between the properties of a very expressive description language which
are desirable for linguistic purposes of constraint-based grammar formalisms and issues of
computational efficiency will be a leading theme of our discussion of grammar implemen-
tation, and it will largely determine the structure of the first half of the present course
section.

Besides getting acquainted with the user interface of TRALE and learning how to
interact with the system, we will initially address the question of why we want to implement
HPSG grammars in the first place and what we want to do with a computational system
for our grammars. This will inevitably lead us to the computational problems that come
with grammar implementation.

With some basic grasp of the nature of the general problem, we will then see what
TRALE offers to make our grammars computationally efficient. The first TRALE gram-
mars that we will work with look quite different from HPSG grammars, because we will
first learn what the differences are between TRALE and our constraint-based grammar
formalism. This directs our initial focus towards those parts of the grammar specifica-
tion language of TRALE which are different from the description languages that we have
worked with so far. We will explain what the new constructs of TRALE mean in terms of
our HPSG formalism, and we will learn how to write TRALE grammars that use these ad-
ditional devices but nevertheless look more and more like the theoretical HPSG grammars
that we are used to. With sufficient understanding of how to do this we will then develop
a fragment of English inspired by Pollard and Sag’s grammar of English. We will start
with a very simple, small fragment and extend it slowly in order to cover more and more

3.1. COMPUTING WITH HPSG GRAMMARS 123

linguistic phenomena. The linguistic issues and phenomena covered by our grammar will
include lexical entries, phrase structure, syntactic selection, agreement, case government,
thematic roles, raising constructions, word order, and unbounded dependency construc-
tions. At each step of extending our specification, we will take the initial, constraint-based
specification and reformulate it in the language of TRALE, thus testing the consistency
and linguistic predictions of our specification in the computational environment.

Exercises

Exercise 32 Download the TRALE User’s Manual, available in pdf and ps format from
the TRALE documentation pages.1 As you can see on these pages, you may also use an
online version of the manual. Browse the manual to get an overview of the system.

Exercise 33 Download the TRALE grammar consisting of the files signature2 and
theory.pl3, which you also find in Section 6.6, Core Fragment, of Chapter 6, Gram-
mars, and put them in a new directory on your computer account. Start TRALE with the
graphical interface GRiSU from that directory, and compile the grammar. If you do not
know how to do that, look it up in the TRALE manual.

Take a look at the specifications in the file theory.pl. You do not have to understand
exactly how this grammar works to be able to easily guess which words are available in this
grammar and which sentences are licensed by it. Take a few words to form and parse at
least five different sentences (it rains might be a good start). Save two of your parse results
and upload them to your personal forum in ILIAS, giving them intuitive names which make
them easy to recognize as your solutions to this exercise. Use this opportunity to play with
GRiSU and get somewhat familiar with its functions.

GLOSSARY

3.1 Computing with HPSG Grammars

Abstract

We will explain our motivation for using HPSG grammars in a computational
environment and we will investigate the computational properties of our gram-
mars with respect to the tasks which we would like to perform with them. This
will give rise to a few observations about the nature of implementation platforms
for HPSG-style grammars.

Why would one want to compute with HPSG grammars—or with grammars in general, for
that matter—, and what would one want to compute with them?

1http://www.ale.cs.toronto.edu/docs/
2http://milca.sfs.uni-tuebingen.de/A4/Course/Grammars/Core-Fragment/signature
3http://milca.sfs.uni-tuebingen.de/A4/Course/Grammars/Core-Fragment/theory.pl

http://www.ale.cs.toronto.edu/docs/
http://milca.sfs.uni-tuebingen.de/A4/Course/Grammars/Core-Fragment/signature
http://milca.sfs.uni-tuebingen.de/A4/Course/Grammars/Core-Fragment/theory.pl
http://milca.sfs.uni-tuebingen.de/A4/Course/PDF/glossary/glossar.html?admission&appropriateness_function&attributes&description&grammar&grammar_development_enviroment&signature&sort_hierarchy&unbounded_dependency_constructions

124 CHAPTER 3. GRAMMAR IMPLEMENTATION

At the very beginning, and on a very abstract level of our discussion of this question,
we may distinguish two distinct applications which one might have in mind for a computa-
tional system for grammars. We might want to use this kind of computational system for
commercial purposes or we might want to use it to enhance our scientific understanding of
the nature of language, of particular natural languages, and of language processing. Ulti-
mately we will be be dealing with scientific aspects of grammar implementation. However,
let us start with examples of products which might gain in quality by the implementation
of these kinds of grammars. We should bear in mind, though, that for our purposes we
will be taking a very simplistic view and ignoring many aspects and possible alternative
solutions to the development of products, as long as they are practically feasible and can
perform the envisioned tasks satisfactorily.

For commercial purposes, it is of course central to investigate the kinds of application
that one might envisage. A couple of well known examples are automatic email sorting
systems, or systems in call centers which either immediately answer customers’ questions or
direct their questions to the appropriate employees who can answer them personally. Other
typical applications are conceivable for car navigation systems where natural language is a
very suitable input and output modality, since drivers typically do not have a free hand for
typing questions or selecting menu items, and they have to focus their attention on the road
rather than on a screen on which relevant information might be displayed. Future Internet
search engines on the world wide web might be able to employ some natural language
processing component which is able to parse and analyze the contents of documents and
to respond to queries that are asked in natural language.

All of these applications could at least to some degree use a grammar of (an appropri-
ate fragment of) the relevant natural language(s), which would solve some of the problems
involved. Let us assume that the products we are thinking about comprise an HPSG
grammar. What would that grammar be used for? If it is a good grammar, the grammar
would describe all and only grammatical expressions of the language:4 In its denotation we
would find relational abstract feature structures representing the phonological (or ortho-
graphic) form of expressions of the language together with their syntactic structures and
structures which represent their meaning, probably in a formal language of a higher-order
logic (such as Richard Montague’s Intensional Logic or Daniel Gallin’s Two-sorted Type
Theory [Gallin, 1975]) with a model-theoretic interpretation. On this level the grammar
would establish a connection between phonology (orthography) and meaning, which would
apparently be necessary for actually carrying out the tasks implied by the applications
outlined above. To interpret the input strings of natural language for these devices, it is
necessary that their language processing component maps the input strings to some form
of meaning representation. Conversely, to respond to any kind of request to the system
in natural language, it is necessary that the system maps some kind of internal logical
representation of what it needs to communicate to a phonological (or orthographic) repre-
sentation in the target natural language. In either case, our HPSG grammar would be able
to establish the connection between an external representation which is communicated and

4And, possibly, components thereof, depending on how the signature of the grammar is set up.

3.1. COMPUTING WITH HPSG GRAMMARS 125

an internal, non-observable meaning representation.
But let us not be too hasty: First we must ask what exactly is the task here, and how

can our grammar help to accomplish it? Let us assume that we have the phonological string
belonging to an expression and we are interested in its meaning; how can the grammar help
us to compute it? Obviously, although we have the grammar (the signature and a set of
descriptions), we do not yet have either to hand or stored in the computer the (usually
infinite!) set of relational abstract feature structures which the grammar admits. On the
contrary, we know that it is a fairly difficult task to construct even a small feature structure
admitted by a given grammar, even if the grammar is only moderately complex, far less
complex than we may expect any grammar of a natural language to be.

One conceivable solution to the problem of constructing the necessary computational
system for grammars would be to design a component for it which tries to automatically
construct feature structures in the denotation of a grammar, and then to find one whose
phonological representation satisfies the input description. If we were to find this kind
of feature structure, we would also find as one of its components the desired meaning
representation. However, this is not how systems such as TRALE would work. For one
thing we would have to construct and somehow represent a usually infinite set of feature
structures and find the relevant one(s) in the set (or somehow decide that they are not in
the set). An approach that works with representations of the meaning of the grammar in
the form of feature structure models seems to be unnecessarily complicated, and in the face
of the immense complexity involved in this task we prefer to stick to minimal solutions to
accomplish our task. What if we were to transform the problem into one which we could
solve by only manipulating syntactic objects, i.e. entirely based on descriptions, without
ever having to deal directly with the meaning of descriptions? With this approach it is
interesting to note that our grammars are usually finite, they involve finite descriptions,
and the output which we are ultimately interested in is also finite.

Following this idea, our original problem can be reformulated as follows: We have two
entities, a grammar and an input description of a phonological string (our query). What
we want to know is whether there is anything admitted by the grammar such that its
phonological string satisfies our query, and we want to know what this looks like. For
the latter purpose we will be satisfied with obtaining a set of descriptions of the relevant
entities. From these descriptions we can then extract the part which concerns the meaning
representation of the expression and pass it on to a component of our product which is
able to process meaning representations.

What we have just described is the parsing problem of constraint-based grammars: We
stated what the queries are which we want to process (descriptions of phonological strings),
and we stated that we want to obtain sets of fairly precise descriptions of those objects
in the denotation of the given grammar whose phonological strings satisfy the query. The
output descriptions may thus be read as analyses of the structure of the queried objects.

Interestingly enough the problem of language generation, which is also part of the
products mentioned above, has the same formal shape in our constraint-based setting.
The only difference consists in the kind of query which we start with. In the case of
parsing, we query (descriptions of) phonological strings. In the case of generation, we

126 CHAPTER 3. GRAMMAR IMPLEMENTATION

query (descriptions of) meaning representations, and we want to solve a parallel question:
Is there anything admitted by the grammar whose meaning representation satisfies the
query, and what is a precise enough description of its overall structure, especially of its
phonological string?

The following two examples presuppose the existence of an appropriate grammar and
sketch two queries to a system about that grammar. The first one is a query to parse the
sentence It is snowing in Tübingen, and the second one is a query to generate a sentence
with a meaning representation saying that Jon runs. For reasons of simplicity, we have
used an orthographic representation for the phonology and made up an intuitively sensible
description of a content value in the two examples.

(31) a.

[

sign

phonology
〈
it, is, snowing, in, tübingen

〉

]

b.

sign

synsem local content

[
relation run

argument jon

]

At this point we have made the computational problem precise enough in order to
investigate its mathematical properties. Is it actually possible to compute what we want to
compute on the basis of the HPSG formalism? The answer is straightforward but not very
comforting: Bjørn Aldag proved [Aldag, 1997] that it is impossible to design an algorithm
so that for an arbitrary query and an arbitrary grammar, the algorithm determines whether
there is any feature structure admitted by the grammar which satisfies the query.

What does this result mean? One of the immediate and most prominent consequences
is that we cannot just write any grammar in the HPSG formalism and expect that there is
a computational system that can help us to effectively parse and generate sentences relative
to the grammar we wrote. Closer investigation reveals that it is even difficult to determine
an interesting subset of grammars for which this could always be done. For the time being
we have to acknowledge that HPSG uses a highly expressive description language in a very
powerful formalism which is very flexible and amenable to many different linguistic analyses
of empirical phenomena, but, for the very same reason, difficult to handle computationally.

Through considerations about the architecture of possible commercial products inte-
grating HPSG grammars we have come a long way towards a genuinely scientific insight:
There cannot be a general solution for computing with arbitrary HPSG grammars. How-
ever, there can very well be and there are task-specific solutions which are tailor made
to suit the types of grammars which linguists actually write. The idea is to produce a
general mechanism for computing with these grammars, with task and structure specific
computational constructs which make processing with them possible and at the same time
much more efficient than general algorithms for computing with our description languages
could ever be.

Now when we start to work with TRALE, we will immediately see the effects of these
conditions. TRALE is a system which tries to combine the potential for efficient and fast
computing with large-scale grammars with an architecture which is as close as currently

3.1. COMPUTING WITH HPSG GRAMMARS 127

possible to theoretical HPSG grammars. This should also make TRALE a suitable system
for scientific purposes. The scientific benefit of this kind of system consists in providing a
good testing ground for the complete formalization of linguistic theories. In the TRALE
environment we can test large grammars for their internal logical and technical consistency,
and we can detect consequences and predictions of grammars more easily than with paper
and pencil, where mistakes can occasionally go undetected for some time. Moreover, having
a system which is already close to HPSG stimulates the further development towards closing
the gap between linguistic theories and grammar implementation.

In this context one might argue that much of the scientific value of an implementation
platform depends on how close it gets to the HPSG formalism while still being useful in a
practical sense. For example, it would not be useful at all to be able to specify arbitrary
HPSG grammars directly, if the processing of any non-trivial query would then never
terminate. Obviously it would not really matter how “purely HPSG-like” a system of this
nature would be: It would simply not be of much use for anything.

On the other hand, however, we postulate that one of the major criteria for a grammar
development environment to be productive is that it supports an encoding of linguistic
theories which is transparent with respect to its relationship to a pure, declarative spec-
ification in the HPSG formalism. The inevitable recoding of such a specification which
occurs during the implementation of HPSG grammars in TRALE should be done in a sys-
tematic way, and it should be precisely documented. This is the only way to ensure that a
computational implementation really reflects the original grammar, and that the behavior
of the system reliably tells us about the properties of the grammar.

In the next sections of the course we will explore very small grammars in TRALE.
They introduce features of the implementation platform which we do not know from HPSG
grammars, since they are not part of their formalism. We will focus on getting familiar
with these features and on explaining how they are systematically related to pure HPSG
grammars. In the end we want to be able to tell precisely how to translate these new
mechanisms into grammatical principles of an HPSG grammar specification, and how we
can make the processing of certain HPSG principles more efficient by employing special
mechanisms of TRALE for their encoding.

GLOSSARY

3.1.1 A Minute Grammar

Abstract

Our first small TRALE grammar will introduce phrase structure rules and a
number of syntactic conventions of implemented grammars.

We can regard an implemented grammar in TRALE as an HPSG grammar with a number
of additional special devices. This means that TRALE grammars consist of the same two
components which we are already familiar with, signatures and theories.

TRALE signatures are a subset of HPSG signatures: Every TRALE signature is also
an HPSG signature, but because of the restrictions on possible TRALE signatures, some of

http://milca.sfs.uni-tuebingen.de/A4/Course/PDF/glossary/glossar.html?admission&description&feature_structures&signature

128 CHAPTER 3. GRAMMAR IMPLEMENTATION

our more general HPSG signatures are not permitted in TRALE. However, the differences
that exist due to the restrictions which TRALE imposes on the partial order of sorts, on
appropriateness specifications, and on relations (which do not belong to TRALE signatures
at all) are initially of very little practical significance for us.

TRALE theories, as opposed to the signatures, are the starting point in which we will
first encounter new devices, which are immediately visible in the grammar specification
files. Thus we may simply investigate increasingly complex grammar specifications in
TRALE and explain the meaning and purpose of new notations and of new mechanisms
as they occur.

Before we jump into our first TRALE grammar, we want to classify very briefly the new
devices that we are about to see. This will give us a little bit of guidance for estimating
their relative importance when we first encounter them.

First of all a theory file in TRALE contains a number of technical specifications which
have to do with importing necessary files, declaring file names, loading and declaring op-
erators, and assigning names to syntactic entities. For example we have to say what the
name of the signature file is, and where it is located in the file system. Obviously such
specifications are necessary for a computer program to work, but they are fairly uninter-
esting for grammar implementation itself and they have nothing to do with the question
of how HPSG grammars are related to their implementation in TRALE. We have to get
acquainted with the necessary specifications, but need not discuss them.

Secondly TRALE provides a number of new notations which make it easier and more
convenient to write grammars. These notations are essentially abbreviations which are in
principle optional, and can always be explained in terms of complete, traditional HPSG
descriptions. A very simple example of this is the list notation with square brackets,
which can also be used in the MoMo syntax of descriptions as syntactic sugar (see Sec-
tion 2.5.3, Notation for Lists). The macros and macro hierarchies of TRALE are a similar
but much more sophisticated device of notational convenience. The specific notation for
lexical entries which we will use in our first grammar is a notational variant of the Word
Principle, although in this case an alternative notation to standard HPSG conventions
is fitting, not only for the convenience of the grammar writer but also for the demands of
the computational system.5

The most significant and most problematic differences reside in additional, divergent
mathematical concepts in TRALE, concepts which do not belong to the HPSG formalism.
Most prominent among these are phrase structure rules and relational attachments to
descriptions. Since they do not belong to HPSG, we have to investigate which tasks these
mechanisms perform in the grammar implementation and how exactly they are related to
HPSG grammars. Clearly they play a crucial role in making our implemented grammars
work in a computational environment. But to recognize our original HPSG grammars in
their implementations, and to be sure that the TRALE grammars behave according to the
original specifications, we have to identify precisely what the new constructs mean in terms
of HPSG grammars.

5We will say more about this below.

3.1. COMPUTING WITH HPSG GRAMMARS 129

With this in mind, let us now turn to our first example of a TRALE grammar (signature6,
theory.pl7). As mentioned above, the signatures of TRALE look exactly like the signatures
of MoMo. Thus we are able to read them directly, as they are stated in the grammar files
(Figure 3.1).

Notice that sorts for phonetic (or rather orthographic) strings are not declared in the
signature: In the signature of an explicit grammar which uses the simplistic orthographic
representation of phonology from Pollard and Sag we need sorts for all words of a gram-
mar, which would have to be subsorts of phonstring. The fact that this declaration is not
necessary in TRALE is an initial simplification provided by the implementation platform.
This is an immediate consequence of treating the phonology of signs as a distinguished
attribute value. This special treatment is ultimately caused by considerations of compu-
tational efficiency: The phonology of signs is an essential data structure of the parsing
system.

In the specification of the appropriateness conditions for subcat lists, we may observe
that lists are not parametric (as in Pollard and Sag’s specification list(synsem)). Ignoring
this issue altogether in our little toy grammar, however, will not affect the correctness of
the intended denotation of this particular grammar. We will see later that we can simulate
parametric lists in TRALE in the same way as we can in our HPSG grammar specifications.

Finally there is an attribute in the signature which serves only the technical purposes
of our current version of TRALE, the dtrs attribute. This is simply a given and necessary
attribute in the current version of TRALE. It may not be used in grammatical principles,
since this would interfere with what dtrs does system-internally.

Let us now look at our first implemented theory (theory.pl) of a grammar (Figure 3.2).
The first seven lines contain technical declarations about the treatment of reserved sym-

bols (for declaring phrase structure rules (##) and lexical entries (∼∼>)) in the system and
about loading a particular file, tree_extensions, for parsing. The file tree_extensions

and details of its purpose do not concern us here. The file signature is specified as the
file which contains the signature for the present theory file.

The technical declarations are followed by a richly decorated phrase structure rule (PS
rule). The decorations consist in descriptions (of the kind we know) of the mother node
and the two daughter nodes. The effect of a phrase structure rule corresponds to an ID-
Schema within an ID-Principle, and a principle about constituent order of HPSG: The
order in which the daughters are described in the PS rule determines the linear order of
their phonologies in strings. Moreover, in the present formulation, the phrase structure rule
incorporates the familiar Subcategorization Principle, the Head Feature Prin-
ciple, and a simple Semantics Principle.

The format of the phrase structure rule is fairly transparent. It begins with a name
declaration to the left of the reserved symbol, ##, followed by the phrase structure rule
itself. The rule starts with a description of the mother node. This may contain variables
which can also occur in the descriptions of the daughter nodes. Descriptions of the daugh-

6http://milca.sfs.uni-tuebingen.de/A4/Course/Grammars/Grammatik1/signature
7http://milca.sfs.uni-tuebingen.de/A4/Course/Grammars/Grammatik1/theory.pl

http://milca.sfs.uni-tuebingen.de/A4/Course/Grammars/Grammatik1/signature
http://milca.sfs.uni-tuebingen.de/A4/Course/Grammars/Grammatik1/theory.pl
http://milca.sfs.uni-tuebingen.de/A4/Course/Grammars/Grammatik1/signature
http://milca.sfs.uni-tuebingen.de/A4/Course/Grammars/Grammatik1/theory.pl

130 CHAPTER 3. GRAMMAR IMPLEMENTATION

type_hierarchy

bot

list

ne_list hd:bot tl:list

e_list

sign phon:ne_list synsem:synsem

phrase dtr1:sign dtr2:sign dtrs:list

word

synsem category:cat content:cont context:conx

cat head:head subcat:list

head case:case vform:vform

vform

fin

bse

case

nom

acc

cont relation:rel_name arg1:index arg2:index index:index

conx backgr:list

index person:person number:number gender:gender

person

first

second

third

number

sing

plur

gender

masc

fem

rel_name

walk

female

.

Figure 3.1: The signature of our first TRALE grammar

3.1. COMPUTING WITH HPSG GRAMMARS 131

% Multifile declarations.

:- multifile ’##’/2.

:- multifile ’~~>’/2.

% load phonology and tree output

:- [trale_home(tree_extensions)].

% specify signature file

signature(signature).

% phrase structure rule

subject_head_rule ##

(phrase, synsem:(category:(head:H,

subcat:[]),

content:Content),

dtr1:Subj, dtr2:Head)

===>

cat> (Subj, synsem:Synsem),

cat> (Head, synsem:(category:(head:H,

subcat:[Synsem]),

content:Content)).

% lexical entries

she ~~> (synsem:(category: (head:case:nom,

subcat:e_list),

content: (index: (X, (person:third,

number:sing,

gender:fem))),

context: (backgr:[(relation:female,arg1:X)]))).

walks ~~> (synsem: (category: (head:vform:fin,

subcat:[(category:head:case:nom,

content:index: (X,(person:third,

number:sing

)))]),

content:(relation:walk,

arg1:X))).

Figure 3.2: The theory of our first TRALE grammar

132 CHAPTER 3. GRAMMAR IMPLEMENTATION

ter nodes of the phrase structure rule follow the reserved symbol cat>. There may be
as many daughters in a phrase structure rule as one likes. In the present example, the
phrase structure rule has two daughters. The order in which the daughters are mentioned
determines the linear order of their phonologies on the mother node, exactly as in standard
phrase structure rules with atomic symbols: S → NP VP is probably the most famous ex-
ample among linguists. The variables Subj and Head (which are given suggestive names)
determine that the value of dtr1 is identical with the first daughter, and the value of
dtr2 is identical with the second daughter in the phrase structure rule.

The effect of the Head Feature Principle is achieved by using the variable H.
The description of the subcat values of the mother and the head daughter, and the
sharing of the single element on the subcat list of the second daughter and the synsem
value of the first daughter by virtue of the variable Synsem, implement the effect of the
Subcategorization Principle. A Semantics Principle is integrated in the phrase
structure rule by identifying the content values of the head daughter and the mother by
the variable Content. When we parse a sentence we will see that the subject_head_rule

licenses a sentence which looks as if it were licensed by an HPSG grammar, although our
grammar does not contain a single explicit implicational principle, integrating all but one
of them in the annotation of the phrase structure rule.

The exception to the integration of all principles in the PS rule is the Word Principle,
which is normally an implication with a disjunction of lexical entries in its consequent. In
TRALE lexical entries are stated in a reserved syntax. Instead of being introduced as
disjuncts in the consequent of a single Word Principle, they are stated in a syntax
which separates them syntactically from each other. To the left of the reserved symbol
∼∼> is the phonology of the word. To the right of it is the rest of its description. Initially
this is just a practical convention: Its logical interpretation by the system is identical with
the interpretation of a traditional Word Principle.

There are more reasons for the special notation for lexical entries: A Word Principle
would quickly become very hard to read due to its size, and it would become extremely
difficult to find typos in this huge principle. Secondly, there are limitations to the size of
terms which Prolog can handle. Splitting up the Word Principle into disjoint syntactic
entities helps to avoid this problem.

Finally, let us observe that TRALE provides the notation for lists with square brackets.
This allows us to avoid the rather cumbersome and error-provoking notation which is based
on an explicit use of the attributes hd and tl, as the list attributes are called in the present
signature.

After starting TRALE with the option -g and compiling the grammar, we can investi-
gate our first grammar using the graphical interface GRiSU. Typing lex walks.<Return>

returns a description of the word walks. This description displays the information con-
tained in the system about the shape of words with the phonology walks, which are in the
denotation of the grammar.

3.1. COMPUTING WITH HPSG GRAMMARS 133

Obviously lex is a system predicate which takes the phonology of single lexical items
as its argument. It is interpreted as a query for the elements of sort word with the given
phonology in the denotation of the grammar.

Similarly we may examine the system internal description representation of the word
she by typing lex she.<Return>:

134 CHAPTER 3. GRAMMAR IMPLEMENTATION

Our small grammar predicts exactly one sentence. The parsing predicate of TRALE is
rec, which is followed by a list with the phonology of the expression that we want to test.
The query rec[she,walks].<Return> is answered with a description that can be viewed in
two major formats, either as a pure AVM description or in a phrase structure-like format.
Here we provide both formats in turn, with the AVM format first.

3.1. COMPUTING WITH HPSG GRAMMARS 135

Note that the tree representation format of GRiSU is nothing but a display function
of the graphical interface of the grammar, which is supposed to help the user to examine

136 CHAPTER 3. GRAMMAR IMPLEMENTATION

the grammar. There is no logical significance to the two different modes of graphical
representation. In the tree representation two of the attributes, dtr1 and dtr2, are simply
represented in a different mode, as edges of a tree. This has no theoretical significance.

In the graphical tree representation of the system’s output shown above, the values
of dtr1 and dtr2 are actually displayed redundantly. In the description of the mother
node we find the two attributes followed by tags. We can expand these tags by clicking
on them to reveal more complete descriptions of the two daughters. At the same time,
descriptions of these two daughters are displayed under the tree branches which represent
the two attributes dtr1 and dtr2 as edges in a tree. GRiSU offers the option of hiding
arbitrary attributes to avoid such redundancies in the output (see the TRALE manual for
how the user can specify this). This will be a very useful option when we investigate the
parsing output of bigger sentences with huge descriptions.

In the next section we will extend our small grammar and learn more techniques of
working with TRALE.

Exercises

Exercise 34 Summarize the parsing problem of HPSG in your own words.

Exercise 35 Take a close look at the small grammar and ask about anything that remains
unclear to you.

GLOSSARY

http://milca.sfs.uni-tuebingen.de/A4/Course/PDF/glossary/glossar.html?lexical_entries¶metric_sorts&signature&syntactic_sugar&tag&theory

3.1. COMPUTING WITH HPSG GRAMMARS 137

3.1.2 The Second TRALE Grammar

Abstract

The second TRALE grammar (signature8, theory.pl9) will introduce a slightly
modified signature and extend the syntactic combinatorics of the grammar.

The signature of our second small fragment of English differs slightly from the signature
of the first fragment of the previous section.

In the first grammar we did not distinguish between different types of head values of
signs. Nodes of sort head were the only possible head values. Since case and vform were
appropriate to head, the verb walks as well as the pronoun she had a verb form and case.
Since a case value was not specified for walks and a verb form value was not specified for she
in the grammar, and no principles of grammar imposed any restrictions on possible head
values, answers to lexical queries with the predicate lex did not mention the unspecified
attributes and attribute values. This meant in effect that these values, being both possible
but unspecified, were permitted in models of the grammar for each of the words. The verb
walks occurred in models of the grammar with either case nom or case acc (but never
without a case arc), and the noun she occurred with either vform fin or vform bse (but
never without a vform arc).

The present grammar introduces subsorts of head, noun and verb. The attribute case
is appropriate to noun and the attribute vform is appropriate to verb. Again, the output
descriptions to a lexical query about walks will not mention case. However, this time this
has a different significance: Now the word walks can no longer have case at all, because
the signature says so. Similarly, she has no verb form due to the new signature.

A second important change in the signature concerns the possible values of the feature
content. In the signature of the first grammar values of content were always of sort
cont, since cont did not have any subsorts. Four attributes were appropriate to cont:
relation, arg1, arg2, and index. This is the kind of signature which Pollard and
Sag use implicitly and in many informal examples in the first few chapters of the 1994
book, before they reconsider their semantic representations and suggest a revision. The
motivation behind the revision is obvious. According to the first signature every sign has
a content value with four outgoing arcs, one for a relation, two for the first and the
second argument of the relation, and one for an index. If we look at what the first grammar
does with the attributes we see that this is not what is actually intended. The word walks
expresses the semantic relation walk, and the walk relation has exactly one argument; the
subject of walking. There is no second argument and there is no index. Since no information
is provided about a second argument or an index, all that the query lex walks. returns
is a description which includes the relation and the first argument. This is not correct
although it might at first appear so, since we know that, given the signature, the output
description means that walks has an arbitrary second logical argument and an arbitrary
index; in fact any second argument and any index permitted by the signature. The reader

8http://milca.sfs.uni-tuebingen.de/A4/Course/Grammars/Grammatik2/signature
9http://milca.sfs.uni-tuebingen.de/A4/Course/Grammars/Grammatik2/theory.pl

http://milca.sfs.uni-tuebingen.de/A4/Course/Grammars/Grammatik2/signature
http://milca.sfs.uni-tuebingen.de/A4/Course/Grammars/Grammatik2/theory.pl
http://milca.sfs.uni-tuebingen.de/A4/Course/Grammars/Grammatik2/signature

138 CHAPTER 3. GRAMMAR IMPLEMENTATION

type_hierarchy

bot

list

ne_list hd:bot tl:list

e_list

sign phon:ne_list synsem:synsem

phrase dtr1:sign dtr2:sign dtrs:list

word

synsem category:cat content:cont context:conx

cat head:head subcat:list

head

noun case:case

verb vform:vform

vform

fin

bse

case

nom

acc

cont

relations arg1:index

unary_rel

walk_rel

female_rel

love_rel arg2:index

nom_obj index:index

conx backgr:list

index person:person number:number gender:gender

person

first

second

third

number

sing

plur

gender

masc

fem

.

Figure 3.3: The signature of our second TRALE grammar

3.1. COMPUTING WITH HPSG GRAMMARS 139

might want to go back and check the description in the last section, or even better, use
TRALE to reproduce the result.10

A similar observation holds for the pronoun she in the first grammar. The pronoun she
has a semantic index, but it does not specify a relation nor any arguments. The description
which comes up in answer to lex she. relative to the first grammar reflects this idea,
since nothing is specified in the grammar about a relation and arguments. However, given
the signature, the answer to our query implies that she does have two arguments and a
relation value. Any value which is permitted by the signature is allowed. This is of
course not what we want.

What is interesting about this example is that we cannot detect the problem by just
looking at the output of lexical queries or at parse results. Because the “unwanted” mean-
ings are not mentioned anywhere in the grammar except for the signature, the system does
not make any inferences about the relevant parts of the structures in the denotation of the
grammar and does not say anything about them in the descriptions it returns. The only
way to spot the problem is to consider the specifications in the signature and the meaning
of the descriptions returned by the system. Since our system works entirely on a syntactic
level, meaning is constructed entirely by the user, and it is therefore the user’s responsibil-
ity to be aware of the meaning of the grammar and to make sure that it is sensible. The
important lesson here is that just because the output of a grammar looks right, it does not
automatically follow that the grammar itself is flawless. A computational system such as
TRALE will detect some problems in our grammars for us, but by no means all of them.
Or to put it even more clearly, computing cannot ever replace thinking.

Our new signature fixes the problems with the content values by introducing subsorts
of cont which have the right kinds of attributes appropriate to them. The new signature
distinguishes relations from nominal objects (of sort nom obj). Relations have an argument,
nominal objects do not. Nominal objects have an attribute index instead. As we can see in
the signature, there are unary relations in the grammar. They have exactly one argument.
The love relation, however, requires two arguments. At the subsort love rel of relations, a
second argument, arg2, is introduced for this purpose. As a consequence of these changes
not only will the output descriptions to lexical queries look sensible, they will also have a
reasonable meaning: The verb love has exactly two semantic arguments, walk has exactly
one argument, and the meaning of she is represented by an index and nothing else.

Let us now look at the extension of the theory of the grammar (theory.pl). Our theory
file now looks as follows:

% Multifile declarations.

:- multifile ’##’/2.

:- multifile ’~~>’/2.

10If you are not sure about the meaning of
[
case nom

]
relative to the signature of Section 3.1.1, you might

want to use MoMo to examine it. You may simply load the file signature as your signature in MoMo and
check satisfaction of the descriptions which you are interested in! You will, of course, have to draw feature
structures.

http://milca.sfs.uni-tuebingen.de/A4/Course/Grammars/Grammatik2/theory.pl

140 CHAPTER 3. GRAMMAR IMPLEMENTATION

% load phonology and tree output

:- [trale_home(tree_extensions)].

% specify signature file

signature(signature).

% lexical entries

she ~~> (synsem:(category: (head:case:nom,

subcat:e_list),

content: (index: (X, (person:third,

number:sing,

gender:fem))),

context: (backgr:[(female_rel, arg1:X)]))).

her ~~> (synsem:(category: (head:case:acc,

subcat:e_list),

content: (index: (X, (person:third,

number:sing,

gender:fem))),

context: (backgr:[(female_rel, arg1:X)]))).

walks ~~> (synsem: (category: (head:vform:fin,

subcat:[(category:head:case:nom,

content:index: (X,(person:third,

number:sing

)))]),

content:(walk_rel,

arg1:X))).

loves ~~> (synsem: (category: (head:vform:fin,

subcat:[(category:head:case:acc,

content:index: Y),

(category:head:case:nom,

content:index: (X,

person:third,

number:sing))]),

content: (love_rel,arg1:X,arg2:Y))).

i ~~> (synsem:(category: (head:case:nom,

subcat:e_list),

content: (index:(person:first,

number:sing)))).

3.1. COMPUTING WITH HPSG GRAMMARS 141

walk ~~> (synsem: (category: (head:vform:fin,

subcat:[(category:head:case:nom,

content:index: (X,(person:first,

number:sing

)))]),

content:(walk_rel,

arg1:X))).

% phrase structure rules

subject_head_rule ##

(phrase, synsem:(category:(head:H,

subcat:[]),

content:Content),

dtr1:Subj, dtr2:Head)

===>

cat> (Subj, synsem:Synsem),

cat> (Head, synsem:(category:(head:H,

subcat:[Synsem]),

content:Content)).

head_complement_rule ##

(phrase, synsem:(category:(head:H,

subcat:(ne_list, Rest)),

content:Content),

dtr1:Comp, dtr2:Head)

===>

cat> (Head, synsem:(category:(head:H,

subcat:[First|Rest]),

content:Content)),

cat> (Comp, synsem:First).

The first seven lines contain the same technical declarations about the treatment of
reserved symbols (for declaring phrase structure rules and lexical entries) in the system
and about loading a particular file for parsing, as we saw before. Also we still use a
signature file called signature.

In the part of the file which specifies the grammar itself, the lexical entries now precede
the phrase structure rules. Obviously the order of our specifications does not matter here.
The only difference with the lexical entries is the addition of four new ones. There is a
second personal pronoun in the nominative case: I, a personal pronoun in the accusative
case: her, and there is a new, transitive verb form: loves. Finally there are now two forms
of the verb walk in the lexicon. We have the form walks and the form walk. Both of them
are specified as finite verb forms, but they have different subcategorization requirements.

142 CHAPTER 3. GRAMMAR IMPLEMENTATION

The form walks requires a third person singular subject by the specification of the single
element on its subcat list, whereas walk requires a first person singular subject. This
lexical requirement can be understood as a simple, lexical theory of agreement. The co-
indexations between the respective index values under the content attribute of the
subcategorized subject and the semantic argument under the content value of the verb
itself guarantees sensible albeit very simple semantic representations.

The theory of case assignment is equally simple at this point. The finite verb forms
require their subjects (the last elements on their subcat lists!) to be case nom. The
transitive verb loves requires a second argument (the first element of its subcat list) with
the accusative case.

Note that the lexical specification of she had not changed compared to the first grammar,
although the part of the signature which structures possible cont entities has.

Ultimately we would like to formulate a linguistic theory which says something about
the apparent systematic relationship between walk and walks, and which does not posit the
two words as seemingly completely independent entities. It is easy to see that it would be
immediately beneficial for the size of our grammar implementation to have such a theory.
At the moment we have to write two lexical entries for (almost) every finite verb in order to
distinguish third person singular forms from others. A general solution would be to reduce
the necessary specifications to a combination of a base lexical entry (or to an appropriate
morphological unit) and a general theory. In order to do this we need to develop a theory,
applicable to all words of a given class, about the forms in which the words may occur
in utterances. We will see a concrete version of one possible theory which does this in
Section 3.2.2, where we will discuss Lexical Rules in TRALE.

Instead of having one phrase structure rule, we now have two. The subject_head_rule
has not changed. The second phrase structure rule is constructed for the syntactic realiza-
tion of the objects of transitive verbs such as loves. Just as with the first phrase structure
rule, the head_complement_rule incorporates a number of principles of grammar in its
specification. Firstly it takes over the task of an ID Schema in an ID Principle. Sec-
ondly it specifies part of a principle for word order (since it says that the phonology of the
head (in this case dtr2) precedes the phonology of the non-head, the value of dtr1). It
also performs a part of the job of the Subcategorization Principle, since it dictates
that the first element on the subcat list of the head daughter is the synsem value of
the non-head daughter, and the rest of the subcat list of the head daughter is passed on
to the mother via the variable Rest. Finally it guarantees that phrases of this particular
type look as if they were licensed by the Head Feature Principle and the Semantics
Principle because the variables H and Content enforce the identity of the head and
content values of the mother and the head daughter, which is what the Head Feature
Principle and the Semantics Principle would do.

It is important to notice, however, that we still do not have any real principles of
grammar. There are no implicational descriptions in this new theory file either, and the
fact that the grammar specifies a small fragment of English as if we had a Head Feature
Principle, a Semantics Principle, etc., is a mere side effect of the way in which we
specified the phrase structure rules. To observe the relevance of this point, consider adding

3.1. COMPUTING WITH HPSG GRAMMARS 143

a second head complement rule just like the one in our second TRALE grammar, but
leaving out the use of the variable H. The second head complement rule would then look
like this:

head_complement_rule_2 ##

(phrase, synsem:(category:subcat:(ne_list, Rest),

content:Content),

dtr1:Comp, dtr2:Head)

===>

cat> (Head, synsem:(category:subcat:[First|Rest],

content:Content)),

cat> (Comp, synsem:First).

Then what would happen? Suddenly our grammar would license phrases which no
longer obey the Head Feature Principle! In an HPSG grammar an effect of this
nature could never occur by adding a principle to the theory. Once the theory contains
a restriction such as the Head Feature Principle, that restriction is always present.
Adding another principle will add another restriction, but it will never remove the effects
of a previously existing one.

It is thus clear that when implementing HPSG grammars it is dangerous to integrate
general principles into specific phrase structure rules. The leading idea should be to keep
the general principles as implicational descriptions. If we had a separate Head Feature
Principle in our grammar, it would automatically restrict new types of phrases which were
licensed by new phrase structure rules as expected, and we would not have to worry about
integrating all the necessary effects of principles into the formulation of phrase structure
rules.

We will now pursue this crucial idea of factoring out general principles of grammar by
investigating how we may extract the general principles which are implicitly present from
our two phrase structure rules. This will also give us a better idea about which elements of
HPSG grammars can be taken over by phrase structure rules to make them more efficient,
and what should not be taken over by phrase structure rules if we want to ensure that our
grammar exhibits a structure which is close to HPSG grammars.

How could we factor out a Semantics Principle from the two phrase structure
rules? The easiest part of the exercise is to remove the elements which concern semantic
representations. We simply delete the parts of the descriptions in the rules which mention
Content values:

144 CHAPTER 3. GRAMMAR IMPLEMENTATION

% modified phrase structure rules

new_subject_head_rule ##

(phrase, synsem:(category:(head:H,

subcat:[])),

dtr1:Subj, dtr2:Head)

===>

cat> (Subj, synsem:Synsem),

cat> (Head, synsem:category:(head:H,

subcat:[Synsem])).

new_head_complement_rule ##

(phrase, synsem:category:(head:H,

subcat:(ne_list, Rest)),

dtr1:Comp, dtr2:Head)

===>

cat> (Head, synsem:category:(head:H,

subcat:[First|Rest])),

cat> (Comp, synsem:First).

If we parse with this newly modified grammar we will see that the content values
of phrases are now arbitrary, because they are no longer restricted in any way. In what
way do we want to restrict them? In our tiny fragment of English it is very simple: The
content value of phrases should always be the content value of the head daughter,
which always happens to be the semantic head of our phrases. This is after all exactly the
restriction which was originally built into the formulation of the phrase structure rules. As
an independent, general principle of grammar it looks of course like this:

phrase *> (synsem:content:Content,

dtr2:synsem:content:Content).

The reason for choosing to share the content value of dtr2 with the content value
of the syntactic mother node is as follows: in formulating the phrase structure rules we
ensured that the value of dtr2 is always the head daughter of the phrases, irrespective
of the relative linear order of its phonology to the phonology of the dtr1 value. For
the purposes of the Semantics Principle which we have just formulated, we may then
generalize over dtr2 values.

After adding the Semantics Principle to the new version of the file theory.pl which
already contains the new versions of the phrase structure rules, we have an implementation
of our second fragment of English which is equivalent to the version that we started with.
The crucial difference is that we have now begun to modify it in such a way that it looks
more like a true HPSG grammar! This is the path which we will pursue further in the
following sections.

3.1. COMPUTING WITH HPSG GRAMMARS 145

Exercises

Exercise 36 Our second grammar (signature11, theory12) licenses the sentences I walk and
She walks while correctly excluding *I walks and She walk. Add two new pronouns to the
grammar, you and they, and modify the lexical entry of walk in such a way that the gram-
mar licenses You walk and They walk with a reasonable representation for agreement and
semantics, while excluding ungrammatical sentences which may result from the syntactic
combination of the given words.

Exercise 37 In the text we have shown how to factor out the Semantics Principle
from the original formulation of our two phrase structure rules. Take the two new versions
of the phrase structure rules and factor out a Head Feature Principle. Your new
grammar will then consist of two even shorter phrase structure rules, a Head Feature
Principle, a Semantics Principle, and the lexical entries.

Use TRALE to develop and test your modifications!

GLOSSARY

3.1.3 The Third TRALE Grammar

Abstract

The third TRALE grammar is essentially a lexical extension of the previous
grammar. We will observe more properties of TRALE grammars, talk about
how the syntactic form of logically equivalent grammar specifications can lead
to different answers to queries, and specify a logical re-interpretation of the
phrase structure rules in the HPSG formalism.

In studying the properties of a third grammar which will extend the lexicon of the gram-
mar that we investigated in the previous section, we will discuss three topics. First we will
discuss restrictions on appropriateness specifications in TRALE signatures. Our second
topic is the behavior of TRALE’s output. We will see how equivalent grammar specifi-
cations can lead to syntactically different results. In contrast to a purely model-theoretic
approach, where only meaning matters, we will observe that in grammar implementations
the syntactic form of the input specification might also matter for the user of the gram-
mar. To conclude our output-related considerations we will introduce a useful option for
manipulating what is displayed by the graphical user interface, GRiSU.

The last point on our agenda is the most complex and also the most important one:
We want to understand what the phrase structure rules of TRALE mean in terms of the
logical grammar specification of HPSG. For this purpose, we will reformulate the phrase
structure rules as a principle of an HPSG grammar. Using this principle we will then be
able to continue the extraction of conceptually independent principles of grammar from the

11http://milca.sfs.uni-tuebingen.de/A4/Course/Grammars/Grammatik2/signature
12http://milca.sfs.uni-tuebingen.de/A4/Course/Grammars/Grammatik2/theory.pl

http://milca.sfs.uni-tuebingen.de/A4/Course/Grammars/Grammatik2/signature
http://milca.sfs.uni-tuebingen.de/A4/Course/Grammars/Grammatik2/theory.pl
http://milca.sfs.uni-tuebingen.de/A4/Course/PDF/glossary/glossar.html?lexical_entries&principles&signature&theory

146 CHAPTER 3. GRAMMAR IMPLEMENTATION

phrase structure rules which we already started in the previous section, having extracted
the Semantics Principle.

Transforming the phrase structure rules initially into a principle of grammar of the
kind that we are already familiar with makes it easier to see what it means to factor
out general grammatical principles from our first formulation of phrase structure rules.
This is because we already have experience with logical reformulations of principles. The
factoring out of conceptually independent principles is nothing but a logically equivalent
reformulation of one principle of grammar as several principles of grammar. The meaning
of implicational descriptions is already very familiar to us, and we understand how an
implicational description can be reformulated as one or more implicational descriptions of
different syntactic forms which have the same meaning.

Our aim then is to factor out all independent principles of grammar from our logical
specification of the phrase structure rules as a single grammatical principle. After we
complete our reformulation we will translate the resulting HPSG grammar back into a
TRALE grammar. Our main goal in this enterprise is to understand how we can use the
construct of phrase structure rules for efficient parsing of HPSG grammars without giving
up more than what is absolutely necessary of the formal structure of logically pure HPSG
grammars.

TRALE Signatures The signature of our third small fragment of English (Fig. 3.4,
signature13) is only a minimal extension of the old signature. Extra sorts and attributes
under cont are necessary for the new lexical entries of give, and a modification in the lexical
entry of first person personal pronouns. A third case value, dat, will serve to illustrate
the computational behavior of TRALE under certain conditions.

The addition of the maximally specific sort dat is not significant. It is just one more
subsort of case, its linguistic purpose is obvious, and we do not need to discuss it any
further. What happens under cont is more theoretically interesting.

Firstly, there is one more sort, speaker rel, under unary rel. The sort unary rel sub-
sumes all the sorts which denote nodes with exactly one (index valued) outgoing arc, arg1.
The sort speaker rel is used in context values of first person personal pronouns in order to
indicate the anchoring of the pronoun’s reference to the speaker in a given type of situation.

The second extension of the sort hierarchy under cont reveals important properties of
TRALE signatures. The extension in question is necessary for modeling predicates with
two or three arguments. In the signature of the second grammar relations had a second
immediate subsort besides unary rel, namely love rel, which was the only sort in the cont
hierarchy with two argument attributes, arg1 and arg2. In the new signature we also
have one sort, give rel, with three argument attributes, arg1, arg2, and arg3, because
‘giving’ is semantically a relation between three existing entities in the world. One might
wonder why we then introduce two new sorts instead of one by giving love rel and give rel
an additional immediate supersort, more arg rel. As long as we have very few semantic
relations, the following sort hierarchy with appropriateness conditions seems to be more

13http://milca.sfs.uni-tuebingen.de/A4/Course/Grammars/Grammatik3/signature

http://milca.sfs.uni-tuebingen.de/A4/Course/Grammars/Grammatik3/signature

3.1. COMPUTING WITH HPSG GRAMMARS 147

type_hierarchy

bot

list

ne_list hd:bot tl:list

e_list

sign phon:ne_list synsem:synsem

phrase dtr1:sign dtr2:sign dtrs:list

word

synsem category:cat content:cont context:conx

cat head:head subcat:list

head

noun case:case

verb vform:vform

vform

fin

bse

case

nom

acc

dat

cont

relations arg1:index

unary_rel

walk_rel

female_rel

speaker_rel

more_arg_rel arg2:index

love_rel

give_rel arg3:index

nom_obj index:index

conx backgr:list

index person:person number:number gender:gender

person

first

third

number

sing

plur

gender

masc

fem

.

Figure 3.4: The signature of our third TRALE grammar

148 CHAPTER 3. GRAMMAR IMPLEMENTATION

economical:

cont

relations arg1:index

unary_rel

walk_rel

...

love_rel arg2:index

give_rel arg2:index arg3:index

...

The reason we cannot do this in TRALE (although it would be perfectly legitimate for
the signatures of HPSG) is that there is a condition on how we are allowed to introduce
attributes in the sort hierarchy, the so-called Feature Introduction Condition. The Feature
Introduction Condition says that for each attribute which is appropriate to a sort there
must be a unique sort σ in the sort hierarchy, such that (a), the attribute is appropriate
to σ, and, (b), σ subsumes all other sorts to which the attribute is appropriate. In the
simplified hierarchy which we have just sketched this condition is violated by arg2, because
there is no unique common supersort of love rel and give rel to which arg2 is appropriate.

The signature of the third grammar does not have this problem because it adds the
sort more arg rel, and declares arg2 appropriate to it. The sort more arg rel is then the
unique highest sort in the overall sort hierarchy to which arg2 is appropriate, and both
love rel and give rel “inherit” the attribute from more arg rel. The Feature Introduction
Condition is a restriction to the form of legitimate signatures in TRALE which we have to
bear in mind when we implement grammars. It is motivated by the inferencing mechanisms
which TRALE uses for computing with grammars.

Let us now examine the extension of the grammar’s theory (theory.pl14). The changes
only concern the addition of new lexical entries. Our theory file now looks as follows:

% Multifile declarations.

:- multifile ’##’/2.

:- multifile ’~~>’/2.

% load phonology and tree output

:- [trale_home(tree_extensions)].

% specify signature file

signature(signature).

14http://milca.sfs.uni-tuebingen.de/A4/Course/Grammars/Grammatik3/theory.pl

http://milca.sfs.uni-tuebingen.de/A4/Course/Grammars/Grammatik3/theory.pl

3.1. COMPUTING WITH HPSG GRAMMARS 149

% lexical entries

i ~~> synsem:(category:(head:case:nom,

subcat:e_list),

content:(index: (X,(person:first,

number:sing))),

context:(backgr:[(speaker_rel,arg1:X)])).

me ~~> synsem:(category:(head:case:(acc;dat),

subcat:e_list),

content:(index: (X,(person:first,

number:sing))),

context:(backgr:[(speaker_rel,arg1:X)])).

she ~~> synsem:(category:(head:case:nom,

subcat:e_list),

content:(index: (X,(person:third,

number:sing,

gender:fem))),

context:(backgr:[(female_rel,arg1:X)])).

her ~~> synsem:(category:(head:case:(acc;dat),

subcat:e_list),

content:(index: (X,(person:third,

number:sing,

gender:fem))),

context:(backgr:[(female_rel,arg1:X)])).

milk ~~> synsem:(category:(head:noun,

subcat:e_list),

content:(index:(person:third,

number:sing))).

walk ~~> synsem:(category:(head:vform:fin,

subcat:[(category:(head:case:nom),

content:index:(X,

person:first,

number:sing)

)]),

content:(walk_rel,

arg1:X)).

walks ~~> synsem:(category:(head:vform:fin,

150 CHAPTER 3. GRAMMAR IMPLEMENTATION

subcat:[(category:(head:case:nom),

content:index:(X,

person:third,

number:sing)

)]),

content:(walk_rel,

arg1:X)).

love ~~> synsem:(category:(head:vform:fin,

subcat:[(category:(head:case:acc),

content:index: Y),

(category:(head:case:nom),

content:index: (X,

person:first,

number:sing)

)]),

content:(love_rel,

arg1:X,

arg2:Y)).

loves ~~> synsem:(category:(head:vform:fin,

subcat:[(category:(head:case:acc),

content:index: Y),

(category:(head:case:nom),

content:index: (X,

person:third,

number:sing)

)]),

content:(love_rel,

arg1:X,

arg2:Y)).

give ~~> synsem:(category:(head:vform:fin,

subcat:[(category:(head:case:dat),

content:index: Z),

(category:(head:case:acc),

content:index: Y),

(category:(head:case:nom),

content:index: (X,

person:first,

number:sing)

)]),

3.1. COMPUTING WITH HPSG GRAMMARS 151

content:(give_rel,

arg1:X,

arg2:Y,

arg3:Z)).

gives ~~> synsem:(category:(head:vform:fin,

subcat:[(category:(head:case:dat),

content:index: Z),

(category:(head:case:acc),

content:index: Y),

(category:(head:case:nom),

content:index: (X,

person:third,

number:sing)

)]),

content:(give_rel,

arg1:X,

arg2:Y,

arg3:Z)).

% phrase structure rules

subject_head_rule ##

(phrase, synsem:(category:(head:H,

subcat:[]),

content:Content),

dtr1:Subj, dtr2:Head)

===>

cat> (Subj, synsem:Synsem),

cat> (Head, synsem:(category:(head:H,

subcat:[Synsem]),

content:Content)).

head_complement_rule ##

(phrase, synsem:(category:(head:H,

subcat:(ne_list, Rest)),

content:Content),

dtr1:Comp, dtr2:Head)

===>

cat> (Head, synsem:(category:(head:H,

subcat:[First|Rest]),

content:Content)),

cat> (Comp, synsem:First).

152 CHAPTER 3. GRAMMAR IMPLEMENTATION

The first seven lines contain the same technical declarations as our earlier fragments of
English, and we still call the signature file signature. The grammar now contains more
lexical entries of pronouns. Two pronouns (me and her) receive a disjunctive case specifica-
tion: They are either acc(usative) or dat(ive). Adding the lexical entry of the ditransitive
verb give introduces new kinds of binary branching structures to our syntax. In the sen-
tence She gives me milk, gives first combines with me by the head_complement_rule, and
gives me then combines with milk, again by the head_complement_rule.

Output-related Issues The disjunctive specification of the possible case values of the
pronouns me and her in the lexicon has a remarkable effect on the output behavior of
TRALE, which indirectly tells us something about its computational properties. The query
lex her. now returns two descriptions instead of one; we have a non-disjunctive description
for every possible case value. We can conclude that the disjunction is promoted to word
level by the system.

The behavior we have observed is not simply determined by the fact that two feature
structures of different shape are in the denotation of the grammar. To illustrate this,
consider the pronoun I as specified in our lexicon and its possible gender values. The
sort gender is appropriate for gender, and gender has two subsorts, masc and fem. Since
the lexical entry of I does not mention gender values (and no other part of the grammar
restricts possible gender values of pronouns), I is ambiguous between gender masc and
gender fem. The system expresses this when it answers the query lex i. by simply
not mentioning the gender value. This changes when we change the lexical entry of I
to a denotationally equivalent description with explicit disjunction. Suppose we have the
description:

3.1. COMPUTING WITH HPSG GRAMMARS 153

i ~~> synsem:(category:(head:case:nom,

subcat:e_list),

content:(index: (X,(person:first,

number:sing,

gender:(fem;masc)))),

context:(backgr:[(speaker_rel,arg1:X)])).

Nothing has changed with respect to the meaning of our grammar; however the compu-
tational output of TRALE has changed, since TRALE operates on a syntactic level: lex

i. now returns two descriptions, one for each possible gender value of I.
These observations teach us a very important lesson about grammar implementations:

When implementing a grammar, we can influence the output behavior of queries by varying
the syntactic form in which our grammar is written. Thus the purpose of a grammar and
its most appropriate output behavior quite often influence the grammar writer’s choice
between various possible equivalent formulations! It is in fact a very important skill to
know how to write grammars in a form that will lead to an output behavior which is
most suitable for a given task. Achieving this goal can quickly become difficult when we
go beyond simple specifications of lexical entries and take into account the interaction of
various different complex grammar principles.

The output of a grammar is not only a matter of the grammar specification itself.
There are also a number of functions of the graphical interface software GRiSU, which are
in some sense more superficial but also very helpful, which you might want to use to fine
tune the displaying of parsing results. In contrast to the output behavior with disjunctions,
GRiSU has nothing to do with the underlying computations. GRiSU only responds to your
demands concerning how you want to see the data displayed which TRALE transmits to
the graphical user interface. A display function of GRiSU which you might want to try at
this point allows you to suppress certain uninformative features in the graphical output.
For example we have said that the dtrs feature in our current grammars is only needed
for technical reasons, and we do not use it in our specifications. Thus it would be clearer
and more economical if this feature were not displayed in the output. To achieve this, add
the line

hidden_feat(dtrs).

to the file theory.pl just behind the technical specifications at the beginning. After
saving the changes and recompiling the grammar, you will discover that GRiSU no longer
mentions the dtrs attribute and dtrs values in answers to queries. Should you discover
while working with a grammar that you want to see the hidden features for any reason, you
can choose the option ‘Show Hidden Nodes’ in the menu of GRiSU windows. Attributes
which are hidden for whatever reason are then displayed in light gray, and by clicking on
them you prompt GRiSU to show descriptions of their values.

If you like to work with the graphical tree output of GRiSU rather than with full AVM
mode you might also want to add

154 CHAPTER 3. GRAMMAR IMPLEMENTATION

hidden_feat(dtr1).

hidden_feat(dtr2).

to theory.pl, which suppresses displaying the syntactic daughter attributes and their value
in the output when an answer to a query first comes up. If you prefer the tree display,
your output will be more compact and less redundant. However most of these display
specifications are a matter of taste, and you will have to find out yourself what you can
work with best.

Phrase Structure Rules Re-interpreted as an ID Specification Now that we know
a little more about interpreting and manipulating output, let us return to the logical prop-
erties of our grammar implementation. Our third TRALE grammar, just like the second
one, only specifies the lexicon and two phrase structure rules with descriptive decorations.
There are still no implicational principles of the kind that we know from the theories of
HPSG grammars. In order to understand the effect of the annotated phrase structure
rules on the feature structure models of our TRALE grammar, we must reformulate the
grammar by recreating the effect of the phrase structure rules with a standard grammatical
principle.

As we have previously indicated, in terms of HPSG all decorated phrase structure rules
taken together specify something similar to an ID Principle. To be more precise, each
phrase structure rule may be interpreted as an ID Schema. Our current ID Schema-
like phrase structure rules differ from normal ID Schemata in that they specify many
more properties of phrases than ID Schemata usually do. For every type of phrase they
incorporate specifications which linguists would like to specify independently in separate
principles of grammar. The reason why they are normally specified as independent prin-
ciples is that these principles formulate generalizations over the entire grammar rather
than just over particular phrase types. We would like to do the same in our grammar
implementations and specify a separate Head Feature Principle, a separate Seman-
tics Principle, and a separate Subcategorization Principle. However, before we
take that step, let us consider an HPSG specification of the phrase structure rules of our
implementation first.

We will choose the linguistic AVM notation as our description language because of its
easy readability. It should be simple to see how to reformulate the principle in MoMo no-
tation. Note the implicit appeal to the existential closure convention in (32). All variables
are supposed to be bound with wide scope existential quantification.

3.1. COMPUTING WITH HPSG GRAMMARS 155

(32) An HPSG description replacing the phrase structure rules of the TRALE grammar

[
phrase

]
→

phon 0

synsem

category

[
head 1

subcat 〈〉

]

content 2

dtr1

[
phon 4

synsem 3

]

dtr2

phon 5

synsem

category

[
head 1

subcat
〈

3
〉

]

content 2

∧ append(4 , 5 , 0)

∨

phon 12

synsem

category

[
head 6

subcat 11 nelist

]

content 7

dtr1

[
phon 9

synsem 8

]

dtr2

phon 10

synsem

category

[
head 6

subcat
〈

8 | 11
〉

]

content 7

∧ append(10 , 9 , 12)

A phrase is licensed by our grammar if it satisfies one of the disjuncts in the consequent
of the given principle. Note that the tags 1 , 2 , and 3 in the first disjunct of the principle’s
consequent and the tags 6 , 7 and 8 in the second disjunct of the principle correspond to the
variables H, Content and Synsem in the description annotation of the phrase structure rules.
The specifications achieved by these variables enforce the effect of the Head Feature
Principle, the Semantics Principle, and the Subcategorization Principle in
modularly built grammars.

The daughter values of each phrase handled by the TRALE specification of the grammar
with the descriptions behind cat> in the phrase structure rules proper are restricted by
the description of the values of dtr1 and dtr2 in the consequent of the principle. In
TRALE the phrase structure rule itself fixes the order of the phonological strings of the
daughters in the overall phrase by imposing a linear order on the daughters. According to
our principle the order of the phonological contributions of the daughters to the phrase is
determined using the tags 0 , 4 , 5 , 9 , 10 and 12 , and the relation append. We presuppose
of course the presence in the grammar of an Append Principle of the kind which we
discussed earlier in the course.15

15In fact, an entirely precise reformulation in feature logic of the meaning of phrase structure rules would
also have to guarantee the finiteness of the phonological strings and the graph-theoretic tree structure of
phrase structure. We could modify the standard Append Principle somewhat in order to achieve this.
For the sake of simplicity we will ignore these difficult details here.

156 CHAPTER 3. GRAMMAR IMPLEMENTATION

Note the notation used for lists in the second disjunct of the consequent: 8 refers to
the first element on the subcat list of the second daughter, whereas 11 refers to the entire
subcat list of the mother, which is identical to the tail of the subcat list of the second
daughter. The notation 〈 8 | 11 〉 with the operator | is supposed to express that 8 refers to
the first element of the list, and 11 refers to the entire tail of the list.

Which“normal”HPSG principles are inherent to the technical device of phrase structure
rules and cannot be factored out, and which ones can be removed? Since every phrase
structure rule adds the possibility of a new type of phrase in the denotation of the grammar,
they necessarily do the job of the disjuncts in the consequent of an ID Principle. The
second property inherent to them is word order. Stating a phrase structure rule means
stating the relative linear order of the phonologies of their daughters. This property is one
of the major differences to ID Schemata, which in general do not say anything about
the relative linear order of the phonologies of their daughters in the overall phrase. On
the contrary, the possibility of having an independent word order module is one of the
advantages in analytical flexibility offered by HPSG in contrast with traditional phrase
structure grammars. This is exploited in the HPSG literature on so-called linearization
grammars [Kathol, 1995]. Linearization grammars envision an analysis of discontinuous
constituents by positing a certain independence of the phonological combinatorics from
the syntactic combinatorics in grammars. The (relative) independence of the syntactic
and the phonological combinatorics in linearization grammars means that the phonology
of phrases is not necessarily a concatenation of the phonologies of their daughters, but
there may be a more complicated relationship between them. For example, the phonology
of a phrase might still consist of the sum of the phonologies of its daughters, but the
phonological string of one daughter might be broken up and made discontinuous in the
phonology of the phrase by the insertion of phonological material from another daughter.

Let us consider a concrete example: According to linearization grammars one might
argue that in the German sentence Karl hat den Hund gefüttert, auf den er seit einer Woche
aufpasst the noun phrase den Hund and its restrictive relative clause auf den er seit einer
Woche aufpasst form a syntactic constituent. This means that the complex NP with the
phonology den Hund, auf den er seit einer Woche aufpasst and the verb with the phonology
gefüttert are syntactic sister nodes in the syntactic tree. However, a linearization rule—in
combination with a few other systematic architectural features of linearization grammars—
allows that the phonology of the verb gefüttert in this kind of constellation may intervene
between the phonology of the nominal phrase, den Hund, and its relative clause, auf den
er seit einer Woche aufpasst, in the phonology of their mother node. The optionality of
this phonological intervention also predicts the alternative word order den Hund, auf den
er seit einer Woche aufpasst, gefüttert.

When we use the phrase structure component of TRALE we gain in computational
efficiency by losing the generality of HPSG’s phonological combinatorics. TRALE responds
to this situation by once more offering linguists alternative computational devices: The final
MiLCA release of TRALE contains a linearization parser that provides a special syntax
for the specification of linearization rules, which are not as strictly tied to the syntactic
combinatorics as the word order rules that automatically come with phrase structure rules.

3.1. COMPUTING WITH HPSG GRAMMARS 157

Returning to our analysis of which parts from (32) must necessarily be contained in
specifications of phrase structure rules, we conclude that this only holds for those aspects
which concern word order and phrasal combinatorics. In general, if we are careful about
how we formulate phrase structure rules, they may be read as ID Schemata which fix
the relative word order of their daughters. All other aspects of (32) can be reformulated
as independent implicational principles.

In Section 3.1.2 we already began to go in this direction with our second TRALE gram-
mar. We established that the Semantics Principle captures the independent linguistic
observation The semantics of a phrase is identical to the semantics of its semantic head,
which, in our small grammars, is identical to the syntactic head. To mirror this linguistic
generalization in the structure of our grammar, we factored out the Semantics Prin-
ciple from the two phrase structure rules and stated it as a principle of a reformulated
version of our second TRALE grammar. In the present section we were finally able to state
the phrase structure rules of our TRALE grammar in terms of an ID Principle. With
the ID Principle we can of course quite easily do exactly the same thing that we did
with the phrase structure rules: We can factor out the generalization about the semantics
of phrases.

In (33) we will factor out the Semantics Principle from (32). The result is an ID
Principle which no longer mentions content values, and a second description, which
we call Semantics Principle.

(33) HPSG descriptions replacing the phrase structure rules of the TRALE grammar

ID Principle, preliminary version

[
phrase

]
→

phon 0

synsem

[

category

[
head 1

subcat 〈〉

]]

dtr1

[
phon 4

synsem 3

]

dtr2

phon 5

synsem

[

category

[
head 1

subcat
〈

3
〉

]]

∧ append(4 , 5 , 0)

∨

phon 12

synsem

[

category

[
head 6

subcat 11 nelist

]]

dtr1

[
phon 9

synsem 8

]

dtr2

phon 10

synsem

[

category

[
head 6

subcat
〈

8 | 11
〉

]]

∧ append(10 , 9 , 12)

158 CHAPTER 3. GRAMMAR IMPLEMENTATION

Semantics Principle

[
phrase

]
→
[
synsem content 1

dtr2 synsem content 1

]

If we add two more principles to our new ID Principle and Semantics Principle,
such as a Word Principle with our lexical entries and an Append Principle, we
will have listed all descriptions of a full HPSG specification of the grammar into which
we translated our second TRALE grammar at the end of the previous section, where we
separated a Semantics Principle from the two phrase structure rules. The underlying
signature would of course be almost identical with the signature of the second TRALE
grammar, except for the fact that we have to declare subsorts of a sort phonstring for all
words in the grammar, as well as the append relation and its arity in the signature. This
means, however, that we can now give a complete HPSG formalization of the TRALE
grammar of the previous section, with the Semantics Principle factored out of the ID
Principle.

Let us now return to the third grammar which we started in the present section. Tak-
ing the signature of our third TRALE grammar (and adding the append symbol with arity
3), we now have an explicit HPSG formulation of our third TRALE grammar with the
Semantics Principle factored out of the phrase structure rules. We can now go further
and specify the Head Feature Principle and the Subcategorization Principle
independent of the ID Principle: We simply reformulate our present theory of grammar
into an equivalent theory of a different syntactic form. This gives us an HPSG specification
with all independently motivated generalizations over the observed linguistic data, neatly
separated in independent principles of grammar. The only linguistic aspect which we may
not touch if we want to be able to maintain a direct correspondence of the HPSG speci-
fication and the TRALE implementation of the grammar is the tight connection between
the syntactic and the phonological combinatorics. Each ID Schema must specify the
phonology of the mother node as a fixed concatenation of the phonologies of the daugh-
ter signs. But this property is a property of all phrase structure grammars which work
with traditional phrase structure rules, and at the moment we are simply formulating our
HPSG grammars in a manner similar to a phrase structure grammar. The restrictions on
possible analyses of word order are thus not difficult to accept as long as we do not pursue
a linearization-based HPSG analysis of a natural language. As soon as we do this, we have
to resort to the linearization parsers of TRALE.

Let us now take our present HPSG specification of the third TRALE grammar in (33)
and pull out the Head Feature Principle from the ID Principle. We observe the
fact that the head value of a phrase is always identical to the head value of the sign under
dtr2 as a separate requirement:

3.1. COMPUTING WITH HPSG GRAMMARS 159

(34) ID Principle, improved preliminary version

[
phrase

]
→

phon 0

synsem
[
category subcat 〈〉

]

dtr1

[
phon 4

synsem 3

]

dtr2

[
phon 5

synsem
[

category subcat
〈

3
〉]

]

∧ append(4 , 5 , 0)

∨

phon 12

synsem
[
category subcat 11 nelist

]

dtr1

[
phon 9

synsem 8

]

dtr2

[
phon 10

synsem
[

category subcat
〈

8 | 11
〉]

]

∧ append(10 , 9 , 12)

(35) Semantics Principle

[
phrase

]
→
[
synsem content 1

dtr2 synsem content 1

]

(36) Head Feature Principle

[
phrase

]
→
[
synsem category head 1

dtr2 synsem category head 1

]

Since the head Feature Principle takes care of the identity of head values, they
do not have to be mentioned in the ID Principle any longer.

We are now ready to take the final step and pull out the Subcategorization Prin-
ciple from the current ID Principle in (34). Here we should make the observation that
the first element on the subcat list of the head daughter, which is the value of dtr2, is
identical to the synsem value of the non-head daughter; and the subcat list of the mother
node equals the tail of the subcat list of the head daughter. Since we will state this in the
Subcategorization Principle, we no longer have to express it in the ID Principle:

160 CHAPTER 3. GRAMMAR IMPLEMENTATION

(37) ID Principle, final version

[
phrase

]
→

phon 0

synsem
[
category subcat 〈〉

]

dtr1
[
phon 4

]

dtr2
[
phon 5

]

∧ append(4 , 5 , 0)

∨

phon 12

synsem
[
category subcat nelist

]

dtr1
[
phon 9

]

dtr2
[
phon 10

]

∧ append(10 , 9 , 12)

Note that we still have to mention the subcat value of the syntactic mother nodes in
the two ID Schemata. This is necessary because we have to ensure that the phonology of
the first daughter (the non-head daughter) precedes the phonology of the second daughter
(the head daughter) in the phonology of the phrase, exactly in those phrases in which the
non-head daughter is the subject. Otherwise we have a head complement phrase, and the
phonology of the head must precede the phonology of the non-head in the phonology of
the phrase. In our small fragment we know that phrases with an empty subcat list have
only just realized their subject, and phrases with a non empty subcat list have realized a
complement.

Here come the other principles:

(38) Semantics Principle

[
phrase

]
→
[
synsem content 1

dtr2 synsem content 1

]

(39) Head Feature Principle

[
phrase

]
→
[
synsem category head 1

dtr2 synsem category head 1

]

(40) Subcategorization Principle

[
phrase

]
→

synsem category subcat 1

dtr1 synsem 2

dtr2 synsem category subcat
〈

2 | 1
〉

3.1. COMPUTING WITH HPSG GRAMMARS 161

We have not spelled out the Word Principle and Append Principle here, but we
note that they are still presupposed for the full HPSG specification of our reformulated
third TRALE grammar.

We may now quite easily translate back our theoretical grammar specification with an
independent ID Principle, a Semantics Principle, a Head Feature Principle and
a Subcategorization Principle (plus Word Principle and Append Principle)
into a TRALE grammar with the following properties: The ID Principle is represented
as phrase structure rules (one for each of its ID Schemata); the Semantics Princi-
ple, Head Feature Principle and Subcategorization Principle do not change.
They remain the same as in their theoretical specification; the Word Principle is rep-
resented by stating its lexical entries in TRALE’s special syntax for lexical entries; and
the Append Principle can be ignored, since its purpose in the theoretical specification
is realized through the use of phrase structure rules. We have thus established a transpar-
ent correspondence between a fully specified HPSG grammar and its implementation in
TRALE, and we can reliably investigate the properties of our HPSG grammar using the
computational devices provided by TRALE.

With a simple example, we have succeeded with our initial goal for grammar imple-
mentations: We have worked out how to use the tools of TRALE to get computational
feedback about our theories of language through their implementation.

Exercises

Exercise 38 Implement our modular HPSG specification in (37)–(40) of the original third
TRALE grammar (signature16, theory.pl17) in TRALE (the lexicon may just be copied from
the theory file of the third TRALE grammar). Since it is an equivalent reformulation of
the grammar we started with, queries to the system should still receive the same answers
as before.

GLOSSARY

3.1.4 Relations as Definite Clauses in TRALE

Abstract

With three versions of the fourth grammar we will introduce definite clause
attachments to TRALE descriptions. Using definite clause attachments with
grammar implementations in TRALE is the closest we can get to the relations
in the description language of HPSG.

In this section we will discuss three very closely related variants of the same grammar.
For the sake of simplicity we will refer to all of them collectively as the fourth grammar,

16http://milca.sfs.uni-tuebingen.de/A4/Course/Grammars/Grammatik3/signature
17http://milca.sfs.uni-tuebingen.de/A4/Course/Grammars/Grammatik3/theory.pl

http://milca.sfs.uni-tuebingen.de/A4/Course/Grammars/Grammatik3/signature
http://milca.sfs.uni-tuebingen.de/A4/Course/Grammars/Grammatik3/theory.pl
http://milca.sfs.uni-tuebingen.de/A4/Course/PDF/glossary/glossar.html?feature_introduction_condition&feature_structures&GRISU&lexical_entries&lexicon&linearization_grammars&principles&signature&theory

162 CHAPTER 3. GRAMMAR IMPLEMENTATION

although they really constitute the fourth to the sixth grammar. The justification for
treating them as if they were one grammar is that they have exactly the same empirical
coverage: They license exactly the same set of sentences in English, but they do this in
slightly different ways. For every new variation of the grammar we will argue that it is a
theoretical improvement on the previous formulation, and every improvement will introduce
new means of specifying grammars in TRALE.

The version of the fourth grammar which we will start with (signature18, theory1.pl19)
is essentially an implementation in TRALE of the modular reformulation of the third gram-
mar which we constructed at the end of the previous section. All linguistic principles which
we formulated as independently motivated generalizations over the structure of English in
our discussion of the logical reformulation of the original phrase structure rules are con-
tained in this version, as well as the two (minimized) phrase structure rules which now
correspond to simple ID Schemata, and a specification of the lexicon.

The only extension in empirical coverage introduced by the fourth grammar is lexical:
The word think is new in the lexicon. This slight change leads to a major new property of
the grammar. For the first time, it licenses infinitely many sentences. This effect is caused
by the fact that think subcategorizes for a sentential complement, which may of course
contain think as its verb again, and so on.

For the semantic representations of think, we need a new binary relation in the sort hier-
archy under relations. The necessary modification can be found under the sort more arg rel
in the new signature, see Figure 3.5. In addition, there is a new subsort of cont called arg,
which is an immediate supersort of index and of relations. Its purpose is to generalize
within the appropriateness specifications over index-valued and relations-valued argument
attributes of semantic relations. There are no further changes in the signature.

The theory file of our fourth TRALE grammar also shows a few modifications which
diverge from the third grammar. In the technical declarations at the beginning, we added
three statements about hiding features in the GRiSU output: We do not want to be shown
the attributes dtrs, dtr1 and dtr2 and descriptions of their values in AVMs. With bigger
output descriptions from parse queries, it is quite convenient to hide tree-configurational
descriptions from AVMs, and we are not interested in the dtrs feature anyway.

The previous lexical entries all remain unchanged. The new entries for the two forms of
think are worth looking at. The finite forms of think require an NP subject in nominative
case with agreement properties adjusted to the limited number of pronouns which occur
in our small fragment of English. The second syntactic argument, which is subcategorized
for by the first element on the subcat list, is a saturated, finite verbal projection.

Directly after the lexical specifications of the theory we find two phrase structure rules.
These are the phrase structure rules which correspond to the ID Schemata of the final
version of the ID Principle of Section 3.1.3. The Semantics Principle, the Head
Feature Principle, and the Subcategorization Principle of Section 3.1.3 follow
in the familiar MoMo syntax, which is a superset of the TRALE description language

18http://milca.sfs.uni-tuebingen.de/A4/Course/Grammars/Grammatik4/1vers/signature
19http://milca.sfs.uni-tuebingen.de/A4/Course/Grammars/Grammatik4/1vers/theory1.pl

http://milca.sfs.uni-tuebingen.de/A4/Course/Grammars/Grammatik4/1vers/signature
http://milca.sfs.uni-tuebingen.de/A4/Course/Grammars/Grammatik4/1vers/theory1.pl

3.1. COMPUTING WITH HPSG GRAMMARS 163

type_hierarchy

bot

list

ne_list hd:bot tl:list

e_list

sign phon:ne_list synsem:synsem

phrase dtr1:sign dtr2:sign dtrs:list

word

synsem category:cat content:cont context:conx

cat head:head subcat:list

head

noun case:case

verb vform:vform

vform

fin

bse

case

nom

acc

dat

cont

nom_obj index:index

arg

index

relations arg1:arg

un_rel

walk_rel

female_rel

speaker_rel

more_arg_rel arg2:arg

bin_rel

love_rel

think_rel

give_rel arg3:arg

conx backgr:list

index person:person number:number gender:gender

person

first

third

number

sing

plur

gender

masc

fem

.

Figure 3.5: The signature of our fourth TRALE grammar

164 CHAPTER 3. GRAMMAR IMPLEMENTATION

syntax. Note the implicit existential quantification over the variables in the descriptions.

% Multifile declarations.

:- multifile ’##’/2.

:- multifile ’*>’/2.

:- multifile ’~~>’/2.

% load phonology and tree output

:- [trale_home(tree_extensions)].

% specifications for the GRiSU output display

hidden_feat(dtrs).

hidden_feat(dtr1).

hidden_feat(dtr2).

% specify signature file

signature(signature).

% lexical entries

i ~~> (word, synsem:(category:(head:case:nom,

subcat:e_list),

content:(index: (X,(person:first,

number:sing))),

context:(backgr:[(speaker_rel,arg1:X)]))).

me ~~> (word, synsem:(category:(head:case:(acc;dat),

subcat:e_list),

content:(index: (X,(person:first,

number:sing))),

context:(backgr:[(speaker_rel,arg1:X)]))).

she ~~> (word, synsem:(category:(head:case:nom,

subcat:e_list),

content:(index: (X,(person:third,

number:sing,

gender:fem))),

context:(backgr:[(female_rel,arg1:X)]))).

her ~~> (word, synsem:(category:(head:case:(acc;dat),

subcat:e_list),

content:(index: (X,(person:third,

number:sing,

3.1. COMPUTING WITH HPSG GRAMMARS 165

gender:fem))),

context:(backgr:[(female_rel,arg1:X)]))).

milk ~~> (word, synsem:(category:(head:noun,

subcat:e_list),

content:(index:(person:third,

number:sing)))).

walk ~~> (word, synsem:(category:(head:vform:fin,

subcat:[(category:(head:case:nom),

content:index:(X,

person:first,

number:sing)

)]),

content:(walk_rel,

arg1:X))).

walks ~~> (word, synsem:(category:(head:vform:fin,

subcat:[(category:(head:case:nom),

content:index:(X,

person:third,

number:sing)

)]),

content:(walk_rel,

arg1:X))).

love ~~> (word, synsem:(category:(head:vform:fin,

subcat:[(category:(head:case:acc),

content:index: Y),

(category:(head:case:nom),

content:index: (X,

person:first,

number:sing)

)]),

content:(love_rel,

arg1:X,

arg2:Y))).

loves ~~> (word, synsem:(category:(head:vform:fin,

subcat:[(category:(head:case:acc),

content:index: Y),

(category:(head:case:nom),

content:index: (X,

166 CHAPTER 3. GRAMMAR IMPLEMENTATION

person:third,

number:sing)

)]),

content:(love_rel,

arg1:X,

arg2:Y))).

give ~~> (word, synsem:(category:(head:vform:fin,

subcat:[(category:(head:case:dat),

content:index: Z),

(category:(head:case:acc),

content:index: Y),

(category:(head:case:nom),

content:index: (X,

person:first,

number:sing)

)]),

content:(give_rel,

arg1:X,

arg2:Y,

arg3:Z))).

gives ~~> (word, synsem:(category:(head:vform:fin,

subcat:[(category:(head:case:dat),

content:index: Z),

(category:(head:case:acc),

content:index: Y),

(category:(head:case:nom),

content:index: (X,

person:third,

number:sing)

)]),

content:(give_rel,

arg1:X,

arg2:Y,

arg3:Z))).

think ~~> (word, synsem:(category:(head:vform:fin,

subcat:[(category:(head:vform:fin,

subcat:[]),

content: Y),

(category:(head:case:nom),

content:index: (X,

3.1. COMPUTING WITH HPSG GRAMMARS 167

person:first,

number:sing)

)]),

content:(think_rel,

arg1:X,

arg2:Y))).

thinks ~~> (word, synsem:(category:(head:vform:fin,

subcat:[(category:(head:vform:fin,

subcat:[]),

content: Y),

(category:(head:case:nom),

content:index: (X,

person:third,

number:sing)

)]),

content:(think_rel,

arg1:X,

arg2:Y))).

% phrase structure rules

subject_head_rule ##

(phrase, synsem:category:subcat:[],

dtr1:Subj, dtr2:Head)

===>

cat> Subj,

cat> Head.

head_complement_rule ##

(phrase, synsem:category:subcat:ne_list,

dtr1:Comp, dtr2:Head)

===>

cat> Head,

cat> Comp.

% Principles

% Semantics Principle

phrase *> (synsem:content:C,

dtr2:synsem:content:C).

168 CHAPTER 3. GRAMMAR IMPLEMENTATION

% Head Feature Principle

phrase *> (synsem:category:head:H,

dtr2:synsem:category:head:H).

% Subcategorization Principle (first version)

phrase *> (synsem:category:subcat:PhrSubcat,

dtr1:synsem:Synsem,

dtr2:synsem:category:subcat:[Synsem|PhrSubcat]).

The Subcategorization Principle in our present grammar is written for a lin-
guistic analysis which uses binary branching structures. Even complements of verbs are
syntactically realized one at a time.

As long as we are content to write grammars of this kind, our Subcategorization
Principle as it stands is unproblematic. However, let us suppose that we want to develop
a grammar of a bigger fragment of English. To do so we might start with a fragment of
English as small as the one that we have at the moment. However, at some point during
a stepwise extension of the coverage of the grammar we might decide that for certain
linguistic reasons we want to switch to an analysis which realizes all complements of verbal
heads as syntactic sisters of the verb, as in Pollard and Sag’s theory of English. In the
sentence She gives her milk, the complements her and milk would then both be syntactic
sisters of the head of the construction gives.

What we want to modify in this situation is the syntactic tree structure of the grammar.
Unfortunately, with a Subcategorization Principle which is tied as directly to binary
branching trees as the one we currently have, this is not possible. We need to rewrite the
Subcategorization Principle as well. From a linguistic point of view it would seem
wise to formulate the Subcategorization Principle from the very beginning in such a
way that it has as few side effects on the theory of syntactic tree configurations as possible.
We can achieve some degree of independence if we generalize our formulation and go in the
direction of the most common formulation of the Subcategorization Principle which
can be found in the literature. This roughly says that in (headed) phrases, the subcat
list of the head daughter is in the append relation with the list of synsem values of those
elements that are syntactically realized as its sisters, and with the subcat list of the phrase
itself.

The question which immediately arises is what to do with the append relation. We know
how to express relations in HPSG, but we have not yet seen relations in TRALE. In fact, for
computational reasons relations are not part of the logical description language of TRALE
at all. Instead TRALE offers a definite clause extension of the description language. This
means that we may formulate definite clauses and attach their relation symbols as relational
constraints to TRALE descriptions. For attaching relational constraints to descriptions we
have a new operator: goal.

The definite clause language of TRALE is closely related to the definite clause lan-

3.1. COMPUTING WITH HPSG GRAMMARS 169

guage of Prolog, and if you already have some experience with Prolog, writing relational
constraints in TRALE will be very easy. The major difference is that the the first-order
terms of Prolog are replaced with descriptions of feature structures in the definite clause
layer of TRALE.

To understand what all of that means, it is best to look at an example. We will re-
formulate the Subcategorization Principle with a relational constraint based on a
definite clause definition of append. The relational constraint may be read as an approxi-
mation to the append relation as we know it from HPSG. (the complete grammar with the
revised Subcategorization Principle is available in Section 6.4.2, or for downloading:
signature20, theory2.pl21).

% Subcategorization Principle (second version)

phrase *> (synsem:category:subcat:PhrSubcat,

dtr1:synsem:Synsem,

dtr2:synsem:category:subcat:HeadSubcat)

goal

append([Synsem],PhrSubcat,HeadSubcat).

% Goal definitions

append(L,[],L) if true.

append([],(L,ne_list),L) if true.

append([H|T1],(L,ne_list),[H|T2]) if

append(T1,L,T2).

The relational attachment to the description says that the append predicate is a goal
which holds for the three given argument values: the first argument is a singleton list
which includes the entity denoted by Synsem, the second argument is the entity denoted
by PhrSubcat, and the third argument is HeadSubcat. The meaning of append is given
in terms of definite clauses. In our theory file the definite clauses immediately follow the
Subcategorization Principle. In order for the constraint to hold, the system has to
prove that the goal is satisfied.

The way in which definite clauses are written up is determined to some extent by
procedural properties. What becomes computationally relevant is, of course, influenced
by the particular way in which a predicate is used as a goal. The leading idea is that we
want calls to relational goals to be resolved as quickly as possible. This can easily lead
to positing more clauses then logically necessary. For instance, although for append we
could make do with two clauses from a logical point of view, procedurally it is better to
use three clauses. These clauses distinguish between two base cases and a recursive case.
Each clause may be read as an implication from right to left. In order of their occurrence
they say that append(L,[],L) always holds without any further proof. A call of the

20http://milca.sfs.uni-tuebingen.de/A4/Course/Grammars/Grammatik4/2vers/signature
21http://milca.sfs.uni-tuebingen.de/A4/Course/Grammars/Grammatik4/2vers/theory2.pl

http://milca.sfs.uni-tuebingen.de/A4/Course/Grammars/Grammatik4/2vers/signature
http://milca.sfs.uni-tuebingen.de/A4/Course/Grammars/Grammatik4/2vers/theory2.pl

170 CHAPTER 3. GRAMMAR IMPLEMENTATION

append goal is therefore successful if its first and last argument can be identified, and the
second argument is an empty list. The goal is also held true without further proof if the
first argument is an empty list, the second is a non-empty list, and the third argument is
identical with the second argument (append([],(L,ne_list),L)). The recursive clause is
defined for the case when the first argument and the second argument denote non-empty
lists. If this is the case then the system has to prove that append holds between the tail
of the list in the first argument, the non-empty list in the second argument, and the tail
of the third argument, supposing that the first element of the lists in the first and third
argument are identical.

The clauses for append have two base cases instead of one, (such as, for instance, in
HPSG’s Append Principle), in order to let the system determine as quickly as possi-
ble whether the relational attachment in the implementation of the Subcategorization
Principle has been met. The system has completed the proof as soon as one of the lists
in the first two arguments is found to be empty and the other two lists can be identified.
If we were to write the definite clauses in parallel to the Append Principle, more com-
putational steps could be necessary to perform the same task, depending on the context in
which the goal is called by the system.

For more information on definite clauses in TRALE, the reader may want to consult
the sections on Definite Clauses and on the TRALE-Extensions of descriptions in the
TR/ALE manual.22 When reading in the TR/ALE manual, please keep in mind that the
logic and interpretation of the description language is slightly different from HPSG—as
long as you keep this in mind and do not get confused by seemingly wrong statements
about the meaning of descriptions and their relationship to feature structures, reading in
the TR/ALE manual should be very useful at this point.

So far the elements on the subcat lists have been stated in an order which might
have been surprising to readers familiar with the theory of English of Pollard and Sag, or
with the current HPSG literature. We have ordered the elements in order of decreasing
obliqueness: the element with the most oblique case on the list always came first, and
the least oblique element, in our lexicon always an element in the nominative case, came
last. In virtually all current HPSG grammars in the literature, we see the reverse order.
The order is relevant for other parts of linguistic theory which rely on it, such as Binding
Theory, or the theory of argument control, or analyses of argument raising.

There was a straightforward reason why we started with a reversed order in our com-
putational implementation: It makes possible the very simple first Subcategorization
Principle, which uses the list operator | to distinguish between the first element of a list
and its tail, and is employed in a formulation of the principle which says that it is always
the first element on the subcat list of a head which is realized as a syntactic daughter.
This leaves the subject in the nominative case to be realized last as the last element of
the subcat list, which is necessary for an easy implementation of syntactic argument re-
alization in a phrase structure-like grammar. All in all, by reversing the canonical order of
elements on subcat lists we were able to formulate the Subcategorization Principle

22http://www.ale.cs.toronto.edu/docs/man/ale_trale_man/index.html

http://www.ale.cs.toronto.edu/docs/man/ale_trale_man/index.html

3.1. COMPUTING WITH HPSG GRAMMARS 171

without reference to relational goals which are computationally relatively expensive. All
true recursion was put into the phrase structure component with its extremely efficient
specialized parsing algorithms.

As we see, at this point efficiency comes at the price of deviation from linguistic the-
ory. As long as it does not lead to further complications in implemented grammars, we
might be prepared to pay that price occasionally. When grammars become larger and the
consequences of computationally motivated changes in the theory more difficult to see, it
is a good idea to be very conservative with modifications of this sort. Since we now know
how to simulate HPSG’s relations by definite clauses, and since we have definite clauses
for append, we can now also reverse the order of relative obliqueness on subcat lists and
return to standard assumptions in the linguistic literature. Our third version of the fourth
grammar, (signature23, theory3.pl24), does that. Below we will repeat only one lexical en-
try and the Subcategorization Principle with the necessary definite clauses from the
new theory file.

We notice immediately that appending a list containing the synsem value of the syn-
tactically realized complement to the subcat value of the mother (as opposed to doing it
the other way around), has more computational consequences.

% lexical entries

...

gives ~~> (word, synsem:(category:(head:vform:fin,

subcat:[(category:(head:case:nom),

content:index: (X,

person:third,

number:sing)),

(category:(head:case:acc),

content:index: Y),

(category:(head:case:dat),

content:index: Z)]),

content:(give_rel,

arg1:X,

arg2:Y,

arg3:Z))).

...

23http://milca.sfs.uni-tuebingen.de/A4/Course/Grammars/Grammatik4/3vers/signature
24http://milca.sfs.uni-tuebingen.de/A4/Course/Grammars/Grammatik4/3vers/theory3.pl

http://milca.sfs.uni-tuebingen.de/A4/Course/Grammars/Grammatik4/3vers/signature
http://milca.sfs.uni-tuebingen.de/A4/Course/Grammars/Grammatik4/3vers/theory3.pl

172 CHAPTER 3. GRAMMAR IMPLEMENTATION

% Subcategorization Principle (alternate version)

phrase *> (synsem:category:subcat:PhrSubcat,

dtr1:synsem:Synsem,

dtr2:synsem:category:subcat:HeadSubcat)

goal

append(PhrSubcat,[Synsem],HeadSubcat).

% Goal definitions

append(X,Y,Z) if

when((X=(e_list;ne_list)

; Y=e_list

; Z=(e_list;ne_list)

),

undelayed_append(X,Y,Z)).

undelayed_append(L,[],L) if true.

undelayed_append([],(L,ne_list),L) if true.

undelayed_append([H|T1],(L,ne_list),[H|T2]) if

append(T1,L,T2).

The definite clause characterization of append is now defined with obvious emphasis on
computational considerations which are necessary to ensure termination during parsing.
As our readers may try out themselves, leaving the previous formulation of our definite
clauses for append in a grammar with the elements on subcat lists in standard order of
obliqueness results in non-termination of parsing.

The reason for the system’s behaving this way can be seen quite easily when we
investigate what the new formulation of the single definite clause for append is doing.
append(X,Y,Z) can only be proven at a point in computation when one of the following
conditions hold: We have already inferred that X is either e_list or ne_list (i.e, we have
gathered more precise information than just the general knowledge that there is a list);
or that Y is of sort e_list; or that Z is either e_list or ne_list. Once the system is able
to infer that much—but not before—it has to prove undelayed_append(X,Y,Z), which is
defined by the definite clauses which we used for simple append earlier. The difference is
in the recursive case, in which undelayed_append calls append once again, thus ensuring
that something has to be inferred about the arguments of the predicate before the system
can execute computations in the recursive step.

The purpose of these so-called delays is clear: They make sure that the system performs
a recursive operation only at a point where other components of the system have already
drawn enough inferences to ensure that the system does not go into an infinite loop. Going
into the recursion of append without enough information about its arguments would lead

3.1. COMPUTING WITH HPSG GRAMMARS 173

the system into an infinite loop in the context in which the relational attachment of append
is used in our final version of the Subcategorization Principle.

Learning to write appropriate delays and to write definite clauses to simulate the re-
lations in grammars belong to the most important set of skills one needs to acquire for
grammar implementations. As is to be expected, this requires a lot of practice, and, in this
particular case, a lot of grammar writing and debugging.

Exercises

Exercise 39 The TRALE grammar (signature25, theory.pl26) is a small grammar which
is very similar to those that we have been working with. However, there are a few mistakes
built into this grammar. You can see their effects if you parse sentences such as:

1. she walks

2. she loves her

3. i walk

4. she gives me milk

5. she loves me

These sentences all get an unexpected number of answers from the system, which is due
to the mistakes in the grammar. Other sentences get the right number of answers from
the system. Find the mistakes in the theory file of the grammar, fix them, and write short
comments into the file about what was wrong. Post the corrected theory file to your personal
group and give the file an intuitive name. Something like fixed-spook-theory.pl would
be a good choice.

To find the mistakes pay attention to what the TRALE compiler is telling you, and
think about what typical typos might look like in grammars. Debugging your grammar is
what always takes most of the time in any grammar implementation effort!

GLOSSARY

25http://milca.sfs.uni-tuebingen.de/A4/Course/Grammars/Spook/signature
26http://milca.sfs.uni-tuebingen.de/A4/Course/Grammars/Spook/theory.pl

http://milca.sfs.uni-tuebingen.de/A4/Course/Grammars/Spook/signature
http://milca.sfs.uni-tuebingen.de/A4/Course/Grammars/Spook/theory.pl
http://milca.sfs.uni-tuebingen.de/A4/Course/PDF/glossary/glossar.html?lexical_entries&lexicon&signature&theory

174 CHAPTER 3. GRAMMAR IMPLEMENTATION

3.2 Grammar Development

Abstract

We are now ready to combine linguistic grammar specifications with grammar
implementation. We start by outlining the coverage and main linguistic struc-
tures of a core fragment of English, providing a specification of that core frag-
ment, and implementing it in TRALE. The core fragment will form the nucleus
for later additions and extensions. Extensions may add further theoretical mod-
ules of grammar (such as lexical generalizations) or analyses of theoretically in-
teresting linguistic phenomena (such as unbounded dependency constructions).
Any extension of the grammar specification can then be implemented as an ex-
tension of the core fragment.27

What is a fragment grammar or, shorter, a fragment?
In our context, which is provided by the topics of logical grammar specifications and

their computational implementation, a fragment grammar consists of a complete and pre-
cise specification of a subset of the grammatical expressions of a natural language. In
order to make the specification falsifiable the specification of a fragment requires an accu-
rate characterization of the intended empirical domain, an indication of which grammar
formalism the fragment grammar uses, and a specification of the grammar in the chosen
formalism on an appropriate level of abstraction.

In linguistics papers we usually find a much looser understanding of the term fragment
grammar. The fragment often consists of an in-depth analysis of a particular empirical
phenomenon with precise statements about principles which formulate generalizations over
the given empirical domain. Such a deep analysis is rarely embedded in an exact analysis
of basic data which need to be described first in order to rigorously test the predictions of a
grammar specification. Instead many papers refer to standard assumptions in the literature
at the time of writing. On closer inspection, these “standard assumptions”may in fact turn
out to be rather diverse and may exhibit vital differences in detail. The particular choice
of a version of the “standard” theory might thus determine the fundamental structure of
the resulting grammar.

In computer implementations we are virtually forced to adopt a concept of grammar
fragments which adheres to the first, much more rigid understanding of the nature of a
fragment grammar. Focusing on the analysis of a highly specialized empirical phenomenon
without a specification of a minimum of basic grammatical notions is hardly viable in
computer implementations. The basics might be kept really simple or even simplistic,
but they have to be in place before we can think of making queries about sentences or
constructions exhibiting more complex phenomena. To a certain degree, implementations
of grammar fragments thus force linguists to be explicit about their assumptions. An
advantage of this property of grammar implementations can be that it promotes a certain

27The specification of the core fragment and its extensions closely follows a teaching grammar jointly
developed by Manfred Sailer and Frank Richter.

3.2. GRAMMAR DEVELOPMENT 175

awareness of the plethora of seemingly innocent assumptions which go into a complete
fragment. More often than not they are less innocent than they seem. In this respect
implementing grammars can be a very sobering experience.

Grammar implementations force the computational linguist to be precise and to make
decisions. However, as a careful theoretical linguist one should always be aware of the
fact that a working computer implementation is not a sufficient indication of a clean and
explicit linguistic theory. We already saw earlier in our discussion (Section 3.1.2) that the
output of a parser first has to be interpreted by the user in order to determine whether
it really has a reasonable meaning. Seemingly correct output might still have an absurd
meaning or be meaningless altogether if the formal foundations of the parsing system fail
to be clearly specified. In the latter case in particular a system might be very useful for
certain practical tasks, but it loses much value for linguistic theory. Even if it performs
extremely well for a specific purpose, it can be completely useless for linguistic theorizing.

Treated with a good degree of care, fragment grammars are an interesting link between
theoretical linguistics and applied computational linguistics. We will be very conscious
about what we do, and we will make our linguistic assumptions as well as computational
necessities and motivations explicit. In this spirit we now turn to an outline of the coverage
and basic assumptions about linguistic structures in our core fragment. The core fragment
provides the basics of a grammar which describes simple sentential constructions of English.
With an outline of the coverage and fundamental structures of the fragment in hand, we
will present a specification in HPSG. In comments to our specification, we will explain
why certain design decisions are made. From the abstract specification we then proceed
to its implementation in TRALE. Anybody may falsify the correctness of the grammar
implementation by showing that it misses the specification in some respect.

3.2.1 Fragment I – The Core fragment

Abstract

We will specify the syntax and goals of the core fragment, which underly all
later extensions which cover more specialized linguistic phenomena.

The focus of the core fragment is on basic syntactic structures which support an analysis of
finite sentential constructions. There is no real semantic analysis and no serious semantic
representation. Under the content attribute, which is the classical place for semantic
representations in HPSG, we place structures which indicate the main predicates and the
semantic roles of their arguments. It is inspired by the thematic structures that form part
of the sketch of a semantics in [Pollard and Sag, 1994]. Morphological and phonological
components are entirely absent from the core fragment.

The syntax of the fragment combines ideas from various HPSG publications, without
embracing one particular proposal wholesale. In order to keep the syntactic combinatorics
simple, we have chosen a strictly binary branching phrase structure. As we will see, this
leads to an unusual syntactic structure in at least one empirical area. We are not suggesting
that binary branching structures are an empirically motivated solution which we would

176 CHAPTER 3. GRAMMAR IMPLEMENTATION

want to defend on linguistic grounds. It is only adopted as a working strategy. It is quite
likely that one would want to change that strategy in serious extensions of the coverage of
the core fragment.

Let us now enumerate typical example sentences which are licensed by the core frag-
ment. Each type of construction is followed by exemplary syntactic tree structures and
additional comments. The tree structures and their labels abbreviate attributes and at-
tribute values in the HPSG specification of the fragment.

The core fragment contains simple finite sentences with subjects and complements:

(41) a. Mary walks.

b. Peter likes Mary.

c. She gives it to Mary.

d. It rains.

The pronoun it in sentence (41c) is referential; in sentence (41d), it is non-referential.
Verbs determine the referentiality of their syntactic arguments.

(42) The structure of the examples in (41):

a.
NP

Mary

It

VP
walks

rains

subj head
S

b.
NP
She

V
gives

NP
it

head comp
VP

P
to

NP
Mary

head comp
PP

head comp
VP

subj head
S

Simple finite sentences with complements as well as adjuncts belong to the core fragment:

(43) a. Mary walks here.

b. Mary walks to Peter.

3.2. GRAMMAR DEVELOPMENT 177

(44) The structure of the examples in (43):

NP
Mary

VP
walks

P
to

NP
Peter

head comp
PP

head adj
VP

subj head
S

Finite complement clauses are another instance of complements:

(45) Mary says that Peter walks.

The grammar needs a mechanism to distinguish between marked sentences, which are
sentences that are introduced by a complementizer such as that, and unmarked sentences,
which are sentences that do not have a complementizer. The verb say in (45) requires
a marked sentential complement in our fragment of English. Note that we assume that
markers such as that subcategorize the sentences they introduce. They are the head of
their sentences.

(46) The structure of the example in (45):

NP
Mary

V
says

C
that

NP
Peter

VP
walks

subj head
S

head comp
CP

head comp
VP

subj head
S

We include sentences with auxiliaries:

(47) a. Peter will like her.

b. It will rain.

Initially will is our only auxiliary in the grammar. It is an instance of a subject raiser:
It raises the subject of the subcategorized VP and realizes it as its own syntactic subject,
while the raised entity remains the logical subject of the main verb of the VP.

178 CHAPTER 3. GRAMMAR IMPLEMENTATION

(48) The structure of the examples in (47):

NP
Peter

V
will

V
like

NP
her

head comp
VP

head comp
VP

subj head
S

Finally we want to describe sentences with so-called subject-aux inversion, which are sen-
tences in which the auxiliary precedes the subject:

(49) a. Will Peter like her?

b. Will it rain?

Due to the strictly binary branching syntactic structure, the tree representation of
sentences with subject-aux inversion is surprising. The auxiliary first realizes its subject
in post auxiliary position, and then it realizes its complement VP. In standard HPSG
analyses one would assume a ternary structure in which both the subject and the VP are
sisters of the auxiliary.

(50) The structure of the examples in (49):

V
will

NP
Peter

head subj
VP

V
like

NP
her

head comp
VP

head comp
S

To describe all of the sentences above our fragment must include treatments of the fol-
lowing linguistic notions: part of speech, morphosyntactic properties, subject verb agree-
ment, government, syntactic constituenthood, constituent structure, syntactic headedness,
a simple mechanism for selection, valency and thematic structure, grammatical functions
(subject, object, adjunct), and argument raising.

3.2. GRAMMAR DEVELOPMENT 179

3.2.1.1 Specification of the Core Fragment

Abstract

The specification of the core fragment consists of a signature, exemplary lexical
entries for the kinds of verbs, nouns, prepositions and adverbs in the fragment,
and all necessary principles of grammar.

Without further ado, we will state the signature:

The signature

type_hierarchy

top

sign phon:list(phonstring) synsem:synsem

word arg_st:list(synsem)

phrase daughters:const_struc

synsem loc:loc nonloc:nonloc

loc cat:cat cont:cont

cat head:head val:val

head pred:boolean mod:synsem_none

func_verb vform:vform marking:marking

verb aux:boolean inv:boolean marking:unmarked mod:none

functional marking:marked

noun case:case mod:none

prep pform

adv mod:synsem

val subj:list(synsem) comps:list(synsem)

cont

psoa

move_rel

walk_rel walker:ref

like_rel liker:ref liked:ref

say_rel sayer:ref said:psoa

give_rel giver:ref gift:ref given:ref

rain_rel

future_rel soa_arg:psoa

direction_rel movement:move_rel goal:ref

here_rel located:psoa

nom_obj index:index

index num:num pers:pers: gen:gen

ref

nonref

it

there

nonloc

180 CHAPTER 3. GRAMMAR IMPLEMENTATION

const_struc hdtr:sign ndtr:sign

hs_struc

hc_struc

ha_struc

sai_struc

list

elist

nelist first:top rest:list

vform

fin

inf

base

pas

psp

case

nom

acc

pform

lexical

non_lexical

to

marking

unmarked

marked

that

boolean

plus

minus

pers

first

second

third

num

sg

pl

gen

fem

masc

neut

synsem_none

none

synsem

phonstring

#peter#

#mary#

3.2. GRAMMAR DEVELOPMENT 181

#he#

#she#

#her#

#him#

#you#

#they#

#them#

#it#

#rain#

#rains#

#walk#

#walks#

#like#

#likes#

#say#

#says#

#give#

#gives#

#will#

#that#

#here#

#to#

relations

append/3

.

To distinguish the sort symbols for the subsorts of phonstring from other sorts for which
one would like to use the same symbol as for the grapheme of a word in the grammar (e.g.
the pform value to), we add the symbol # to graphemes for words. Thus the symbol for
phon lists, #to#, is different from the sort label for pform values, to.

The theory We will begin the specification of the theory with examples of the different
kinds of lexical entries in the grammar. The lexical entries are disjuncts in the consequent of
the Word Principle stated below in (62). The logical structure of the Word Principle
and the reasons for formulating lexical entries as disjuncts in its consequent are explained
in detail in Section 2.5.1.

182 CHAPTER 3. GRAMMAR IMPLEMENTATION

Lexical entries – nouns

(51) Lexical entry of the name Peter:

word

phon
〈
#peter#

〉

syns

loc

cat

[

head

[
noun

pred minus

]]

cont

index

ref

num sg

pers third

gen masc

arg st 〈〉

Subjects and complements of words, represented as values of the feature arg st, are
specified in the argument structure of all lexical entries. An Argument Realization
Principle takes care of the distribution of the arguments over the lists representing the
subject and the complement requirements of a word. Since Peter has an empty argument
structure, it follows that it has an empty subject list and an empty complements list.

(52) Lexical entry of the (non referential) pronoun it:

word

phon
〈
#it#

〉

syns

loc

cat

[

head

[
noun

pred minus

]]

cont

index

it

num sg

pers third

gen neut

arg st 〈〉

Non referential it has an index value of sort it. The other pronouns in the fragment
are referential and have index values of sort ref. The immediate subsort there of nonref in
the signature indicates that there are more non referential words in English which will be
treated analogously in an extended grammar.

Lexical entries – verbs Note that third person singular agreement of finite verbs with
suffix -s is handled as a description of admissible elements on the subj list. In the case
of walks, the identification of the element on the subj list with the single element on the
arg st list by virtue of the Argument Realization Principle then also leads to the
identification of the index value of the subject with the thematic role walker of the verb.

3.2. GRAMMAR DEVELOPMENT 183

(53) Lexical entry of the verb walks:

word

phon
〈
#walks#

〉

syns

loc

cat

head

verb

pred plus

vform fin

aux minus

val

subj

〈[

loc cont

([

index

[
num sg

pers third

]]

∨ psoa

)]〉

cont

[
walk rel

walker 1

]

arg st

〈

loc

cat

head noun

val

[
subj 〈〉

comps 〈〉

]

cont
[
index 1

]

〉

Non finite verb forms do not impose any requirements through a direct description of
their subjects. Their subj list is not mentioned in lexical entries (see also the lexical entry
for the base form give below).

(54) Lexical entry of the verb rain:

word

phon
〈
#rain#

〉

syns

loc

cat

head

verb

pred plus

vform base

aux minus

cont rain rel

arg st

〈

loc

cat

head noun

val

[
subj 〈〉

comps 〈〉

]

cont
[
index it

]

〉

184 CHAPTER 3. GRAMMAR IMPLEMENTATION

(55) Lexical entry of the verb likes:

word

phon
〈
#likes#

〉

syns

loc

cat

head

verb

pred plus

vform fin

aux minus

val subj

〈[

loc cont

([

index

[
num sg

pers third

]]

∨ psoa

)]〉

cont

like rel

liker 1

liked 2

arg st

〈

loc

cat

head noun

val

[
subj 〈〉

comps 〈〉

]

cont
[
index 1

]

,

loc

cat

head noun

val

[
subj 〈〉

comps 〈〉

]

cont
[
index 2

]

〉

(56) Lexical entry of the verb give:

word

phon
〈
#give#

〉

syns

loc

cat

head

verb

pred plus

vform base

aux minus

cont

give rel

giver 1

gift 2

given 3

arg st

〈

loc

cat

head noun

val

[
subj 〈〉

comps 〈〉

]

cont
[
index 1

]

,

loc

cat

head noun

val

[
subj 〈〉

comps 〈〉

]

cont
[
index 2

]

,

loc

cat

head

[
prep

pform to

]

val

[
subj 〈〉

comps 〈〉

]

cont
[
index 3

]

〉

3.2. GRAMMAR DEVELOPMENT 185

(57) Lexical entry of the future auxiliary verb will:

phon
〈
#will#

〉

syns

loc

cat

head

verb

pred plus

vform fin

aux plus

cont

[
future rel

soa arg 2

]

arg st

〈

1 ,

loc

cat

head

[
verb

vform base

]

val

[

subj
〈

1
〉

comps 〈〉

]

cont 2

〉

The auxiliary will is an argument raiser. It identifies the subject of its infinitival com-
plement with the first element on its arg st list, which becomes its own syntactic subject.

Lexical entries – prepositions The first type of preposition is represented by the case
marking preposition to; it does not contribute any semantics of its own to phrases in which
it occurs:

(58) Lexical entry of the (non lexical) preposition to:

phon
〈
#to#

〉

syns loc cat head

[
prep

pform to

]

Lexical prepositions have their own semantics:

186 CHAPTER 3. GRAMMAR IMPLEMENTATION

(59) Lexical entry of the (lexical) preposition to:

phon
〈
#to#

〉

syns

loc

cat

head

prep

pform lexical

pred minus

mod

loc

cat

head verb

val

[
subj nelist

comps 〈〉

]

cont 1

cont

direction rel

movement 1

goal 2

arg st

〈

loc

cat

head noun

val

[
subj 〈〉

comps 〈〉

]

cont
[
index 2

]

〉

Adjuncts select the phrases they modify via their mod attribute. The mod value of
the lexical preposition to selects verb phrases with an empty comps list which have not
yet realized their subjects (non empty subj list). This means that syntactically they are
realized above complements but below the subject of verbal projections. Note that the
appropriateness specifications in the signature determine that the movement value inside
the content of to must be of a subsort of move rel.

Lexical entries – complementizer

(60) The lexical entry of that:

phon
〈
#that#

〉

syns

loc

cat

head

functional

pred minus

vform 1

marking that

cont 2

arg st

〈

loc

cat

head

[
verb

vform 1 fin

]

val

[
subj 〈〉

comps 〈〉

]

cont 2

〉

Unlike the marker analysis of the complementizer that of Pollard and Sag, we assume
that that heads the sentence it introduces. In our fragment it selects a finite, saturated
verbal projection, has the same vform value as the selected clause and also inherits its
content value.

3.2. GRAMMAR DEVELOPMENT 187

Lexical entries – adverb

(61) Lexical entry of here:

phon
〈
#here#

〉

syns

loc

cat

head

adv

pred minus

mod

loc

cat

head verb

val

[
subj nelist

comps 〈〉

]

cont 1

cont

[
here rel

located 1

]

The mod value description of here has the same syntactic effect as the mod value
description of the lexical preposition to above.

Principles In our sketches of the Word Principle and the ID Principle, we will
use meta-variables to abbreviate the disjuncts in the consequents of the principles. We
will not state precisely how many lexical entries of the kind described above occur in the
Word Principle, but we have exactly four ID Schemata in the consequent of the ID
Principle. These ID Schemata are presented in full detail below ((64)–(67)).

(62) The Word Principle:

word → (LE1 ∨ . . . ∨ LEn)

The entries LE1 to LEn are, of course, the lexical entries specified above (p. 182–187),
with the possible addition of a few others which should be formed analogously in order to
obtain a more interesting lexical basis for the sentences licensed by the grammar.

(63) The ID Principle:

phrase → (HSS ∨ HCS ∨ SAIS ∨ HAS)

Note that the syntactic realization of subjects and complements, which is usually gov-
erned by a Subcategorization Principle, is built into the ID Schemata.

(64) The Head-Subject Schema:

syns

[

loc cat val

[
subj 〈〉

comps 〈〉

]]

dtrs

hs struc

hdtr

[

syns

[

loc

[

cat val

[

subj
〈

1
〉

comps 〈〉

]]]]

ndtr
[
syns 1

]

188 CHAPTER 3. GRAMMAR IMPLEMENTATION

(65) The Head-Complement Schema:

syns

[

loc

[

cat val

[
subj 1

comps 3

]]]

dtrs

hc struc

hdtr

[

syns

[

loc

[

cat val

[

subj 1

comps
〈

2 | 3
〉

]]]]

ndtr
[
syns 2

]

(66) The Subject-Aux-Inversion Schema:

syns

[

loc

[

cat val

[
subj 〈〉

comps 2

]]]

dtrs

sai struc

hdtr

word

syns

loc

cat

head
[
inv plus

]

val

[

subj
〈

1
〉

comps 2

]

ndtr
[
syns 1

]

(67) The Head-Adjunct Schema:

syns

[

loc cat val

[
subj 1

comps 〈〉

]]

dtrs

ha struc

hdtr

[

syns 2

[

loc

[

cat val

[
subj 1

comps 〈〉

]]]]

ndtr
[
syns loc cat head mod 2

]

Since there are no phrase structure rules in pure HPSG grammars we need to specify
word order in a separate principle of grammar. Our Constituent Order Principle
orders the phonology of the syntactic daughters of a phrase on the phon list of their mother
node, depending on what kind of phrase we are looking at. In head-subject structures the
phonology of the non-head daughter precedes the phonology of the head daughter. In all
other types of phrases, the ordering of the phonology is the other way round:

(68) The Constituent Order Principle:

phrase →

phon 1

dtrs

[
hdtr phon 2

ndtr phon 3

]

∧
(
[
dtrs (hc struc ∨ ha struc ∨ sai struc)

]
→ append(2 , 3 , 1)

)

∧
(
[
dtrs (hs struc)

]
→ append(3 , 2 , 1)

)

3.2. GRAMMAR DEVELOPMENT 189

(69) The Head Feature Principle:

phrase →

[

synsem loc cat head 1

dtrs hdtr
[
syns loc cat head 1

]

]

(70) The Semantics Principle:

phrase →

syns loc cont 1

dtrs

[
¬ ha struc

hdtr
[
syns loc cont 1

]

]

∨

syns loc cont 1

dtrs

[
ha struc

ndtr
[
syns loc cont 1

]

]

The syntactic head is always the semantic head of a phrase with the exception of head-
adjunct phrases, where the adjunct is the semantic head. For this reason the content
value of the adjunct daughter is identical to the content value of the mother in head
adjunct phrases.

(71) The inv Principle:

[

syns loc cat head
[
inv plus

]]

→

[

syns loc cat head

[
vform fin

aux plus

]]

If a verb occurs inverted (auxiliaries in subject-aux inversion constructions), then it
must be finite and an auxiliary. In other words, non auxiliaries may not occur inverted.

(72) The Functional Preposition Principle:

word
phon nelist

syns loc cat head

[
prep

pform non lexical

]

→

syns

loc

cat head

[
mod none

pred minus

]

cont 1

arg st

〈

loc

cat val

[
subj 〈〉

comps 〈〉

]

cont 1

〉

All functional (or case marking) prepositions take exactly one saturated syntactic ar-
gument, and they identify their semantics with the semantics of their argument. The
Functional Preposition Principle is in fact an instance of a lexical generalization,
a generalization about the properties of an entire class of lexical items. It helps to keep
lexical entries small.

(73) The mod Principle:
[
phrase
dtrs ¬ ha struc

]

→
[

dtrs ndtr
[

syns loc cat head
[
mod none

]]]

According to the mod Principle, adjunct daughters are the only non-heads in our
fragment which may select their corresponding head daughter with the mod attribute,
because all other types of daughters do not have a synsem valued mod attribute.

190 CHAPTER 3. GRAMMAR IMPLEMENTATION

(74) The Argument Realization Principle:

a.

[

word

syns loc cat head
[
pred plus

]

]

→

syns loc cat val

[

subj
〈

1
〉

comps 2

]

arg st
〈

1 | 2
〉

b.

[

word

syns loc cat head
[
pred minus

]

]

→

syns

[

loc cat val

[
subj 〈〉

comps 1

]]

arg st 1

The Argument Realization Principle determines how the elements on the ar-
gument structure of words are distributed over the subject and complements list. Their
distribution is determined by whether or not a word is predicative.

(75) The Structural Case Principle:

a. For finite structures:

∃ 1

phrase

dtrs

hdtr

syns loc cat

[
head

[
vform fin

]

val
[

subj
〈

1
〉]

]

ndtr
[

syns 1
[
loc cat head noun

]]

→
[

dtrs ndtr
[
syns loc cat head case nom

]]

b. All other cases:

phrase

dtrs

[

hc struc

ndtr
[
syns loc cat head noun

]

]

→
[

dtrs ndtr
[
syns loc cat head case acc

]]

According to the Structural Case Principle, the nominal subjects of finite words
receive nominative case. All nouns in complement position receive accusative case in our
small fragment of English.

(76) The Subject Principles:

a.
[
val
subj nelist

]

→
[

subj
〈[

synsem
]〉]

b.
[
head verb

val subj 〈〉

]

→
[
head vform fin

]

The Subject Principles say that if there is a subject at all, then there is exactly
one subject; and subjects can be realized in verbal projections only if a verbal projection
is finite.

3.2. GRAMMAR DEVELOPMENT 191

Relations There is only one relation in the core fragment, the append relation:

(77) The Append Principle:

∀ 1 ∀ 2 ∀ 3

append(1 , 2 , 3) ↔

(
1[

elist
]
∧ 2 = 3

)

∨

∃ 4 ∃ 5 ∃ 6

1[
first 4

rest 5

]

∧
3[

first 4

rest 6

]

∧ append(5 , 2 , 6)

Exercises

Exercise 40 Take the sentence Peter likes Mary, which is licensed by the grammar speci-
fied in this section.

First indicate the syntactic tree structure which the principles of the grammar determine
for this sentence. Second, for each principle of the grammar indicate what it contributes
to the properties of the sentence Peter likes Mary as we find it in the denotation of the
grammar. Do not forget to indicate those principles which do not have any effect on the
properties of the sentence.

GLOSSARY

3.2.1.2 Implementation of the Core Fragment

Abstract

The TRALE implementation of the grammar specified in the previous section
is our largest implemented grammar so far. We will discuss new types of dif-
ferences between the implementation and the specification of the grammar, and
we will introduce a number of new features of TRALE.

The first differences compared to our earlier grammar implementations occur in the system
specifications at the very beginning of the theory file and concern the display behavior of
the system in response to queries. We quote the beginning of theory.pl:28

% Multifile declarations.

:- multifile if/2.

% load phonology and tree output

:- [trale_home(tree_extensions)].

% specify signature file

signature(signature).

28http://milca.sfs.uni-tuebingen.de/A4/Course/Grammars/Core-Fragment/theory.pl

http://milca.sfs.uni-tuebingen.de/A4/Course/PDF/glossary/glossar.html?lexical_entries&lexical_generalization&lexical_preposition&non_lexical_preposition&signature&theory
http://milca.sfs.uni-tuebingen.de/A4/Course/Grammars/Core-Fragment/theory.pl

192 CHAPTER 3. GRAMMAR IMPLEMENTATION

% grisu output specifications

hidden_feat(dtrs). % shown by the tree

hidden_feat(daughters). % shown by the tree

synsem <<< arg_st.

vform <<< aux.

vform <<< inv.

subj <<< comps.

liker <<< liked.

sayer <<< said.

giver <<< gift.

gift <<< given.

>>> phon.

The statements using the operators ‘<<<’ and ‘>>>’ specify the relative vertical order
of attributes in the AVM descriptions of the GRiSU output. Attribute order specifications
concern attributes which are appropriate to the same sort, because these attributes may
occur in a relative order in one and the same AVM box. If nothing else is said, the system
chooses alphabetical order, but this might not be the intuitive order which a human reader
with certain linguistic conventions in mind might expect. For example ‘>>> phon’ (“phon
precedes everything”) ensures that phon is always the topmost attribute mentioned in
descriptions of signs, which is the conventional order in linguistics. Analogously, ‘liker
<<< liked’ places the attribute which represents the agent role of like above the attribute
for the patient role, which is again a more intuitive order for the human reader.

The Signature Let us think about the signature, before we turn to differences in the
specification of grammatical principles. We do not quote the entire signature29 of the
implementation of the specified grammar here, but we refer the reader to the available file
for downloading. Instead, we simply point out the differences and explain them.

The first difference is at the very beginning: The root sort of the grammar specification
is called top, appealing to the idea that it is a supersort of all sorts in the sort hierarchy, and
describes everything. While the name of the root sort is arbitrary in system independent
signatures—we might even choose not to have a root sort at all, although in linguistic
applications of the formalism this has not been done yet—, this is not the case in TRALE.
TRALE requires first that a root sort exist, and, second, that it be named bot. The name
bot comes from the culture of computer science and its tradition of computing with feature
logics. In that tradition, bot(tom) is a well-chosen name for the most general sort, because
it expresses the idea that we do not know anything yet about an entity, because we have
not yet acquired any information about it.

29http://milca.sfs.uni-tuebingen.de/A4/Course/Grammars/Core-Fragment/signature

http://milca.sfs.uni-tuebingen.de/A4/Course/Grammars/Core-Fragment/signature

3.2. GRAMMAR DEVELOPMENT 193

The second difference might look coincidental and just a matter of taste, but there is
in fact more to it than just aesthetics. The grammar specification chooses one possible
collection of symbols for the sorts and attributes for lists:

list

elist

nelist first:top rest:list

As we know, any five sort symbols and two attribute symbols can be used to specify
a sort hierarchy with appropriateness conditions for lists, as long as we put them in a
configuration isomorphic to the one just quoted. It might then seem like an irrelevant
coincidence that the implementation declares the list hierarchy with different but equally
common symbols:

list

ne_list hd:bot tl:list

e_list

However, what we observe here is a system internal convention which in this case serves
computational purposes. Lists are a very frequent data structure whose processing is made
much more efficient by being treated separately. In order to recognize that certain sorts
and attributes stand for lists, TRALE conventionally fixes them to be the ones just quoted
(the sort which is appropriate for hd can be freely chosen, of course). Given the freedom
of TRALE signatures, the user may of course choose any other set of symbols to use for
lists, but this may lead to a loss in efficiency.

Similar considerations are responsible for another difference: In our specification we
need sort symbols for all atomic phonological ‘strings’ in the fragment. According to
linguistic conventions these are introduced as the most specific subsorts of a supersort
phonstring. TRALE treats the phonological or orthographic strings as extensional sorts
(or, to use TRALE’s terminology, as extensional types). Extensional sorts do not have to
be declared in the signature. For more information about their properties, please consult
the sections Extensionality and a /1 Atoms in the TR/ALE manual.30 The system knows
about the sorts for the admissible orthographic strings only by virtue of the lexical entries
which define them for the system. Making the symbols for the orthographic strings clearly
identifiable outside the signature provides another motivation for a distinguished syntax of
lexical entries.

The last difference between the specified and the implemented signature which we find
in appropriateness declarations on the level of signs is one which we have encountered
before. The TRALE signature contains an additional statement for the appropriateness
function, declaring the list-valued attribute dtrs appropriate for sign. We have already
explained before that dtrs is needed for system internal representations. Future releases
of TRALE probably no longer use it.

30http://www.ale.cs.toronto.edu/docs/man/ale_trale_man/index.html

http://www.ale.cs.toronto.edu/docs/man/ale_trale_man/index.html

194 CHAPTER 3. GRAMMAR IMPLEMENTATION

An additional syntactic device may be observed at another place in the signature. The
hierarchy under synsem_none appears as follows:

synsem_none

none

&synsem

The symbol ‘&’ in front of the sort symbol synsem tells the system that synsem has
more than one immediate supersort, and the second immediate supersort has been defined
earlier in the signature. As you may confirm yourself by investigating the signature, synsem
is also an immediate subsort of bot. In MoMo, the use of ‘&’ is optional in these cases. A
purely mathematical specification of the partial order of sorts, independent of any software
requirements, does not need special notational conventions of this kind.

The next difference to be discussed is not really a mathematical difference, but rather
a difference in the level of abstraction at which the specifications are presented. The
HPSG grammar specification uses parametric sorts for lists such as list(phonstring) and
list(synsem). As explained in Section 2.5.2, we regard these signature specifications as
abbreviations of ordinary sorts and principles of grammars which enforce the relevant
restrictions on the members of lists by appropriate relations. TRALE specifications do not
know parametric sorts either, but an appeal to abbreviatory conventions will of course not
suffice here, we have to spell out everything. TRALE signatures use ordinary list sorts and
their usual appropriateness specifications. Just as in the theoretical grammar specifications,
the effect of parametric sorts is simulated by means of grammatical principles. Instead
of relational expressions TRALE employs their counterpart, relational attachments and
definite clause specifications of the necessary relations. When we discuss the theory file
of the implementation we will see concrete examples of how parametric lists are encoded
indirectly in TRALE. In any case, we conclude that the treatment of parametric sorts
in TRALE parallels the resolution of the abbreviatory conventions which we appealed to
when we explained them in our HPSG formalism.

The final difference between the two signature specifications occurs at the very end
of the file and is the most profound of all: TRALE signatures do not contain relations.
Relations do not belong to the description language. Relational expressions are replaced
by relational attachments to descriptions following the operator goal, and they are defined
as definite clauses. A small caveat will be added later when we focus on implementing the
theory of the core fragment.

The Theory The implementation in the TRALE grammar of the principles of the HPSG
specification is for the most part either straightforward or follows immediately from proper-
ties of TRALE which we have already discussed. The consequent of the Word Principle
is expressed by stating its lexical entries in TRALE’s syntax for lexical entries. The ID
Schemata of the ID Principle are expressed as grammar rules. The Constituent
Order Principle is implicit in the phrase structure component of the TRALE gram-
mar. With the exception of the mod Principle, the Semantics Principle and the
Structural Case Principle all other principles remain exactly as specified.

3.2. GRAMMAR DEVELOPMENT 195

Before we discuss the differences which we may observe in these three principles, let us
first take a look at a more difficult issue. As we have already vaguely indicated, there is
an exception to the disallowing of relational expressions in TRALE descriptions. There is
a special use of relations as functional descriptions in TRALE. These functional descrip-
tions are properly integrated with the description language. They are used in our current
fragment of English in the principles which simulate the parametric sort requirements for
subj lists, comps lists and arg st lists.

The principles which simulate the intended effect of parametric sorts follow after the
system settings at the beginning of the theory file. They say that the members of subj
lists are objects of sort synsem, the members of comps lists are objects of sort synsem,
and the members of arg st lists are objects of sort synsem. These principles make use of
functional descriptions.

Consider what our theory of lists of synsem objects would look like in MoMo syntax.
We need a unary relation (a relation of arity 1), list_of_synsems, a List-of-Synsems
Principle, and principles for each one of the lists.

VX(list_of_synsems(X) <*> (X:e_list;

^Y(X:hd:synsem,X:tl:Y,list_of_synsems(Y)))).

val *> ^Y(subj:Y, list_of_synsems(Y)).

val *> ^Y(comps:Y, list_of_synsems(Y)).

word *> ^Y(arg_st:Y, list_of_synsems(Y)).

Now compare the HPSG formalization with its implementation in TRALE:

% Simulation of Parametric Sorts as Principles of Grammar

fun list_of_synsems(-).

list_of_synsems(X) if

when((X=(e_list;ne_list)),

und_list_of_synsems(X)).

und_list_of_synsems(X) if (X=e_list).

und_list_of_synsems(X) if (X=[(synsem)|Y]),list_of_synsems(Y).

% subj:list(synsem), comps:list(synsem)

val *> (subj:list_of_synsems,

comps:list_of_synsems).

% arg_st:list(synsem)

word *> arg_st:list_of_synsems.

196 CHAPTER 3. GRAMMAR IMPLEMENTATION

Let us focus first on the definite clauses for und_list_of_synsems. They bear a
clear resemblance to the List-of-Synsems Principle: The first definite clause says
that an empty list is in und_list_of_synsems. The second clause says that X is in
und_list_of_synsems if we can show that the first element of X is of sort synsem, and
we can prove for the rest of the list, Y, that it is in list_of_synsems. What do we need
list_of_synsems for? The distinction between und_list_of_synsems and list_of_syn-

sems is simply motivated by computational needs. If we tried to prove that list_of_syn-
sems holds for some list X that we know nothing about, we would run into an infinite proof
in the recursion step in which we try to show something about the rest of the completely
unknown list. The given definite clause specification prevents an infinite proof by defining
the necessary predicate list_of_synsems in such a way that the system may enter into
proving und_list_of_synsems only when it already knows something about the argument
of list_of_synsems, X: The system needs to have already inferred whether the list is of
sort ne list or of sort e list.

What we have seen so far is completely analogous of our earlier definite clause definition
of append on the basis of a second predicate, undelayed_append, in Section 3.1.4. The
new element in the use of the predicate list_of_synsems comes with the declaration

fun list_of_synsems(-).

which precedes it. This declaration says that list_of_synsems may be used as a functional
description. Functional descriptions are a new and special kind of description provided by
the syntax of TRALE. Recall that list_of_synsems is a one place predicate. The state-
ment (-) at the end of the declaration says that the single argument of list_of_synsems
is interpreted as standing at the position where the symbol list_of_synsems is written
in a description. Take the principle which restricts arg st values:

word *> arg_st:list_of_synsems.

list_of_synsems is used as a functional description here. It has one argument,
but its argument is thought of as standing at the syntactic position where the symbol
list_of_synsems is placed. In other words, we read this as saying that the value of
arg st is an argument of the predicate list_of_synsems. This means that we have to
prove for arg st values that list_of_synsems holds for them, which is exactly what we
want. Functional descriptions are thus a way to use relations as descriptions in TRALE.
They may occur at the same syntactic positions where sort symbols are permitted. Cru-
cially, for a functional use of a predicate we have to declare which of its arguments is the
implicit, functional argument.

Suppose we want to use an append predicate functionally to say that arg st values
consist of a concatenation of two lists, X and Y, under certain circumstances. In functional
notation we will write this as
... arg_st:append(X,Y).

3.2. GRAMMAR DEVELOPMENT 197

Using the functional notation in this way presupposes that we declare the third argument
of append to be the implicit, functional argument. To make this declaration we have to
write
fun append(+,+,-).

before the definite clauses which define the append predicate.

General Observations on TRALE’s Description Language In general, TRALE’s
description language is significantly less comprehensive than the description language for
HPSG. With one exception (which occurs in the implementation of the first part of our
Structural Case Principle), there is no explicit quantification.31 Variables in de-
scriptions can be thought of as being implicitly bound by existential quantification. The
implication symbol, *>, is in fact an operator of TRALE which is preceded and succeeded
by a TRALE description. TRALE descriptions, finally, only know about conjunction and
disjunction, plus sort symbols, attribute symbols and variables. These symbols can be com-
bined in the way we are used to in order to form more complex descriptions, as exemplified
in the descriptions in our grammar implementations.

What is missing, then? There cannot be another implication, *>, in the antecedent or
in the consequent of a TRALE constraint. There cannot be any relational attachments
in antecedents, since relational attachments are attached to complete constraints only.
Functional descriptions are not allowed in antecedents. In effect, this means that the
predicates which we use in TRALE to simulate the relations of HPSG cannot occur in the
scope of negation. It follows that whenever an HPSG principle uses a relation in the scope
of negation, it has to be reformulated considerably in its computational implementation.
As one may confirm by investigating the grammar of English of Pollard and Sag 1994, this
restriction affects a considerable number of important principles of HPSG grammars.

Similarly, TRALE does not have the unary negation symbol, ∼, from the complete
description language of HPSG. However, since we have implication in the form of the
operator, *>, which brings with it implicit negation of the antecedent, we can always
reformulate expressions using negation into an equivalent expression using conjunction,
disjunction, and implication. An example of an equivalent reformulation can be observed
in the first disjunct of the consequent of the Semantics Principle. The grammar spec-
ification says that under certain conditions, the daughters value of a phrase may not be
of sort ha struc. The implementation of the principle reformulates this by a disjunctive
enumeration of the positive possibilities, given the appropriateness specifications of the sig-
nature: the daughters values in question may be of sort hs struc, hc struc, or sai struc.
A similar recoding of a negation occurs in the antecedent of the mod Principle. In gen-
eral, equivalent reformulations might be more difficult in more complex descriptions, but
they are always possible.

31The infix operator, depicted as the hat symbol, is, in the Structural Case Principle, an existential
quantifier which is interpreted non-classically. In standard notation for the quantifier we can understand
it as follows: ∃x1 . . .∃xn(p) → q is read as ∃x1 . . . ∃xn(p) → ∃x1 . . .∃xn(p ∧ q). This is of course not valid
in classical logic. TRALE provides this option because it is useful for linguistic grammar specifications.

198 CHAPTER 3. GRAMMAR IMPLEMENTATION

Exercises

Exercise 41 Why does the system answer the query rec[you,walk] with no?

Exercise 42 The functional (or non lexical) preposition to has a very small lexical entry.
In AVM syntax it is simply

phon
〈
to
〉

syns loc cat head

[
prep

pform to

]

,

and its TRALE counterpart is a direct translation of this description into TRALE’s nota-
tion for lexical entries. If you query TRALE for to with lex to, however, you get a much
more precise description of functional to in the denotation of our grammar for an answer
(besides a description of lexical to, which we ignore here).

Name the parts of the grammar which the compiler used to infer the more precise
description of non lexical to, which it apparently has internally available at run time for
the purposes of parsing.

Exercise 43 Why do the append relation and the Append Principle not occur in the
implementation of our core grammar specification, although we obviously need it in a com-
plete theoretical specification of our core fragment of English?

GLOSSARY

3.2.2 Lexical Generalizations: Fragment II

Abstract

We will extend the core fragment by adding lexical generalizations in the form of
lexical rules. With lexical rules we can express systematic relationships between
words which have so far been described as unrelated words in separate lexical
entries. The domain of our lexical rules will be verb forms.

The goal of this section is a radical simplification of the verbal lexicon of the core fragment.
Despite the simplification, we want to vastly increase the empirical coverage of the verbal
domain of the grammar. Idealizing the picture somewhat, we want to be able to specify
a single lexical entry for each verb, in which we pair up a phonology and a syntactic
argument structure with a single referential meaning. Then we state generalizations over
the verb classes to which the verbs belong. The generalizations should predict the existence
and form of the different extant inflected forms (which possibly exhibit some additional
functional semantic property such as tense) together with the syntactic distribution of the
various verb forms.

Taking the verb walk as an example, we want to describe the following data pattern,
where we suppose exactly one base lexical entry for walk:

(78) a. Mary walks.

http://milca.sfs.uni-tuebingen.de/A4/Course/PDF/glossary/glossar.html?lexical_entries¶metric_sorts&principles&signature

3.2. GRAMMAR DEVELOPMENT 199

b. They walk.

c. *Mary walk.

d. *They walks.

e. Mary walked.

f. Mary has walked.

g. Mary has been walking.

h. Mary will be walking.

i. Mary will have been walking.

Similarly, we want to capture simple facts about the passive in English. The same base
lexical entries as the ones necessary to derive the data in (78) should be used to state
generalizations which predict the data in (79):

(79) a. Mary is liked by Peter.

b. It is given to Peter by Mary.

c. That Peter walks is said by her.

d. It has been given to Peter.

e. *Mary is walked.

GLOSSARY

3.2.2.1 Specification of Fragment II

Abstract

We will specify our extension of the core fragment by stating all necessary exten-
sions of the signature, giving exemplary lexical entries, and stating the lexical
generalizations in an informal but intuitive notation for lexical rules.

The necessary additions to the signature of the core fragment consist in new subsorts of
phonstring to accommodate some new words and their forms, additional semantic relations
for a simple representation of tense forms under psoa, and a new subsort of pform to
distinguish the new non lexical preposition by needed for the analysis of the passive from
other prepositions. We do not repeat the entire signature, but state only the additions to
the signature by indicating where the new sorts belong in the sort hierarchy of the core
fragment. In comparing the old signature with the additions, it should be immediately
obvious how the appropriateness specifications extend to the larger sort hierarchy. The
new relation symbols given at the end of the signature are for the treatment of verbal
inflexion. All parts of the signature of the core fragment are retained.

http://milca.sfs.uni-tuebingen.de/A4/Course/PDF/glossary/glossar.html?lexical_generalization&lexicon

200 CHAPTER 3. GRAMMAR IMPLEMENTATION

type_hierarchy

top

pform

non_lexical

by

cont

psoa

tense_rel soa_arg:psoa

future_rel

perfect_rel

present_rel

past_rel

cont_rel

phonstring

#rained#

#walked#

#liked#

#said#

#gave#

#given#

#have#

#has#

#had#

#be#

#is#

#are#

#was#

#were#

#been#

#by#

relations

psp_inflect/2

prp_inflect/2

past_inflect/3

fin_inflect/3

.

On the basis of our new signature, we can immediately turn to the lexical entries of
the grammar. There are no genuinely new syntactic structures in our extended fragment
of English. All additions concern new kinds of words with new properties, and their
relationship to words which were in the core fragment already.

In the non-verbal domain we keep all lexical entries that we had before.32 We eliminate

32The discussion of one significant modification in one particular previous lexical entry comes up later

3.2. GRAMMAR DEVELOPMENT 201

all verbal lexical entries which do not describe base forms, i.e. verbs which do not have
the vform value base. To illustrate this we repeat the base forms of two verbs that were
included in the core fragment, a base form description of walk and a base form description
of like. Directly after the descriptions of walk and like we see the lexical entries of two
new auxiliaries, the perfect auxiliary have and the passive auxiliary be. The two auxiliaries
are raising verbs, they identify the first element of their arg st lists with the subject of
the unsaturated verbal projection which they select. At the same time they are content
raisers: Their content value is simply identical with the content value of the selected
verbal projection.

Verbs

(80) Base lexical entry of the verb walk:

word

phon
〈
#walk#

〉

syns

loc

cat

head

verb

pred plus

vform base

inv minus

aux minus

cont

[
walk rel

walker 1

]

arg st

〈

loc

cat

head noun

val

[
subj 〈〉

comps 〈〉

]

cont
[
index 1

]

〉

(81) Base lexical entry of the verb like:

word

phon
〈
#like#

〉

syns

loc

cat

head

verb

pred plus

vform base

inv minus

aux minus

cont

like rel

liker 1

liked 2

arg st

〈

loc

cat

head noun

val

[
subj 〈〉

comps 〈〉

]

cont
[
index 1

]

,

loc

cat

head noun

val

[
subj 〈〉

comps 〈〉

]

cont
[
index 2

]

〉

in an exercise.

202 CHAPTER 3. GRAMMAR IMPLEMENTATION

(82) Lexical entry of the perfect auxiliary verb have:

phon
〈
#have#

〉

syns

loc

cat

head

verb

pred plus

vform base

aux plus

cont 2

arg st

〈

1 ,

loc

cat

head

[
verb

vform psp

]

val

[

subj
〈

1
〉

comps 〈〉

]

cont 2

〉

(83) Lexical entry of the passive auxiliary verb be:

phon
〈
#be#

〉

syns

loc

cat

head

verb

pred plus

vform base

aux plus

cont 2

arg st

〈

1 ,

loc

cat

head

[
verb

vform pas

]

val

[

subj
〈

1
〉

comps 〈〉

]

cont 2

〉

Prepositions

(84) Lexical entry of the (non lexical) preposition by:

phon
〈
#by#

〉

syns loc cat head

[
prep

pform by

]

Lexical rules In our specification of the grammar fragment, we state lexical rules in a
lingua franca for lexical rules which has emerged in the HPSG community over the past
decade. The specification language is fairly informal. The general pattern of these lexical
rules is depicted in (85):

(85)

word

syns loc

cat head

[
head

case nom

]

cont δ1

7→

word

syns loc

cat head

[
noun

case acc

]

cont δ2

3.2. GRAMMAR DEVELOPMENT 203

Note that the notation makes crucial use of a new symbol, 7→, which is not defined in
any of our HPSG description languages. To the left of the arrow we have something that
looks like a description of a word, and to the right of the arrow we see a second apparent
description of a word.

It is clear that in order to give the informal notation meaning in HPSG, we will ul-
timately have to say more about how we want to interpret the new notation. Since the
reserved symbol, 7→, splits what could otherwise be considered a description in two parts,
it is not even obvious how exactly to interpret tags which occur on both sides of the new
arrow symbol. Remember that tags are variables, and variables are quantified over sepa-
rately in separate descriptions. In a sense, the intention behind writing the same tag on
both sides of the arrow seems to be to convey the idea that something is supposed to be the
same in two otherwise distinct words. What that something is, we will have to clarify when
we explain the lexical rule notation in more detail. For the time being, we will just explain
the intended effect of each lexical rule with a loose description in natural language. This
will suffice in order to understand the coverage of our fragment. For a full understanding
of the linguistic theory behind our lexical generalizations, however, it is insufficient.

Past Participle Lexical Rule The psp Lexical Rule says that for each verb with
the vform value base there is another verb in the language which looks just the same,
except for the content value and the phonology. The content value of the base form
of the verb becomes embedded under a perfect rel(ation), and the phonology exhibits the
inflexion of a past participle. The meaning of the relation psp_inflect must be defined in
such a way that the phonological form of the base lexical entry stands in the psp_inflect

relation with the phonological form of its past participle form.

(86) The psp Lexical Rule:

phon
〈

1
〉

syns loc

cat head

[
verb

vform base

]

cont 3

7→

phon
〈

2
〉

syns loc

cat

[

head

[
verb

vform psp

]]

cont

[
perfect rel

soa arg 3

]

∧ psp_inflect(1 , 2)

Present Participle Lexical Rule The prp Lexical Rule is formulated in analogy
to the psp Lexical Rule. The content value of the base form becomes embedded
under cont(inuous) rel(ation), and the phonology of the present participle form stands in
the prp_inflect relation with the phonology of the corresponding base form.

204 CHAPTER 3. GRAMMAR IMPLEMENTATION

(87) The prp Lexical Rule:

phon
〈

1
〉

syns loc

cat head

[
verb

vform base

]

cont 3

7→

phon
〈

2
〉

syns loc

cat

[

head

[
verb

vform prp

]]

cont

[
cont rel

soa arg 3

]

∧ prp_inflect(1 , 2)

Finitivization Lexical Rule The fin Lexical Rule is not quite as simple as the
previous two lexical rules, because it needs to take subject verb agreement into account.
One base form of a verb usually corresponds to more than one finite verb form, since the
phonology of verbs which have third person singular or sentential subjects is often different
from the phonology of verbs which agree with subjects that are not third person singular.
The relation fin_inflect is a ternary relation which relates the phonology of the base
form to the phonology of the corresponding finite verb form depending on the content
value of the subject. Note that the content value of corresponding base and finite verb
forms are supposed to look the same, since no changes are indicated

(88) The fin Lexical Rule:

phon
〈

1
〉

syns loc cat head

[
verb

vform base

]

7→

phon
〈

2
〉

syns loc cat

head

[
verb

vform fin

]

val subj
〈[

loc cont 3
]〉

∧ fin_inflect(1 , 2 , 3)

Past Tense Lexical Rule Just as in the previous lexical rule, the Past Tense Lexical
Rule needs to take agreement facts into account, because there are verbs in English whose
phonological form is not uniform in past tense. The auxiliary be distinguishes between
was for first and third person singular (and sentential subjects) and were for all other
subject agreement possibilities. For that reason the relation past_inflect refers to the
content value of the subject. The content values of the past tense forms look just like
the content values of the corresponding base forms, with the exception that they are
embedded under past rel.

3.2. GRAMMAR DEVELOPMENT 205

(89) The Past Tense Lexical Rule:

phon
〈

1
〉

syns loc

cat head

[
verb

vform base

]

cont 3

7→

phon
〈

2
〉

syns loc

cat

head

[
verb

vform fin

]

val
[

subj
〈[

loc cont 4
]〉]

cont

[
past rel

soa arg 3

]

∧ past_inflect(1 , 2 , 4)

Passive Lexical Rule The Passive Lexical Rule is the most interesting lexical rule
in our small collection. It relates the past participle forms to corresponding passive forms.
Referring to the phonology of the two verb classes is unnecessary, since it is the same.
Since auxiliaries lack passive forms, the input description (the description to the left of the
lexical rule arrow, 7→) says that the words affected by this rule must be non-auxiliaries,
i.e., they have the aux value minus. Since the past participle forms of verbs embed their
referential content under the soa arg attribute of their perfect rel valued content, the
lexical rule says that the content of the passive forms looks like the soa arg value of
the corresponding past participle form.

Crucial conditions are expressed as statements about the relationship between the
arg st lists of the two kinds of participles. Only past participle verbs with at least
two elements on the arg st list, and whose subject is nominal, have a corresponding pas-
sive participle. The subject of the past participle corresponds to an optional by-PP as the
last element on the arg st list of the passive participle. The optionality is expressed by
the round brackets around the symbol ⊕ and the succeeding singleton list containing the
synsem value of the by-PP. The symbol ⊕ is a popular functional infix notation for the
append relation.

(90) The Passive Lexical Rule:

word

syns loc

cat head

verb

vform psp

aux minus

cont
[
soa arg 4

]

arg st

〈

loc

cat

head noun

val

[
subj 〈〉

comps 〈〉

]

cont
[
index 1

]

, 2 | 3

〉

206 CHAPTER 3. GRAMMAR IMPLEMENTATION

7→

word

syns loc

cat head

[
verb

vform pas

]

cont 4

arg st
〈

2 | 3
〉

⊕

〈

loc

cat

head

[
prep

pform by

]

val

[
subj 〈〉

comps 〈〉

]

cont
[
index 1

]

〉

With the lexical rules we have expressed lexical generalizations as relationships between
word classes. We started with the description of a base form of verbs via conventional lexical
entries and then made statements about how other admissible verb forms differ from them.
The lexical rules are meant to be a characterization of additional words which we want to
have in the denotation of our grammar. At this point, it is still an open question how we
can technically achieve the intended effect.

The lexical rules are clearly not principles of grammar. As we know from our discussion
of the formalism, additional principles can never lead to the admission of new feature
structures in the model of the grammar: Principles of grammar are always restrictions on
the kinds of structures which are permitted. Similarly, if we have a Word Principle
in the grammar, every feature structure of sort word must be licensed by a disjunct in its
consequent. There is no logical alternative. Thus we seem to have two options: Either
lexical rules can somehow be interpreted as (an) additional disjunct(s) in the consequent
of the Word Principle, or we give up the Word Principle as we know it and think of
other, possibly extra-logical ways of licensing the words in the denotation of our grammar.
In the next section we will see that both options have been pursued in the literature.

GLOSSARY

3.2.2.2 Theories of Lexical Rules in HPSG

Abstract

We will introduce two ways of interpreting lexical rules.

The descriptions of words in lexical entries should ideally be left very general. For example,
the lexical entry of a verb might only mention the phonology of the verb stem, its part
of speech, the lexical semantics of the word, and its syntactic argument structure. Such
an impoverished lexical entry in the consequent of the Word Principle would of course
license many structural variants of the verb in question which should not be grammatical.
A general lexical entry presupposes other principles in the grammar which would exclude
the ungrammatical variants. As [Meurers, 2000, pp. 109ff.] explains, lexical principles
can be used to further constrain the admissible words in the denotation of lexical entries.
Lexical principles are principles which constrain the structure of words by generalizing over
word classes. In our example of a very general hypothetical lexical entry of a verb, lexical

http://milca.sfs.uni-tuebingen.de/A4/Course/PDF/glossary/glossar.html?admission&appropriateness_function&CONTENT_Raiser&feature_structures&lexical_entries&lexical_generalization&lexical_rules&non_lexical_preposition&signature&sort_hierarchy&tag

3.2. GRAMMAR DEVELOPMENT 207

principles might be formulated which ensure that for all finite verbs in the denotation
of the lexical entry (and of all other lexical entries that describe finite verbs), the case
of its nominal subject is nominative. Our Argument Realization Principle, which
maps arg st lists to subj and comps lists, is another lexical principle which restricts the
possible shape of entire word classes; and so is the Functional Preposition Principle.

Lexical principles constrain the form of all words in a word class which exhibits certain
properties. The relevant word class is characterized in the antecedent of each lexical prin-
ciple. Lexical rules express a different type of observation: They are generalizations which
link the existence of one verb class to the existence of another verb class. Their different
nature begs the question of how to formalize them.

Two views of lexical rules can be distinguished in the HPSG literature. The first view
holds that lexical rules express a relationship between lexical entries, and this is the view
of [Pollard and Sag, 1994]. According to this view, a linguist specifies a finite set of base
lexical entries and a finite set of binary relations between expressions of the logical language
in which the base lexical entries are expressed. The lexicon is then defined as the closure
of the lexical entries under the defined set of binary relations, the lexical rules. We may
imagine the closure operation as taking the base lexical entries and generating all lexical
entries which can be derived from them by application of lexical rules. This gives us a
new set of lexical entries, which we again take as the input to the lexical rules, because in
the first round we might have generated new lexical entries which may again be able to
undergo lexical rule application. This process may be reiterated as long as we find new
input lexical entries after lexical rule application.

Lexical rules of this kind are also known as meta-level lexical rules (MLRs) because
they are not defined in the logical language in which the grammar is specified, but in a
meta-language which talks about the language of the grammar. Therefore this view of
lexical rules places them outside of the HPSG formalism which we discussed. The new
arrow symbol of our notation for lexical rules, 7→, may be interpreted as belonging to the
meta-language.

The MLR perspective still awaits a formalization in HPSG, and for the time being
it remains unclear whether an elegant and general formalization is compatible with our
current understanding of the mathematics of HPSG. The closure of lexical entries under
MLRs might yield an infinite lexicon, which either necessitates an extension of the logical
languages of the formalism to infinitary languages in order to formulate a Word Prin-
ciple with infinitely many lexical entries, or a modification of the notion of a grammar.
For example we could define a grammar as a triple consisting of a signature Σ, a set of Σ
descriptions (the theory of the grammar), and a (potentially infinite) set of lexical entries
(the lexicon) which is the closure of the base lexical entries under the lexical rules. A set
of relational abstract feature structures would be admitted by the grammar if and only if
each node in each of its feature structures satisfied each description of the theory, and each
node of sort word satisfied at least one lexical entry.

In addition to providing a big picture such as the one we have just sketched, we need
to be a lot more precise about the specification language of MLRs. In our examples of
lexical rules in the previous section, we always gave an explanation of what was meant

208 CHAPTER 3. GRAMMAR IMPLEMENTATION

by mentioning certain properties of words in the descriptions to the left and to the right
of the arrow, and occasionally we also commented on what was meant by not mentioning
certain properties of the words in the descriptions. A complete theory of MLRs would
have to rigorously specify the meta-language of lexical rules, which would include a precise
characterization of what it means for a lexical entry to match the input description of a
lexical rule, and in which way exactly it is transformed into a new description. We will not
pursue these difficult issues any further here.

The second view of lexical rules holds that lexical rules express relations between word
entities. A lexical rule says that if the model of a grammar contains (feature structure
representations of) words of a certain structure, then it must also contain correspond-
ing words of a different given structure. This interpretation of lexical rules is known as
description-level lexical rules (DLRs), because it puts lexical rules on the same level with
all other principles of the grammar: Lexical rules as DLRs become part of (descriptions
in) the theory of the grammar. A formalization of the DLR approach to lexical rules is
put forth and discussed by [Meurers, 2000, pp. 123ff.]. The basic idea is to introduce en-
tities of sort lexical rule into the grammar with a word-valued in attribute (the input of
the lexical rule) and a word-valued out attribute (the output of the lexical rule). In the
ordinary description language of all principles the linguist describes which properties the
input words share with the output words, and where they differ. The Word Principle is
extended by exactly one disjunct which adds the possibility that a word in a model of the
grammar may also be described by the out value of a lexical rule entity.33 To enhance the
practical usability of DLRs, Meurers provides a lexical rule specification language which
essentially takes lexical rules as they are usually written by linguists and transforms them
into descriptions of lexical rule entities. By and large we can retain the notation of lexical
rules which we have used above, plus we obtain a few new symbols for eliminating cer-
tain ambiguities which may occur in the traditional lexical rule notation. The lexical rule
specifications of this sort are then interpreted as an abbreviatory notation for real, much
bigger HPSG descriptions of lexical rule objects.

The advantage of this explanation of lexical rules is that it has been fully formalized,
we do not have to go beyond the description language and formalism which we already
know, and, in particular, finite descriptions suffice to characterize the lexicon of a natural
language with infinitely many (abstract feature structure representations of) words. Just as
before with MLRs, we will refrain from going into technical details. If interested, the reader
may read up on the topic in [Meurers, 2000], which contains a very readable explanation
of lexical rules and the subject of lexical generalizations.

As [Meurers, 2000] argues at length, DLRs achieve exactly the effect which linguists
have in mind when they specify lexical rules, and their formalization helps to clarify open
questions about ambiguities in the notation which linguists use in their notation of lexical
rules. [Meurers and Minnen, 1997] describes a computational implementation of DLRs.

33To make this specification possible, the lexical rule entity must be a component of the word that is
the output of the lexical rule. For the technical details, see [Meurers, 2000, p. 124].

3.2. GRAMMAR DEVELOPMENT 209

Exercises

We will study the sentence Was it given to Peter by Mary.

Exercise 44 How are the words was and given in this sentence licensed by Fragment II?
More specifically, which lexical entries and which lexical rules are involved in licensing these
two words in our sentence?

Exercise 45 Indicate the syntactic structure of the given sentence as it is licensed by Frag-
ment II. A simple bracketing of the sentence depicting the syntactic constituent structure
will suffice.

Exercise 46 Describe the content value of the sentence. Explain in which way the
grammar licenses this content value, taking into account the lexical entry of the verb
give, the appropriate lexical entry of be, the relevant lexical rules and the Semantics
Principle.

GLOSSARY

3.2.2.3 Implementation of Fragment II

Abstract

Through implementing the extension of the core fragment, we will see how meta-
level lexical rules are used in TRALE.

We have presented two ways of interpreting our lexical rule specifications, which are the
only innovations introduced by our extension of the core fragment. The question now is
which kind of lexical rules are supported by TRALE, MLRs or DLRs.

The answer to this question is simple: TRALE knows two variants of DLRs, which we
will call DLR-1s and DLR-2s. For DLR-1 lexical rules it imports the syntax and function-
ality of the ALE system with only minor modifications in syntax. For DLR-2 lexical rules
it imports the lexical rule compiler, originally written for the ConTroll system (see Sec-
tion 1.1, Historical Overview), which is based on the theory of [Meurers and Minnen, 1997].
TRALE users are free to choose whatever they prefer, or even to use both types of lexical
rules in a single grammar. A description of the DLR-1 syntax can be found in the sec-
tion on ALE Lexical Rules of the User’s Guide;34 the lexical rule compiler for DLR-2s and
the syntax for DLR-2s are explained in the same manual in Section TRALE Lexical Rule
Compiler.

The reader may ask why the implementation of DLRs uses devices which might at first
look as if they did not belong to the feature logic after we said above that DLRs are defined
within the feature logic of HPSG. The reason is twofold:

34http://www.ale.cs.toronto.edu/docs/man/ale_trale_man/index.html

http://milca.sfs.uni-tuebingen.de/A4/Course/PDF/glossary/glossar.html?admission&description&feature_structures&lexical_entries&lexical_principle&lexical_rules&licensing&principles&signature&theory
http://www.ale.cs.toronto.edu/docs/man/ale_trale_man/ale_trale_man-node41.html
http://www.ale.cs.toronto.edu/docs/man/ale_trale_man/index.html
http://www.ale.cs.toronto.edu/docs/man/ale_trale_man/ale_trale_man-node44.html

210 CHAPTER 3. GRAMMAR IMPLEMENTATION

Firstly, as we know, there is a crucial difference between the general and very powerful
HPSG formalism and an implementation platform for HPSG grammars such as the TRALE
system, which implements parts of the HPSG description language and adds a number of
important task specific devices with their own underlying mathematics. The implementa-
tion of DLRs is just one more of these devices which may use mechanisms outside of the
implementation of the feature logic. Just like with an implementation tool such as phrase
structure rules, if necessary we are able to translate them back into HPSG’s feature logic.
Here we will not investigate how such a translation can be achieved.

Secondly, TRALE’s LR implementation in terms of DLR-1s is not as general as would be
necessary to count as a complete implementation of a linguistic theory of description-level
lexical rules. The limitations are easy to see in practice. Recall that we said that LRs may
easily lead to an infinite number of words in the grammar. Of course, no computer system
can handle an infinite number of lexical representations. TRALE’s answer to this problem
(which is taken over from ALE) is straightforward: It cuts off the recursive application of
lexical rules to their output at a (user definable) point, thus excluding an infinite number
of words. If nothing is changed by the user, the system will apply lexical rules only up
to the second generation of descendants of the base lexical entries, as they are derived by
lexical rule application. It immediately follows that if a linguist envisages an infinite lexicon
by means of her lexical rule specifications, TRALE’s DLR-1s will not be able provide an
adequate implementation of the theory. If an infinite number of words is supposed to be
derived from a finite set of words in the denotation of base lexical entries by stating lexical
rules, it might be worthwhile to consider an implementation in terms of DLR-2s. Of course,
this presupposes that the concept of DLR-2s is compatible with the theoretical intentions
of the linguist.

Our TRALE implementation (signature35, theory.pl36) of the lexical rules of the
specification of Fragment II chooses DLR-1s. The implementation of the psp Lexical
Rule then appears as follows:

% PSP Lexical Rule

psp_lex_rule ##

(word,

synsem:loc:(cat:head:(vform:base,

aux:Aux,

pred:Pred),

cont:Cont),

arg_st:Arg)

**>

(synsem:loc:(cat:head:(vform:psp,

aux:Aux,

pred:Pred),

35http://milca.sfs.uni-tuebingen.de/A4/Course/Grammars/Fragment-with-Lex-Gens/signature
36http://milca.sfs.uni-tuebingen.de/A4/Course/Grammars/Fragment-with-Lex-Gens/theory.pl

http://milca.sfs.uni-tuebingen.de/A4/Course/Grammars/Fragment-with-Lex-Gens/signature
http://milca.sfs.uni-tuebingen.de/A4/Course/Grammars/Fragment-with-Lex-Gens/theory.pl

3.2. GRAMMAR DEVELOPMENT 211

cont:(perfect_rel,

soa_arg:Cont)),

arg_st:Arg)

morphs

be becomes been,

give becomes given,

have becomes had,

say becomes said,

(X,[e]) becomes (X,ed),

X becomes (X,ed).

Note that in contrast to the linguistic conventions which we followed in the theoretical
specification of the lexical rules, we now have to mention all parts of the description which
should be carried over from the input descriptions of the lexical rule to the descriptions that
are generated as output. Carrying over parts of the description from the input to the output
is done by variables. In order to obtain reasonable output, the DLR-1 implementation of
the psp Lexical Rule uses the variables Aux, Pred, and Arg in order to transport the
descriptions of the aux value, of the pred value, and of the argument structure list from
the input to the output. In addition, the content description is modified the same way as
in the specification.37

What about the phonology of the words and their relational description with psp_in-

flect/2 of the specification? Since the phonology of signs is treated in a special way in
TRALE anyway, it is not surprising that DLR-1s provide their own mechanism for spec-
ifying the orthographical changes from the input descriptions to the output descriptions.
After the operator morphs there comes a list of transformations from the input to the out-
put: Idiosyncratic changes for certain words are listed first, followed by general patterns
which apply to non-idiosyncratic cases. For each lexical entry the compiler executes the
first applicable clause it finds without considering the remaining clauses. For details please
consult the section on ALE lexical rules in the User’s Guide.

The DLR-1 implementation of the prp Lexical Rule is entirely parallel to the psp
Lexical Rule. The two lexical rules in which verbal inflexion depends on agreement
phenomena, the Finitivization Lexical Rule and the Past Tense Lexical Rule,
form another group in terms of their implementation. Recall that in the specification of
the lexical rules we introduced relations between the phonology of the input of the rule
and the phonology of the output of the rule. These relations had the content value
of the subject of the output as another argument in order to make the phonology of the
output dependent on agreement facts. To simulate this effect with the morphs operator in
an DLR-1 implementation we have to split these lexical rules into two meta-level lexical
rules, one for each agreement pattern. Here is the implementation of the Finitivization
Lexical Rule as two DLR-1s:

37In a DLR-2 specification the same lexical rule would look different and much closer to the original
specification!

212 CHAPTER 3. GRAMMAR IMPLEMENTATION

% 3rd_sing_fin_lex_rule

third_sing_fin_lex_rule ##

(word,

synsem:loc:(cat:head:(vform:base,

aux:Aux,

pred:Pred),

cont:Cont),

arg_st:Arg)

**>

(synsem:loc:(cat:(head:(vform:fin,

aux:Aux,

pred:Pred),

val:subj:[(loc:cont:(psoa;index:(pers:third,

num:sg)))]),

cont:(present_rel,

soa_arg:Cont)),

arg_st:Arg)

morphs

be becomes is,

have becomes has,

X becomes (X,s).

% non_3rd_sing_fin_lex_rule

non_third_sing_fin_lex_rule ##

(word,

synsem:loc:(cat:head:(vform:base,

aux:Aux,

pred:Pred),

cont:Cont),

arg_st:Arg)

**>

(synsem:loc:(cat:(head:(vform:fin,

aux:Aux,

pred:Pred),

val:subj:[(loc:cont:index:(num:pl;

(pers:(first;second),

num:sg)))]),

cont:(present_rel,

soa_arg:Cont)),

arg_st:Arg)

morphs

be becomes are,

X becomes X.

3.2. GRAMMAR DEVELOPMENT 213

The two DLR-1s are identical except for their complementary subject verb agreement
coverage, and the phonological forms which depend on agreement.

Note that in the case of past tense the necessity of splitting up the Past Tense
Lexical Rule according to the agreement distinction of be between was and were also
leads to the occurrence of two past tense lexical entries for each other word. For example
said has now two derived lexical entries for past tense (just like any other word), one
for first and third person singular subjects and one for all other agreement possibilities,
although there is no phonological distinction between these forms in English. Since parsing
works on the level of descriptions, using LRs might thus have a direct effect on how many
solutions to queries we get back from the system!

In general, when working with LRs, it is a good strategy to look at the descriptions
of words generated by the compiler given our lexical entries and the constraints in our
grammar. These are the descriptions which are relevant for thinking about what the input
to the lexical rules looks like. It is also a good idea to check with the lex command how
many descriptions are available for a given phonological form of a word, and to see if the
result matches our intentions.

The Passive Lexical Rule is the most complex lexical rule in our fragment, because
it involves rearranging the argument structure of verbs. The order of elements on the
argument structure lists of the rule’s output is described with an append relation. It
turns out that this fact does not introduce further complications for an DLR-1 version
of the Passive Lexical Rule. We can, in a straightforward manner, use a relational
attachment to the output description and directly simulate the original specification. The
definite clause definition of append uses the familiar delays and is not repeated here.

214 CHAPTER 3. GRAMMAR IMPLEMENTATION

% Passive Lexical Rule

passive_lex_rule ##

(word,

synsem:(loc:(cat:head:(verb,

vform:psp,

aux:(Aux,minus), % no passive of auxiliaries

inv:Inv,

pred:Pred),

cont:soa_arg:Cont),

nonloc:Nonloc),

arg_st:[(loc:(cat:(head:noun,

val:(subj:e_list,

comps:e_list)),

cont:Cont2)),

Synsem1|

List])

**>

(word,

synsem:(loc:(cat:head:(verb,

vform:pas,

aux:Aux,

inv:Inv,

pred:Pred),

cont:Cont),

nonloc:Nonloc),

arg_st:([Synsem1|List];Result))

if append(([Synsem1|List]),[(loc:(cat:(head:(prep,

pform:by),

val:(subj:e_list,

comps:e_list)),

cont:Cont2))],Result)

morphs

X becomes X.

The description of the arg st list of the output is described disjunctively. The first
disjunct in the description of the arg st list of the output captures the case in which the
subject is not realized overtly in the passive construction. The second disjunct captures
the case in which it is realized as a prepositional by-phrase.

In the first case the arg st list of the output consists of the second element and the
other elements behind the second element of the input verb’s arg st list; in the second
case it is the concatenation (described by the append goal) of the list which we have
just described with a singleton list whose element is described as the synsem object of a

3.2. GRAMMAR DEVELOPMENT 215

saturated by-PP, whose content value is identical with the content value of the first
element of the arg st list of the input verb. This last identification leads to the correct
interpretation of the by-phrase as the semantic subject of the passive verb.

Exercises

Exercise 47 If you look at the lexical entries of the verbs in our grammar (Signature38,
Theory39) which are not auxiliaries, you will notice that their nominal arguments are always
fully saturated, i.e., the subj list and the comps lists of the selected nominal arguments
must be empty. Stating this fact separately in each lexical entry might look like we are
missing a potential generalization in English.

Formulate this supposed generalization in two steps:

1. Give an HPSG specification of the observed generalization concerning our small frag-
ment of English.

2. Implement your HPSG specification as an extension of our current fragment. To
hand in your grammar, please create a new folder in your personal ILIAS group and
upload both your signature file and your theory file to this folder.

Exercise 48 We have not talked about the new lexical entry of the lexical preposition
to. If you look at its lexical entry in our implemented grammar and compare it with the
corresponding lexical entry in the core fragment, you will see that it becomes much more
complex. The new lexical entry comprises a functional description, search_rel, whose
definite clause definition is rather complex.

Describe in a few sentences what the effect of the functional description in the lexical
entry is. (Hint: You might want to investigate what happens if you use the old lexical entry
of the lexical preposition to in our extended fragment)

GLOSSARY

3.2.3 Unbounded Dependencies: Fragment III

Abstract

The last extension of our fragment of English will add to the grammar an anal-
ysis of unbounded dependencies. A very small extension of the signature will
suffice to enable us to formulate generalizations over a large class of new em-
pirical phenomena. The new grammar will raise questions of how closely an
implemented grammar should mirror grammars designed in theoretical linguis-
tics.

38http://milca.sfs.uni-tuebingen.de/A4/Course/Grammars/Fragment-with-Lex-Gens/signature
39http://milca.sfs.uni-tuebingen.de/A4/Course/Grammars/Fragment-with-Lex-Gens/theory.pl

http://milca.sfs.uni-tuebingen.de/A4/Course/Grammars/Fragment-with-Lex-Gens/signature
http://milca.sfs.uni-tuebingen.de/A4/Course/Grammars/Fragment-with-Lex-Gens/theory.pl
http://milca.sfs.uni-tuebingen.de/A4/Course/PDF/glossary/glossar.html?ALE&ConTroll&lexical_rules

216 CHAPTER 3. GRAMMAR IMPLEMENTATION

Unbounded dependency constructions (short: UDCs), which are also known as long move-
ment constructions, have been a longstanding and important topic of all varieties of gen-
erative grammar. The term unbounded dependency construction refers to a syntactic con-
struction in which at least one constituent appears in a sentence peripheral position which
is distinct from the position in which the constituent would appear in ‘normal’ or ‘un-
marked’ word order. Moreover, the dislocated constituent of an unbounded dependency
construction may occupy a syntactic position which may be several sentence boundaries
away from the ‘unmarked’ position of this constituent. It is this last property which gave
the construction the name unbounded dependency.

Our grammar will encompass the data in (91), which illustrate the topicalization of
non-wh elements in English. All grammatical sentences in the examples will be licensed by
Fragment III, whereas the sentences preceded by an asterisk will be correctly identified as
being ungrammatical. The dislocated constituent will be enclosed in square brackets, and
its ‘unmarked’ position will be signaled by the position of the symbol t in each sentence.
The letter t has been chosen to remind the reader of the technical name for the empty
category in generative grammar, which is called trace.

(91) a. [To Peter] Mary gave it t.

b. [Peter] Mary gave it to t.

c. [Peter] Mary likes t.

d. She says that [Peter] Mary likes t.

e. *She says [Peter] that Mary likes t.

f. [Peter] she says that Mary likes t.

g. *[That] she said t Mary gave it to Peter.

h. *[Gave] she said that Mary t it to Peter.

i. *[To] she said that Mary gave it t Peter.

As the reader may already have inferred from the examples, the empirical scope of the
grammar will be restricted to the topicalization of syntactic arguments. In particular, one
should note that the extraction of adjuncts is not considered in this grammar fragment.

The classical examples for unbounded dependency constructions in English are wh-
questions such as ‘[Which book] did Peter say that Mary likes t?’ In the present extension
of our core fragment of English we do not include wh-questions because a satisfactory
analysis of wh-questions involves additional syntactic constructions which we do not wish
to discuss here.

We will focus instead on topicalization and long topicalization data. Let us very briefly
characterize this phenomenon: In sentences (91a)–(91d) we see that a PP-complement
of a verb, an NP-complement of a preposition, and an NP-complement of a verb can be

3.2. GRAMMAR DEVELOPMENT 217

topicalized within a sentence, even if the sentence in which the topicalization occurs is an
embedded sentence (91d). However, topicalized constituents in an embedded that-clause
must follow the complementizer ((91d) vs. (91e)). Sentence (91f) is an example of topical-
ization of a complement from an embedded clause. The sentences in (91g) through (91i)
show that certain lexical categories (such as complementizers, finite verbs, and prepositions
without their complements) cannot be topicalized.

We will not treat cases of VP topicalization, which are illustrated in (92):

(92) a. [Reading the book] she may have been t.

b. [Win the game] they will t.

For a thorough discussion and an empirical overview of UDCs in English in the context
of HPSG the reader is referred to [Pollard and Sag, 1994, Chapter 4]. Our analysis follows
this theory in spirit, but is empirically much more restricted and differs in a number of
important technical details. In what follows we presuppose a basic knowledge of theories of
unbounded dependencies as well as a certain familiarity with slash percolation mechanisms
for analyzing the bottom, middle and top part of an unbounded dependency construction.

GLOSSARY

3.2.3.1 Specification of Fragment III

Abstract

As with the previous fragments we will present a specification of the signature
and the principles of the grammar before we proceed to its implementation in
TRALE.

We will keep the signature of Fragment II and extend it only slightly. Just as when we
made the step from Fragment I to Fragment II, we will not repeat the entire signature
of the previous fragment. Below we will simply enumerate the additions to the signature.
A complete version of the new signature (without parametric sorts and without the re-
lation symbols and their arity) can be found in the ultimate TRALE implementation of
Fragment III.

We only need two new sorts with their appropriateness specifications and one additional
relation symbol in order to add a treatment of topicalization to our previous fragment
of English. The new sort nonlocal, appropriate for the attribute nonlocal at synsem,
hosts two new attributes with list values. They are called inherited and to bind. The
attribute inherited has the function of housing the local values of dislocated elements.
This makes them accessible to a locally defined percolation mechanism which will ultimately
establish the identity of local structures between the filler and the gap. to bind is a
technical attribute which controls how the upwards-percolation of dislocated elements is
discharged when they are syntactically realized as filler constituents. In order to integrate

http://milca.sfs.uni-tuebingen.de/A4/Course/PDF/glossary/glossar.html?unbounded_dependency_constructions

218 CHAPTER 3. GRAMMAR IMPLEMENTATION

head-filler structures, we need a new subsort of the daughters value const struc at phrase.
The new sort for head-filler structures is called hf struc.

Finally, we need a member relation with arity 2 for formulating our constraints on
extraction. Here is a summary of the new parts of the signature:

type_hierarchy

top

synsem local:local nonlocal:nonlocal

nonlocal inherited:list(local) to_bind:list(local)

const_struc

hf_struc

relations

member/2

.

On the basis of our new signature, we can now turn to the specification of lexical entries
and new principles of grammar.

Lexical Entries In strong contrast to the previous extension, the one which we are
concerned with here is mostly non-lexical. This time the extension focuses on new phrasal
syntactic structures, and on additional sub-structures of all types of signs. We do not add
any elements with new phonology to the grammar. However, each previous lexical entry
needs an additional specification which excludes it from becoming a possible lexical source
of an unbounded dependency construction.

For this purpose, we add the following specification to all lexical entries of Fragment II:

(93) Lexical nonlocal value specification for all words in Fragment II:
[

synsem nonloc

[
inherited 〈〉

to bind 〈〉

]]

The specification
[
inherited 〈〉

]
says that no unbounded dependency originates with the

words in question. The specification
[
to bind 〈〉

]
says that the syntactic phrases in which

the words are syntactically realized as daughters are never head filler structures.
The lexical entry for traces is the single exception to the nonlocal specification of all

other words in our fragment of English, and it is the only new lexical entry in Fragment III:

(94) Lexical entry of the trace:

word

phon 〈〉

syns

loc 1

nonloc

[

inherited
〈

1
〉

to bind 〈〉

]

3.2. GRAMMAR DEVELOPMENT 219

The specification
[

inherited
〈

1
〉]

marks traces as the bottom part of an unbounded

dependency construction. The principles of grammar will have to take care of the proper
percolation of the element on the inherited list. Like all other words in the grammar,
traces cannot bind off inherited elements (

[
to bind 〈〉

]
).

As in the original theory of unbounded dependencies in HPSG of [Pollard and Sag, 1994],
our traces are words with an empty phonology which share their local value with the
single element on an inherited list. Small differences are caused by a number of simplifi-
cations in our fragment. First of all inherited values are lists, not sets, because we want
to avoid the technical and computational complications which sets cause. Secondly, the
original analysis distinguishes between different kinds of unbounded dependencies. In order
to handle this Pollard and Sag’s nonlocal sort has three attributes, dubbed slash, que,
and rel, for different kinds and aspects of unbounded dependency constructions. Since
we wish only to discuss unbounded dependencies of the type which is usually analyzed by
means of the slash attribute, we will omit the distinction (and even the slash attribute
itself). We will simplify the appropriateness conditions to the minimally necessary ingredi-
ents of a theory of topicalization in English: We assign the nonlocal value nonlocal the
familiar two attributes inherited and to bind. In Pollard and Sag’s full analysis, arcs
with these two labels are placed in the slash, que, and rel values.

Principles The new grammatical principles are concerned with restricting the distribu-
tion of traces in phrase structure, guaranteeing the proper percolation of inherited values
and licensing a new type of phrase, head filler phrases, in order to accommodate extracted
constituents in our syntactic structures.

We will begin with a modification of the existing ID Principle. One more disjunct in
its consequent, the Head Filler Schema (HFS), licenses the new head filler structures:

(95) The ID Principle:

phrase → (HSS ∨ HCS ∨ SAIS ∨ HAS ∨ HFS)

The meta-variable HFS in the rewritten ID Principle stands for the following de-
scription of head filler phrases:

220 CHAPTER 3. GRAMMAR IMPLEMENTATION

(96) The Head Filler Schema:

syns
[
loc cat val 2

]

dtrs

hf struc

hdtr

syns

loc

cat

head

[
verb

vform fin

]

val 2

[
subj 〈〉

comps 〈〉

]

nonloc

[

inherited 3

to bind
〈

1
〉

]

ndtr

phon nelist

syns

[
loc 1

nonloc inherited 〈〉

]

∧ member(1 , 3)

According to the Head Filler Schema, filler daughters are sisters of saturated pro-
jections of finite verbs. Their local value is identical to a member of the inherited list
of the head daughter. Note the identity of the valence values of the head daughter and
the mother node, which is established by the variable 2 . This specification is necessary
because our grammar has no independent Subcategorization Principle, and we have
to guarantee that the projection of a verb phrase which is already syntactically saturated
remain saturated when it combines with a filler. The nelist specification for the phonology
of the non-head daughter excludes the possibility of the filler being a trace.

The to bind specification interacts with the Nonlocal Feature principle in such
a way that the local object denoted by 1 is not on the inherited list of the mother phrase
of the construction. This means that the constituent with local value 1 is no longer
marked as missing at the mother node of the head filler phrase.

The Nonlocal Feature Principle might at first look complicated due to the seem-
ingly complex restrictions which are expressed with the member relation. On closer inspec-
tion, however, it will turn out to be very straightforward:

(97) The Nonlocal Feature Principle (NFP):

[
phrase

]
→

syns
[
nonloc inherited 1

]

dtrs

hdtr

[

syns nonloc

[
inherited 2

to bind 3

]]

ndtr
[

syns nonloc
[
inherited 4

]]

∧ ∀ 5

((

member(5 , 2) ∨ member(5 , 4)
∧¬ member(5 , 3)

)

↔ member(5 , 1)

)

The NFP says that the inherited list of a phrase consists of those elements of the
inherited lists of its head daughter and its non-head daughter which do not occur on
the to bind list of the head daughter: In other words, all the requirements about missing
constituents which are not realized in the form of the local filler daughter are passed
upwards.

3.2. GRAMMAR DEVELOPMENT 221

The Phrasal to-bind Principle ensures that nonlocal dependency requirements
can only be discharged in head filler structures:

(98) The Phrasal to-bind Principle:

phrase

dtrs

[

hdtr

[
phrase

syns nonloc to bind nelist

]]

↔

[
dtrs hf struc

]

Since non-empty to bind lists may only occur at head daughters of head filler struc-
tures, since every phrase has a head daughter, and since the NFP transports every member
of the inherited list of each daughter which is not on the to bind list of the head daugh-
ter upwards in the syntactic structure, head filler phrases are now the only phrases in which
requirements about extracted constituents can be satisfied. As long as a nonlocal require-
ment is not satisfied by a corresponding filler daughter, the requirement will be preserved
at the dominating nodes in the syntactic structure.

The generality of the lexical entry of the trace in (94) has an interesting and perhaps
unexpected consequence for the Functional Preposition Principle, which we already
anticipated in our original formulation of the principle. For convenience we will repeat the
principle here:

(99) The Functional Preposition Principle:

word
phon nelist

syns loc cat head

[
prep

pform non lexical

]

→

syns

loc

cat head

[
mod none

pred minus

]

cont 1

arg st

〈

loc

cat val

[
subj 〈〉

comps 〈〉

]

cont 1

〉

Note that the antecedent requires a non-empty phonology. This had no effect in the
grammar as long as we had no traces. If we did not require a non-empty phonology in the
presence of traces, however, traces of an extracted PP headed by a functional preposition
would then have to have a non-empty arg st list, and, by virtue of the argument
realization principle, also a non-empty comps list. But that cannot be, since an
extracted PP headed by a functional preposition must be a saturated phrase, which means
that the shared valence attributes of the filler and the gap must be saturated. Therefore,
a Functional Preposition Principle without the non-empty phonology requirement
in the antecedent would exclude traces of PPs headed by functional prepositions, although
they are grammatical, as is illustrated by the following example:

(100) [To Mary] Peter gave the book t.

222 CHAPTER 3. GRAMMAR IMPLEMENTATION

Constraints on Extraction The previous new principles were concerned with the mid-
dle part and the top part of unbounded dependency constructions. The lexical entry for
traces which licenses the bottom part is still completely unrestricted: Any kind of word
might occur in the shape of a trace anywhere in the syntactic structure. As we have
already observed in the data in (91), this is far too general. We need restrictions on possi-
ble extractees and extraction sites. The Trace Principle, which we formulate in three
sub-principles, and the Subject Condition are examples of such constraints.

In order to restrict the occurrence of traces to complements (with nominal and prepo-
sitional heads) of non-functional categories we impose a (structural) Trace Principle:

(101) The Trace Principle:

1.
[
phrase
dtrs ndtr phon 〈〉

]

→

syns

[
loc cat head ¬ functional

nonloc to-bind 〈〉

]

dtrs hs struc ∨ hc struc ∨ sai struc

2.
[
phrase

]
→
[
dtrs hdtr phon nelist

]

3.
[
word
phon elist

]

→
[
syns loc cat head noun ∨ prep

]

Clause (1) of the Trace Principle restricts the possible occurrence of traces in argu-
ment positions. The three lines of the consequent make the relevant statements: According
to the first line, traces may not be complements of functional heads. The third line ex-
cludes traces in adjunct position and in the position of fillers. The second line is the most
intricate one: It excludes so-called vacuous movement of subjects in an indirect manner
by saying that the phrasal mother of a trace may not bind off an unbounded dependency.
In other words the mother may not be the daughter of a head-filler structure. Here is an
example of the kind of structure which this part of the principle forbids:

(102) [He] t is walking.

Clause (2) says that heads may not be extracted. Clause (3) restricts long movement
in our fragment of English to nominal and prepositional signs. Note that for this reason
VPs cannot be extracted.

According to the Subject Condition, a subject may only be the source of an extrac-
tion if (1), it is either extracted itself, or (2), something is extracted out of the subject and
at the same time another argument of the same syntactic functor is either itself extracted
or something is extracted out of it:

(103) The Subject Condition:

∀ 1 ∀ 3 ∃ 2 ∃ 4

word

syns loc
[
cat head pred plus

]

arg st
〈

3
[
nonloc inherited nelist

]
| 1

〉

→

(

3

[
loc 4

nonloc inherited
〈

4
〉

]

∨ member
(

2
[
nonloc inherited nelist

]
, 1

)
)

3.2. GRAMMAR DEVELOPMENT 223

The Subject Condition is a restriction on predicative words. In our fragment these
are the verbs. In particular, our prepositions are not predicative. For this reason their
complements may be extracted although the synsem values of the complements are the
first elements of the arg st lists of the prepositions.

Word Order Having added a new type of constituent structure to our grammar we
also need to extend the Constituent Order Principle. We have defined the relative
phonological order of syntactic daughters as a function of the constituent structure type of
the mother node in Fragment I. In the new Constituent Order Principle we simply
add a statement which orders the phonology of fillers in front of the phonology of the head
of the construction.

(104) The Constituent Order Principle:

phrase →

phon 1

dtrs

[
hdtr phon 2

ndtr phon 3

]

∧
(
[
dtrs (hc struc ∨ ha struc ∨ sai struc)

]
→ append(2 , 3 , 1)

)

∧
(
[
dtrs (hs struc ∨ hf struc)

]
→ append(3 , 2 , 1)

)

Parametric Sorts Our extension comprises a new parametric sort specification. As can
be seen in the additions to the signature, the list values of the new attributes inherited
and to bind are supposed to be lists of local objects. Just as before we take the specifica-
tion in the signature to be an abbreviation of the appropriate principles and a new relation
of arity 1 (list_of_locs), which introduces the intended restrictions on the relevant lists.
In MoMo notation we can render the necessary principles as follows:

VX(list_of_locs(X) <*> (X:e_list;

^Y(X:hd:loc,X:tl:Y,list_of_locs(Y)))).

nonlocal *> ^Y(inherited:Y, list_of_locs(Y)).

nonlocal *> ^Y(to_bind:Y, list_of_locs(Y)).

These principles will, of course, have direct counterparts in the implementation of Frag-
ment III.

GLOSSARY

http://milca.sfs.uni-tuebingen.de/A4/Course/PDF/glossary/glossar.html?appropriateness_function&attributes&functional_preposition&lexical_entries&licensing¶metric_sorts&principles&signature&sort_symbols&unbounded_dependency_constructions

224 CHAPTER 3. GRAMMAR IMPLEMENTATION

3.2.3.2 Implementation of Fragment III

Abstract

We will focus on a number of computationally motivated reformulations of the
original HPSG specification. In the implementation of the Nonlocal Fea-
ture Principle we will see again that the implementation of HPSG prin-
ciples with relations may deviate significantly from their declarative specifica-
tions. The treatment of the trace will be another example of an element of
the HPSG specification which is equivalently recoded for processing. The imple-
mented grammar also raises considerations about the adequate empirical cover-
age of a computational grammar which incorporates very general principles of
theoretical linguistics.

Fragment III (signature40, theory.pl41) is by far the most complex grammar of a natural
language which we have worked with so far. The introduction of unbounded dependencies
immediately forces the computational linguist to give serious thought to the runtime be-
havior of the grammar. Procedural mistakes in the implementation of the grammar can
easily lead to infinite compile time, or, if compilation succeeds, to infinite runtime for some
or all interesting queries. The only safe and systematic way to overcome the inherent diffi-
culties of working with a very expressive description language such as ours is to emphasize
the precise logical specification of the grammar, and to obtain a clear understanding of the
meaning of the complete grammar specification, and of the procedural properties of the
constraint system and the necessary Prolog components of TRALE. A significant part of
these skills can only be acquired by practice and by experience with mistakes.

For the discussion of the implementation of the Fragment III signature we will restruc-
ture slightly the order of presentation in the specification of the previous section. We
will begin with the straightforward realization of the new parametric sort specification
(list(local)). Then we will proceed to the principles which govern the top and the middle
part of unbounded dependencies. Due to the use of phrase structure rules in TRALE,
this will automatically take care of word order as well. Finally we will discuss the im-
plementation of the constraints on extraction, and we will see that these constraints are
partially built into the definition of the empty categories in the TRALE grammar. For
computational reasons the descriptions of the traces in the implementation are much more
detailed than in the HPSG specification, but we will argue that we will nevertheless obtain
a denotationally equivalent grammar.

Parametric Sorts The encoding of the parametric sort specifications of the inherited
and to bind values follows the by now familiar pattern. The HPSG relation list_of_locs

is approximated by the definite clause definition of the Prolog predicate list_of_locs.
In the definite clause we employ a delay statement to guarantee termination of the goal

40http://milca.sfs.uni-tuebingen.de/A4/Course/Grammars/UDC-Grammatik/signature
41http://milca.sfs.uni-tuebingen.de/A4/Course/Grammars/UDC-Grammatik/theory.pl

http://milca.sfs.uni-tuebingen.de/A4/Course/Grammars/UDC-Grammatik/signature
http://milca.sfs.uni-tuebingen.de/A4/Course/Grammars/UDC-Grammatik/theory.pl

3.2. GRAMMAR DEVELOPMENT 225

during runtime. The functional notation for the predicate list_of_locs is chosen for the
simplicity of the notation.

fun list_of_locs(-). % allow functional notation for list_of_locs

list_of_locs(X) if

when((X=(e_list;ne_list)), % apply only with sufficient information

und_list_of_locs(X)). % about the list

und_list_of_locs(X) if (X=e_list).

und_list_of_locs(X) if (X=[(loc)|Y]),list_of_locs(Y).

nonloc *> (inherited:list_of_locs,

to_bind:list_of_locs).

Principles (including Word Order) The Head Filler Schema assumes the shape
of a phrase structure rule with the relevant description annotations. We call it the Head
Filler Rule. As is usual with phrase structure rules, the Head Filler Rule automat-
ically incorporates the word order requirements which the HPSG specification had to state
separately in the Constituent Order Principle.

Before we can state the Head Filler Rule we must define a definite clause which
simulates the member relation. In another principle later on we will want to use the member
predicate in functional notation, which is why we already include a statement which al-
lows functional notation with respect to the second argument. The predicate is called
our_member, in order to avoid a naming conflict with existing predicates in the system.

% functional definition of our-member/2 for the Subject Condition

fun our_member(+,-).

our_member(Hd,[Hd|_]) if true.

our_member(Hd,[_|Tl]) if our_member(Hd,Tl).

With the our_member predicate in hand, the description of the Head Filler Schema
can be translated faithfully into the format of a TRALE rule:

% Head Filler Rule

head_filler_rule ##

(phrase,

synsem:loc:cat:val:Val,

daughters:(hf_struc,

hdtr:Hdtr,

ndtr:Ndtr))

226 CHAPTER 3. GRAMMAR IMPLEMENTATION

===>

cat> (Ndtr, phon:ne_list,

synsem:(loc:Local,

nonloc:inherited:e_list)),

cat> (Hdtr, synsem:(loc:cat:(head:(verb,

vform:fin),

val:(Val,(subj:e_list,

comps:e_list))),

nonloc:(to_bind:[Local],

inherited:List))),

goal> our_member(Local,List).

Note the syntactic form of the operator goal in the context of rules: The syntactic
form goal> is necessary here in parallel to the cat> operators of the syntactic daughters,
and it is conjoined to the rule by a comma.

The Nonlocal Feature Principle is the principle which requires the most dras-
tic recoding. Expressing the percolation of the inherited values of daughters contingent
upon the to bind value of the head daughter is easy in the declarative logical environment
of HPSG, since HPSG provides universal quantification; a relational expression (member)
which receives a classical interpretation in the scope of negation and the logical constant
for equivalence (↔). None of these are available in TRALE. Even a brief investigation
of the problem will suffice to convince the reader that an adequate encoding of the speci-
fied percolation mechanism with definite clauses must approach the problem from a very
different angle. The entire mechanism must be restated positively and without explicit
quantification, and the new formulation should even avoid substitutes for negation, such as
negation by failure, in order to achieve a logically clean and computationally well-behaved
encoding. The one advantage which we gain over an informal characterization of the prob-
lem from the exact HPSG rendering of the principle is a precisely specified target which
we could ultimately use for a formal proof of the logical equivalence of the recoding.

The solution to the given recoding problem may be found by considering the case
distinctions made by the Nonlocal Feature Principle for the intended feature value
percolation. There are in fact only two cases: Either every element of the inherited values
of the daughters ascends to the mother node, in which case the to bind list is empty (1),
or the to bind list contains exactly one element. In this case, this element must appear on
the inherited list of one of the daughters. Every element on the daughters’ inherited
lists will be percolated upwards, with the exception of the single element which we have
found on the to bind list (2).

It is precisely this binary (and positively expressed) case distinction which is encoded in
the new four place predicate nfp. In the first case, the inherited lists are concatenated in
an obvious way by the append predicate to yield the inherited value of the mother node.
In the second case, in which the single element of the to bind list is removed from the
combined inherited lists, we select the element of the to bind list from the concatenated
inherited lists and pass the result upwards to the mother node.

3.2. GRAMMAR DEVELOPMENT 227

% The Nonlocal Feature Principle

phrase *>

(synsem:nonloc:inherited:Result,

daughters:(hdtr:synsem:nonloc:(inherited:List1,

to_bind:Subtrac),

ndtr:synsem:nonloc:inherited:List2))

goal

nfp(List1,List2,Subtrac,Result).

nfp(List1,List2,[],Result) if append(List1,List2,Result). % (1)

nfp(L1,L2,([Ele]),Result) if (append(L1,L2,L3),select(Ele,L3,Result)). % (2)

% definition of select/3

select(Ele,L1,L2) if

when((L1=(e_list;ne_list)

),

und_select(Ele,L1,L2)).

und_select(Ele,[Ele|Tl],Tl) if true.

und_select(Ele,[Hd|Tl1],[Hd|Tl2]) if select(Ele,Tl1,Tl2).

The predicate select/3 is defined with the usual precautions which ensure that at
runtime enough is known about the crucial list argument to guarantee termination. Note
that in the present context we could in principle omit the delay, because a delayed append

goal must be performed prior to evaluating select. If this were the only instance of using
select/3 in a grammar, efficiency considerations might lead one to simplify the predicate
and eliminate the delay mechanism.

For the sake of completeness we also quote the definition of append/3 on which the
Nonlocal Feature Principle is based:

append(X,Y,Z) if

when((X=(e_list;ne_list)

; Y=e_list

; Z=(e_list;ne_list)

),

undelayed_append(X,Y,Z)).

undelayed_append(L,[],L) if true.

undelayed_append([],(L,ne_list),L) if true.

undelayed_append([H|T1],(L,ne_list),[H|T2]) if

append(T1,L,T2).

228 CHAPTER 3. GRAMMAR IMPLEMENTATION

The Phrasal to-bind Principle is much easier to capture in TRALE than the
Nonlocal Feature Principle. Since the HPSG specification takes the syntactic shape
of an equivalence, the principle needs to be split into two implications in TRALE. This is
of course a simple logical exercise:

% Phrasal to-bind Principle

(phrase,

daughters:hdtr:(phrase,

synsem:nonloc:to_bind:ne_list))

*> (daughters:hf_struc).

(phrase,

daughters:(hs_struc;hc_struc;sai_struc;ha_struc))

*> daughters:hdtr:synsem:nonloc:to_bind:e_list.

Constraints on Extraction and Lexical Entries The constraints on extraction, which
comprise the lexical entries for traces, complete the TRALE translation of our theory of
topicalization. In the HPSG specification of the grammar the simple theory of extraction
consists of two principles, a structural Trace Principle and the Subject Condition.

The Trace Principle restricts the distribution of empty categories in syntactic struc-
tures. From a practical computational point of view, this is important for excluding the
licensing of empty elements in syntactic structures in such a way that the grammar would
admit any phonological string with an infinite number of syntactic structures.

The Subject Condition is a typical principle concerning the contextual conditions
under which a certain type of grammatical function allows extraction. It determines in
which contexts extractions of subjects or extraction out of subjects is grammatical.

The Trace Principle is the more difficult one of the two. Whereas the Subject
Condition can be kept almost as it stands, a computationally satisfactory formulation
of Clauses (2) and (3) of the Trace Principle requires some thought about the overall
structure of Fragment III. Before we deal with them, let us first think about Clause (1):

% Structural Trace Principle

% Clause (1)

(daughters:ndtr:phon:e_list) *>

(synsem:(nonloc:to_bind:e_list, % no vacuous movement

loc:cat:head:(verb;noun;prep;adv)), % not functional

daughters: (hs_struc;hc_struc;sai_struc)). % follows already independently

% from the implementation

As the reader may easily verify, this is identical to the original formulation. We note
in passing that the last line of the principle is logically redundant in the present grammar.

3.2. GRAMMAR DEVELOPMENT 229

Omitting it would not change the collection of sentences which are licensed by the grammar.
Fillers cannot be traces due to the Head Filler Rule. Adjuncts cannot be traces because
prepositional constituents headed by a lexical preposition cannot be traces; neither can
adverbial constituents. And these two types of constituent exhaust the possibilities of
adverbials in our grammar. The reason why they cannot be traces will become clear when
we investigate Clauses (2) and (3) of the Trace Principle in TRALE.

The effect of Clauses (2) and (3) follows logically from the descriptively very specific
lexical entries for traces in the TRALE grammar. The implemented grammar only contains
nominal and prepositional traces. A general lexical entry for traces of the kind which occurs
in the HPSG specification of Fragment III, and is usually also found in textbooks, does
not belong in our TRALE grammar:

% empty noun

empty word,

phon:e_list,

synsem:(loc:(Local,

cat:head:(noun,

pred:minus)),

nonloc:(inherited:[Local],

to_bind:e_list)),

arg_st:e_list. % the specification arg_st:e_list excludes

% heads in nominal phrases from being

% extracted because it entails that the

% extracted element is fully saturated

% empty preposition

empty word,

phon:e_list,

synsem:(loc:(Local,

cat:head:(prep,

mod:none,

pred:minus,

pform:(to;by))),% restricted to the 2 functional

nonloc:(inherited:[Local], % prepositions in the fragment

to_bind:e_list)),

arg_st:e_list. % the specification arg_st:e_list excludes

% heads in prepositional phrases from being

% extracted because it entails that the

% extracted element is fully saturated

The description of the nominal and the prepositional traces is very specific and fine-
tuned to the lexical elements which are actually in the grammar. A consequence of this is

230 CHAPTER 3. GRAMMAR IMPLEMENTATION

that the shape of the traces needs to be reconsidered whenever the lexicon of the grammar
or its inventory of structures is extended. The traces are syntactically saturated words.
This is equivalent to restricting a more general entry of a trace by a principle and to
forbidding the extraction of head daughters. Let us be a little more precise about this:

Clause (3) of the Trace Principle follows from our lexical entries, since we only have
entries for a nominal and a prepositional trace. However, the lexical entries describe more
than the syntactic category of the constituents: The nominal trace also contains additional
information which is common to all nouns in the grammar. The prepositional trace contains
information which is shared by all functional prepositions. It is not compatible with the
lexical preposition in the grammar. The lexical preposition does not need to be covered,
since its maximal syntactic projection can only function as an adjunct. Adjuncts, however,
do not belong to our analysis of topicalization.

Clause (2) of the Trace Principle follows from the fact that the lexical entries
of the traces require the phonologically empty elements to have an empty arg st list.
From the Argument Realization Principle it follows that the traces are syntactically
saturated: They have empty valence lists. In our grammar, however, the head daughter of
a prepositional and of a nominal projection are never saturated. Therefore head daughters
of these categories cannot be extracted.

Note that we could, of course, redundantly state Clauses (2) and (3) of the Trace
Principle, as we have just stated the redundant parts of Clause (1). As long as we clearly
document the relationship between the specification and the implemented grammar, this
is not necessary.

The Subject Condition does not require major reformulations. It suffices to move
the originally universally quantified variables from the antecedent to the consequent, where
they are implicitly existentially bound in TRALE. In the same spirit the descriptions in
the consequent need to be reformulated as descriptions of words. The equivalence of the
two formulations of the Subject Condition should be transparent.

% Subject Condition

(word,

synsem:loc:cat:head:pred:plus,

arg_st:hd:nonloc:inherited:ne_list) *>

((arg_st:[(loc:Loc,

nonloc:inherited:[Loc])|_]);

(arg_st:[_|our_member((nonloc:inherited:ne_list))])).

Discussion With the Subject Condition we have completed the implementation of
Fragment III, which comprises a fairly sophisticated analysis of topicalization as an in-
stance of an unbounded dependency construction. Due to the complexity of its analysis,
Fragment III gave us an opportunity to investigate a few examples of how complex HPSG
specifications have to be reformulated in a computational environment. The Nonlocal

3.2. GRAMMAR DEVELOPMENT 231

Feature Principle in particular is a very good illustration of how to approach a princi-
ple which originally makes heavy use of those parts of HPSG’s description language which
are not included in TRALE’s description language. The crucial skill which a computational
linguist working in this field has to acquire is the ability to apply a solid understanding
of the formal foundations of HPSG to a translation process from one formal language to
another. The chances of success in this translation process derive from the close relation-
ship between HPSG’s description language and the computational tools of TRALE. These
tools allow the user to capture even those aspects of HPSG principles which go beyond
the description language of TRALE. TRALE’s phrase structure rules and the layer of
definite clause attachments to TRALE descriptions are two of the most important addi-
tional components of the TRALE system in this respect. The ability of the linguist to
understand the meaning of an HPSG grammar and to recreate that grammar through the
use of programming skills in Prolog determines the success of grammar implementations.

The implemented grammar gives us an opportunity to check the predictions of our
theory of topicalization in English. With a little creativity in inventing queries to the
system it is not very hard to detect interesting properties of Fragment III.

Following common practice and received wisdom of HPSG theories regarding unbounded
dependency constructions, the theory of topicalization admits the extraction of subjects
(under certain conditions) and the simultaneous extraction of several constituents. In the
linguistic literature on unbounded dependencies, both kinds of constructions are attested
by examples. Trying out these predictions of our grammar with the given lexicon leads to
very remarkable sentences. Here are a few examples of sentences which are predicted by
Fragment III:

(105) a. It she says that to Peter Mary gave.

b. To Peter she says that it Mary gave.

c. To Peter it she is giving.

d. It to Peter she is giving.

e. Peter Mary says that is walking.

f. Peter it to her Mary says that gives.

g. It she is giving to Peter.

On first sight it might be hard to understand the supposed meaning or to find the
predicted syntactic structure of some of these sentences.42 It is easy to verify that TRALE’s
behavior in response to these queries is indeed consistent with the predictions of our HPSG

42The reader is very much encouraged to parse these sentences in TRALE. Another interesting task
might be to understand the reason for each particular number of answers to the parse queries with the
given sentences. Hint: Disjunctively formulated principles might multiply identical solutions by duplicating
denotationally identical solutions.

232 CHAPTER 3. GRAMMAR IMPLEMENTATION

specification of Fragment III. It is equally obvious that we might not like to use a grammar
such as this one for the purposes of language generation in a practical system, as long as it is
liable to produce the sentences above. On the other hand, excluding some of these sentences
in a general way might also exclude those sentences in the literature which motivated a
formulation of a theory of topicalization which predicts these sentences.

The problem is that there are many important factors which determine the grammati-
cality of a particular sentence. Many of these factors we have not considered at all in our
grammar. For example, the information structure of a sentence might be crucial for its
grammaticality. Different kinds of nominal phrases can be extracted with different degrees
of success. It is certainly necessary to distinguish pronouns from proper names, and to
distinguish both of these from complex nominal phrases. It makes a difference in which
context a sentence occurs. Semantic factors have to be considered. It is obvious that this
list can be continued.

In a practical system one might not want to integrate all of these intricate grammati-
cality factors. It might not be necessary, or it might even be counterproductive to building
the system in such a way that it can satisfactorily perform the intended tasks. At some
point the purpose of the system must be considered, providing the crucial criteria for de-
ciding whether or not a theoretical component of the grammar of natural languages should
be included. On the basis of these decisions one might then have to introduce additional
mechanisms, either to the grammar or to the overall system to which the grammar be-
longs. The task of these mechanisms will be to reduce the output of the system to what
is adequate in the envisaged user environment. It should be clear, however, that software
design decisions of this sort do not render the underlying linguistic theory invalid. Quite
on the contrary, instead of being a burden to software design, a linguistically well-designed
underlying grammar might be much easier to maintain and to extend in the long run.
Sound theories should eventually also lead to better products.

GLOSSARY

http://milca.sfs.uni-tuebingen.de/A4/Course/PDF/glossary/glossar.html?lexical_entries¶metric_sorts&principles&signature&unbounded_dependency_constructions

Chapter 4

The Appendix of Pollard and Sag
(1994)

Abstract

The appendix of [Pollard and Sag, 1994] contains an informal but quite precise
specification of the grammar of English which they develop and discuss in their
book. It is a concrete example of the signature and the set of principles which
constitute their grammar of English. As such it became the most important
point of reference in the literature of what constitutes an HPSG grammar.

Due to its importance, we will reiterate the specification of Pollard and Sag’s grammar in
this chapter. In the first section we will revise what Pollard and Sag call the Partitions
and Feature Declarations. What they call the Partitions is in fact a notation for stating
the set of sorts and the partial order on sorts of the signature of an HPSG grammar. The
Feature Declarations specify the set of attributes and the appropriateness conditions of
HPSG signatures. In the following sections, we will revise the principles of Pollard and
Sag. Whereas Pollard and Sag only state them in natural language in their book, we use
the AVM-variant of the syntax of RSRL to render their statements in a formal language.
This gives us a clearer picture of what kind of formal constructs are involved in making
these principles of grammar totally explicit. They can then serve as examples even before
the reader has studied those parts of the textbook which define the syntax of their formal
language and its semantics.

4.1 The Sort Hierarchy

Abstract

The Section The Sort Hierarchy in Pollard and Sag’s appendix contains the
signature of their grammar, without the specification of the relation symbols
and the arity of the relations.

233

234 CHAPTER 4. THE APPENDIX OF POLLARD AND SAG (1994)

We will revise the Partitions and Feature Declarations of Pollard and Sag with only a few
minor modifications. The modifications serve to fix shortcomings of the original grammar,
or are intended to make their grammar fully compatible with our presentation of the
formalism in this textbook.

Partitions contains the specification of the set of sorts, the set of species, and the sort
hierarchy of the grammar. The list and set specification of the present version of these
is non-parametric. In other words, we make the assumption that there are no parametric
sorts in the grammar. Instead the effect of parametric sorts is achieved by principles
which guarantee that the relevant lists and sets in the grammar only contain objects of the
intended sorts. How this works is explained at length in Section 2.5.2.

Partitions

Partitions of object: boolean (bool), case, category (cat), constituent-structure (con-
struc), content (cont), context (conx), contextual-indices (c-inds), gender (gend), head,
index (ind), list, local (loc), marking, mod-synsem, nonlocal (nonloc), nonlocal1 (nonloc1),
number (num), person (per), phoneme-string (phonstring), preposition-form (pform), quan-
tifier-free-parametrized-state-of-affairs (qfpsoa), semantic-determiner (semdet), set, sign,
verbform (vform)

Partitions of bool: plus (+), minus (-)

Partitions of case: nominative (nom), accusative (acc)

Partitions of con-struc: coordinate-structure (coord-struc), headed-structure (head-struc)

Partitions of head-struc: head-adjunct-structure (head-adj-struc), head-complement-
structure (head-comp-struc), head-filler-structure (head-filler-struc), head-marker-structure
(head-mark-struc)

Partitions of cont: nominal-object (nom-obj), parametrized-state-of-affairs (psoa), quan-
tifier (quant)

Partitions of nom-obj: nonpronoun (npro), pronoun (pron)

Partitions of pron: personal-pronoun (ppro), anaphor (ana)

Partitions of ana: refl, recp

Partitions of gend: feminine (fem), masculine (masc), neuter (neut)

Partitions of head: functional (func), substantive (subst)

Partitions of func: determiner (det), marker (mark)

Partitions of subst: adjective (adj), noun, preposition (prep), relativizer (reltvzr), verb

Partitions of ind: referential (ref), there, it

Partitions of list: empty-list (elist / 〈〉), nonempty-list (nelist)

Partitions of marking: marked, unmarked

4.1. THE SORT HIERARCHY 235

Partitions of marked: complementizer (comp), conjunction (conj), . . .

Partitions of comp: that, for

Partitions of mod-synsem: none, syntax-semantics (synsem)

Partitions of num: singular (sing), plural (plur)

Partitions of per: 1st, 2nd, 3rd

Partitions of phonstring: Mary, who, gives, bagels, . . .

Partitions of pform: to, of, . . .

Partitions of qfpsoa: control-qfpsoa, . . .

Partitions of control-qfpsoa: influence, commitment, orientation

Partitions of influence: persuade, appeal, cause, . . .

Partitions of commitment: promise, intend, try, . . .

Partitions of orientation: want, hate, expect, . . .

Partitions of semdet: forall, exists, the, . . .

Partitions of set: empty-set (eset / {}), nonempty-set

Partitions of sign: word, phrase

Partitions of vform: base (bse), finite (fin), gerund (ger), infinitive (inf), passive-
participle (pas), past-participle (psp), present-participle (prp)

Feature Declarations

The Feature Declarations are the specification of the appropriateness function in the sig-
nature of the grammar. Since we do not have parametric sorts, the parametric lists and
parametric sets become plain lists and sets. Another modification concerns the value of
the appropriateness function for adjunct-dtr at head-adjunct-struc and filler-dtr at
head-filler-struc. In both cases, we choose sign instead of phrase, because we want to li-
cense words in addition to phrases as adjunct daughters and as filler daughters in syntactic
structures. Pollard and Sag’s grammar erroneously excludes these, since the authors seem
to presuppose that relevant words such as proper names can project to phrases before they
occur in the position of a filler daughter. However, given their ID Schemata, this is not
possible. The easiest way to fix the mistake is to allow words in these syntactic positions.

category head head
subcat list
marking marking

c-inds speaker ref
addressee ref
utterance-location ref
. . .

236 CHAPTER 4. THE APPENDIX OF POLLARD AND SAG (1994)

commitment committor ref

context background set
contextual-indices c-inds

control-qfpsoa soa-arg psoa

coord-struc conj-dtrs set
conjunction-dtr word

functional spec synsem

head-adjunct-struc head-dtr phrase
adjunct-dtr sign
comp-dtrs elist

head-filler-struc head-dtr phrase
filler-dtr sign
comp-dtrs elist

head-mark-struc head-dtr phrase
marker-dtr word
comp-dtrs elist

head-struc head-dtr sign
comp-dtrs list

index person person
number number
gender gender

influence influence ref
influenced ref

local category category
content content
context context

nelist first object
rest list

neset first object
rest set

nom-obj index index
restr set

nonlocal to-bind nonlocal1
inherited nonlocal1

4.2. THE PRINCIPLES 237

nonlocal1 slash set
rel set
que set

noun case case

orientation experiencer ref

phrase daughters con-struc

preposition pform pform

psoa quants list
nucleus qfpsoa

quantifier det semdet
restind npro

sign phonology list
synsem synsem
qstore set
retrieved set

substantive prd boolean
mod mod-synsem

synsem local local
nonlocal nonlocal

verb vform vform
aux boolean
inv boolean

4.2 The Principles

Abstract

This section contains the grammatical principles of Pollard and Sag’s grammar
of English. They are listed in exactly the same order in which they occur in the
appendix of their book. However, we append the necessary relation principles to
their list of principles, which they omit in the book. The relation principles are
important, since they determine the meaning of a significant number of relation
symbols which are needed in a precise formulation of most of Pollard and Sag’s
principles.

238 CHAPTER 4. THE APPENDIX OF POLLARD AND SAG (1994)

In addition to repeating the principles as they are stated informally in Pollard and Sag’s
book, we present their formalization in a syntax of AVM matrices.

A number of principles which are necessary in a complete formulation of the intended
grammar are missing from this list. There is no Word Principle, since there is none in
the book. For the grammar to license reasonable sentence structures, a lexicon needs to be
inferred from the discussion in Pollard and Sag’s text. On this basis an adequate Word
Principle for their grammar could be formulated.

Since we do not use parametric sorts, it is also necessary to add principles which restrict
the elements of various kinds of lists and sets in the way in which Pollard and Sag intend
to restrict them with parametric sorts. It is obvious that this is a very simple exercise. We
have omitted these principles here.

Pollard and Sag’s grammar also uses sets as values of certain attributes such as slash
and que. Sets are specified using a part of the sort hierarchy and appropriateness condi-
tions which look just like lists. For the relevant structures to behave like sets, we would
really need to formulate and add a small number of ‘set principles’ to the grammar. How
this can be done is explained in [Richter, 2004, Chapter 4.4]. These additional principles
are omitted here as well. Note that many relations on sets are written in a functional infix
notation for better readability. This is just a notational variant of no formal significance
and comparable to the functional notation of relations in TRALE.

Finally, the reader will notice an occasional notation using double brackets, ≪ and
≫, in places where the reader might have expected (descriptions of) lists. This curious
notation occurs in the description of arguments of relations. These are descriptions which
denote lists as well as chains of entities. Chains are an additional construct of the complete
RSRL formalism for HPSG grammars, which we have not discussed in our course. Chains
are abstract objects very similar to lists, but they are not lists in the structures described
by the grammar: They are abstract entities which look like lists. The elements on these
quasi-lists, however, are entities which do occur in the structures described (such as synsem
entities or local entities). Readers who are interested might want to read up on this topic in
[Richter, 2004], which includes a discussion of the function of chains in HPSG grammars,
and why they are necessary. In a more superficial reading of the principles, which is
sufficient for understanding the intended meaning of these descriptions, chains can be
taken for lists.

The Head Feature Principle

In a headed phrase, the values of synsem | local | category | head and
daughters | head-daughter | synsem | local | category | head are
token-identical.

Formalization:
[
phrase
dtrs headed-struc

]

→
[
synsem loc cat head 1

dtrs head-dtr synsem loc cat head 1

]

4.2. THE PRINCIPLES 239

The Subcategorization Principle

In a headed phrase, the values of daughter | head-daughter | synsem |
local | category | subcat is the concatenation of the list value of synsem
| local | category | subcat with the list consisting of the synsem values
(in order) of the elements of the list value of daughter | complement-
daughters.

Formalization:
[
phrase
dtrs headed-struc

]

→

phrase
ss loc cat subcat 1

dtrs

headed-struc

head-dtr

[
sign

ss loc cat subcat 3

]

comp-dtrs 2

∧ sign-ss-append(1 , 2 , 3)

The ID Principle

Every headed phrase must satisfy exactly one of the ID schemata.

Formalization:

[
dtrs headed-struc

]
→

(Schema1 ∨ Schema2 ∨ Schema3 ∨ Schema4 ∨ Schema5 ∨ Schema6)

The Marking Principle

In a headed phrase, the marking value is token-identical with that of the
marker-daughter if any, and with that of the head-daughter otherwise.

Formalization:

[
dtrs headed-struc

]
→

[
ss loc cat marking 1

dtrs marker-dtr ss loc cat marking 1

]

∨
([

ss loc cat marking 1

dtrs head-dtr ss loc cat marking 1

]

∧ ¬
[
dtrs head-mark-struc

]
)

240 CHAPTER 4. THE APPENDIX OF POLLARD AND SAG (1994)

The Spec Principle

In a headed phrase whose nonhead daughter (either the marker-daughter
or complement-daughters | first) has a synsem | local | category
| head value of sort functional, the spec value of that value must be token-
identical with the phrase’s daughters | head-daughter | synsem value.

Formalization:

∀ 1 ∀ 2

[

dtrs
[[
marker-dtr 1

]
∨
[
comp-dtrs 〈 1 | list〉

]]]

∧ 1

[

ss loc cat head

[
functional
spec 2

]]

→

[
dtrs head-dtr ss 2

]

The Nonlocal Feature Principle

In a headed phrase, for each nonlocal feature f = slash, que or rel, the value
of synsem | nonlocal| inherited | f is the set difference of the union of the
values on all the daughters, and the value of synsem | nonlocal | to-bind
| f on the head-daughter.

Formalization:

[
dtrs headed-struc

]
→

ss nonloc inherited

slash 5 \ 1

que 6 \ 2

rel 7 \ 3

dtrs 4

head-dtr ss nonloc to-bind

slash 1

que 2

rel 3

∧ collect-dependencies(4 , 5 , 6 , 7)

The Trace Principle

The synsem value of any trace must be a (noninitial) member of the subcat
list of a substantive word.

4.2. THE PRINCIPLES 241

Formalization:

∀x ∀ 2

∃ 1

phon nelist

ss

loc cat

[
head vform finite

subcat 〈〉

]

nonloc inherited

que {}
rel {}
slash {}

∧

x

sign
phon 〈〉

ss 2

loc 1

nonloc

inherited

que {}
rel {}

slash
{

1
}

to-bind

que {}
rel {}
slash {}

→

∃y ∃ 3

y

word

ss loc cat

[
head substantive
subcat 〈object| 3 〉

]

∧ member(2 , 3)

The Subject Condition

If the initial element of the subcat value of a word is slashed, then so is some
other element of that list.

Formalization:

∀ 1

[
word

ss loc cat subcat
〈[

nonloc inherited slash neset
]∣
∣ 1
〉

]

→

∃x member
(
x[
nonloc inherited slash neset

]
, 1

)

The Weak Coordination Principle

In a coordinate structure, the category and nonlocal values of each con-
junct daughter are subsumed by those of the mother.

We omit Pollard and Sag’s Weak Coordination Principle from the list of formal-
ized principles. As the authors themselves note on page 203, the Weak Coordination
Principle makes assumptions about the formalism that are incompatible with the as-
sumptions in the rest of the book. The differences are so significant that it is impossible

242 CHAPTER 4. THE APPENDIX OF POLLARD AND SAG (1994)

to state this principle in the same formal framework: In the HPSG formalism of this book,
there cannot be any non-trivial subsumption relation between the node labels of feature
structures, because they are all maximally specific.

The Singleton Rel Constraint

For any sign, the synsem | nonlocal | inherited | rel value is a set of
cardinality at most one.

Formalization:

[
sign

]
→

[

ss nonloc inherited rel
[

{} ∨
{
object

}]]

The Relative Uniqueness Principle

For any phrase, a member of the set value of synsem | nonlocal | inherited
| rel may belong to the value of that same path on at most one daughter.

Formalization:

∀ 1 ∀ 3

∃ 2

phrase
ss nonloc inherited rel 2

dtrs 3 headed-struc

∧ member(1 , 2)

→

∃ 4

(

all-dtrs-rels(3 , 4)
∧ at-most-once(1 , 4)

)

The Clausal Rel Prohibition

For any synsem object, if the local | category | head value is verb and the
local | category | subcat value is 〈〉, then the nonlocal | inherited |
rel value must be {}.

Formalization:
[

loc cat

[
head verb

subcat 〈〉

]]

→

[
nonloc inherited rel {}

]

4.2. THE PRINCIPLES 243

The Binding Theory

Principle A. A locally o-commanded anaphor must be locally
o-bound.

Principle B. A personal pronoun must be locally o-free.
Principle C. A nonpronoun must be o-free.

Formalization:

Principle A:

∀x
(

∃y loc-o-command
(

y, x[
loc cont ana

]
)

→ ∃z loc-o-bind(z, x)
)

Principle B:

∀x
(
x[
loc cont ppro

]
→ ¬∃y loc-o-bind(y, x)

)

Principle C:

∀x
(
x[
loc cont npro

]
→ ¬∃y o-bind(y, x)

)

The Control Theory

If the soa-arg value of a control-qfpsoa is token-identical with the content
value of a local entity whose category | subcat value is a list of length
one, then the member of that list is (1) reflexive, and (2) coindexed with the
influenced (respectively, committor, experiencer) value of the control-
qfpsoa if the latter is of sort influence (respectively, commitment, orientation).

Formalization:

∀ 1 ∀ 2 ∀ 3

∃ 4

 1

[
influence
soa-arg 4

]

∧ 2

local

cat subcat 〈 3 〉
cont 4

→

∃ 5

(

3

[

loc cont

[
reflexive

index 5

]]

∧ 1
[
influenced 5

]

)

∧

∀ 1 ∀ 2 ∀ 3

∃ 4

 1

[
commitment
soa-arg 4

]

∧ 2

local
cat subcat 〈 3 〉
cont 4

→

∃ 5

(

3

[

loc cont

[
reflexive
index 5

]]

∧ 1
[
committor 5

]

)

∧

∀ 1 ∀ 2 ∀ 3

∃ 4

 1

[
orientation

soa-arg 4

]

∧ 2

local
cat subcat 〈 3 〉
cont 4

→

∃ 5

(

3

[

loc cont

[
reflexive
index 5

]]

∧ 1
[
experiencer 5

]

)

244 CHAPTER 4. THE APPENDIX OF POLLARD AND SAG (1994)

The Semantics Principle

Semantics Principle, clause (a):
In a headed phrase, the retrieved value is a list whose set of elements is
disjoint from the qstore value set, and the union of those two sets is the
union of the qstore values of the daughters.

Semantics Principle, clause (b):
If the semantic head’s synsem | local | content value is of sort psoa, then
the synsem | local | content | nucleus value is token-identical with that
of the semantic head, and the synsem | local | content | quants value
is the concatenation of the retrieved value and the semantic head’s synsem
| local | content | quants value; otherwise the retrieved value is the
empty list, and the synsem | local | content value is token-identical with
that of the semantic head.

Formalization:

Clause (a):
[
dtrs headed-struc

]
→

dtrs 1

qstore 2

retrieved 3

∧ 3
s
= 4

∧ collect-dtrs-qstores(1 , 5 [4 ⊎ 2])

4.2. THE PRINCIPLES 245

Clause (b):

[
phrase
ss loc cont psoa

]

→

∀ 1

[

dtrs

[[
head-adj-struc
adjunct-dtr 1

]

∨
[

¬
[
head-adj-struc

]
∧
[
head-dtr 1

]]
]]

→

∃ 2 ∃ 3 ∃ 4 ∃ 5

ss loc cont

[
quants 2

nucleus 3

]

retrieved 4

∧ 1

[

ss loc cont

[
quants 5

nucleus 3

]]

∧ append(4 , 5 , 2)

∧

[
phrase
ss loc cont ¬psoa

]

→

∀ 1

[

dtrs

[[
head-adj-struc
adjunct-dtr 1

]

∨
[

¬
[
head-adj-struc

]
∧
[
head-dtr 1

]]
]]

→

∃ 2
([

ss loc cont 2

retrieved 〈〉

]

∧ 1
[
ss loc cont 2

]
)

The Quantifier Binding Condition

Let x be a quantifier, with restindex | index value y, on the quants list
of a psoa z, and p a path in z whose value is y. Let the address of x in z be
quants | q | first. Then p must have a prefix of one of the following three
forms:

(1) quants | q | first | restindex | restriction;

(2) quants | q | rest; or

(3) nucleus.

Formalization:

psoa →

¬∃ 1 ∃ 2 ∃ 3 ∃ 4

[
quants 4

]

∧ to-the-right
(

3
[
restind index 1

]
, 2 , 4

)

∧ index-of-a-quantifier(1 , 2)

246 CHAPTER 4. THE APPENDIX OF POLLARD AND SAG (1994)

The Principle of Contextual Consistency

The context | background value of a given phrase is the union of the
context | background values of the daughters.

Formalization:

[
phrase

]
→

[
ss loc context background 1

dtrs 2

]

∧ collect-dtrs-backgrounds(2 , 1)

Relation Principles

all-dtrs-rels/2

The relation all-dtrs-rels relates all entities x in the denotation of headed-
struc to a list or chain y of the inherited rel values of their daughters.

All Dtrs Rels Principle

∀x∀y

all-dtrs-rels(x, y) ↔

∃ 1 ∃ 2 ∃ 3

x

head-comp-struc
head-dtr ss nonloc inherited rel 1

comp-dtrs 2

∧ enumerate-rels(2 , 3) ∧ y ≪ 1 | 3 ≫

∨

∃ 1 ∃ 2

x

head-adj-struc
head-dtr ss nonloc inherited rel 1

adjunct-dtr ss nonloc inherited rel 2

∧ y ≪ 1 , 2 ≫

∨

∃ 1 ∃ 2

x

head-filler-struc
head-dtr ss nonloc inherited rel 1

filler-dtr ss nonloc inherited rel 2

∧ y ≪ 1 , 2 ≫

∨

∃ 1 ∃ 2

x

head-mark-struc
head-dtr ss nonloc inherited rel 1

marker-dtr ss nonloc inherited rel 2

∧ y ≪ 1 , 2 ≫

4.2. THE PRINCIPLES 247

append/3

append/3 is a relation between three lists, where the list in the third argument
is obtained by concatenating the list in the second argument to the list in the
first argument.

Append Principle

∀x∀y∀z

(

append(x, y, z) ↔

(

(x 〈〉 ∧ y = z ∧ y[list])
∨ ∃ 1 ∃ 2 ∃ 3 (x 〈 1 | 2 〉 ∧ z 〈 1 | 3 〉 ∧ append(2 , y, 3))

))

at-most-once/2

In the relation at-most-once with arguments x and y, x occurs at most once
in the sets (or lists or chains) that are members of y.

At Most Once Principle

∀x ∀y

at-most-once(x, y) ↔

y ≪≫ ∨
∃a ∃z (y ≪a| z≫ ∧ ¬member(x, a) ∧ at-most-once(x, z)) ∨
∃a ∃z (y ≪a| z≫ ∧ member(x, a) ∧ successive-not-member(x, z))

collect-dependencies/4

The relation collect-dependencies relates a headed-struc entity, v, to the set
unions of the inherited slash values (x), the inherited que values (y), and
the inherited rel values (z) of its syntactic daughters.

248 CHAPTER 4. THE APPENDIX OF POLLARD AND SAG (1994)

Collect Dependencies Principle

∀v ∀x ∀y ∀z

collect-dependencies(v, x, y, z) ↔

∃ 1 ∃ 2 ∃ 3 ∃ 4 ∃ 5 ∃ 6 ∃ 7 ∃c1 ∃c2 ∃c3

v

head-comp-struc

head-dtr ss nonloc inherited

slash 1

que 2

rel 3

comp-dtrs 4

∧ enumerate-slashes(4 , 5) ∧ x[
⋃

c1≪ 1 | 5 ≫]
∧ enumerate-ques(4 , 6) ∧ y[

⋃
c2≪ 2 | 6 ≫]

∧ enumerate-rels(4 , 7) ∧ z[
⋃

c3≪ 3 | 7 ≫]

∨

∃ 1 ∃ 2 ∃ 3 ∃ 4 ∃ 5 ∃ 6

v

head-adj-struc

head-dtr ss nonloc inherited

slash 1

que 2

rel 3

adjunct-dtr ss nonloc inherited

slash 4

que 5

rel 6

∧ x[1 ∪ 4] ∧ y[2 ∪ 5] ∧ z[3 ∪ 6]

∨

∃ 1 ∃ 2 ∃ 3 ∃ 4 ∃ 5 ∃ 6

v

head-filler-struc

head-dtr ss nonloc inherited

slash 1

que 2

rel 3

filler-dtr ss nonloc inherited

slash 4

que 5

rel 6

∧ x[1 ∪ 4] ∧ y[2 ∪ 5] ∧ z[3 ∪ 6]

∨

∃ 1 ∃ 2 ∃ 3 ∃ 4 ∃ 5 ∃ 6

v

head-mark-struc

head-dtr ss nonloc inherited

slash 1

que 2

rel 3

marker-dtr ss nonloc inherited

slash 4

que 5

rel 6

∧ x[1 ∪ 4] ∧ y[2 ∪ 5] ∧ z[3 ∪ 6]

4.2. THE PRINCIPLES 249

collect-dtrs-backgrounds/2

The relation collect-dtrs-backgrounds contains tuples of objects in the de-
notation of headed-struc with the set union of all the background sets of their
daughters.

Collect Dtrs Backgrounds Principle

∀x ∀y

collect-dtrs-backgrounds(x, y) ↔

∃ 1 ∃ 2 ∃ 3

x

head-comp-struc
head-dtr ss loc context background 1

comp-dtrs 2

∧ enumerate-backgrounds(2 , 3) ∧ y[
⋃

z≪ 1 | 3 ≫]

∨

∃ 1 ∃ 2

x

head-filler-struc
head-dtr ss loc context background 1

filler-dtr ss loc context background 2

∧ y[1 ∪ 2]

 ∨

∃ 1 ∃ 2

x

head-mark-struc
head-dtr ss loc context background 1

marker-dtr ss loc context background 2

∧ y[1 ∪ 2]

 ∨

∃ 1 ∃ 2

x

head-adj-struc

head-dtr ss loc context background 1

adjunct-dtr ss loc context background 2

∧ y[1 ∪ 2]

collect-dtrs-qstores/2

The relation collect-dtrs-qstores relates entities in the denotation of the
sort headed-struc to a set that is the union of the qstore values of its daughters.

250 CHAPTER 4. THE APPENDIX OF POLLARD AND SAG (1994)

Collect Dtrs Qstores Principle

∀x ∀y

collect-dtrs-qstores(x, y) ↔

∃ 1 ∃ 2 ∃ 3 ∃c

x

head-comp-struc
head-dtr qstore 1

comp-dtrs 2

∧ enumerate-qstores(2 , 3) ∧ y[
⋃

c≪ 1 | 3 ≫]

∨

∃ 1 ∃ 2

x

head-adj-struc
head-dtr qstore 1

adjunct-dtr qstore 2

∧ y[1 ∪ 2]

∨

∃ 1 ∃ 2

x

head-filler-struc
head-dtr qstore 1

filler-dtr qstore 2

∧ y[1 ∪ 2]

∨

∃ 1 ∃ 2

x

head-mark-struc
head-dtr qstore 1

marker-dtr qstore 2

∧ y[1 ∪ 2]

enumerate-backgrounds/2

For a list of signs in its first argument, x, enumerate-backgrounds contains
a list or a chain of the background values of the signs on x in its second
argument, y.

Enumerate Backgrounds Principle

∀x ∀y

enumerate-backgrounds(x, y) ↔

(x 〈〉 ∧ y ≪≫) ∨

∃ 1 ∃ 2 ∃ 3
(

x
〈
[
ss loc context background 1

]
∣
∣
∣ 2

〉

∧ y ≪ 1 | 3 ≫

∧ enumerate-backgrounds(2 , 3)

)

enumerate-qstores/2

The relation enumerate-qstores relates a list of signs to a list or chain of the
qstore values of these signs.

Enumerate Qstores Principle

∀x ∀y

enumerate-qstores(x, y) ↔

(

x 〈〉 ∧ y ≪≫
)

∨

∃ 1 ∃ 2 ∃ 3

(

x
〈
[
qstore 1

]
∣
∣
∣ 2

〉

∧ y ≪ 1 | 3 ≫

∧ enumerate-qstores(2 , 3)

)

4.2. THE PRINCIPLES 251

enumerate-ques/2

For a list of signs x in its first argument, enumerate-ques contains a list or a
chain of the que values of the signs on x in its second argument.

Enumerate Que Principle

∀x ∀y

enumerate-ques(x, y) ↔

(x 〈〉 ∧ y ≪≫) ∨

∃ 1 ∃ 2 ∃ 3
(

x
〈
[
ss nonloc inherited que 1

]
∣
∣
∣ 2

〉

∧ y ≪ 1 | 3 ≫

∧ enumerate-ques(2 , 3)

)

enumerate-rels/2

For a list of signs x in its first argument, enumerate-rels contains a list or a
chain of the rel values of the signs on x in its second argument.

Enumerate Rel Principle

∀x ∀y

enumerate-rels(x, y) ↔

(x 〈〉 ∧ y ≪≫) ∨

∃ 1 ∃ 2 ∃ 3
(

x
〈
[
ss nonloc inherited rel 1

]
∣
∣
∣ 2

〉

∧ y ≪ 1 | 3 ≫

∧ enumerate-rels(2 , 3)

)

enumerate-slashes/2

For a list of signs x in its first argument, enumerate-slashes contains a list or
a chain of the slash values of the signs on x in its second argument.

Enumerate Slash Principle

∀x ∀y

enumerate-slashes(x, y) ↔

(x 〈〉 ∧ y ≪≫) ∨

∃ 1 ∃ 2 ∃ 3
(

x
〈
[
ss nonloc inherited slash 1

]
∣
∣
∣ 2

〉

∧ y ≪ 1 | 3 ≫

∧ enumerate-slashes(2 , 3)

)

index-of-a-psoa/2

The relation index-of-a-psoa is the set of tuples which, for each psoa object
y, contains all pairs of y (in the second argument) and indices x (in the first
argument) which are components of y. These are the indices that can be reached
by some path starting from y.

252 CHAPTER 4. THE APPENDIX OF POLLARD AND SAG (1994)

The sets S and A, and the function F to which the description refers are the set
of sorts, the set of attributes, and the appropriateness function of the grammar
of Pollard and Sag. The description uses an abbreviatory meta-notation for the
(potentially very large) disjunction over appropriate descriptions of psoas with
nucleus values which have an index-valued attribute, and for the disjunction
over appropriate descriptions of psoas with nucleus values which have a psoa-
valued attribute in which we might find further indices.

Index Of A Psoa Principle

∀x ∀y

index-of-a-psoa(x, y) ↔

∃ 1 ∃ 2

y[
quants 1

]

∧ member(2 , 1)
∧ index-of-a-quantifier(x, 2)

 ∨

∨

y[

nucleus

[
σ

α x

]]
∣
∣
∣
∣
∣
∣

σ ∈
{

σ′ ∈ S
∣
∣
∣σ′ ⊑ qfpsoa

}

, and

α ∈
{

α′ ∈ A
∣
∣
∣F 〈σ, α′〉 ⊑ index

}

∨

∨

∃ 1

y[

nucleus

[
σ

α 1

]]

∧ index-of-a-psoa(x, 1)

∣
∣
∣
∣
∣
∣

σ ∈
{

σ′ ∈ S
∣
∣
∣σ′ ⊑ qfpsoa

}

, and

α ∈
{

α′ ∈ A
∣
∣
∣F 〈σ, α′〉 ⊑ psoa

}

index-of-a-quantifier/2

The relation index-of-a-quantifier is the set of tuples which, for each quan-
tifier object y, contains all pairs of y (in the second argument) and indices x
(in the first argument) which are components of y. This means that there is a
path that leads from y to x.

Index Of A Quantifier Principle

∀x ∀y

index-of-a-quantifier(x, y) ↔

y[
restind index x

]
∨

∃ 1 ∃ 2

y[
restind restr 1

]

∧ member(2 , 1)
∧ index-of-a-psoa(x, 2)

loc-o-bind/2

“One referential synsem object (locally) o-binds another provided it (locally)
o-commands and is coindexed with the other. A referential synsem object is
(locally) o-free provided it is not (locally) o-bound. Two synsem entities are
coindexed provided their local | content | index values are token-identical.”
[Pollard and Sag, 1994, p. 401]

4.2. THE PRINCIPLES 253

Local O Bind Principle

∀x ∀y

(

loc-o-bind(x, y) ↔

∃ 1 loc-o-command
(
x[
loc cont index 1

]
, y[

loc cont index 1
]
)

)

loc-o-command/2

A referential synsem object locally o-commands another synsem object provided
they have distinct local values and either (1) the second is more oblique than
the first, or (2) the second is a member of the subcat list of a synsem object
that is more oblique than the first.

Local O Command Principle

∀x ∀y

loc-o-command(x, y) ↔

∃ 1 ∃ 2 ∃ 3 ∃s

(x[

loc 1
[
cont index ref

]]

∧ y[
loc 2

]
∧ ¬ 1 = 2

)

∧

more-oblique(y, x) ∨
(

more-oblique

(s[
synsem
loc cat subcat 3

]

, x
)

∧ member(y, 3)
)

member/2

The member relation is a relation that holds between an entity and a list, a set,
or a chain, in case the entity is on the list, in the set, or on the chain. The
description below uses a notation with a double bar to describe chains.

Member Principle

∀x ∀y

member(x, y) ↔
(

y ‖x| chain‖ ∨ y 〈x| list〉 ∨
y[

set
first x

])

∨

∃z

(y ‖object| z‖ ∧ member(x, z)) ∨
(y 〈object| z〉 ∧ member(x, z)) ∨
(y[

set

rest z

]

∧ member(x, z)
)

more-oblique/2

“One synsem object is more oblique than another provided it appears to the
right of the other on the subcat list of some word.” [Pollard and Sag, 1994,
p. 401]

More Oblique Principle

∀x ∀y

more-oblique(x, y) ↔ ∃w ∃ 1

w[
word

ss loc cat subcat 1

]

∧ to-the-right(x, y, 1)

254 CHAPTER 4. THE APPENDIX OF POLLARD AND SAG (1994)

o-bind/2

“One referential synsem object (locally) o-binds another provided it (locally)
o-commands and is coindexed with the other. A referential synsem object is
(locally) o-free provided it is not (locally) o-bound. Two synsem entities are
coindexed provided their local | content | index values are token-identical.”
[Pollard and Sag, 1994, p. 401]

O Bind Principle

∀x ∀y
(

o-bind(x, y) ↔ ∃ 1 o-command
(
x[
loc cont index 1

]
, y[

loc cont index 1
]
))

o-command/2

A referential synsem object o-commands another synsem object provided they
have distinct local values and either (1) the second is more oblique than the
first, (2) the second is a member of the subcat list of a synsem object that is
o-commanded by the first, or (3) the second has the same local | category
| head value as a synsem object that is o-commanded by the first.

O Command Principle

∀x ∀y

o-command(x, y) ↔

∃ 1 ∃ 2 ∃ 3 ∃ 4 ∃s1∃s2

(x[

loc 1
[
cont index ref

]]

∧
y[

loc 2
[
cat head 4

]]

∧ ¬ 1 = 2

)

∧

more-oblique(y, x) ∨
(

o-command

(

x,
s1
[
synsem
loc cat subcat 3

])

∧ member(y, 3)
)

∨

o-command

(

x,
s2
[
synsem

loc
[
cat head 4

]

]
)

set-difference/3 (\)

The relation set-difference expresses the set difference of two sets. It is
usually written in infix notation. Its formalization refers to a relation set-

properties which spells out what it means for a configuration of entities in
the denotation of the grammar to have set properties. We do not define it in
this textbook. It is explained in [Richter, 2004, Chapter 4.4].

Set Difference Principle

∀x∀y∀z

set-difference(x, y, z) ↔

∀a (member(a, z) ↔ (member(a, x) ∧ ¬member(a, y))) ∧
set-properties(x[chain ∨ set]) ∧
set-properties(y[chain ∨ set]) ∧
set-properties(z[chain ∨ set])

4.2. THE PRINCIPLES 255

set-list-chain-member-equality/2 (
s
=)

This relation, notated in infix notation as
s
=, says that two entities which are

chains, lists or sets, have the same members.

Set List Chain Member Equality Principle

∀x∀y

set-list-chain-member-equality(x, y) ↔
(

∀a (member(a, x) ↔ member(a, y)) ∧
x[chain ∨ list ∨ set] ∧ y[chain ∨ list ∨ set]

)

set-union/3 (∪)

The relation set-union expresses the set union of two sets. It is usually written
in the usual infix notation. Its formalization refers to a relation set-properties

which spells out what it means for a configuration of entities in the denotation
of the grammar to have set properties. We do not define it in this textbook. It
is explained in [Richter, 2004, Chapter 4.4].

Set Union Principle

∀x∀y∀z

set-union(x, y, z) ↔

∀a (member(a, z) ↔ (member(a, x) ∨ member(a, y))) ∧
set-properties(x[chain ∨ set]) ∧
set-properties(y[chain ∨ set]) ∧
set-properties(z[chain ∨ set])

sign-ss-append/3

sign-ss-append is a relation between three entities in a structure such that
each triple for which the following is true is in it: The last argument, z, is
obtained by appending the synsem values of the list of signs in the second
argument, y, in the order of the occurrence of the signs on y to the list in the first
argument, x. Metaphorically, we could say that sign-ss-append extracts the
synsem values from a list in y and appends the resulting list of synsem entities
to the list x to obtain list z. Of course, there is no process or directionality
involved in this.

Sign Synsem Append Principle

∀x ∀y ∀z

sign-ss-append(x, y, z) ↔

∃ 1 ∃ 2 ∃ 3

(x 〈〉 ∧ y 〈〉 ∧ z 〈〉) ∨
(x 〈 1 | 2 〉 ∧ z 〈 1 | 3 〉 ∧ sign-ss-append(2 , y, 3)) ∨
(

y
〈
[
synsem 1

]
∣
∣
∣ 2

〉

∧ z 〈 1 | 3 〉 ∧ sign-ss-append(x 〈〉 , 2 , 3)
)

256 CHAPTER 4. THE APPENDIX OF POLLARD AND SAG (1994)

successive-not-member/2

In the relation successive-not-member with arguments x and y, x is not an
element of any of the sets (or lists or chains) on y.

Successive Not Member Principle

∀x ∀y

successive-not-member(x, y) ↔
(

y ≪≫ ∨

∃a ∃z
(

y ≪a| z≫ ∧ ¬member(x, a) ∧ successive-not-member(x, z)
)

)

successive-union/2 (
⋃
)

successive-union is a binary relation whose first argument contains a list
(or chain) of sets (or chains with set properties) and whose second argument
contains the set union of these sets (or chains with set properties).

Successive Union Principle

successive-union(x, y) ↔

(

x ≪≫ ∧ y[echain ∨ eset]∨
x ≪s| r≫ ∧ successive-union(r, z) ∧ set-union(s, z, y)

)

to-the-right/3

In the relation to-the-right with arguments x, y and z, x is to the right of y
on list z.

To The Right Principle

∀x∀y∀z

(

to-the-right(x, y, z) ↔

(

∃ 1 (z 〈y| 1 〉 ∧ member(x, 1))
∨∃ 1 (z 〈object| 1 〉 ∧ to-the-right(x, y, 1))

))

4.3 The ID Schemata

Abstract

This section contains the six ID Schemata of the grammar of Pollard and
Sag. Just as we did with the principles in the previous section, the informal
version of the schemata is followed by a symbolization in a language of AVM
matrices. Remember that the ID Schemata are to be read as the disjuncts in
the consequent of the ID Principle listed among the principles of grammar in
the previous section..

The formalizations of the first two ID Schemata which follow each quote from the book by
Pollard and Sag below also integrate additional restrictions which [Pollard and Sag, 1994,
fn. 17, p. 402] mentions in a footnote. The idea is that these are language-specific re-
strictions of English which might not apply in variants of the relevant schemata in other

4.3. THE ID SCHEMATA 257

languages. The footnote says: “In the parochial versions of Schemata 1 and 2, the synsem
| local | category | head | inv value, if any, must be minus; in the parochial versions
of Schema 3, it must be plus.”

Schema 1 (Head-Subject Schema)

The synsem | local | category | subcat value is 〈〉, and the daugh-
ters value is an object of sort head-comp-struc whose head-daughter is a
phrase whose synsem | nonlocal | to-bind | slash value is {}, and whose
complement-daughters value is a list of length one.

Formalization:

ss loc cat

[

head
[[
inv minus

]
∨ ¬ verb

]

subcat 〈〉

]

dtrs

head-comp-struc

head-dtr

[
phrase

ss nonloc to-bind slash {}

]

comp-daughters 〈object〉

Schema 2 (Head-Complement Schema)

The synsem | local | category | subcat value is a list of length one, and the
daughters value is an object of sort head-comp-struc whose head-daughter
value is a word.

Formalization:

ss loc cat

[

head
[[
inv minus

]
∨ ¬ verb

]

subcat 〈object〉

]

dtrs

[
head-comp-struc

head-dtr word

]

Schema 3 (Head-Subject-Complement Schema)

The synsem | local | category | subcat value is 〈〉, and the daughters
value is an object of sort head-comp-struc whose head-daughter value is a
word.

Formalization:

ss loc cat

[
head inv plus

subcat 〈〉

]

dtrs

[
head-comp-struc

head-dtr word

]

258 CHAPTER 4. THE APPENDIX OF POLLARD AND SAG (1994)

Schema 4 (Head-Marker Schema)

The daughters value is an object of sort head-marker-struc whose head-
daughter | synsem | nonlocal | to-bind | slash value is {}, and whose
marker-daughter | synsem | local | category | head value is of sort
marker.

Formalization:

dtrs

head-marker-struc

head-dtr ss nonloc to-bind slash {}

marker-dtr ss loc cat head marker

Schema 5 (Head-Adjunct Schema)

The daughters value is an object of sort head-adjunct-struc whose head-
daughter | synsem value is token-identical to its adjunct-daughter |
synsem | local | category | head | mod value and whose head-daughter
| synsem | nonlocal | to-bind | slash value is {}.

Formalization:

dtrs

head-adjunct-struc

head-dtr ss 1
[
nonloc to-bind slash {}

]

adjunct-dtr ss loc cat head mod 1

Schema 6 (Head-Filler Schema)

The daughters value is an object of sort head-filler-struc whose head-daughter
| synsem | local | category value satisfies the description [head verb[vform
finite], subcat 〈〉], whose head-daughter | synsem | nonlocal | in-
herited | slash value contains an element token-identical to the filler-
daughter | synsem | local value, and whose head-daughter | synsem
| nonlocal | to-bind | slash value contains only that element.

Formalization:

dtrs

head-filler-struc

filler-dtr ss loc 1

head-dtr ss

loc cat

[
head vform finite

subcat 〈〉

]

nonloc

[

inherited slash 2

to-bind slash
{

1
}

]

∧ member(1 , 2)

4.4. THE RAISING PRINCIPLE 259

4.4 The Raising Principle

Abstract

We will present the Raising Principle and briefly discuss its special status
in the grammar. It is not a principle in the technical sense, but rather a meta-
principle for grammar writing.

The Raising Principle is phrased as follows:

Let E be a lexical entry in which the (description of the) subcat list L contains
(a description corresponding to) a member X (of L) that is not explicitly de-
scribed in E as an expletive. Then in (the description of) the content value,
X is (described as) assigned no semantic role if and only if L (is described as if
it) contains a non-subject whose own subcat value is 〈X〉.

Pollard and Sag list the Raising Principle separately from all their other principles.
The reason for this is that the Raising Principle is not formulated as a principle on
the shape of linguistic entities, but rather as a principle on the well-formedness of lexical
entries. In other words, this principle is supposed to restrict the syntactic shape which
descriptions of words might have in the grammar. It is thus a meta-principle, and cannot
be expressed within the formalism itself. If one should want to formalize it at all, one
would need a formalism which can talk about the descriptions in the theory of a grammar.
As it stands, one can understand the Raising Principle as a rule for grammar writers
which tells them how to write lexical entries.

260 CHAPTER 4. THE APPENDIX OF POLLARD AND SAG (1994)

Chapter 5

Resources: MoMo, TRALE, MERGE

Abstract

The purpose of this chapter is to serve as a springboard to the code and user’s
manuals of MoMo and the TRALE system, and as an additional pointer to
the MERGE, a large grammar of English in TRALE. Section 5.1 contains the
links to MoMo, and Section 5.2 provides access to everything TRALE-related.
Section 5.3 is a link to MERGE.

5.1 MoMo

Abstract

The MorphMoulder (MoMo) is an implementation of Relational Speciate Re-
entrant Language (RSRL) without chains. RSRL is a comprehensive logical
formalism for HPSG. MoMo is a tool for studying the syntax and semantics of
RSRL by writing RSRL grammars and building models of grammars. MoMo can
visualize models and relationships between signatures, descriptions and models.

The MoMo manual and MoMo itself are available online and for downloading. The online
edition of MoMo can be started directly from your Internet browser, as long as Java is
active in your browser. Clicking on the link below will start MoMo immediately. You
may use all features of MoMo with the online edition. However, without giving the online
edition of MoMo explicit permission to read from and write to your local file system, MoMo
cannot save files to or read files from your local directories.

If you choose to download MoMo, you may use the automatic installation program
included in the package. The installation program will install MoMo under Solaris and
under Linux systems, and will also give you the option of giving the online edition of
MoMo permission to read and write in your directories. You may then choose between the
online and offline edition any time you wish to run MoMo, and the online edition can be
used with full functionality. Please consult the manual for details.

261

262 CHAPTER 5. RESOURCES: MOMO, TRALE, MERGE

If you are not sure whether or not you want to install MoMo, we recommend that you
try out the online edition first to find out if it is of interest to you.

• The MoMo Manual

– Online Edition1 (experimental version of March 2004)

– Postcript2 for downloading and printing (most recent version)

• The MoMo Program

– Online Edition3

– MoMo Code4 for downloading and installing on your computer

5.2 TRALE

Abstract

The TRALE system is a complete grammar development environment written
in SICStus Prolog. It comes with extensive documentation for the grammar
writer, as well as for those interested in the TRALE system itself.

The TRALE manuals comprise four major documents: The TRALE User’s Manual con-
tains information on what TRALE is, how to install TRALE, and how to use TRALE
and all of its components and various software tools linked to the TRALE system. The
TRALE Reference Manual contains a specification of the data structures and algorithms of
TRALE. The TRALE User’s Manual and the TRALE Reference Manual are available as
online editions in HTML format and in postscript format and PDF format for downloading.
The TRALE Source Code contains the complete annotated source code of TRALE. The
ALE Source Code contains the complete annotated source code of ALE, which is the core
engine on which TRALE is built. The annotated sources are available in HTML format
only.

The online editions of all these documents are connected by a system of hyperlinks,
which help the reader to find corresponding topics and related information in the four
documents. The online editions of the manuals use a color coding scheme to distinguish
different kinds of information.

The second link below is for downloading a tared and gzipped directory file with the
TRALE core system and the TRALE MiLCA Environment. Please consult the TRALE
User’s Manual on how to install TRALE, and for information concerning the system re-
quirements of TRALE.

1http://milca.sfs.uni-tuebingen.de/A4/Course/Momo/manual/momodocu.html
2http://milca.sfs.uni-tuebingen.de/A4/Course/Momo/manual/momo-manual.ps
3http://milca.sfs.uni-tuebingen.de/A4/Course/Momo/Online-Edition/MOMO/all_web.html
4http://milca.sfs.uni-tuebingen.de/A4/Course/Momo/download/momo.tar

http://milca.sfs.uni-tuebingen.de/A4/Course/Momo/manual/momodocu.html
http://milca.sfs.uni-tuebingen.de/A4/Course/Momo/manual/momo-manual.ps
http://milca.sfs.uni-tuebingen.de/A4/Course/Momo/Online-Edition/MOMO/all_web.html
http://milca.sfs.uni-tuebingen.de/A4/Course/Momo/download/momo.tar

5.3. MERGE 263

• The TRALE Manuals and Annotated Source Code5

• TRALE Sources with TRALE MiLCA Environment6 for downloading and installing

5.3 MERGE

Abstract

The MERGE is a large grammar of English, provided here for studying grammar
development in TRALE.

Some further information on MERGE may be found in Section 6.9 of the present textbook.

- File with the sources of MERGE7

- Documentation of the implementation of the MERGE grammar in Trale8

5http://www.ale.cs.toronto.edu/docs/
6http://milca.sfs.uni-tuebingen.de/A4/Course/trale/
7http://milca.sfs.uni-tuebingen.de/A4/Course/Grammars/MERGE/merge-v-1-0-0.tar.gz
8http://milca.sfs.uni-tuebingen.de/A4/Course/Grammars/MERGE/merge-doc.pdf

http://www.ale.cs.toronto.edu/docs/
http://milca.sfs.uni-tuebingen.de/A4/Course/trale/
http://milca.sfs.uni-tuebingen.de/A4/Course/Grammars/MERGE/merge-v-1-0-0.tar.gz
http://milca.sfs.uni-tuebingen.de/A4/Course/Grammars/MERGE/merge-doc.pdf

264 CHAPTER 5. RESOURCES: MOMO, TRALE, MERGE

Chapter 6

Grammars

Abstract

This chapter contains the source code of all TRALE grammars which are dis-
cussed in Chapter 3, Grammar Implementation. Since the grammars are ex-
tensively discussed in Chapter 3, there will be no further comment on them
here. For each grammar there is a separate section for the signature and for
the theory file.

6.1 Grammar 1

Abstract

The first grammar licenses exactly one sentence, She walks. It does not have
any principles of grammar, instead it has a single phrase structure rule.

6.1.1 Signature

Abstract

Note the link to a file with the source code at the bottom of the page.

type_hierarchy

bot

list

ne_list hd:bot tl:list

e_list

sign phon:ne_list synsem:synsem

phrase dtr1:sign dtr2:sign dtrs:list

word

synsem category:cat content:cont context:conx

cat head:head subcat:list

265

266 CHAPTER 6. GRAMMARS

head case:case vform:vform

vform

fin

bse

case

nom

acc

cont relation:rel_name arg1:index arg2:index index:index

conx backgr:list

index person:person number:number gender:gender

person

first

second

third

number

sing

plur

gender

masc

fem

rel_name

walk

female

.

Download1

6.1.2 Theory

Abstract

Note the link to a file with the source code at the bottom of the page.

% Multifile declarations.

:- multifile ’##’/2.

:- multifile ’~~>’/2.

% load phonology and tree output

:- [trale_home(tree_extensions)].

% specify signature file

signature(signature).

1http://milca.sfs.uni-tuebingen.de/A4/Course/Grammars/Grammatik1/signature

http://milca.sfs.uni-tuebingen.de/A4/Course/Grammars/Grammatik1/signature

6.1. GRAMMAR 1 267

% phrase structure rule

subject_head_rule ##

(phrase, synsem:(category:(head:H,

subcat:[]),

content:Content),

dtr1:Subj, dtr2:Head)

===>

cat> (Subj, synsem:Synsem),

cat> (Head, synsem:(category:(head:H,

subcat:[Synsem]),

content:Content)).

% lexical entries

she ~~> (synsem:(category: (head:case:nom,

subcat:e_list),

content: (index: (X, (person:third,

number:sing,

gender:fem))),

context: (backgr:[(relation:female,arg1:X)]))).

walks ~~> (synsem: (category: (head:vform:fin,

subcat:[(category:head:case:nom,

content:index: (X,(person:third,

number:sing

)))]),

content:(relation:walk,

arg1:X))).

Download2

2http:///milca.sfs.uni-tuebingen.de/A4/Course/Grammars/Grammatik1/theory.pl

http:///milca.sfs.uni-tuebingen.de/A4/Course/Grammars/Grammatik1/theory.pl

268 CHAPTER 6. GRAMMARS

6.2 Grammar 2

Abstract

The second grammar is an extension of the first grammar. It increases the num-
ber of syntactic constructions, and it modifies the signature due to deficiencies
observed with the signature of the first grammar.

6.2.1 Signature

Abstract

Note the link to a file with the source code at the bottom of the page.

type_hierarchy

bot

list

ne_list hd:bot tl:list

e_list

sign phon:ne_list synsem:synsem

phrase dtr1:sign dtr2:sign dtrs:list

word

synsem category:cat content:cont context:conx

cat head:head subcat:list

head

noun case:case

verb vform:vform

vform

fin

bse

case

nom

acc

cont

relations arg1:index

unary_rel

walk_rel

female_rel

love_rel arg2:index

nom_obj index:index

conx backgr:list

index person:person number:number gender:gender

person

first

6.2. GRAMMAR 2 269

second

third

number

sing

plur

gender

masc

fem

.

Download3

6.2.2 Theory

Abstract

Note the link to a file with the source code at the bottom of the page.

% Multifile declarations.

:- multifile ’##’/2.

:- multifile ’~~>’/2.

% load phonology and tree output

:- [trale_home(tree_extensions)].

% specify signature file

signature(signature).

% lexical entries

she ~~> (synsem:(category: (head:case:nom,

subcat:e_list),

content: (index: (X, (person:third,

number:sing,

gender:fem))),

context: (backgr:[(female_rel, arg1:X)]))).

her ~~> (synsem:(category: (head:case:acc,

subcat:e_list),

content: (index: (X, (person:third,

number:sing,

gender:fem))),

context: (backgr:[(female_rel, arg1:X)]))).

3http://milca.sfs.uni-tuebingen.de/A4/Course/Grammars/Grammatik2/signature

http://milca.sfs.uni-tuebingen.de/A4/Course/Grammars/Grammatik2/signature

270 CHAPTER 6. GRAMMARS

walks ~~> (synsem: (category: (head:vform:fin,

subcat:[(category:head:case:nom,

content:index: (X,(person:third,

number:sing

)))]),

content:(walk_rel,

arg1:X))).

loves ~~> (synsem: (category: (head:vform:fin,

subcat:[(category:head:case:acc,

content:index: Y),

(category:head:case:nom,

content:index: (X,

person:third,

number:sing))]),

content: (love_rel,arg1:X,arg2:Y))).

i ~~> (synsem:(category: (head:case:nom,

subcat:e_list),

content: (index:(person:first,

number:sing)))).

walk ~~> (synsem: (category: (head:vform:fin,

subcat:[(category:head:case:nom,

content:index: (X,(person:first,

number:sing

)))]),

content:(walk_rel,

arg1:X))).

% phrase structure rules

subject_head_rule ##

(phrase, synsem:(category:(head:H,

subcat:[]),

content:Content),

dtr1:Subj, dtr2:Head)

===>

cat> (Subj, synsem:Synsem),

cat> (Head, synsem:(category:(head:H,

6.3. GRAMMAR 3 271

subcat:[Synsem]),

content:Content)).

head_complement_rule ##

(phrase, synsem:(category:(head:H,

subcat:(ne_list, Rest)),

content:Content),

dtr1:Comp, dtr2:Head)

===>

cat> (Head, synsem:(category:(head:H,

subcat:[First|Rest]),

content:Content)),

cat> (Comp, synsem:First).

Download4

6.3 Grammar 3

Abstract

The third grammar extends the lexicon of the previous grammar significantly.
It is used for a discussion of properties of TRALE signatures, and of the re-
lationship between phrase structure rules and grammatical principles in HPSG
grammars in Chapter 3.

6.3.1 Signature

Abstract

Note the link to a file with the source code at the bottom of the page.

type_hierarchy

bot

list

ne_list hd:bot tl:list

e_list

sign phon:ne_list synsem:synsem

phrase dtr1:sign dtr2:sign dtrs:list

word

synsem category:cat content:cont context:conx

cat head:head subcat:list

4http://milca.sfs.uni-tuebingen.de/A4/Course/Grammars/Grammatik2/theory.pl

http://milca.sfs.uni-tuebingen.de/A4/Course/Grammars/Grammatik2/theory.pl

272 CHAPTER 6. GRAMMARS

head

noun case:case

verb vform:vform

vform

fin

bse

case

nom

acc

dat

cont

relations arg1:index

unary_rel

walk_rel

female_rel

speaker_rel

more_arg_rel arg2:index

love_rel

give_rel arg3:index

nom_obj index:index

conx backgr:list

index person:person number:number gender:gender

person

first

third

number

sing

plur

gender

masc

fem

.

Download5

6.3.2 Theory

Abstract

Note the link to a file with the source code at the bottom of the page.

% Multifile declarations.

5http://milca.sfs.uni-tuebingen.de/A4/Course/Grammars/Grammatik3/signature

http://milca.sfs.uni-tuebingen.de/A4/Course/Grammars/Grammatik3/signature

6.3. GRAMMAR 3 273

:- multifile ’##’/2.

:- multifile ’~~>’/2.

% load phonology and tree output

:- [trale_home(tree_extensions)].

% specify signature file

signature(signature).

% lexical entries

i ~~> synsem:(category:(head:case:nom,

subcat:e_list),

content:(index: (X,(person:first,

number:sing))),

context:(backgr:[(speaker_rel,arg1:X)])).

me ~~> synsem:(category:(head:case:(acc;dat),

subcat:e_list),

content:(index: (X,(person:first,

number:sing))),

context:(backgr:[(speaker_rel,arg1:X)])).

she ~~> synsem:(category:(head:case:nom,

subcat:e_list),

content:(index: (X,(person:third,

number:sing,

gender:fem))),

context:(backgr:[(female_rel,arg1:X)])).

her ~~> synsem:(category:(head:case:(acc;dat),

subcat:e_list),

content:(index: (X,(person:third,

number:sing,

gender:fem))),

context:(backgr:[(female_rel,arg1:X)])).

milk ~~> synsem:(category:(head:noun,

subcat:e_list),

content:(index:(person:third,

number:sing))).

walk ~~> synsem:(category:(head:vform:fin,

subcat:[(category:(head:case:nom),

274 CHAPTER 6. GRAMMARS

content:index:(X,

person:first,

number:sing)

)]),

content:(walk_rel,

arg1:X)).

walks ~~> synsem:(category:(head:vform:fin,

subcat:[(category:(head:case:nom),

content:index:(X,

person:third,

number:sing)

)]),

content:(walk_rel,

arg1:X)).

love ~~> synsem:(category:(head:vform:fin,

subcat:[(category:(head:case:acc),

content:index: Y),

(category:(head:case:nom),

content:index: (X,

person:first,

number:sing)

)]),

content:(love_rel,

arg1:X,

arg2:Y)).

loves ~~> synsem:(category:(head:vform:fin,

subcat:[(category:(head:case:acc),

content:index: Y),

(category:(head:case:nom),

content:index: (X,

person:third,

number:sing)

)]),

content:(love_rel,

arg1:X,

arg2:Y)).

give ~~> synsem:(category:(head:vform:fin,

subcat:[(category:(head:case:dat),

content:index: Z),

6.3. GRAMMAR 3 275

(category:(head:case:acc),

content:index: Y),

(category:(head:case:nom),

content:index: (X,

person:first,

number:sing)

)]),

content:(give_rel,

arg1:X,

arg2:Y,

arg3:Z)).

gives ~~> synsem:(category:(head:vform:fin,

subcat:[(category:(head:case:dat),

content:index: Z),

(category:(head:case:acc),

content:index: Y),

(category:(head:case:nom),

content:index: (X,

person:third,

number:sing)

)]),

content:(give_rel,

arg1:X,

arg2:Y,

arg3:Z)).

% phrase structure rules

subject_head_rule ##

(phrase, synsem:(category:(head:H,

subcat:[]),

content:Content),

dtr1:Subj, dtr2:Head)

===>

cat> (Subj, synsem:Synsem),

cat> (Head, synsem:(category:(head:H,

subcat:[Synsem]),

content:Content)).

head_complement_rule ##

(phrase, synsem:(category:(head:H,

276 CHAPTER 6. GRAMMARS

subcat:(ne_list, Rest)),

content:Content),

dtr1:Comp, dtr2:Head)

===>

cat> (Head, synsem:(category:(head:H,

subcat:[First|Rest]),

content:Content)),

cat> (Comp, synsem:First).

Download6

6.4 Grammar 4

Abstract

The fourth grammar is in fact a series of three grammars. All three grammars
have exactly the same empirical coverage, but the grammars are formulated
differently and are progressively apt for further extensions. They are the first
grammars which contain grammatical principles besides phrase structure rules.

6.4.1 Version 1

Abstract

This grammar is essentially the same as the third grammar, except that the
grammatical principles previously built into the phrase structure rules have been
pulled out of them and have been formulated as separate principles.

6.4.1.1 Signature

Abstract

Note the link to a file with the source code at the bottom of the page.

type_hierarchy

bot

list

ne_list hd:bot tl:list

e_list

sign phon:ne_list synsem:synsem

phrase dtr1:sign dtr2:sign dtrs:list

word

6http://milca.sfs.uni-tuebingen.de/A4/Course/Grammars/Grammatik3/theory.pl

http://milca.sfs.uni-tuebingen.de/A4/Course/Grammars/Grammatik3/theory.pl

6.4. GRAMMAR 4 277

synsem category:cat content:cont context:conx

cat head:head subcat:list

head

noun case:case

verb vform:vform

vform

fin

bse

case

nom

acc

dat

cont

nom_obj index:index

arg

index

relations arg1:arg

un_rel

walk_rel

female_rel

speaker_rel

more_arg_rel arg2:arg

bin_rel

love_rel

think_rel

give_rel arg3:arg

conx backgr:list

index person:person number:number gender:gender

person

first

third

number

sing

plur

gender

masc

fem

.

Download7

7http://milca.sfs.uni-tuebingen.de/A4/Course/Grammars/Grammatik4/1vers/signature

http://milca.sfs.uni-tuebingen.de/A4/Course/Grammars/Grammatik4/1vers/signature

278 CHAPTER 6. GRAMMARS

6.4.1.2 Theory

Abstract

Note the link to a file with the source code at the bottom of the page.

% Multifile declarations.

:- multifile ’##’/2.

:- multifile ’*>’/2.

:- multifile ’~~>’/2.

% load phonology and tree output

:- [trale_home(tree_extensions)].

% specifications for the GRiSU output display

hidden_feat(dtrs).

hidden_feat(dtr1).

hidden_feat(dtr2).

% specify signature file

signature(signature).

% lexical entries

i ~~> (word, synsem:(category:(head:case:nom,

subcat:e_list),

content:(index: (X,(person:first,

number:sing))),

context:(backgr:[(speaker_rel,arg1:X)]))).

me ~~> (word, synsem:(category:(head:case:(acc;dat),

subcat:e_list),

content:(index: (X,(person:first,

number:sing))),

context:(backgr:[(speaker_rel,arg1:X)]))).

she ~~> (word, synsem:(category:(head:case:nom,

subcat:e_list),

content:(index: (X,(person:third,

number:sing,

gender:fem))),

context:(backgr:[(female_rel,arg1:X)]))).

6.4. GRAMMAR 4 279

her ~~> (word, synsem:(category:(head:case:(acc;dat),

subcat:e_list),

content:(index: (X,(person:third,

number:sing,

gender:fem))),

context:(backgr:[(female_rel,arg1:X)]))).

milk ~~> (word, synsem:(category:(head:noun,

subcat:e_list),

content:(index:(person:third,

number:sing)))).

walk ~~> (word, synsem:(category:(head:vform:fin,

subcat:[(category:(head:case:nom),

content:index:(X,

person:first,

number:sing)

)]),

content:(walk_rel,

arg1:X))).

walks ~~> (word, synsem:(category:(head:vform:fin,

subcat:[(category:(head:case:nom),

content:index:(X,

person:third,

number:sing)

)]),

content:(walk_rel,

arg1:X))).

love ~~> (word, synsem:(category:(head:vform:fin,

subcat:[(category:(head:case:acc),

content:index: Y),

(category:(head:case:nom),

content:index: (X,

person:first,

number:sing)

)]),

content:(love_rel,

arg1:X,

arg2:Y))).

280 CHAPTER 6. GRAMMARS

loves ~~> (word, synsem:(category:(head:vform:fin,

subcat:[(category:(head:case:acc),

content:index: Y),

(category:(head:case:nom),

content:index: (X,

person:third,

number:sing)

)]),

content:(love_rel,

arg1:X,

arg2:Y))).

give ~~> (word, synsem:(category:(head:vform:fin,

subcat:[(category:(head:case:dat),

content:index: Z),

(category:(head:case:acc),

content:index: Y),

(category:(head:case:nom),

content:index: (X,

person:first,

number:sing)

)]),

content:(give_rel,

arg1:X,

arg2:Y,

arg3:Z))).

gives ~~> (word, synsem:(category:(head:vform:fin,

subcat:[(category:(head:case:dat),

content:index: Z),

(category:(head:case:acc),

content:index: Y),

(category:(head:case:nom),

content:index: (X,

person:third,

number:sing)

)]),

content:(give_rel,

arg1:X,

arg2:Y,

arg3:Z))).

think ~~> (word, synsem:(category:(head:vform:fin,

6.4. GRAMMAR 4 281

subcat:[(category:(head:vform:fin,

subcat:[]),

content: Y),

(category:(head:case:nom),

content:index: (X,

person:first,

number:sing)

)]),

content:(think_rel,

arg1:X,

arg2:Y))).

thinks ~~> (word, synsem:(category:(head:vform:fin,

subcat:[(category:(head:vform:fin,

subcat:[]),

content: Y),

(category:(head:case:nom),

content:index: (X,

person:third,

number:sing)

)]),

content:(think_rel,

arg1:X,

arg2:Y))).

% phrase structure rules

subject_head_rule ##

(phrase, synsem:category:subcat:[],

dtr1:Subj, dtr2:Head)

===>

cat> Subj,

cat> Head.

head_complement_rule ##

(phrase, synsem:category:subcat:ne_list,

dtr1:Comp, dtr2:Head)

===>

cat> Head,

cat> Comp.

282 CHAPTER 6. GRAMMARS

% Principles

% Semantics Principle

phrase *> (synsem:content:C,

dtr2:synsem:content:C).

% Head Feature Principle

phrase *> (synsem:category:head:H,

dtr2:synsem:category:head:H).

% Subcategorization Principle (first version)

phrase *> (synsem:category:subcat:PhrSubcat,

dtr1:synsem:Synsem,

dtr2:synsem:category:subcat:[Synsem|PhrSubcat]).

Download8

6.4.2 Version 2

Abstract

The Subcategorization Principle of the first version of the fourth gram-
mar is now reformulated with a relational attachment.

6.4.2.1 Signature

Abstract

Note the link to a file with the source code at the bottom of the page.

type_hierarchy

bot

list

ne_list hd:bot tl:list

e_list

sign phon:ne_list synsem:synsem

phrase dtr1:sign dtr2:sign dtrs:list

word

synsem category:cat content:cont context:conx

cat head:head subcat:list

head

noun case:case

verb vform:vform

8http://milca.sfs.uni-tuebingen.de/A4/Course/Grammars/Grammatik4/1vers/theory.pl

http://milca.sfs.uni-tuebingen.de/A4/Course/Grammars/Grammatik4/1vers/theory.pl

6.4. GRAMMAR 4 283

vform

fin

bse

case

nom

acc

dat

cont

nom_obj index:index

arg

index

relations arg1:arg

un_rel

walk_rel

female_rel

speaker_rel

more_arg_rel arg2:arg

bin_rel

love_rel

think_rel

give_rel arg3:arg

conx backgr:list

index person:person number:number gender:gender

person

first

third

number

sing

plur

gender

masc

fem

.

Download9

6.4.2.2 Theory

Abstract

Note the link to a file with the source code at the bottom of the page.

9http://milca.sfs.uni-tuebingen.de/A4/Course/Grammars/Grammatik4/2vers/signature

http://milca.sfs.uni-tuebingen.de/A4/Course/Grammars/Grammatik4/2vers/signature

284 CHAPTER 6. GRAMMARS

% Multifile declarations.

:- multifile ’##’/2.

:- multifile ’*>’/2.

:- multifile ’~~>’/2.

:- multifile ’if’/2.

% load phonology and tree output

:- [trale_home(tree_extensions)].

% specifications for the GRiSU output display

hidden_feat(dtrs).

hidden_feat(dtr1).

hidden_feat(dtr2).

% specify signature file

signature(signature).

% lexical entries

i ~~> (word, synsem:(category:(head:case:nom,

subcat:e_list),

content:(index: (X,(person:first,

number:sing))),

context:(backgr:[(speaker_rel,arg1:X)]))).

me ~~> (word, synsem:(category:(head:case:(acc;dat),

subcat:e_list),

content:(index: (X,(person:first,

number:sing))),

context:(backgr:[(speaker_rel,arg1:X)]))).

she ~~> (word, synsem:(category:(head:case:nom,

subcat:e_list),

content:(index: (X,(person:third,

number:sing,

gender:fem))),

context:(backgr:[(female_rel,arg1:X)]))).

her ~~> (word, synsem:(category:(head:case:(acc;dat),

subcat:e_list),

content:(index: (X,(person:third,

number:sing,

6.4. GRAMMAR 4 285

gender:fem))),

context:(backgr:[(female_rel,arg1:X)]))).

milk ~~> (word, synsem:(category:(head:noun,

subcat:e_list),

content:(index:(person:third,

number:sing)))).

walk ~~> (word, synsem:(category:(head:vform:fin,

subcat:[(category:(head:case:nom),

content:index:(X,

person:first,

number:sing)

)]),

content:(walk_rel,

arg1:X))).

walks ~~> (word, synsem:(category:(head:vform:fin,

subcat:[(category:(head:case:nom),

content:index:(X,

person:third,

number:sing)

)]),

content:(walk_rel,

arg1:X))).

love ~~> (word, synsem:(category:(head:vform:fin,

subcat:[(category:(head:case:acc),

content:index: Y),

(category:(head:case:nom),

content:index: (X,

person:first,

number:sing)

)]),

content:(love_rel,

arg1:X,

arg2:Y))).

loves ~~> (word, synsem:(category:(head:vform:fin,

subcat:[(category:(head:case:acc),

content:index: Y),

(category:(head:case:nom),

content:index: (X,

286 CHAPTER 6. GRAMMARS

person:third,

number:sing)

)]),

content:(love_rel,

arg1:X,

arg2:Y))).

give ~~> (word, synsem:(category:(head:vform:fin,

subcat:[(category:(head:case:dat),

content:index: Z),

(category:(head:case:acc),

content:index: Y),

(category:(head:case:nom),

content:index: (X,

person:first,

number:sing)

)]),

content:(give_rel,

arg1:X,

arg2:Y,

arg3:Z))).

gives ~~> (word, synsem:(category:(head:vform:fin,

subcat:[(category:(head:case:dat),

content:index: Z),

(category:(head:case:acc),

content:index: Y),

(category:(head:case:nom),

content:index: (X,

person:third,

number:sing)

)]),

content:(give_rel,

arg1:X,

arg2:Y,

arg3:Z))).

think ~~> (word, synsem:(category:(head:vform:fin,

subcat:[(category:(head:vform:fin,

subcat:[]),

content: Y),

(category:(head:case:nom),

content:index: (X,

6.4. GRAMMAR 4 287

person:first,

number:sing)

)]),

content:(think_rel,

arg1:X,

arg2:Y))).

thinks ~~> (word, synsem:(category:(head:vform:fin,

subcat:[(category:(head:vform:fin,

subcat:[]),

content: Y),

(category:(head:case:nom),

content:index: (X,

person:third,

number:sing)

)]),

content:(think_rel,

arg1:X,

arg2:Y))).

% phrase structure rules

subject_head_rule ##

(phrase, synsem:category:subcat:[],

dtr1:Subj, dtr2:Head)

===>

cat> Subj,

cat> Head.

head_complement_rule ##

(phrase, synsem:category:subcat:ne_list,

dtr1:Comp, dtr2:Head)

===>

cat> Head,

cat> Comp.

% Principles

% Semantics Principle

phrase *> (synsem:content:C,

dtr2:synsem:content:C).

288 CHAPTER 6. GRAMMARS

% Head Feature Principle

phrase *> (synsem:category:head:H,

dtr2:synsem:category:head:H).

% Subcategorization Principle (second version)

phrase *> (synsem:category:subcat:PhrSubcat,

dtr1:synsem:Synsem,

dtr2:synsem:category:subcat:HeadSubcat)

goal

append([Synsem],PhrSubcat,HeadSubcat).

% Goal definitions

append(L,[],L) if true.

append([],(L,ne_list),L) if true.

append([H|T1],(L,ne_list),[H|T2]) if

append(T1,L,T2).

Download10

6.4.3 Version 3

Abstract

Finally, the order of the elements on the subcat list is reversed to conform to
the order of elements usually assumed in the linguistic literature. This leads to
further computational complication and a second reformulation of the Subcat-
egorization Principle.

6.4.3.1 Signature

Abstract

Note the link to a file with the source code at the bottom of the page.

type_hierarchy

bot

list

ne_list hd:bot tl:list

e_list

sign phon:ne_list synsem:synsem

phrase dtr1:sign dtr2:sign dtrs:list

10http://milca.sfs.uni-tuebingen.de/A4/Course/Grammars/Grammatik4/2vers/theory.pl

http://milca.sfs.uni-tuebingen.de/A4/Course/Grammars/Grammatik4/2vers/theory.pl

6.4. GRAMMAR 4 289

word

synsem category:cat content:cont context:conx

cat head:head subcat:list

head

noun case:case

verb vform:vform

vform

fin

bse

case

nom

acc

dat

cont

nom_obj index:index

arg

index

relations arg1:arg

un_rel

walk_rel

female_rel

speaker_rel

more_arg_rel arg2:arg

bin_rel

love_rel

think_rel

give_rel arg3:arg

conx backgr:list

index person:person number:number gender:gender

person

first

third

number

sing

plur

gender

masc

fem

.

Download11

11http://milca.sfs.uni-tuebingen.de/A4/Course/Grammars/Grammatik4/3vers/signature

http://milca.sfs.uni-tuebingen.de/A4/Course/Grammars/Grammatik4/3vers/signature

290 CHAPTER 6. GRAMMARS

6.4.3.2 Theory

Abstract

Note the link to a file with the source code at the bottom of the page.

% Multifile declarations.

:- multifile ’##’/2.

:- multifile ’*>’/2.

:- multifile ’~~>’/2.

:- multifile if/2.

% load phonology and tree output

:- [trale_home(tree_extensions)].

% specifications for the GRiSU output display

hidden_feat(dtrs).

hidden_feat(dtr1).

hidden_feat(dtr2).

% specify signature file

signature(signature).

% lexical entries

i ~~> (word, synsem:(category:(head:case:nom,

subcat:e_list),

content:(index: (X,(person:first,

number:sing))),

context:(backgr:[(speaker_rel,arg1:X)]))).

me ~~> (word, synsem:(category:(head:case:(acc;dat),

subcat:e_list),

content:(index: (X,(person:first,

number:sing))),

context:(backgr:[(speaker_rel,arg1:X)]))).

she ~~> (word, synsem:(category:(head:case:nom,

subcat:e_list),

content:(index: (X,(person:third,

number:sing,

gender:fem))),

context:(backgr:[(female_rel,arg1:X)]))).

6.4. GRAMMAR 4 291

her ~~> (word, synsem:(category:(head:case:(acc;dat),

subcat:e_list),

content:(index: (X,(person:third,

number:sing,

gender:fem))),

context:(backgr:[(female_rel,arg1:X)]))).

milk ~~> (word, synsem:(category:(head:noun,

subcat:e_list),

content:(index:(person:third,

number:sing)))).

walk ~~> (word, synsem:(category:(head:vform:fin,

subcat:[(category:(head:case:nom),

content:index:(X,

person:first,

number:sing)

)]),

content:(walk_rel,

arg1:X))).

walks ~~> (word, synsem:(category:(head:vform:fin,

subcat:[(category:(head:case:nom),

content:index:(X,

person:third,

number:sing)

)]),

content:(walk_rel,

arg1:X))).

love ~~> (word, synsem:(category:(head:vform:fin,

subcat:[(category:(head:case:nom),

content:index: (X,

person:first,

number:sing)),

(category:(head:case:acc),

content:index: Y)]),

content:(love_rel,

arg1:X,

arg2:Y))).

loves ~~> (word, synsem:(category:(head:vform:fin,

292 CHAPTER 6. GRAMMARS

subcat:[(category:(head:case:nom),

content:index: (X,

person:third,

number:sing)),

(category:(head:case:acc),

content:index: Y)]),

content:(love_rel,

arg1:X,

arg2:Y))).

give ~~> (word, synsem:(category:(head:vform:fin,

subcat:[(category:(head:case:nom),

content:index: (X,

person:first,

number:sing)),

(category:(head:case:acc),

content:index: Y),

(category:(head:case:dat),

content:index: Z)]),

content:(give_rel,

arg1:X,

arg2:Y,

arg3:Z))).

gives ~~> (word, synsem:(category:(head:vform:fin,

subcat:[(category:(head:case:nom),

content:index: (X,

person:third,

number:sing)),

(category:(head:case:acc),

content:index: Y),

(category:(head:case:dat),

content:index: Z)]),

content:(give_rel,

arg1:X,

arg2:Y,

arg3:Z))).

think ~~> (word, synsem:(category:(head:vform:fin,

subcat:[(category:(head:case:nom),

content:index: (X,

person:first,

number:sing)),

6.4. GRAMMAR 4 293

(category:(head:vform:fin,

subcat:[]),

content: Y)]),

content:(think_rel,

arg1:X,

arg2:Y))).

thinks ~~> (word, synsem:(category:(head:vform:fin,

subcat:[(category:(head:case:nom),

content:index: (X,

person:third,

number:sing)),

(category:(head:vform:fin,

subcat:[]),

content: Y)]),

content:(think_rel,

arg1:X,

arg2:Y))).

% phrase structure rules

subject_head_rule ##

(phrase, synsem:category:subcat:[],

dtr1:Subj, dtr2:Head)

===>

cat> Subj,

cat> Head.

head_complement_rule ##

(phrase, synsem:category:subcat:ne_list,

dtr1:Comp, dtr2:Head)

===>

cat> Head,

cat> Comp.

% Principles

% Semantics Principle

phrase *> (synsem:content:C,

dtr2:synsem:content:C).

% Head Feature Principle

294 CHAPTER 6. GRAMMARS

phrase *> (synsem:category:head:H,

dtr2:synsem:category:head:H).

% Subcategorization Principle (alternate version)

phrase *> (synsem:category:subcat:PhrSubcat,

dtr1:synsem:Synsem,

dtr2:synsem:category:subcat:HeadSubcat)

goal

append(PhrSubcat,[Synsem],HeadSubcat).

% Goal definitions

append(X,Y,Z) if

when((X=(e_list;ne_list)

; Y=e_list

; Z=(e_list;ne_list)

),

undelayed_append(X,Y,Z)).

undelayed_append(L,[],L) if true.

undelayed_append([],(L,ne_list),L) if true.

undelayed_append([H|T1],(L,ne_list),[H|T2]) if

append(T1,L,T2).

Download12

6.5 Spook

Abstract

The spook grammar contains a (small) number of mistakes which are the subject
of the exercise at the end of Section 3.1.4, Relations as Definite Clauses in
TRALE.

6.5.1 Signature

Abstract

Note the link to a file with the source code at the bottom of the page.

12http://milca.sfs.uni-tuebingen.de/A4/Course/Grammars/Grammatik4/3vers/theory.pl

http://milca.sfs.uni-tuebingen.de/A4/Course/Grammars/Grammatik4/3vers/theory.pl

6.5. SPOOK 295

type_hierarchy

bot

list

ne_list hd:bot tl:list

e_list

sign phon:ne_list synsem:synsem

phrase dtr1:sign dtr2:sign dtrs:list

word

synsem category:cat content:cont context:conx

cat head:head subcat:list

head

noun case:case

verb vform:vform

vform

fin

bse

case

nom

acc

dat

cont

relations arg1:index

unary_rel

walk_rel

female_rel

speaker_rel

more_arg_rel arg2:index

love_rel

give_rel arg3:index

nom_obj index:index

conx backgr:list

index person:person number:number gender:gender

person

first

third

number

sing

plur

gender

masc

fem

.

296 CHAPTER 6. GRAMMARS

Download13

6.5.2 Theory

Abstract

Note the link to a file with the source code at the bottom of the page.

% Multifile declarations.

:- multifile ’##’/2.

:- multifile ’~~>’/2.

% load phonology and tree output

:- [trale_home(tree_extensions)].

% specify signature file

signature(signature).

% lexical entries

i ~~> synsem:(category:(head:case:nom,

subcat:e_list),

content:(index: (X,(person:first,

number:sing))),

context:(backgr:[(speaker_rel,arg1:X)])).

me ~~> synsem:(category:(head:case:(acc;dat),

subcat:e_list),

content:(index: (X,(person:first,

number:sing))),

context:(backgr:[(speaker_rel,arg1:X)])).

she ~~> synsem:(category:(head:case:nom,

subcat:e_list),

content:(index: (X,(person:third,

number:sing;

gender:fem))),

context:(backgr:[(female_rel,arg1:X)])).

her ~~> synsem:(category:(head:case:(acc;dat),

subcat:e_list),

content:(index: (X,(person:third,

number:sing,

13http://milca.sfs.uni-tuebingen.de/A4/Course/Grammars/Spook/signature

http://milca.sfs.uni-tuebingen.de/A4/Course/Grammars/Spook/signature

6.5. SPOOK 297

gender:fem))),

context:(backgr:[(female_rel,arg1:X)])).

milk ~~> synsem:(category:(head:noun,

subcat:e_list),

content:(index:(person:third,

number:sing))).

walk ~~> synsem:(category:(head:vform:fin,

subcat:[(category:(head:case:nom),

content:index:(X,

person:first,

number:sng)

)]),

content:(walk_rel,

arg1:X)).

walks ~~> synsem:(category:(head:vform:fin,

subcat:[(category:(head:case:nom),

content:index:(X,

person:third,

number:sing)

)]),

content:(walk_rel,

arg1:X)).

love ~~> synsem:(category:(head:vform:fin,

subcat:[(category:(head:case:acc),

content:index: Y),

(category:(head:case:nom),

content:index: (X,

person:first,

number:sing)

)]),

content:(love_rel,

arg1:X,

arg2:Y)).

loves ~~> synsem:(category:(head:vform:fin,

subcat:[(category:(head:case:acc),

content:index: Y),

(category:(head:case:nom),

content:index: (X,

298 CHAPTER 6. GRAMMARS

person:third,

number:sing)

)]),

content:(love_rel,

arg1:X,

arg2:Y)).

give ~~> synsem:(category:(head:vform:fin,

subcat:[(category:(head:case:dat),

content:index: Z),

(category:(head:case:acc),

content:index: Y),

(category:(head:case:nom),

content:index: (X,

person:first,

number:sing)

)]),

content:(give_rel,

arg1:X,

arg2:Y,

arg3:Z)).

gives ~~> synsem:(category:(head:vform:fin,

subcat:[(category:(head:case:dat),

content:index: Z),

(category:(head:case:acc),

content:index: Y),

(category:(head:case:nom),

content:index: (X,

person:third,

number:sing)

)]),

content:(give_rel,

arg1:X,

arg2:Y,

arg3:Z)).

% phrase structure rules

subject_head_rule ##

(phrase, synsem:(category:(head:H,

subcat:[]),

content:Content),

6.6. CORE FRAGMENT 299

dtr1:Subj, dtr2:Head)

===>

cat> (Subj, synsem:Synsem),

cat> (Head, synsem:(category:(head:H,

subcat:[Synsem]),

content:Content)).

head_complement_rule ##

(phrase, synsem:(category:(head:H,

subcat:(ne_list, Rest)),

content:Content),

dtr1:Comp, dtr2:Head)

===>

cat> (Head, synsem:(category:(head:H,

subcat:[First|Rest]),

content:Content)),

cat> (Comp, synsem:First).

Download14

6.6 Core Fragment

Abstract

The core fragment is a small grammar of English sentences. It covers the most
basic facts of the syntax of clauses. This grammar can therefore serve as a
basis for the development of grammars which analyze more intricate syntactic
phenomena, and for testing and investigating them with computational tools.

6.6.1 Signature

Abstract

Note the link to a file with the source code at the bottom of the page.

type_hierarchy

bot

list

ne_list hd:bot tl:list

e_list

sign phon:list synsem:synsem

14http://milca.sfs.uni-tuebingen.de/A4/Course/Grammars/Spook/theory.pl

http://milca.sfs.uni-tuebingen.de/A4/Course/Grammars/Spook/theory.pl

300 CHAPTER 6. GRAMMARS

word arg_st:list

phrase daughters:const_struc dtrs:list

synsem loc:loc nonloc:nonloc

loc cat:cat cont:cont

nonloc

cat head:head val:val

head pred:boolean mod:synsem_none

func_or_verb vform:vform marking:marking

verb aux:boolean inv:boolean marking:unmarked mod:none

functional marking:marked

noun case:case mod:none

prep pform:pform

adv mod:synsem

val subj:list comps:list

cont

psoa

move_rel

walk_rel walker:index

like_rel liker:ref liked:ref

say_rel sayer:ref said:psoa

give_rel giver:ref gift:ref given:ref

rain_rel

future_rel soa_arg:psoa

direction_rel movement:move_rel goal:ref

here_rel located:psoa

nom_obj index:index

index pers:pers num:num gen:gen

ref

nonref

it

there

const_struc hdtr:sign ndtr:sign

hs_struc

hc_struc

ha_struc

sai_struc

vform

fin

inf

pas

psp

prp

base

6.6. CORE FRAGMENT 301

case

nom

acc

pform

lexical

non_lexical

to

marking

unmarked

marked

that

for

boolean

plus

minus

pers

first

second

third

num

sg

pl

gen

masc

fem

neut

synsem_none

none

&synsem

.

Download15

6.6.2 Theory

Abstract

Note the link to a file with the source code at the bottom of the page.

% Multifile declarations.

:- multifile if/2.

15http://milca.sfs.uni-tuebingen.de/A4/Course/Grammars/Core-Fragment/signature

http://milca.sfs.uni-tuebingen.de/A4/Course/Grammars/Core-Fragment/signature

302 CHAPTER 6. GRAMMARS

% load phonology and tree output

:- [trale_home(tree_extensions)].

% specify signature file

signature(signature).

% grisu output specifications

hidden_feat(dtrs). % shown by the tree

hidden_feat(daughters). % shown by the tree

synsem <<< arg_st.

vform <<< aux.

vform <<< inv.

subj <<< comps.

liker <<< liked.

sayer <<< said.

giver <<< gift.

gift <<< given.

>>> phon.

%==

% Simulation of Parametric Sorts as Principles of Grammar

fun list_of_synsems(-).

list_of_synsems(X) if

when((X=(e_list;ne_list)),

und_list_of_synsems(X)).

und_list_of_synsems(X) if (X=e_list).

und_list_of_synsems(X) if (X=[(synsem)|Y]),list_of_synsems(Y).

% subj:list(synsem)

% comps:ist(synsem)

val *> (subj:list_of_synsems,

comps:list_of_synsems).

% arg_st:list(synsem)

word *> arg_st:list_of_synsems.

6.6. CORE FRAGMENT 303

%==

% Phrase Structure Rules, encoding the ID-Principle and the

% Constituent Order Principle and

% Subcategorization Principle

% Head Subject Rule

head_subject_rule ##

(phrase,

synsem:loc:cat:val:(subj:e_list,

comps:e_list),

daughters:(hs_struc,

hdtr:Hdtr,

ndtr:Ndtr))

===>

cat> (Ndtr, synsem:Synsem),

cat> (Hdtr, synsem:loc:cat:val:(subj:[Synsem],

comps:e_list)).

% Head Complement Rule

head_complement_rule ##

(phrase,

synsem:(loc:cat:val:(subj:Subj,

comps:List)),

daughters:(hc_struc,

hdtr:Hdtr,

ndtr:Ndtr))

===>

cat> (Hdtr, synsem:loc:cat:val:(subj:Subj,

comps:[Synsem|List])),

cat> (Ndtr, synsem:Synsem).

% Head Adjunct Rule

head_adjunct_rule ##

(phrase,

304 CHAPTER 6. GRAMMARS

synsem:loc:cat:val:(subj:List,

comps:e_list),

daughters:(ha_struc,

hdtr:Hdtr,

ndtr:Ndtr))

===>

cat> (Hdtr, synsem:(Synsem,

loc:cat:val:(subj:List,

comps:e_list))),

cat> (Ndtr, synsem:loc:cat:(head:mod:Synsem,

val:(subj:e_list,

comps:e_list))).

% Subject Aux Inversion Rule

subject_aux_inversion_rule ##

(phrase,

synsem:(loc:cat:val:(subj:e_list,

comps:List)),

daughters:(sai_struc,

hdtr:Hdtr,

ndtr:Ndtr))

===>

cat> (Hdtr, word,

synsem:loc:cat:(head:inv:plus,

val:(subj:[Synsem],

comps:List))),

cat> (Ndtr, synsem:Synsem).

%==

% PRINCIPLES

% Head Feature Principle

phrase *> (synsem:loc:cat:head:Head,

daughters:hdtr:synsem:loc:cat:head:Head).

% Semantics Principle

phrase *> ((synsem:loc:cont:Content,

daughters:((hs_struc;hc_struc;sai_struc),

6.6. CORE FRAGMENT 305

hdtr:synsem:loc:cont:Content);

(synsem:loc:cont:Content,

daughters:(ha_struc,

ndtr:synsem:loc:cont:Content)))).

% INV Principle

(synsem:loc:cat:head:inv:plus) *> (synsem:loc:cat:head:(vform:fin,

aux:plus)).

% MOD Principle

(phrase,

daughters:(hs_struc;hc_struc;sai_struc))

*> daughters:ndtr:synsem:loc:cat:head:mod:none.

% Argument Realization Principle

(word,

synsem:loc:cat:head:pred:plus) *> (synsem:loc:cat:val:(subj:[Synsem],

comps:List),

arg_st:[Synsem|List]).

(word,

synsem:loc:cat:head:pred:minus) *> (synsem:loc:cat:val:(subj:e_list,

comps:List),

arg_st:List).

% Structural Case Principle

Synsem^(phrase,

daughters:(hdtr:synsem:loc:cat:(head:vform:fin,

val:subj:[Synsem]),

ndtr:synsem:(Synsem,

loc:cat:head:noun)))

*> (daughters:ndtr:synsem:loc:cat:head:case:nom).

(phrase,

daughters:(hc_struc,

ndtr:synsem:loc:cat:head:noun))

*> (daughters:ndtr:synsem:loc:cat:head:case:acc).

306 CHAPTER 6. GRAMMARS

% Functional Preposition Principle

(word,

phon:ne_list,

synsem:loc:cat:head:(prep,

pform:non_lexical))

*>

(synsem:loc:(cat:(head:(mod:none,pred:minus)),

cont:Cont),

arg_st:([(loc:(cat:val:(subj:[],comps:[]),

cont:Cont))])

).

% Subject Principles

(val,subj:ne_list) *> subj:[_].

(head:verb,val:subj:e_list) *> head:vform:fin.

%==

% LEXICON

% NOUNS

peter ~~> (synsem:loc:(cat:head:(noun,

pred:minus),

cont:index:(ref,

num:sg,

pers:third,

gen:masc)),

arg_st:e_list).

mary ~~> (synsem:loc:(cat:head:(noun,

pred:minus),

cont:index:(ref,

num:sg,

pers:third,

gen:fem)),

arg_st:e_list).

6.6. CORE FRAGMENT 307

he ~~> (synsem:loc:(cat:head:(noun,

case:nom,

pred:minus),

cont:index:(ref,

num:sg,

pers:third,

gen:masc)),

arg_st:e_list).

she ~~> (synsem:loc:(cat:head:(noun,

case:nom,

pred:minus),

cont:index:(ref,

num:sg,

pers:third,

gen:fem)),

arg_st:e_list).

it ~~> (synsem:loc:(cat:head:(noun,

pred:minus),

cont:index:(ref,

num:sg,

pers:third,

gen:neut)),

arg_st:e_list).

it ~~> (synsem:loc:(cat:head:(noun,

pred:minus),

cont:index:(it,

num:sg,

pers:third,

gen:neut)),

arg_st:e_list).

him ~~> (synsem:loc:(cat:head:(noun,

case:acc,

pred:minus),

cont:index:(ref,

num:sg,

pers:third,

gen:masc)),

arg_st:e_list).

308 CHAPTER 6. GRAMMARS

her ~~> (synsem:loc:(cat:head:(noun,

case:acc,

pred:minus),

cont:index:(ref,

num:sg,

pers:third,

gen:fem)),

arg_st:e_list).

you ~~> (synsem:loc:(cat:head:(noun,

pred:minus),

cont:index:(ref,

pers:second)),

arg_st:e_list).

they ~~> (synsem:loc:(cat:head:(noun,

case:nom,

pred:minus),

cont:index:(ref,

pers:third,

num:pl)),

arg_st:e_list).

them ~~> (synsem:loc:(cat:head:(noun,

case:acc,

pred:minus),

cont:index:(ref,

pers:third,

num:pl)),

arg_st:e_list).

% VERBS

walk ~~> (synsem:loc:(cat:head:(verb,

vform: base,

pred: plus,

aux: minus),

cont:(walk_rel,

walker:Index)),

arg_st:[(loc:(cat:(head:noun,

6.6. CORE FRAGMENT 309

val:(subj:e_list,

comps:e_list)),

cont:index:Index))]).

walks ~~> (synsem:loc:(cat:(head:(verb,

vform:fin,

pred:plus,

aux:minus),

val:subj:[(loc:cont:(psoa;index:(pers:third,

num:sg)))]),

cont:(walk_rel,

walker:Index)),

arg_st:[(loc:(cat:(head:noun,

val:(subj:e_list,

comps:e_list)),

cont:index:Index))]).

rain ~~> (synsem:loc:(cat:head:(verb,

vform: base,

pred: plus,

aux: minus),

cont:rain_rel),

arg_st:[(loc:(cat:(head:noun,

val:(subj:e_list,

comps:e_list)),

cont:index:it))]).

rains ~~> (synsem:loc:(cat:(head:(verb,

vform:fin,

pred:plus,

aux:minus),

val:subj:[(loc:cont:(psoa;index:(pers:third,

num:sg)))]),

cont:rain_rel),

arg_st:[(loc:(cat:(head:noun,

val:(subj:e_list,

comps:e_list)),

cont:index:it))]).

like ~~> (synsem:loc:(cat:head:(verb,

vform: base,

pred: plus,

310 CHAPTER 6. GRAMMARS

aux: minus),

cont:(like_rel,

liker:Index1,

liked:Index2)),

arg_st:[(loc:(cat:(head:noun,

val:(subj:e_list,

comps:e_list)),

cont:index:Index1)),

(loc:(cat:(head:noun,

val:(subj:e_list,

comps:e_list)),

cont:index:Index2))]).

likes ~~> (synsem:loc:(cat:(head:(verb,

vform: fin,

pred: plus,

aux: minus),

val:subj:[(loc:cont:(psoa;index:(pers:third,

num:sg)))]),

cont:(like_rel,

liker:Index1,

liked:Index2)),

arg_st:[(loc:(cat:(head:noun,

val:(subj:e_list,

comps:e_list)),

cont:index:Index1)),

(loc:(cat:(head:noun,

val:(subj:e_list,

comps:e_list)),

cont:index:Index2))]).

say ~~> (synsem:loc:(cat:head:(verb,

vform: base,

pred: plus,

aux: minus),

cont:(say_rel,

sayer:Index,

said:Psoa)),

arg_st:[(loc:(cat:(head:noun,

val:(subj:e_list,

comps:e_list)),

cont:index:Index)),

6.6. CORE FRAGMENT 311

(loc:(cat:(head:(functional,

vform:fin,

marking:that),

val:(subj:e_list,

comps:e_list)),

cont:Psoa))]).

says ~~> (synsem:loc:(cat:(head:(verb,

vform: fin,

pred: plus,

aux: minus),

val:subj:[(loc:cont:(psoa;index:(pers:third,

num:sg)))]),

cont:(say_rel,

sayer:Index,

said:Psoa)),

arg_st:[(loc:(cat:(head:noun,

val:(subj:e_list,

comps:e_list)),

cont:index:Index)),

(loc:(cat:(head:(functional,

vform:fin,

marking:that),

val:(subj:e_list,

comps:e_list)),

cont:Psoa))]).

give ~~> (synsem:loc:(cat:head:(verb,

vform: base,

pred: plus,

aux: minus),

cont:(give_rel,

giver:Index1,

gift:Index2,

given:Index3)),

arg_st:[(loc:(cat:(head:noun,

val:(subj:e_list,

comps:e_list)),

cont:index:Index1)),

(loc:(cat:(head:noun,

val:(subj:e_list,

comps:e_list)),

cont:index:Index2)),

312 CHAPTER 6. GRAMMARS

(loc:(cat:(head:(prep,

pform:to),

val:(subj:e_list,

comps:e_list)),

cont:index:Index3))]).

gives ~~> (synsem:loc:(cat:(head:(verb,

vform:fin,

pred:plus,

aux:minus),

val:subj:[(loc:cont:(psoa;index:(pers:third,

num:sg)))]),

cont:(give_rel,

giver:Index1,

gift:Index2,

given:Index3)),

arg_st:[(loc:(cat:(head:noun,

val:(subj:e_list,

comps:e_list)),

cont:index:Index1)),

(loc:(cat:(head:noun,

val:(subj:e_list,

comps:e_list)),

cont:index:Index2)),

(loc:(cat:(head:(prep,

pform:to),

val:(subj:e_list,

comps:e_list)),

cont:index:Index3))]).

%%% AUXILIARIES

% LE of will (future auxiliary)

will ~~> (synsem:loc:(cat:head:(verb,

vform:fin,

pred:plus,

aux:plus),

cont:(future_rel,

soa_arg:Cont)),

arg_st:[(Synsem),(loc:(cat:(head:(verb,

6.6. CORE FRAGMENT 313

vform:base),

val:(subj:[(Synsem)],

comps:e_list)),

cont:Cont))]).

% PREPOSITIONS

to ~~> (word, synsem:loc:cat:head:(prep,

pform:to)).

to ~~> (word,

synsem:loc:(cat:head:(prep,

mod:(loc:(cat:(head:verb,

val:(subj:ne_list,

comps:e_list)),

cont:(Cont1))),

pred:minus,

pform:lexical),

cont:(direction_rel,

movement:Cont1,

goal:Cont2)),

arg_st:[(loc:(cat:(head:noun,

val:(subj:e_list,

comps:e_list)),

cont:index:Cont2))]).

% ADVERBS

here ~~> (synsem:loc:(cat:head:(adv,

pred:minus,

mod:loc:(cat:(head:verb,

val:subj:ne_list),

cont:Cont)),

cont:(here_rel,

located:Cont)),

arg_st:[]).

% COMPLEMENTIZERS

that ~~> (synsem:loc:(cat:head:(functional,

314 CHAPTER 6. GRAMMARS

pred:minus,

vform:Vform,

mod:none,

marking:that),

cont:Cont),

arg_st:[(loc:(cat:(head:(verb,

vform:(Vform,fin)),

val:(subj:e_list,

comps:e_list)),

cont:Cont))]).

%==

Download16

6.7 Fragment with Lexical Generalizations

Abstract

This grammar extends the core fragment with a theory of lexical generalizations.
It focuses on the use of lexical rules in grammar implementations.

6.7.1 Signature

Abstract

Note the link to a file with the source code at the bottom of the page.

type_hierarchy

bot

list

ne_list hd:bot tl:list

e_list

sign phon:list synsem:synsem

word arg_st:list

phrase daughters:const_struc dtrs:list

synsem loc:loc nonloc:nonloc

loc cat:cat cont:cont

nonloc

cat head:head val:val

head pred:boolean mod:synsem_none

16http://milca.sfs.uni-tuebingen.de/A4/Course/Grammars/Core-Fragment/theory.pl

http://milca.sfs.uni-tuebingen.de/A4/Course/Grammars/Core-Fragment/theory.pl

6.7. FRAGMENT WITH LEXICAL GENERALIZATIONS 315

func_or_verb vform:vform marking:marking

verb aux:boolean inv:boolean marking:unmarked mod:none

functional marking:marked

noun case:case mod:none

prep pform:pform

adv mod:synsem

val subj:list comps:list

cont

psoa

move_rel

walk_rel walker:index

like_rel liker:ref liked:ref

say_rel sayer:ref said:psoa

give_rel giver:ref gift:ref given:ref

rain_rel

tense_rel soa_arg:psoa

future_rel

perfect_rel

present_rel

past_rel

cont_rel

direction_rel movement:move_rel goal:ref

here_rel located:psoa

nom_obj index:index

index pers:pers num:num gen:gen

ref

nonref

it

there

const_struc hdtr:sign ndtr:sign

hs_struc

hc_struc

ha_struc

sai_struc

vform

fin

inf

pas

psp

prp

base

case

nom

316 CHAPTER 6. GRAMMARS

acc

pform

lexical

non_lexical

by

to

marking

unmarked

marked

that

for

boolean

plus

minus

pers

first

second

third

num

sg

pl

gen

masc

fem

neut

synsem_none

none

&synsem

.

Download17

6.7.2 Theory

Abstract

Note the link to a file with the source code at the bottom of the page.

% Multifile declarations.

%:- multifile ’##’/2.

%:- multifile ’*>’/2.

%:- multifile ’~~>’/2.

17http://milca.sfs.uni-tuebingen.de/A4/Course/Grammars/Fragment-with-Lex-Gens/signature

http://milca.sfs.uni-tuebingen.de/A4/Course/Grammars/Fragment-with-Lex-Gens/signature

6.7. FRAGMENT WITH LEXICAL GENERALIZATIONS 317

:- multifile if/2.

% load phonology and tree output

:- [trale_home(tree_extensions)].

% specify signature file

signature(signature).

% grisu output specifications

hidden_feat(dtrs). % shown by the tree

hidden_feat(daughters). % shown by the tree

synsem <<< arg_st.

vform <<< aux.

vform <<< inv.

subj <<< comps.

liker <<< liked.

sayer <<< said.

giver <<< gift.

gift <<< given.

>>> phon.

%==

% Simulation of Parametric Sorts as Principles of Grammar

fun list_of_synsems(-).

list_of_synsems(X) if

when((X=(e_list;ne_list)),

und_list_of_synsems(X)).

und_list_of_synsems(X) if (X=e_list).

und_list_of_synsems(X) if (X=[(synsem)|Y]),list_of_synsems(Y).

% subj:list(synsem)

% comps:ist(synsem)

val *> (subj:list_of_synsems,

comps:list_of_synsems).

318 CHAPTER 6. GRAMMARS

% arg_st:list(synsem)

word *> arg_st:list_of_synsems.

%==

% Phrase Structure Rules, encoding the ID-Principle and the

% Constituent Order Principle and

% Subcategorization Principle

% Head Subject Rule

head_subject_rule ##

(phrase,

synsem:loc:cat:val:(subj:e_list,

comps:e_list),

daughters:(hs_struc,

hdtr:Hdtr,

ndtr:Ndtr))

===>

cat> (Ndtr, synsem:Synsem),

cat> (Hdtr, synsem:loc:cat:val:(subj:[Synsem],

comps:e_list)).

% Head Complement Rule

head_complement_rule ##

(phrase,

synsem:(loc:cat:val:(subj:Subj,

comps:List)),

daughters:(hc_struc,

hdtr:Hdtr,

ndtr:Ndtr))

===>

cat> (Hdtr, synsem:loc:cat:val:(subj:Subj,

comps:[Synsem|List])),

cat> (Ndtr, synsem:Synsem).

% Head Adjunct Rule

6.7. FRAGMENT WITH LEXICAL GENERALIZATIONS 319

head_adjunct_rule ##

(phrase,

synsem:loc:cat:val:(subj:List,

comps:e_list),

daughters:(ha_struc,

hdtr:Hdtr,

ndtr:Ndtr))

===>

cat> (Hdtr, synsem:(Synsem,

loc:cat:val:(subj:List,

comps:e_list))),

cat> (Ndtr, synsem:loc:cat:(head:mod:Synsem,

val:(subj:e_list,

comps:e_list))). % added

% Subject Aux Inversion Rule

subject_aux_inversion_rule ##

(phrase,

synsem:(loc:cat:val:(subj:e_list,

comps:List)),

daughters:(sai_struc,

hdtr:Hdtr,

ndtr:Ndtr))

===>

cat> (Hdtr, word,

synsem:loc:cat:(head:inv:plus,

val:(subj:[Synsem],

comps:List))),

cat> (Ndtr, synsem:Synsem).

%==

% PRINCIPLES

% Head Feature Principle

phrase *> (synsem:loc:cat:head:Head,

daughters:hdtr:synsem:loc:cat:head:Head).

% Semantics Principle

320 CHAPTER 6. GRAMMARS

phrase *> ((synsem:loc:cont:Content,

daughters:((hs_struc;hc_struc;sai_struc),

hdtr:synsem:loc:cont:Content);

(synsem:loc:cont:Content,

daughters:(ha_struc,

ndtr:synsem:loc:cont:Content)))).

% INV Principle

(synsem:loc:cat:head:inv:plus) *> (synsem:loc:cat:head:(vform:fin,

aux:plus)).

% MOD Principle

(phrase,

daughters:(hs_struc;hc_struc;sai_struc))

*> daughters:ndtr:synsem:loc:cat:head:mod:none.

% Argument Realization Principle

(word,

synsem:loc:cat:head:pred:plus) *> (synsem:loc:cat:val:(subj:[Synsem],

comps:List),

arg_st:[Synsem|List]).

(word,

synsem:loc:cat:head:pred:minus) *> (synsem:loc:cat:val:(subj:e_list,

comps:List),

arg_st:List).

% Structural Case Principle

Synsem^(phrase,

daughters:(hdtr:synsem:loc:cat:(head:vform:fin,

val:subj:[Synsem]),

ndtr:synsem:(Synsem,

loc:cat:head:noun)))

*> (daughters:ndtr:synsem:loc:cat:head:case:nom).

(phrase,

daughters:(hc_struc,

6.7. FRAGMENT WITH LEXICAL GENERALIZATIONS 321

ndtr:synsem:loc:cat:head:noun))

*> (daughters:ndtr:synsem:loc:cat:head:case:acc).

% Functional Preposition Principle

(word,

phon:ne_list,

synsem:loc:cat:head:(prep,

pform:non_lexical))

*>

(synsem:loc:(cat:(head:(mod:none,pred:minus)),

cont:Cont),

arg_st:([(loc:(cat:val:(subj:[],comps:[]),

cont:Cont))])

).

% Subject Principles

(val,subj:ne_list) *> subj:[_].

(head:verb,val:subj:e_list) *> head:vform:fin.

%==

% LEXICON

% NOUNS

peter ~~> (synsem:loc:(cat:head:(noun,

pred:minus),

cont:index:(ref,

num:sg,

pers:third,

gen:masc)),

arg_st:e_list).

mary ~~> (synsem:loc:(cat:head:(noun,

pred:minus),

cont:index:(ref,

num:sg,

pers:third,

322 CHAPTER 6. GRAMMARS

gen:fem)),

arg_st:e_list).

he ~~> (synsem:loc:(cat:head:(noun,

case:nom,

pred:minus),

cont:index:(ref,

num:sg,

pers:third,

gen:masc)),

arg_st:e_list).

she ~~> (synsem:loc:(cat:head:(noun,

case:nom,

pred:minus),

cont:index:(ref,

num:sg,

pers:third,

gen:fem)),

arg_st:e_list).

it ~~> (synsem:loc:(cat:head:(noun,

pred:minus),

cont:index:(ref,

num:sg,

pers:third,

gen:neut)),

arg_st:e_list).

it ~~> (synsem:loc:(cat:head:(noun,

pred:minus),

cont:index:(it,

num:sg,

pers:third,

gen:neut)),

arg_st:e_list).

him ~~> (synsem:loc:(cat:head:(noun,

case:acc,

pred:minus),

cont:index:(ref,

num:sg,

pers:third,

6.7. FRAGMENT WITH LEXICAL GENERALIZATIONS 323

gen:masc)),

arg_st:e_list).

her ~~> (synsem:loc:(cat:head:(noun,

case:acc,

pred:minus),

cont:index:(ref,

num:sg,

pers:third,

gen:fem)),

arg_st:e_list).

you ~~> (synsem:loc:(cat:head:(noun,

pred:minus),

cont:index:(ref,

pers:second)),

arg_st:e_list).

they ~~> (synsem:loc:(cat:head:(noun,

case:nom,

pred:minus),

cont:index:(ref,

pers:third,

num:pl)),

arg_st:e_list).

them ~~> (synsem:loc:(cat:head:(noun,

case:acc,

pred:minus),

cont:index:(ref,

pers:third,

num:pl)),

arg_st:e_list).

% VERBS

walk ~~> (synsem:loc:(cat:head:(verb,

vform: base,

pred: plus,

aux: minus),

cont:(walk_rel,

324 CHAPTER 6. GRAMMARS

walker:Index)),

arg_st:[(loc:(cat:(head:noun,

val:(subj:e_list,

comps:e_list)),

cont:index:Index))]).

rain ~~> (synsem:loc:(cat:head:(verb,

vform: base,

pred: plus,

aux: minus),

cont:rain_rel),

arg_st:[(loc:(cat:(head:noun,

val:(subj:e_list,

comps:e_list)),

cont:index:it))]).

like ~~> (synsem:loc:(cat:head:(verb,

vform: base,

pred: plus,

aux: minus),

cont:(like_rel,

liker:Index1,

liked:Index2)),

arg_st:[(loc:(cat:(head:noun,

val:(subj:e_list,

comps:e_list)),

cont:index:Index1)),

(loc:(cat:(head:noun,

val:(subj:e_list,

comps:e_list)),

cont:index:Index2))]).

say ~~> (synsem:loc:(cat:head:(verb,

vform: base,

pred: plus,

aux: minus),

cont:(say_rel,

sayer:Index,

said:Psoa)),

arg_st:[(loc:(cat:(head:noun,

val:(subj:e_list,

6.7. FRAGMENT WITH LEXICAL GENERALIZATIONS 325

comps:e_list)),

cont:index:Index)),

(loc:(cat:(head:(functional,

vform:fin,

marking:that),

val:(subj:e_list,

comps:e_list)),

cont:Psoa))]).

give ~~> (synsem:loc:(cat:head:(verb,

vform: base,

pred: plus,

aux: minus),

cont:(give_rel,

giver:Index1,

gift:Index2,

given:Index3)),

arg_st:[(loc:(cat:(head:noun,

val:(subj:e_list,

comps:e_list)),

cont:index:Index1)),

(loc:(cat:(head:noun,

val:(subj:e_list,

comps:e_list)),

cont:index:Index2)),

(loc:(cat:(head:(prep,

pform:to),

val:(subj:e_list,

comps:e_list)),

cont:index:Index3))]).

%%% AUXILIARIES

% LE of is (passive auxiliary)

be ~~> (synsem:loc:(cat:head:(verb,

vform:base,

pred:plus,

aux:plus),

cont:Cont),

arg_st:[(Synsem),(loc:(cat:(head:(verb,

326 CHAPTER 6. GRAMMARS

vform:pas),

val:(subj:[(Synsem)],

comps:e_list)),

cont:Cont))]).

% LE of will (future auxiliary)

will ~~> (synsem:loc:(cat:head:(verb,

vform:fin,

pred:plus,

aux:plus),

cont:(future_rel,

soa_arg:Cont)),

arg_st:[(Synsem),(loc:(cat:(head:(verb,

vform:base),

val:(subj:[(Synsem)],

comps:e_list)),

cont:Cont))]).

have ~~> (synsem:loc:(cat:head:(verb,

vform:base,

pred:plus,

aux:plus),

cont:Cont),

arg_st:[(Synsem),(loc:(cat:(head:(verb,

vform:psp),

val:(subj:[(Synsem)],

comps:e_list)),

cont:Cont))]).

be ~~> (synsem:loc:(cat:head:(verb,

vform:base,

pred:plus,

aux:plus),

cont:Cont),

arg_st:[(Synsem),(loc:(cat:(head:(verb,

vform:prp),

val:(subj:[(Synsem)],

comps:e_list)),

cont:Cont))]).

6.7. FRAGMENT WITH LEXICAL GENERALIZATIONS 327

% PREPOSITIONS

by ~~> (word, synsem:loc:cat:head:(prep,

pform:by)).

to ~~> (word, synsem:loc:cat:head:(prep,

pform:to)).

to ~~> (word,

synsem:loc:(cat:head:(prep,

mod:(loc:(cat:(head:verb,

val:(subj:ne_list,

comps:e_list)),

cont:(Cont1))),

pred:minus,

pform:lexical),

cont:search_rel(Cont2,Cont1)),

arg_st:[(loc:(cat:(head:noun,

val:(subj:e_list,

comps:e_list)),

cont:index:Cont2))]).

fun search_rel(+,+,-).

search_rel(C,X,Y) if

when((X=(move_rel;tense_rel;like_rel;say_rel;give_rel;rain_rel;

direction_rel;here_rel)),

(und_search_rel(C,(X,(move_rel;tense_rel)),Y);fail)).

und_search_rel(C,X,Y) if (X=move_rel),(Y=(direction_rel,

movement:X,

goal:C)).

und_search_rel(C,X,Y) if (X=(future_rel,

soa_arg:Cont)),(Y=(future_rel,

soa_arg:search_rel(C,Cont))).

und_search_rel(C,X,Y) if (X=(perfect_rel,

soa_arg:Cont)),(Y=(perfect_rel,

soa_arg:search_rel(C,Cont))).

und_search_rel(C,X,Y) if (X=(present_rel,

soa_arg:Cont)),(Y=(present_rel,

soa_arg:search_rel(C,Cont))).

und_search_rel(C,X,Y) if (X=(past_rel,

328 CHAPTER 6. GRAMMARS

soa_arg:Cont)),(Y=(past_rel,

soa_arg:search_rel(C,Cont))).

und_search_rel(C,X,Y) if (X=(cont_rel,

soa_arg:Cont)),(Y=(cont_rel,

soa_arg:search_rel(C,Cont))).

% ADVERBS

here ~~> (synsem:loc:(cat:head:(adv,

pred:minus,

mod:loc:(cat:(head:verb,

val:subj:ne_list),

cont:Cont)),

cont:(here_rel,

located:Cont)),

arg_st:[]).

% COMPLEMENTIZERS

that ~~> (synsem:loc:(cat:head:(functional,

pred:minus,

vform:Vform,

mod:none,

marking:that),

cont:Cont),

arg_st:[(loc:(cat:(head:(verb,

vform:(Vform,fin)),

val:(subj:e_list,

comps:e_list)),

cont:Cont))]).

%==

% Lexical Rules

% PSP Lexical Rule

psp_lex_rule ##

(word,

synsem:loc:(cat:head:(vform:base,

6.7. FRAGMENT WITH LEXICAL GENERALIZATIONS 329

aux:Aux,

pred:Pred),

cont:Cont),

arg_st:Arg)

**>

(synsem:loc:(cat:head:(vform:psp,

aux:Aux,

pred:Pred),

cont:(perfect_rel,

soa_arg:Cont)),

arg_st:Arg)

morphs

be becomes been,

give becomes given,

have becomes had,

say becomes said,

(X,[e]) becomes (X,ed),

X becomes (X,ed).

% Present Participle Lexical Rule

prp_lex_rule ##

(word,

synsem:loc:(cat:head:(vform:base,

aux:Aux,

pred:Pred),

cont:Cont),

arg_st:Arg)

**>

(synsem:loc:(cat:head:(vform:prp,

aux:Aux,

pred:Pred),

cont:(cont_rel,

soa_arg:Cont)),

arg_st:Arg)

morphs

be becomes being,

(X,[e]) becomes (X,ing),

X becomes (X,ing).

% Passive Lexical Rule

330 CHAPTER 6. GRAMMARS

passive_lex_rule ##

(word,

synsem:(loc:(cat:head:(verb,

vform:psp,

aux:(Aux,minus), % no passive of auxiliaries

inv:Inv,

pred:Pred),

cont:soa_arg:Cont),

nonloc:Nonloc),

arg_st:[(loc:(cat:(head:noun,

val:(subj:e_list,

comps:e_list)),

cont:Cont2)),

Synsem1|

List])

**>

(word,

synsem:(loc:(cat:head:(verb,

vform:pas,

aux:Aux,

inv:Inv,

pred:Pred),

cont:Cont),

nonloc:Nonloc),

arg_st:([Synsem1|List];Result))

if append(([Synsem1|List]),[(loc:(cat:(head:(prep,

pform:by),

val:(subj:e_list,

comps:e_list)),

cont:Cont2))],Result)

morphs

X becomes X.

append(X,Y,Z) if

when((X=(e_list;ne_list)

; Y=e_list

; Z=(e_list;ne_list)

),

undelayed_append(X,Y,Z)).

undelayed_append(L,[],L) if true.

undelayed_append([],(L,ne_list),L) if true.

6.7. FRAGMENT WITH LEXICAL GENERALIZATIONS 331

undelayed_append([H|T1],(L,ne_list),[H|T2]) if

append(T1,L,T2).

% 3rd_sing_fin_lex_rule

third_sing_fin_lex_rule ##

(word,

synsem:loc:(cat:head:(vform:base,

aux:Aux,

pred:Pred),

cont:Cont),

arg_st:Arg)

**>

(synsem:loc:(cat:(head:(vform:fin,

aux:Aux,

pred:Pred),

val:subj:[(loc:cont:(psoa;index:(pers:third,

num:sg)))]),

cont:(present_rel,

soa_arg:Cont)),

arg_st:Arg)

morphs

be becomes is,

have becomes has,

X becomes (X,s).

% non_3rd_sing_fin_lex_rule

non_third_sing_fin_lex_rule ##

(word,

synsem:loc:(cat:head:(vform:base,

aux:Aux,

pred:Pred),

cont:Cont),

arg_st:Arg)

**>

(synsem:loc:(cat:(head:(vform:fin,

aux:Aux,

pred:Pred),

val:subj:[(loc:cont:index:(num:pl;

(pers:(first;second),

num:sg)))]),

332 CHAPTER 6. GRAMMARS

cont:(present_rel,

soa_arg:Cont)),

arg_st:Arg)

morphs

be becomes are,

X becomes X.

% past_lex_rule no1

non_third__first_sing_past_lex_rule ##

(word,

synsem:loc:(cat:head:(vform:base,

aux:Aux,

pred:Pred),

cont:Cont),

arg_st:Arg)

**>

(synsem:loc:(cat:(head:(vform:fin,

aux:Aux,

pred:Pred),

val:subj:[(loc:cont:index:(num:pl;

(pers:second,

num:sg)))]),

cont:(past_rel,

soa_arg:Cont)),

arg_st:Arg)

morphs

be becomes were,

give becomes gave,

have becomes had,

say becomes said,

(X,[e]) becomes (X,ed),

X becomes (X,ed).

% past_lex_rule no2

third__first_sing_past_lex_rule ##

(word,

synsem:loc:(cat:head:(vform:base,

aux:Aux,

pred:Pred),

6.8. UDC GRAMMAR 333

cont:Cont),

arg_st:Arg)

**>

(synsem:loc:(cat:(head:(vform:fin,

aux:Aux,

pred:Pred),

val:subj:[(loc:cont:(psoa;index:(pers:(first;third),

num:sg)))]),

cont:(past_rel,

soa_arg:Cont)),

arg_st:Arg)

morphs

be becomes was,

give becomes gave,

have becomes had,

say becomes said,

(X,[e]) becomes (X,ed),

X becomes (X,ed).

%==

Download18

6.8 UDC Grammar

Abstract

With unbounded dependency constructions, a theory of a well-researched but
very difficult empirical phenomenon is added to our small grammar of English.
The present grammar is particularly good for investigating the tensions be-
tween the logical specification of an HPSG grammar and computational needs of
grammar implementation. The grammar serves for investigating the meaning-
preserving reformulations which are necessary to achieve an implementation
true to the original specification of a complex theory of grammar.

6.8.1 Signature

Abstract

Note the link to a file with the source code at the bottom of the page.

18http://milca.sfs.uni-tuebingen.de/A4/Course/Grammars/Fragment-with-Lex-Gens/theory.pl

http://milca.sfs.uni-tuebingen.de/A4/Course/Grammars/Fragment-with-Lex-Gens/theory.pl

334 CHAPTER 6. GRAMMARS

type_hierarchy

bot

list

ne_list hd:bot tl:list

e_list

sign phon:list synsem:synsem

word arg_st:list

phrase daughters:const_struc dtrs:list

synsem loc:loc nonloc:nonloc

loc cat:cat cont:cont

nonloc inherited:list to_bind:list

cat head:head val:val

head pred:boolean mod:synsem_none

func_or_verb vform:vform marking:marking

verb aux:boolean inv:boolean marking:unmarked mod:none

functional marking:marked

noun case:case mod:none

prep pform:pform

adv mod:synsem

val subj:list comps:list

cont

psoa

move_rel

walk_rel walker:index

like_rel liker:ref liked:ref

say_rel sayer:ref said:psoa

give_rel giver:ref gift:ref given:ref

rain_rel

tense_rel soa_arg:psoa

future_rel

perfect_rel

present_rel

past_rel

cont_rel

direction_rel movement:move_rel goal:ref

here_rel located:psoa

nom_obj index:index

index pers:pers num:num gen:gen

ref

nonref

it

there

const_struc hdtr:sign ndtr:sign

6.8. UDC GRAMMAR 335

hs_struc

hc_struc

ha_struc

hf_struc

sai_struc

vform

fin

inf

pas

psp

prp

base

case

nom

acc

pform

lexical

non_lexical

by

to

marking

unmarked

marked

that

for

boolean

plus

minus

pers

first

second

third

num

sg

pl

gen

masc

fem

neut

synsem_none

none

&synsem

.

336 CHAPTER 6. GRAMMARS

Download19

6.8.2 Theory

Abstract

Note the link to a file with the source code at the bottom of the page.

% Multifile declarations.

:- multifile if/2.

% load phonology and tree output

:- [trale_home(tree_extensions)].

% specify signature file

signature(signature).

% grisu output specifications

hidden_feat(dtrs). % shown by the tree

hidden_feat(daughters). % shown by the tree

synsem <<< arg_st.

vform <<< aux.

vform <<< inv.

subj <<< comps.

liker <<< liked.

sayer <<< said.

giver <<< gift.

gift <<< given.

>>> phon.

%==

% Simulation of Parametric Sorts as Principles of Grammar

fun list_of_synsems(-).

list_of_synsems(X) if

when((X=(e_list;ne_list)),

und_list_of_synsems(X)).

19http://milca.sfs.uni-tuebingen.de/A4/Course/Grammars/UDC-Grammatik/signature

http://milca.sfs.uni-tuebingen.de/A4/Course/Grammars/UDC-Grammatik/signature

6.8. UDC GRAMMAR 337

und_list_of_synsems(X) if (X=e_list).

und_list_of_synsems(X) if (X=[(synsem)|Y]),list_of_synsems(Y).

% subj:list(synsem)

% comps:ist(synsem)

val *> (subj:list_of_synsems,

comps:list_of_synsems).

% arg_st:list(synsem)

word *> arg_st:list_of_synsems.

fun list_of_locs(-).

list_of_locs(X) if

when((X=(e_list;ne_list)),

und_list_of_locs(X)).

und_list_of_locs(X) if (X=e_list).

und_list_of_locs(X) if (X=[(loc)|Y]),list_of_locs(Y).

% inherited:list(loc)

% to_bind:list(loc)

nonloc *> (inherited:list_of_locs,

to_bind:list_of_locs).

%==

% Phrase Structure Rules, encoding the ID-Principle and the

% Constituent Order Principle and

% Subcategorization Principle

% Head Subject Rule

head_subject_rule ##

(phrase,

synsem:loc:cat:val:(subj:e_list,

comps:e_list),

338 CHAPTER 6. GRAMMARS

daughters:(hs_struc,

hdtr:Hdtr,

ndtr:Ndtr))

===>

cat> (Ndtr, synsem:Synsem),

cat> (Hdtr, synsem:loc:cat:val:(subj:[Synsem],

comps:e_list)).

% Head Complement Rule

head_complement_rule ##

(phrase,

synsem:(loc:cat:val:(subj:Subj,

comps:List)),

daughters:(hc_struc,

hdtr:Hdtr,

ndtr:Ndtr))

===>

cat> (Hdtr, synsem:loc:cat:val:(subj:Subj,

comps:[Synsem|List])),

cat> (Ndtr, synsem:Synsem).

% Head Adjunct Rule

head_adjunct_rule ##

(phrase,

synsem:loc:cat:val:(subj:List,

comps:e_list),

daughters:(ha_struc,

hdtr:Hdtr,

ndtr:Ndtr))

===>

cat> (Hdtr, synsem:(Synsem,

loc:cat:val:(subj:List,

comps:e_list))),

cat> (Ndtr, synsem:loc:cat:(head:mod:Synsem,

val:(subj:e_list,

comps:e_list))). % added

% Subject Aux Inversion Rule

6.8. UDC GRAMMAR 339

subject_aux_inversion_rule ##

(phrase,

synsem:(loc:cat:val:(subj:e_list,

comps:List)),

daughters:(sai_struc,

hdtr:Hdtr,

ndtr:Ndtr))

===>

cat> (Hdtr, word,

synsem:loc:cat:(head:inv:plus,

val:(subj:[Synsem],

comps:List))),

cat> (Ndtr, synsem:Synsem).

% Head Filler Rule

head_filler_rule ##

(phrase,

synsem:loc:cat:val:Val,

daughters:(hf_struc,

hdtr:Hdtr,

ndtr:Ndtr))

===>

cat> (Ndtr, phon:ne_list,

synsem:(loc:Local,

nonloc:inherited:e_list)),

cat> (Hdtr, synsem:(loc:cat:(head:(verb,

vform:fin),

val:(Val,(subj:e_list,

comps:e_list))),

nonloc:(to_bind:[Local],

inherited:List))),

goal> our_member(Local,List).

% functional definition of our-member for the Subject Condition

fun our_member(+,-).

our_member(Hd,[Hd|_]) if true.

our_member(Hd,[_|Tl]) if our_member(Hd,Tl).

340 CHAPTER 6. GRAMMARS

%==

% PRINCIPLES

% Head Feature Principle

phrase *> (synsem:loc:cat:head:Head,

daughters:hdtr:synsem:loc:cat:head:Head).

% Semantics Principle

phrase *> ((synsem:loc:cont:Content,

daughters:((hs_struc;hc_struc;hf_struc;sai_struc),

hdtr:synsem:loc:cont:Content);

(synsem:loc:cont:Content,

daughters:(ha_struc,

ndtr:synsem:loc:cont:Content)))).

% INV Principle

(synsem:loc:cat:head:inv:plus) *> (synsem:loc:cat:head:(vform:fin,

aux:plus)).

% MOD Principle

(phrase,

daughters:(hs_struc;hc_struc;sai_struc;hf_struc))

*> daughters:ndtr:synsem:loc:cat:head:mod:none.

% Argument Realization Principle

(word,

synsem:loc:cat:head:pred:plus) *> (synsem:loc:cat:val:(subj:[Synsem],

comps:List),

arg_st:[Synsem|List]).

(word,

synsem:loc:cat:head:pred:minus) *> (synsem:loc:cat:val:(subj:e_list,

comps:List),

arg_st:List).

6.8. UDC GRAMMAR 341

% Structural Case Principle

Synsem^(phrase,

daughters:(hdtr:synsem:loc:cat:(head:vform:fin,

val:subj:[Synsem]),

ndtr:synsem:(Synsem,

loc:cat:head:noun)))

*> (daughters:ndtr:synsem:loc:cat:head:case:nom).

(phrase,

daughters:(hc_struc,

ndtr:synsem:loc:cat:head:noun))

*> (daughters:ndtr:synsem:loc:cat:head:case:acc).

% Functional Preposition Principle

(word,

phon:ne_list,

synsem:loc:cat:head:(prep,

pform:non_lexical))

*>

(synsem:loc:(cat:(head:(mod:none,pred:minus)),

cont:Cont),

arg_st:([(loc:(cat:val:(subj:[],comps:[]),

cont:Cont))])

).

% Subject Principles

(val,subj:ne_list) *> subj:[_].

(head:verb,val:subj:e_list) *> head:vform:fin.

% The Nonlocal Feature Principle

phrase *>

(synsem:nonloc:inherited:Result,

daughters:(hdtr:synsem:nonloc:(inherited:List1,

to_bind:Subtrac),

342 CHAPTER 6. GRAMMARS

ndtr:synsem:nonloc:inherited:List2))

goal

nfp(List1,List2,Subtrac,Result).

nfp(List1,List2,[],Result) if append(List1,List2,Result).

nfp(L1,L2,([Ele]),Result) if (append(L1,L2,L3),select(Ele,L3,Result)).

append(X,Y,Z) if

when((X=(e_list;ne_list)

; Y=e_list

; Z=(e_list;ne_list)

),

undelayed_append(X,Y,Z)).

undelayed_append(L,[],L) if true.

undelayed_append([],(L,ne_list),L) if true.

undelayed_append([H|T1],(L,ne_list),[H|T2]) if

append(T1,L,T2).

select(Ele,L1,L2) if

when((L1=(e_list;ne_list)

),

und_select(Ele,L1,L2)).

und_select(Ele,[Ele|Tl],Tl) if true.

und_select(Ele,[Hd|Tl1],[Hd|Tl2]) if select(Ele,Tl1,Tl2).

% Phrasal to-bind Principle

(phrase,

daughters:hdtr:(phrase,

synsem:nonloc:to_bind:ne_list))

*> (daughters:hf_struc).

(phrase,daughters:(hs_struc;hc_struc;sai_struc;ha_struc))

*> daughters:hdtr:synsem:nonloc:to_bind:e_list.

% Structural Trace Principle

% Clause (1)

6.8. UDC GRAMMAR 343

(daughters:ndtr:phon:e_list) *>

(synsem:(nonloc:to_bind:e_list, % no vacuous movement

loc:cat:head:(verb;noun;prep;adv)), % not functional

daughters: (hs_struc;hc_struc;sai_struc)). % follows already independently

% from the implementation

% Clause (2) and (3)

% The effect clauses (2) and (3) logically follows from the more specific

% lexical entry of traces in the implementation (see below): This grammar

% only contains nominal and prepositional traces. Moreover, they are

% syntactically saturated. This is equivalent to restricting a more

% general entry of a trace by a principle and to forbidding the extraction

% of head daughters.

% Subject Condition

(word,

synsem:loc:cat:head:pred:plus,

arg_st:hd:nonloc:inherited:ne_list) *>

((arg_st:[(loc:Loc,

nonloc:inherited:[Loc])|_]);

(arg_st:[_|our_member((nonloc:inherited:ne_list))])).

%==

% LEXICON

% NOUNS

peter ~~> (synsem:(loc:(cat:head:(noun,

pred:minus),

cont:index:(ref,

num:sg,

pers:third,

gen:masc)),

nonloc:(inherited:e_list,

to_bind:e_list)),

arg_st:e_list).

mary ~~> (synsem:(loc:(cat:head:(noun,

pred:minus),

344 CHAPTER 6. GRAMMARS

cont:index:(ref,

num:sg,

pers:third,

gen:fem)),

nonloc:(inherited:e_list,

to_bind:e_list)),

arg_st:e_list).

he ~~> (synsem:(loc:(cat:head:(noun,

case:nom,

pred:minus),

cont:index:(ref,

num:sg,

pers:third,

gen:masc)),

nonloc:(inherited:e_list,

to_bind:e_list)),

arg_st:e_list).

she ~~> (synsem:(loc:(cat:head:(noun,

case:nom,

pred:minus),

cont:index:(ref,

num:sg,

pers:third,

gen:fem)),

nonloc:(inherited:e_list,

to_bind:e_list)),

arg_st:e_list).

it ~~> (synsem:(loc:(cat:head:(noun,

pred:minus),

cont:index:(ref,

num:sg,

pers:third,

gen:neut)),

nonloc:(inherited:e_list,

to_bind:e_list)),

arg_st:e_list).

it ~~> (synsem:(loc:(cat:head:(noun,

pred:minus),

cont:index:(it,

6.8. UDC GRAMMAR 345

num:sg,

pers:third,

gen:neut)),

nonloc:(inherited:e_list,

to_bind:e_list)),

arg_st:e_list).

him ~~> (synsem:(loc:(cat:head:(noun,

case:acc,

pred:minus),

cont:index:(ref,

num:sg,

pers:third,

gen:masc)),

nonloc:(inherited:e_list,

to_bind:e_list)),

arg_st:e_list).

her ~~> (synsem:(loc:(cat:head:(noun,

case:acc,

pred:minus),

cont:index:(ref,

num:sg,

pers:third,

gen:fem)),

nonloc:(inherited:e_list,

to_bind:e_list)),

arg_st:e_list).

you ~~> (synsem:(loc:(cat:head:(noun,

pred:minus),

cont:index:(ref,

pers:second)),

nonloc:(inherited:e_list,

to_bind:e_list)),

arg_st:e_list).

they ~~> (synsem:(loc:(cat:head:(noun,

case:nom,

pred:minus),

cont:index:(ref,

pers:third,

num:pl)),

346 CHAPTER 6. GRAMMARS

nonloc:(inherited:e_list,

to_bind:e_list)),

arg_st:e_list).

them ~~> (synsem:(loc:(cat:head:(noun,

case:acc,

pred:minus),

cont:index:(ref,

pers:third,

num:pl)),

nonloc:(inherited:e_list,

to_bind:e_list)),

arg_st:e_list).

empty word,

phon:e_list,

synsem:(loc:(Local,

cat:head:(noun,

pred:minus)),

nonloc:(inherited:[Local],

to_bind:e_list)),

arg_st:e_list. % the specification arg_st:e_list excludes

% heads in nominal phrases from being

% extracted because it entails that the

% extracted element is fully saturated

% VERBS

walk ~~> (synsem:(loc:(cat:head:(verb,

vform: base,

pred: plus,

aux: minus),

cont:(walk_rel,

walker:Index)),

nonloc:(inherited:e_list,

to_bind:e_list)),

arg_st:[(loc:(cat:(head:noun,

val:(subj:e_list,

comps:e_list)),

cont:index:Index))]).

6.8. UDC GRAMMAR 347

rain ~~> (synsem:(loc:(cat:head:(verb,

vform: base,

pred: plus,

aux: minus),

cont:rain_rel),

nonloc:(inherited:e_list,

to_bind:e_list)),

arg_st:[(loc:(cat:(head:noun,

val:(subj:e_list,

comps:e_list)),

cont:index:it))]).

like ~~> (synsem:(loc:(cat:head:(verb,

vform: base,

pred: plus,

aux: minus),

cont:(like_rel,

liker:Index1,

liked:Index2)),

nonloc:(inherited:e_list,

to_bind:e_list)),

arg_st:[(loc:(cat:(head:noun,

val:(subj:e_list,

comps:e_list)),

cont:index:Index1)),

(loc:(cat:(head:noun,

val:(subj:e_list,

comps:e_list)),

cont:index:Index2))]).

say ~~> (synsem:(loc:(cat:head:(verb,

vform: base,

pred: plus,

aux: minus),

cont:(say_rel,

sayer:Index,

said:Psoa)),

nonloc:(inherited:e_list,

to_bind:e_list)),

arg_st:[(loc:(cat:(head:noun,

val:(subj:e_list,

comps:e_list)),

348 CHAPTER 6. GRAMMARS

cont:index:Index)),

(loc:(cat:(head:(functional,

vform:fin,

marking:that),

val:(subj:e_list,

comps:e_list)),

cont:Psoa))]).

give ~~> (synsem:(loc:(cat:head:(verb,

vform: base,

pred: plus,

aux: minus),

cont:(give_rel,

giver:Index1,

gift:Index2,

given:Index3)),

nonloc:(inherited:e_list,

to_bind:e_list)),

arg_st:[(loc:(cat:(head:noun,

val:(subj:e_list,

comps:e_list)),

cont:index:Index1)),

(loc:(cat:(head:noun,

val:(subj:e_list,

comps:e_list)),

cont:index:Index2)),

(loc:(cat:(head:(prep,

pform:to),

val:(subj:e_list,

comps:e_list)),

cont:index:Index3))]).

%%% AUXILIARIES

% LE of is (passive auxiliary)

be ~~> (synsem:(loc:(cat:head:(verb,

vform:base,

pred:plus,

aux:plus),

cont:Cont),

6.8. UDC GRAMMAR 349

nonloc:(inherited:e_list,

to_bind:e_list)),

arg_st:[(Synsem),(loc:(cat:(head:(verb,

vform:pas),

val:(subj:[(Synsem)],

comps:e_list)),

cont:Cont))]).

% LE of will (future auxiliary)

will ~~> (synsem:(loc:(cat:head:(verb,

vform:fin,

pred:plus,

aux:plus),

cont:(future_rel,

soa_arg:Cont)),

nonloc:(inherited:e_list,

to_bind:e_list)),

arg_st:[(Synsem),(loc:(cat:(head:(verb,

vform:base),

val:(subj:[(Synsem)],

comps:e_list)),

cont:Cont))]).

have ~~> (synsem:(loc:(cat:head:(verb,

vform:base,

pred:plus,

aux:plus),

cont:Cont),

nonloc:(inherited:e_list,

to_bind:e_list)),

arg_st:[(Synsem),(loc:(cat:(head:(verb,

vform:psp),

val:(subj:[(Synsem)],

comps:e_list)),

cont:Cont))]).

be ~~> (synsem:(loc:(cat:head:(verb,

vform:base,

pred:plus,

aux:plus),

cont:Cont),

350 CHAPTER 6. GRAMMARS

nonloc:(inherited:e_list,

to_bind:e_list)),

arg_st:[(Synsem),(loc:(cat:(head:(verb,

vform:prp),

val:(subj:[(Synsem)],

comps:e_list)),

cont:Cont))]).

% PREPOSITIONS

by ~~> (word, synsem:(loc:cat:head:(prep,

pform:by),

nonloc:(inherited:[],

to_bind:[]))).

to ~~> (word, synsem:(loc:cat:head:(prep,

pform:to),

nonloc:(inherited:[],

to_bind:[]))).

to ~~> (word,

synsem:(loc:(cat:head:(prep,

mod:(loc:(cat:(head:verb,

val:(subj:ne_list,

comps:e_list)),

cont:(Cont1))),

pred:minus,

pform:lexical),

cont:search_rel(Cont2,Cont1)),

nonloc:(inherited:[],

to_bind:[])),

arg_st:[(loc:(cat:(head:noun,

val:(subj:e_list,

comps:e_list)),

cont:index:Cont2))]).

fun search_rel(+,+,-).

search_rel(C,X,Y) if

when((X=(move_rel;tense_rel;like_rel;say_rel;give_rel;rain_rel;

direction_rel;here_rel)),

6.8. UDC GRAMMAR 351

(und_search_rel(C,(X,(move_rel;tense_rel)),Y);fail)).

und_search_rel(C,X,Y) if (X=move_rel),(Y=(direction_rel,

movement:X,

goal:C)).

und_search_rel(C,X,Y) if (X=(future_rel,

soa_arg:Cont)),(Y=(future_rel,

soa_arg:search_rel(C,Cont))).

und_search_rel(C,X,Y) if (X=(perfect_rel,

soa_arg:Cont)),(Y=(perfect_rel,

soa_arg:search_rel(C,Cont))).

und_search_rel(C,X,Y) if (X=(present_rel,

soa_arg:Cont)),(Y=(present_rel,

soa_arg:search_rel(C,Cont))).

und_search_rel(C,X,Y) if (X=(past_rel,

soa_arg:Cont)),(Y=(past_rel,

soa_arg:search_rel(C,Cont))).

und_search_rel(C,X,Y) if (X=(cont_rel,

soa_arg:Cont)),(Y=(cont_rel,

soa_arg:search_rel(C,Cont))).

empty word,

phon:e_list,

synsem:(loc:(Local,

cat:head:(prep,

mod:none,

pred:minus,

pform:(to;by))), % restricted to the 2 functional

nonloc:(inherited:[Local], % prepositions in the fragment

to_bind:e_list)),

arg_st:e_list. % the specification arg_st:e_list excludes

% heads in prepositional phrases from being

% extracted because it entails that the

% extracted element is fully saturated

% ADVERBS

here ~~> (synsem:(loc:(cat:head:(adv,

pred:minus,

mod:loc:(cat:(head:verb,

val:subj:ne_list),

cont:Cont)),

352 CHAPTER 6. GRAMMARS

cont:(here_rel,

located:Cont)),

nonloc:(inherited:e_list,

to_bind:e_list)),

arg_st:[]).

% COMPLEMENTIZERS

that ~~> (synsem:(loc:(cat:head:(functional,

pred:minus,

vform:Vform,

mod:none,

marking:that),

cont:Cont),

nonloc:(inherited:e_list,

to_bind:e_list)),

arg_st:[(loc:(cat:(head:(verb,

vform:(Vform,fin)),

val:(subj:e_list,

comps:e_list)),

cont:Cont))]).

%==

% Lexical Rules

% PSP Lexical Rule

psp_lex_rule ##

(word,

synsem:(loc:(cat:head:(vform:base,

aux:Aux,

pred:Pred),

cont:Cont),

nonloc:Nonloc),

arg_st:Arg)

**>

(synsem:(loc:(cat:head:(vform:psp,

aux:Aux,

pred:Pred),

cont:(perfect_rel,

6.8. UDC GRAMMAR 353

soa_arg:Cont)),

nonloc:Nonloc),

arg_st:Arg)

morphs

be becomes been,

give becomes given,

have becomes had,

say becomes said,

(X,[e]) becomes (X,ed),

X becomes (X,ed).

% Present Participle Lexical Rule

prp_lex_rule ##

(word,

synsem:(loc:(cat:head:(vform:base,

aux:Aux,

pred:Pred),

cont:Cont),

nonloc:Nonloc),

arg_st:Arg)

**>

(synsem:(loc:(cat:head:(vform:prp,

aux:Aux,

pred:Pred),

cont:(cont_rel,

soa_arg:Cont)),

nonloc:Nonloc),

arg_st:Arg)

morphs

be becomes being,

(X,[e]) becomes (X,ing),

X becomes (X,ing).

% Passive Lexical Rule

passive_lex_rule ##

(word,

synsem:(loc:(cat:head:(verb,

vform:psp,

aux:(Aux,minus), % no passive of auxiliaries

inv:Inv,

354 CHAPTER 6. GRAMMARS

pred:Pred),

cont:soa_arg:Cont),

nonloc:Nonloc),

arg_st:[(loc:(cat:(head:noun,

val:(subj:e_list,

comps:e_list)),

cont:Cont2)),

Synsem1|

List])

**>

(word,

synsem:(loc:(cat:head:(verb,

vform:pas,

aux:Aux,

inv:Inv,

pred:Pred),

cont:Cont),

nonloc:Nonloc),

arg_st:([Synsem1|List];Result))

if append(([Synsem1|List]),[(loc:(cat:(head:(prep,

pform:by),

val:(subj:e_list,

comps:e_list)),

cont:Cont2))],Result)

morphs

X becomes X.

% 3rd_sing_fin_lex_rule

third_sing_fin_lex_rule ##

(word,

synsem:(loc:(cat:head:(vform:base,

aux:Aux,

pred:Pred),

cont:Cont),

nonloc:Nonloc),

arg_st:Arg)

**>

(synsem:(loc:(cat:(head:(vform:fin,

aux:Aux,

pred:Pred),

val:subj:[(loc:cont:(psoa;index:(pers:third,

6.8. UDC GRAMMAR 355

num:sg)))]),

cont:(present_rel,

soa_arg:Cont)),

nonloc:Nonloc),

arg_st:Arg)

morphs

be becomes is,

have becomes has,

X becomes (X,s).

% non_3rd_sing_fin_lex_rule

non_third_sing_fin_lex_rule ##

(word,

synsem:(loc:(cat:head:(vform:base,

aux:Aux,

pred:Pred),

cont:Cont),

nonloc:Nonloc),

arg_st:Arg)

**>

(synsem:(loc:(cat:(head:(vform:fin,

aux:Aux,

pred:Pred),

val:subj:[(loc:cont:index:(num:pl;

(pers:(first;second),

num:sg)))]),

cont:(present_rel,

soa_arg:Cont)),

nonloc:Nonloc),

arg_st:Arg)

morphs

be becomes are,

X becomes X.

% past_lex_rule no1

non_third__first_sing_past_lex_rule ##

(word,

synsem:(loc:(cat:head:(vform:base,

aux:Aux,

pred:Pred),

356 CHAPTER 6. GRAMMARS

cont:Cont),

nonloc:Nonloc),

arg_st:Arg)

**>

(synsem:(loc:(cat:(head:(vform:fin,

aux:Aux,

pred:Pred),

val:subj:[(loc:cont:index:(num:pl;

(pers:second,

num:sg)))]),

cont:(past_rel,

soa_arg:Cont)),

nonloc:Nonloc),

arg_st:Arg)

morphs

be becomes were,

give becomes gave,

have becomes had,

say becomes said,

(X,[e]) becomes (X,ed),

X becomes (X,ed).

% past_lex_rule no2

third__first_sing_past_lex_rule ##

(word,

synsem:(loc:(cat:head:(vform:base,

aux:Aux,

pred:Pred),

cont:Cont),

nonloc:Nonloc),

arg_st:Arg)

**>

(synsem:(loc:(cat:(head:(vform:fin,

aux:Aux,

pred:Pred),

val:subj:[(loc:cont:(psoa;index:(pers:(first;third),

num:sg)))]),

cont:(past_rel,

soa_arg:Cont)),

nonloc:Nonloc),

arg_st:Arg)

6.9. THE MERGE 357

morphs

be becomes was,

give becomes gave,

have becomes had,

say becomes said,

(X,[e]) becomes (X,ed),

X becomes (X,ed).

%==

Download20

6.9 The MERGE

Abstract

The MERGE is a large grammar of English which was developed by W. Detmar
Meurers, Kordula De Kuthy and their colleagues at Ohio State University. It
is based on a large grammar of English which was written in the LKB.

The MERGE is much larger than any other grammar which we have studied in this course
so far. However, after carefully working through this textbook, the reader should by now
have acquired sufficient knowledge of the logical foundations of HPSG grammars and of
their implementation in TRALE to be in a position to understand even large grammars of
the size of MERGE. The links below provide access to the source code of MERGE, which
is available in the format of a tared and gzipped directory containing all the necessary
files for loading, compiling and running the grammar in TRALE. It is accompanied by
extensive documentation in PDF format, Documentation of the implementation of the
MERGE grammar in Trale.

This document explains the structure of the implemented grammar and the differences
compared to its precursor, the English Resource Grammar of the LKB system. It provides
an overview of the coverage of the grammar, and a specification. It is strongly recommended
to read through this document and first get an overview of the grammar before working
with it. By studying MERGE the reader will learn more about additional features of the
TRALE system, as well as getting to know techniques of grammar engineering which only
come into play in large grammars.

20http://milca.sfs.uni-tuebingen.de/A4/Course/Grammars/UDC-Grammatik/theory.pl

http://milca.sfs.uni-tuebingen.de/A4/Course/Grammars/UDC-Grammatik/theory.pl

358 CHAPTER 6. GRAMMARS

Links

- File with the sources of MERGE21

- Documentation of the implementation of the MERGE grammar in Trale22

21http://milca.sfs.uni-tuebingen.de/A4/Course/Grammars/MERGE/merge-v-1-0-0.tar.gz
22http://milca.sfs.uni-tuebingen.de/A4/Course/Grammars/MERGE/merge-doc.pdf

http://milca.sfs.uni-tuebingen.de/A4/Course/Grammars/MERGE/merge-v-1-0-0.tar.gz
http://milca.sfs.uni-tuebingen.de/A4/Course/Grammars/MERGE/merge-doc.pdf

Chapter 7

Glossary

Admission Admission, or feature structure admission, is a relation between sets of de-
scriptions of our feature logics and sets of (abstract) feature structures. Admission is the
stronger one of two notions of denotation which we use in our feature logics, and it is based
on of the first notion of denotation, satisfaction. A feature structure is admitted by a set of
descriptions in the case that every node in the feature structure satisfies each description
in the set.

An alternative terminology for admission is modeling. If a feature structure is admitted
by a set of descriptions, we sometimes say that the feature structure models (or is licensed
by) the set of descriptions.

ALE ALE (Attribute Logic Engine) is a grammar implementation platform for grammars
inspired by HPSG. It evolved around the logics presented in a book by Bob Carpenter
in the early 1990s. The ALE system underlies the TRALE system which we use in this
course.

Anaphor A synsem object is an anaphor, provided its local | content value is of
sort ana. Anaphors are a type of pronouns which require the presence of another syntactic
element in a close syntactic vicinity which refers to the same object in the world. Typical
anaphors of English are herself, himself, and each other.

Appropriateness Function The appropriateness function is an important component
of each signature of an HPSG grammar. The appropriateness function determines which
attribute is appropriate to which sorts, and it also fixes the sort values which we get for
an attribute at a given sort.

Conditions imposed on the appropriateness function by the definition of signatures yield
the effect of multiple inheritance.

Atomic Sort A sort is called atomic in the case that there are no attributes appropriate
to it (nor to its subsorts, if there are any).

359

360 CHAPTER 7. GLOSSARY

Attributes The attributes, or attribute symbols, of an HPSG grammar are used to cap-
ture the properties of linguistic objects. From a more technical point of view we can picture
attributes as symbols of the description language of grammars and as labels for the arcs
in feature structures. The word attribute is used as a synonym of the word feature in the
HPSG literature.

Attribute Inheritance Attribute inheritance is a very common term for describing the
fact that an attribute which is appropriate to a sort is also appropriate to all subsorts of
this sort in the sort hierarchy.

Basis Set The basis set of an abstract feature structure is a set of path. It shows which
paths one can follow in the feature structure starting from its (abstract) root node.

Binary Relation A binary relation is a relation with two arguments. See also relation.

Boxes Boxes are syntactic entities in our formal languages for HPSG grammars. They
roughly correspond to the attribute value matrices of the linguistic literature.

Cartesian Product Let S1 and S2 be sets. We call {(s1, s2)|s1 ∈ S1, s2 ∈ S2} the
(binary) Cartesian Product of S1 and S2, and write S1 ×S2. In a tuple (s1, s2), s1 is called
the first component and s2 is called the second component of (s1, s2). Binary Cartesian
products are generalized to n-fold Cartesian products by taking n sets and forming S1 ×
. . . × Sn.

Coindexed Two synsem objects are coindexed, provided that their local | content |
index values are token-identical.

Constraint-based Grammar Frameworks The term constraint-based grammar frame-
works refers to grammar frameworks which in contrast to other frameworks use a collection
of constraints for characterizing the structure of natural languages. It does not include any
claim about how these constraints conspire to make predictions. In this textbook we have
a more specific use of the term in mind: We use it to refer to grammar frameworks which
view the constraints as expressions of a logical language and employ a logical interpreta-
tion of the expressions in the characterization of the models denoted by grammars. In this
sense, all grammar formalisms which we define in the text are constraint-based, and they
are distinguished from unification-based grammar frameworks.

Constraint Satisfaction See satisfaction.

361

content Raiser We call words whose content value is identical to the content value
of one of their syntactic arguments content raisers, in analogy to raising verbs, which
subcategorize for elements which are arguments of their complements. The semantics of
content raisers is identical to the semantics of one of their syntactic arguments.

ConTroll The ConTroll system is a grammar implementation platform for HPSG gram-
mars which was developed in Tübingen in the mid-1990s. Its most prominent goal was to
get as close to typical linguistic HPSG grammar specification as possible. The experiences
with the ConTroll system went directly into the creation of the subsequent TRALE system.

Declarative Declarative grammar frameworks characterize language by making state-
ments about them which are interpreted simultaneously, without any order imposed on
their application, and without referring to procedures which interpret the statements. Con-
straint-based as well as unification-based grammar frameworks are declarative. Transfor-
mational grammars are typically not stated declaratively.

Description The term description is often used in a technical sense in our textbook, and
refers to those formulae of our formal languages which do not contain any free occurrences
of variables. A variable is said to occur free in a formula if it is not bound by a quantifier.

Equivalence Class An equivalence class of an equivalence relation η = 〈S, ◦〉 is defined
as a non-empty subset S ′ of S such that for each x ∈ S ′ and each y ∈ S ′, x ◦ y, but for no
element z of S\S ′ and any x ∈ S ′, z ◦ x.

Equivalence Relation An equivalence relation is a set s together with a relation, ◦, in
S, where ◦ has the following properties:

1. ◦ is a binary relation,

2. for each x ∈ S, x ◦ x (◦ is reflexive),

3. for each x ∈ S, for each y ∈ S, for each z ∈ S, if x ◦ y and y ◦ z then x ◦ z (◦ is
transitive),

4. for each x ∈ S, for each y ∈ S, if x ◦ y then y ◦ x (◦ is symmetric).

Exhaustive Models Exhaustive models are a particular class of models of HPSG gram-
mars, which Paul King introduced to explain the meaning of grammars. Exhaustive models
are thought of as containing all possible utterance tokens of a language.

Features See attributes.

362 CHAPTER 7. GLOSSARY

Feature Declarations The feature declarations of Pollard and Sag’s original grammar of
English correspond to the declaration of the set of attribute symbols (or simply attributes),
and the appropriateness function of an HPSG grammar.

Feature Introduction Condition The feature introduction condition is a restriction on
the relationship between sorts in the sort hierarchy, and attributes in TRALE signatures.
It takes the shape of a restriction on the appropriateness function:

For each attribute which is appropriate to a sort there must be a unique sort σ in the
sort hierarchy, such that (a), the attribute is appropriate to σ, and, (b), σ subsumes all
other sorts to which the attribute is appropriate.

Feature Structures Feature structures are a central concept of many HPSG formalisms,
although they are not a necessary part of HPSG. The situation is made even more puz-
zling by numerous different possible ways of making the notion of feature structure math-
ematically precise. Different definitions of feature structures determine their properties in
very different ways, which make them appropriate or inappropriate for different purposes.
Whenever feature structures are used in the linguistic literature it is therefore advisable to
find out what particular kind of feature structure is meant.

In the formalisms of this textbook feature structures are always defined as being
sort-resolved and totally well-typed. Feature structures with these properties are suit-
able to be used as complete representations of expressions of natural languages. As such
they serve as elements in the denotations of grammars. A good illustration of this situation
is to imagine feature structures as structured objects which are mathematical idealizations
of expressions of languages.

There is an important technical distinction between concrete and abstract feature struc-
tures. Concrete feature structures are defined as a kind of finite state automata, whereas
abstract feature structures may be viewed as equivalence classes of concrete feature struc-
tures, although this is not at first obvious from the definitions. The advantage of concrete
feature structures is that they are very easy to picture. This is the reason why they are
typically used in introductory examples, and also in the MoMo program. Unfortunately
it is the more difficult abstract feature structures which are of theoretical interest, since
their properties can be considered to correspond to object types of expressions of natural
languages.

As explained in the section 2.2.2, Meaning, of the textbook, sets of abstract feature
structures are just one possible way known to date of making the meaning of HPSG gram-
mars precise. A semantics in terms of abstract feature structures makes the philosophical
decision to regard the objective of a constraint-based grammar as a characterization of the
object types of the natural language. The object types of the language are represented as
abstract feature structures. The notion of object types and alternative conceptions of the
meaning of a grammar are discussed in the section 2.2.2, Meaning.

A final area of application for feature structures is computation. It is important to
realize that the reasons for applying them in computation are completely independent of

363

the reasons for considering them as representations of object types of natural languages.
This means that one can legitimately employ feature structures in a computational im-
plementation for HPSG grammars without believing in a model theory of HPSG with
feature structure representations. Feature structures have a long history in computational
linguistics. They have been widely studied as data structures for grammar implementa-
tions, and there are efficient algorithms for computing with feature structures. However,
the feature structures of computational linguistics are typically partial feature structures:
These feature structures are usually neither sort-resolved nor totally well-typed. The feature
structures used for computation correspond rather to the descriptions of our formalisms of
constraint-based HPSG, although they have to be conceived of as descriptions with a much
more restricted syntax than the descriptions we use. The feature structures of TRALE are
of this kind.

Finite Set A finite set S is a set with finitely many elements.

Function Let S1 and S2 be sets. A (partial) function f is a recipe that assigns some
s1 ∈ S1 exactly one s2 ∈ S2. We write f(s1) = s2 and call s2 the image of s1 under f .

Partial functions include the special case of total function.

Functional Preposition Functional preposition is another term for non lexical prepo-
sition. It stresses the functional nature of these lexical items.

Grammar The general notion of a grammar receives a very specific mathematical in-
terpretation in constraint-based theories of language. According to the strictly constraint-
based view, a grammar consists of a signature and a set of grammatical principles, which
is usually called the theory of the grammar. A crucial task of the logical signature is to
provide the vocabulary of non-logical symbols for writing the principles of the theory.

Grammar Development Environment A grammar development environment (GDE)
is a programming environment for implementing grammars. GDEs are usually inspired
by a particular linguistic framework, and support the special needs of this framework.
A GDE may comprise specification languages for grammars, (graphical) user interfaces,
predicates for grammar development and grammar testing, and debugging tools. The LKB
and TRALE are examples of GDEs which were developed to support the implementation
of grammars inspired by HPSG.

GRISU GRISU is the grammar visualization tool which is used as the graphical user
interface of TRALE. Its main purpose in combination with TRALE is to display parse re-
sults and offer the user the possibility of inspecting AVMs. Its functionalities are described
at length in the user’s manual.

iff iff is a conventional abbreviation for if and only if.

364 CHAPTER 7. GLOSSARY

Implementation Platform An implementation platform for grammars is a program-
ming environment for developing grammars on a computer. An implementation platform
provides a specification language for grammars and a set of tools for developing, testing,
and viewing grammars. The main purpose of an implementation platform is usually to
write grammars for parsing and generating sentences.

Infinitary Disjunction An infinitary disjunction is a disjunction with infinitely many
disjuncts. Our formal languages only allow finite expressions. Therefore they do not
comprise infinitary disjunctions.

Infinite Feature Structure An infinite feature structure is a feature structure with
infinitely many nodes.

Insertion Σ insertions play the role of variable assignment functions in our formal lan-
guages. Σ insertions map variables and the reserved symbol $ on sequences of attributes.
$ is always mapped on the empty sequence of attributes.

Label Function The label function of an abstract feature structure assigns a species to
each (abstract) node of the feature structure.

Lexical Entries Lexical entries are descriptions of words, or, to be more precise, descrip-
tions which are satisfied by feature structures of sort word. Lexical entries are disjuncts in
the consequent of the Word Principle.

Lexical Generalization Grammatical principles which characterize the properties of
entire classes of words or relate the properties of one class of words to the properties of
another class of words are sometimes called lexical generalizations. Examples of lexical
generalizations are the Functional Preposition Principle of the series of grammars
which starts in Section The Core Fragment (Section 3.2.1.1), and the lexical rules of Frag-
ment II (Section 3.2.2.1).

Lexical Principle Lexical principles are a particular kind of lexical generalizations.
They are lexical generalizations which are formulated as implicational descriptions, just
as all other principles of grammar. Lexical rules are a second kind of lexical generalization,
but they are not notated as implicational descriptions.

Lexical Preposition Lexical prepositions are prepositions of English with a clear se-
mantic contribution, such as the preposition to in She walked over to Mary. They can be
distinguished from non lexical prepositions, which do not have a discernible semantics of
their own.

365

Lexical Rules Lexical rules express generalizations over the words in natural languages.
The idea is to capture relationships which are observed between lexical items with the
purpose of not having to list each form of each word separately in the grammar.

In constraint-based grammar theories such as HPSG, there are at least two techni-
cally different ways of making the notion of lexical rules precise. They are discussed in
Section 3.2.2.2, Theories of Lexical Rules in HPSG.

Lexicon We call the collection of lexical entries of a grammar the lexicon. Note that this
means that the lexicon consists of a collection of descriptions.

Licensing The term licensing is used as a synonym for admission and describes a rela-
tionship between sets of descriptions and sets of feature structures. To say that a feature
structure is licensed by (a set of) descriptions means the same as saying that a feature
structure is admitted by (a set of) descriptions.

Linearization Grammars HPSG grammars in which the relationship between the
phonology of a phrase and the phonology of its daughters is more complex than a re-
lationship of concatenation are often called linearization grammars. In grammars based on
phrase structure rules, the phonology of phrases is always a concatenation of the phonolo-
gies of their daughters. For this reason a linearization grammar cannot be expressed in
parsing systems which rely on phrase structure rules. TRALE provides a topological parser
for the implementation of linearization grammars.

List Signature We use the term list signature to refer to the part of a sort hierarchy
together with the two attribute symbols and the relevant part of the appropriateness func-
tion of a signature that are interpreted as lists and provide the non-logical symbols for
the description of lists. Obviously the particular choice of sort symbols and of attribute
symbols in list signatures is arbitrary. MoMo provides a special notation which simplifies
the notation of descriptions of lists by allowing an alternative notation with brackets for
descriptions which would normally have to employ the non-logical symbols of list signatures.

LKB LKB is a very popular and successful grammar implementation platform for HPSG-
inspired grammars. It has been and is still being developed by a very active group of
researchers whose main interest is in the fast and efficient processing of large grammars.

Modeling Modeling is used as a synonym for being licensed by or being admitted by a
set of descriptions. Saying that a feature structure models a set of descriptions is therefore
equivalent to saying that it is admitted or licensed by by the set of descriptions.

Model Theory Model theory is a branch of mathematics which is concerned with struc-
tures that interpret logical languages. It investigates the relationships between logical

366 CHAPTER 7. GLOSSARY

expressions and the interpreting structures, and it investigates the properties of the inter-
preting structures.

Multiple Inheritance Multiple inheritance is a term which is often used in discussions
on the properties of the sort hierarchies of HPSG grammars. Multiple inheritance is a
consequence of ordering the sorts in the partial order of the sort hierarchy and of the prop-
erties of the appropriateness function. Informally speaking multiple inheritance describes
the fact that a sort which is a subsort of several other sorts, which do not subsume each
other, inherits its possible attribute values from all of these sorts. This is due to the fact
that in accordance with the definition of the appropriateness function, all attribute values
at a given sort must be at least as specific as the corresponding attribute value specification
at each supersort; and all attributes which are defined for a supersort must be appropriate
to it.

In informal discussions of the topic, multiple inheritance refers to “inheritance of in-
formation” from different supersorts σ1 and σ2 of some sort σ0, where σ1 and σ2 do not
stand in a mutual subsort relationship. Thus, according to the appropriateness function,
σ0 will “inherit” all appropriateness conditions of both σ1 and σ2. Moreover, if there is an
implicational description δ in the grammar whose antecedent is a description of feature
structures in the denotation of sort σ1 or σ2, the possible shape of feature structures of sort
σ0 will be directly restricted by it in the sense that they have to satisfy the consequent of
δ. In this sense it is sometimes loosely said that σ0 inherits the restrictions on σ1 and σ2.

Non-derivational Non-derivational grammar frameworks do not use derivation rules
such as phrase structure rules to characterize the structure of languages. Instead they
use statements which are applied simultaneously without a procedural order, as can be
observed with derivations.

Non-pronoun A synsem object is a non-pronoun, provided its local | content value
is of sort npro. Within HPSG grammar, the term non-pronoun refers to nominal signs which
are not pronouns. Pronouns are in turn divided into anaphors and personal pronouns. Non-
pronouns behave differently from pronouns with respect to where they allow co-referring
elements to occur in their syntactic environment.

Non lexical Preposition Non lexical prepositions, or functional prepositions, is another
term for the case marking prepositions of English, such as the preposition to in He gave
a book to Mary. Non lexical prepositions do not seem to make a semantic contribution to
utterances.

Object Types The object types, or simply types of a natural language, are unique math-
ematical idealizations of expressions of the language. Uniqueness means that for any ut-
terance of a certain form there is exactly one object type which represents it. This stands

367

in contrast to a theory of meaning which tries to capture utterance tokens: There might
be an arbitrary number of utterance tokens for the exact same expression of the language.

The object types are formulated as abstract feature structures in the HPSG framework.

Ordered Pair See pair.

Pair A pair of structures can be viewed as an enumeration of two structures.

Parametric Sorts Parametric sorts are a device which is used in HPSG to simplify
the notation for lists with elements of certain sorts in the signature of grammars. Their
purpose, notation, and an interpretation of this notation are explained in Section 2.5.2 of
the textbook.

Partial Function Let S1 and S2 be sets. A partial function f is a recipe which assigns
to some s1 ∈ S1 exactly one s2 ∈ S2. We write f(s1) = s2 and call s2 the image of s1 under
f .

In contrast to total functions, partial functions are undefined on some elements of S1.
In other words, there are elements s ∈ S1 which f fails to map on an element of S2.

Partial Order A partial order is a set S together with a relation, ◦, on S, where ◦ has
the following properties:

1. ◦ is a binary relation,

2. ◦ is reflexive: for each x ∈ S, x ◦ x,

3. ◦ is transitive: for each x ∈ S, for each y ∈ S, for each z ∈ S, if x ◦ y and y ◦ z then
y ◦ z,

4. ◦ is antisymmetric: for each x ∈ S, for each y ∈ S, if x ◦ y and y ◦ x then x = y.

◦ is thus a reflexive, transitive and antisymmetric relation on the carrier set, S. We
write 〈S, ◦〉. In comparison to a preorder, a partial order has the additional property of
being antisymmetric.

Partitions The partitions in Pollard and Sag’s original grammar of English can be in-
terpreted as a notation for the sort hierarchy of their grammar.

Path A path is defined as a (possibly empty) sequence of attributes.

Personal Pronoun A synsem object is a personal pronoun, provided its local | con-
tent value is of sort ppro. Personal pronouns are pronouns such as she and her. In
contrast to anaphors, they typically forbid the presence of syntactic elements which refer
to the same entity in the real world in a certain syntactic vicinity.

368 CHAPTER 7. GLOSSARY

Power Set The Power Set of a set S is the set of all subsets of S. Note that the
set of subsets of any set includes the empty set. The power set of {1, 2} is thus the set
{{}, {1}, {2}, {1, 2}}.

Preorder A preorder is a set S together with a relation, ◦, on S, where ◦ has the following
three properties:

1. ◦ is a binary relation,

2. ◦ is reflexive: for each x ∈ S, x ◦ x,

3. ◦ is transitive: for each x ∈ S, for each y ∈ S, for each z ∈ S, if x ◦ y and y ◦ z then
y ◦ z.

The relation ◦ is thus a reflexive and transitive relation on the carrier set, S. We write
〈S, ◦〉 for preorders.

Principles The principles of a grammar are the generalizations about language which
linguists formulate in order to capture their empirical observations. In constraint-based
grammar formalisms the principles are typically formulated as logical implications.

Quadruple A quadruple of structures can be viewed as an enumeration of four structures.

Quintuple A quintuple of structures can be viewed as an enumeration of five structures.

Reducts The reducts of an abstract feature structure are the abstract feature structures
one obtains by following an arbitrary path from the root node of the original feature
structure and taking the abstract node at which one arrives as the root node of a new
(typically smaller) abstract feature structure.

Re-entrancy Relation The re-entrancy relation of an abstract feature structure is an
equivalence relation over the basis set of the feature structure. The equivalence classes of
the re-entrancy relation are the (abstract) nodes of the feature structure.

Referential A synsem object is referential, provided its local | content | index value
is of sort ref.

Relation Suppose that S, S1 . . . Sn are sets. An n-ary relation R in S1 . . . Sn is a subset
of S1 × . . . × Sn. We write this as R ⊆ S1 × . . . × Sn. A very common special case of this
are binary relations R′ in S, R′ ⊆ S × S.

Relation Extension The relation extension is a part of the relational abstract feature
structures. It is needed in order to give relational formulae a denotation.

369

Root Node The root node of a feature structure is a distinguished node from which all
other nodes in the feature structure can be reached by following a sequence of attribute
arcs. It corresponds to the start node of a finite state automaton.

Satisfaction Satisfaction is a relation between an expression of a logical language and
a structure. When we say in a feature logic that a structure satisfies a logical expression,
we mean that the structure is in a sense described by the expression. This is also what is
meant by constraint satisfaction. In our feature logics for HPSG, satisfaction is the weaker
one of two notions of denotation. Satisfaction is defined relative to the root node of feature
structures, whereas admission is a relation for which all nodes of a feature structure are
relevant.

Septuple A septuple of structures can be viewed as an enumeration of seven structures.

Set Sets are a fundamental concept of mathematics. Mathematics as a whole can be
based on the notion of sets. There are different interesting ways of axiomatizing sets.
However, for the purpose of working with sets in our course, it is not necessary to study
possible axiomatizations of sets. In fact, doing so would in all likelihood be more confusing
than enlightening.

For us, an intuitive understanding of the notion of a set along the lines of what Georg
Cantor (1845–1918) wrote over a century ago suffices: “A set is a collection of certain
non-identical objects perceived or thought of by us. The objects involved are called the
elements of the set.”1

Signature The signature of logical languages provides the set(s) of non-logical symbols
from which expressions of the language can be formed. In HPSG, signatures provide
additional structure by imposing structure on the set of sorts in the sort hierarchy, and
relating sorts and attributes in the appropriateness function.

Smallest Set Speaking of a smallest set is a typical technical (and conventionalized)
way of expressing an inductive definition in mathematics. When we say that something is
the smallest set for which certain properties hold, we mean to say that the conditions we
stipulate for something to be a member of that set are exhaustive. We obtain the members
of the set by following the given rules exactly, and nothing which cannot be obtained in
this way may be included in the set.

Sort Hierarchy The sort hierarchy of HPSG grammars is a partial order of the set of
sort symbols. The maximal specific sorts in the sort hierarchy are those sorts which do not

1Eine Menge ist eine Zusammenfassung von bestimmten wohlunterschiedenen Objekten unserer An-
schauung oder unseres Denkens zu einem Ganzen. Die dabei auftauchenden Objekte werden Elemente der
Menge genannt.

370 CHAPTER 7. GLOSSARY

stand above any other sort in the sort hierarchy. These sorts are used to label the nodes
in feature structures.

Sort-Resolvedness Sort-resolvedness is a property of the feature structures which are
used as models of grammars. A feature structure is said to be sort-resolved if and only if
every node of the feature structure is labeled by a maximally specific sort or species. These
are those sorts in the sort hierarchy which do not have any proper subsort.

Sort Symbols The sort symbols are stated specifically for each HPSG grammar. They
are symbols for describing the objects in the denotation of the grammar. The sort symbols
are ordered in a taxonomic hierarchy, the sort hierarchy.

Species Species is a special name for those sorts in the sort hierarchy which do not have
any proper subsort. The species label the nodes of feature structures. They are also called
maximally specific sorts.

Strong Generative Capacity In a paper on the formalization of HPSG, Carl Pollard
defined the strong generative capacity (SGC) of a grammar as a set of structures which
are thought of as mathematical idealizations of the utterances of natural languages. The
SGC of a grammar represents the predictions of the grammar, and replaces the earlier
explanation of the meaning of HPSG grammars in terms of the abstract feature structures
in Pollard and Sag’s HPSG book from 1994. Another option for explaining the meaning of
HPSG grammars are Paul King’s exhaustive models. It should be noted that Pollard’s use
of the term strong generative capacity is only loosely related to the Chomskyan terminology
of weak and strong generative capacity.

Syntactic Sugar Additional conventions for writing down expressions of a formal lan-
guage are sometimes called syntactic sugar. This is intended to simplify the notation.

Tag The boxed numbers (n) in the AVM descriptions of HPSG are usually called tags.
In our formalization of the description language, tags are treated as variables.

Theory The term theory is quite often used in a very specific technical sense when we
talk about constraint-based grammars. In contrast to its general meaning, we often use it
to refer to the set of principles of a grammar.

Total Function Let S1 and S2 be sets. A total function f is a recipe which assigns to
each s1 ∈ S1 exactly one s2 ∈ S2. We write f(s1) = s2 and call s2 the image of s1 under f .

In contrast to Partial functions, total functions assign to each element in S1 an element
in S2. Partial functions might fail to assign an image in S2 to some elements of S1. They
are undefined on those elements of S1.

371

Totally well-typed In HPSG total well-typedness is a property which is ascribed to
feature structures as models of linguistic objects.

Ontologically, total well-typedness expresses the assumption that all well-formed lin-
guistic objects are complete objects. Linguistic objects do not have an aspect of partiality.
All linguistic objects always have all types of properties which they may have. In other
words, each possible feature of each object necessarily has one of its possible values. The
situation might arise in which we cannot observe all features and all values, but we know
that they are always there.

Mathematically, the idea of the completeness of linguistic signs is expressed by imposing
the condition of total well-typedness on the modeling domain of grammars. The modeling
domains which we chose for all our grammar formalisms consisted of sets of (slightly dif-
ferent kinds of) feature structures. We say that a feature structure is totally well-typed if
and only if each node in the feature structure has outgoing arcs for each of the attributes
which the signature declares appropriate to a node of the given sort, and there are only
appropriate outgoing arcs at each node of the feature structure.

See also well-typed.

TRALE TRALE is a grammar implementation platform for HPSG grammars. It is
based on the ALE system, but importantly adds a number of logical assumptions about
the interpretation of constraints which are specific to HPSG. In addition, the TRALE
environment provides many additional functions for grammar development.

Triple A triple of structures can be viewed as an enumeration of three structures.

Tuple A tuple of structures can be viewed as an enumeration of a fixed number of struc-
tures.

Unbounded Dependency Constructions Unbounded dependency constructions have
been extensively discussed in the literature on generative grammar frameworks, and HPSG
is no exception to this rule. Despite the extensive literature on the subject unbounded
dependency constructions (which are also known as long movement constructions) are still
a very lively field of research.

With the term unbounded dependencies linguists refer to constructions in which a con-
stituent appears in a sentence peripheral position distinct from the position in which the
constituent would appear in ‘normal’ or ‘unmarked’ word order. The dislocated constituent
may be several sentence boundaries away from its ‘unmarked’ position. Here are three ex-
amples:

1. [Which book]i do you think Mary read ti first?

2. [This man]i nobody would believe that anybody would nominate ti for president.

3. [Who]i did you say Hillary claimed that Bill dated ti last summer?

372 CHAPTER 7. GLOSSARY

Unification Unification is an algebraic operation on objects in an algebra. It became
popular in linguistics for handling phrase structure grammars which were augmented with
features and feature values.

Unification-based Grammar Frameworks Originally the term unification-based gram-
mar frameworks was used to refer to grammar frameworks in which a unification operation
was of central importance, such as Generalized Phrase Structure Grammar, Lexical Func-
tional Grammar, Categorial Unification Grammar and early Head-Driven Phrase Structure
Grammar. Nowadays the term is occasionally used more loosely, and is also applied to
grammar frameworks which use features and feature values in some way, or to frameworks
whose typical grammar implementation platforms make use of algorithms and program-
ming languages, such as Prolog, which rely on unification. According to this more relaxed
terminology even present-day HPSG, which does not involve unification in its mathemat-
ical foundations, might be classified as unification-based. In this textbook we are more
strict and restrict the term unification-based to those frameworks which actually employ
unification.

Well-typed The notion of well-typedness is slightly weaker than the related notion of
total well-typedness.

From an ontological point of view, it makes precise the assumption that objects of a
certain kind may only have properties of a limited range. Some of the possible properties
may be missing from a particular token of the relevant kind of object, but a token will
never have any unexpected properties.

In the modeling domain of feature structures well-typedness is expressed on the basis
of the presence of attribute arcs at nodes. We say that a feature structure is well-typed if
and only if every attribute arc at each node of a sort σ is labeled by an attribute which is
appropriate to sort σ according to the signature.

IN In our text, the symbol IN is used for the set of natural numbers including zero. Note
that the use of the symbol IN varies in the literature. Sometimes the set which we describe
with the symbol IN is described by IN0, and IN is reserved for the set of positive integers.
This choice depends on mere conventions and on convenience in a given context.

IN+ In our text, the symbol IN+ is used for the set of natural numbers excluding zero.
Note that we use IN for the set of natural numbers including zero.

Bibliography

[Aldag, 1997] Aldag, Bjørn 1997. A proof theoretic investigation of prediction in HPSG.
Magisterarbeit, Seminar für Sprachwissenschaft: Universität Tübingen. 126

[Bresnan, 1982] Bresnan, Joan (ed) 1982. The Mental Representation of Grammatical
Relations . Cambridge, MA, USA: MIT Press. 8

[Carpenter, 1992] Carpenter, Bob 1992. The Logic of Typed Feature Structures. Cambridge
University Press. Cambridge, Massachusetts, USA. 9

[Chomsky, 1981] Chomsky, Noam 1981. Lectures on Government and Binding . Dordrecht,
The Netherlands: Foris Publications. 8

[Ebbinghaus et al., 1992] Ebbinghaus, Heinz-Dieter, Flum, Jörg, and Thomas, Wolfgang
1992. Einführung in die mathematische Logik . B.I.-Wissenschaftsverlag, 3rd edition. 25

[Gallin, 1975] Gallin, Daniel 1975. Intensional and Higher-Order Modal Logic. North-
Holland, Amsterdam. 124

[Gazdar et al., 1985] Gazdar, Gerald, Klein, Ewan, Pullum, Geoffrey K., and Sag, Ivan
1985. Generalized Phrase Structure Grammar . Harvard University Press. Cambridge
Massachusetts. 8

[Höhle, 1999] Höhle, Tilman N. 1999. An Architecture for Phonology. In Robert D. Borsley
and Adam Przepiórkowski (eds), Slavic in HPSG , 61–90. CSLI Publications. 14

[Kathol, 1995] Kathol, Andreas 1995. Linearization-Based German Syntax . PhD thesis,
Ohio State University. 156

[King, 1999] King, Paul J. 1999. Towards Truth in Head-driven Phrase Structure Gram-
mar. In Valia Kordoni (ed), Tübingen Studies in Head-Driven Phrase Structure Gram-
mar , (= Arbeitspapiere des SFB 340, Nr. 132, Volume 2), 301–352. Eberhard-Karls-
Universität Tübingen. 35, 37

[Meurers, 2000] Meurers, Walt Detmar 2000. Lexical Generalizations in the Syntax of
German Non-Finite Constructions, (= Arbeitspapiere des SFB 340, Nr. 145). PhD
thesis, Eberhard-Karls-Universität Tübingen. 206, 208

373

374 BIBLIOGRAPHY

[Meurers and Minnen, 1997] Meurers, W. Detmar and Minnen, Guido 1997. A computa-
tional treatment of lexical rules in HPSG as covariation in lexical entries. Computational
Linguistics , 23.4:543–568. 208, 209

[Moshier, 1988] Moshier, Michael Andrew 1988. Extensions to Unification Grammar for
the Description of Programming Languages. PhD thesis, University of Michigan. 50

[Pollard and Sag, 1987] Pollard, Carl and Sag, Ivan A. 1987. Information-Based Syntax
and Semantics. Vol.1: Fundamentals . CSLI Lecture Notes 13. 8, 9

[Pollard and Sag, 1994] Pollard, Carl and Sag, Ivan A. 1994. Head-Driven Phrase Structure
Grammar . University of Chicago Press. 2, 4, 7, 8, 10, 13, 20, 26, 50, 61, 62, 63, 70, 84,
85, 86, 87, 92, 103, 104, 109, 114, 115, 175, 207, 217, 219, 233, 252, 253, 254, 256

[Pollard, 1999] Pollard, Carl J. 1999. Strong generative capacity in HPSG. In Gert Webel-
huth, Jean-Pierre Koenig, and Andreas Kathol (eds), Lexical and Constructional Aspects
of Linguistic Explanation, 281–297. CSLI Publications. 35, 36

[Richter, 2004] Richter, Frank 2004. A Mathematical Formalism for Linguistic Theories
with an Application in Head-Driven Phrase Structure Grammar . Phil. dissertation
(2000), Eberhard-Karls-Universität Tübingen. 38, 238, 254, 255

[Sag and Wasow, 1999] Sag, Ivan A. and Wasow, Thomas 1999. Syntactic Theory: A
formal introduction. Stanford, CA: CSLI Publications. 111

	Summary
	Introduction
	Historical Overview
	The Structure of HPSG Grammars
	The Grammar of English of Pollard and Sag 1994

	Grammar Formalisms
	Introduction
	An Initial Syntax
	Signatures: Partitions and Feature Declarations

	Initial Grammars
	The Syntax of Initial Grammars
	Meaning
	Concrete Feature Structures
	Satisfaction
	Admission
	Formalization

	Complex Grammars and their Meaning
	The Syntax of Complex Grammars
	The Meaning of Complex Grammars
	A Notational Convention

	Grammars and their Meaning
	Syntax
	Meaning
	An Extended Example for Grammars

	Wrapping up: Summary and Open Issues
	The Lexicon
	Parametric Sorts
	Notation for Lists

	Grammar Implementation
	Computing with HPSG Grammars
	A Minute Grammar
	The Second TRALE Grammar
	The Third TRALE Grammar
	Relations as Definite Clauses in TRALE

	Grammar Development
	Fragment I -- The Core fragment
	Specification of the Core Fragment
	Implementation of the Core Fragment

	Lexical Generalizations: Fragment II
	Specification of Fragment II
	Theories of Lexical Rules in HPSG
	Implementation of Fragment II

	Unbounded Dependencies: Fragment III
	Specification of Fragment III
	Implementation of Fragment III

	The Appendix of Pollard and Sag (1994)
	The Sort Hierarchy
	The Principles
	The ID Schemata
	The Raising Principle

	Resources: MoMo, TRALE, MERGE
	MoMo
	TRALE
	MERGE

	Grammars
	Grammar 1
	Signature
	Theory

	Grammar 2
	Signature
	Theory

	Grammar 3
	Signature
	Theory

	Grammar 4
	Version 1
	Signature
	Theory

	Version 2
	Signature
	Theory

	Version 3
	Signature
	Theory

	Spook
	Signature
	Theory

	Core Fragment
	Signature
	Theory

	Fragment with Lexical Generalizations
	Signature
	Theory

	UDC Grammar
	Signature
	Theory

	The MERGE

	Glossary
	Bibliography

