
Morph Moulder: Teaching Software

for HPSG and Description Logics

EKATERINA OVCHINNIKOVA, University of Osnabrück,

Institute of Cognitive Science, E-mail: eovchinn@uni-osnabrueck.de

FRANK RICHTER, University of Tübingen,

Seminar für Sprachwissenschaft, E-mail: fr@sfs.uni-tuebingen.de

Abstract

The graphical software Morph Moulder (MoMo) presented here was originally created for teaching
the logical foundations of Head-Driven Phrase Structure Grammar (HPSG) in an e-Learning envi-
ronment. It has then been extended to a treatment of description logics (DL), which are at present
the standard formalism for building ontologies. With MoMo, students can construct interpretations
of sets of formulae and check whether their interpretations model these formulae (called theory in
HPSG and axioms in DL). MoMo also supports reasoning such as the construction of well-formed
interpretations in the feature logic of HPSG and the automatic extraction of subsumption hierar-
chies in DL. It has been used successfully in several courses on HPSG linguistics, on computational
grammar implementation and on the logical foundations of constraint-based grammar frameworks.

Keywords: feature logic, description logics, visualization, reasoning, interactive teaching software,

graphical teaching software, ontology, model-theoretic grammar, HPSG

1 Motivation

MoMo was developed as an interactive educational tool for teaching the mathemati-
cal foundations of the Head-Driven Phrase Structure Grammar (HPSG, [4]) based on
Relational Speciate Re-entrant Language (RSRL, [5]). Novices in constraint-based
linguistic theories with little background in mathematical logic often have problems
understanding the essential relationship between grammars as sets of logical state-
ments and their model-theoretic interpretation. To overcome these difficulties, the
main task of the software was to project the underlying mathematical concepts onto
a graphical level, where they could be grasped much more intuitively than in the form
of symbolic definitions. Some early inspiration for the design of MoMo came from
the introductory logic textbook [3], and in particular from one of its software tools,
Tarski’s World.1 Encouraged by MoMo’s success with students in its first application
domain, MoMo was extended to the visualization of description logics (DL, [2]), a
widely used family of logics designed for representing ontological knowledge.

Particular emphasis was placed on providing students with hands-on experience
constructing interpretations of logical formulae. Central topics are (1) restrictions on
interpretations imposed by logical signatures, and (2) properties of the satisfaction
relation between logical formulae and objects in interpretations. With interactive

1For illuminating observations about the advantages of learning the meaning of logical languages by studying

their models, see [3, pp. 13–14].

1L. J. of the IGPL, Vol. 0 No. 0, pp. 1–12 0000 c© Oxford University Press

2 MoMo: Software for Teaching and Visualizing RSRL and Description Logics

graphical software, students quickly learn the relevant concepts without having to
read a significant number of complex mathematical definitions first, and they see and
construct many more examples than they would in traditional classroom lectures. By
the time they get to explicit definitions, they have already understood the essential
ideas and are in a much better position to appreciate their theoretical explanation.
Working with visual representations of the founational logical concepts of linguistic
theory or ontologies, students gain a much deeper understanding of the subject and
are ultimately much better prepared to analyze problems in the application domains.

We will give a brief overview of MoMo’s structure, the graphical interface and
the most important features. In Section 2 we discuss the general functions which are
available in both modules of the system, the initial RSRL module and the subsequently
added DL module; Sections 3 and 4 introduce functions which are specific to RSRL
and to description logics, respectively. Section 5 illuminates the relationship between
the two logical systems implemented in MoMo. Section 6 concludes our overview with
general observations on the use of the software and on future developments.

2 MoMo: Visualization and Reasoning

MoMo’s most important functions visualize the relationships between sets of logical
formulae and their model-theoretic interpretations, and support reasoning about in-
terpretations of logical statements. Here we will not present definitions of the formal
languages of MoMo and of the denotations of their expressions. Instead, we will use
examples as they are displayed in MoMo to explain the formalisms. Essential to our
discussion will be the fact that our logical systems comprise logical formulae and an
interpretation function defining the denotation of every logical formula as a set of
objects. In MoMo, users can (1a) declare arbitrary sets of basic non-logical syntactic
symbols and organize them into a subsumption hierarchy; (1b) write sets of logical
formulae; and (2) construct interpretations of a given set of formulae as labeled (pos-
sibly cyclic) directed graphs. The fundamental division between the declaration and
use of syntactic symbols (1a-b) and the structures employed to interpret these sym-
bols (2) is reflected by the graphical user interface: MoMo has two main windows,
a note pad window and a graph window, which correspond to the two fundamental
components of the formalisms, to their syntax and to their semantics.

The note pad window, shown in Fig. 1, is divided into three areas: a Descriptions

area containing a set of logical formulae, which can either be typed in or imported
from an external file; a Signature area with a hierarchy of symbols which can be typed
in, imported from an external file or inferred from a set of logical formulae (in DL
mode); and an Interpretations area with a list of interpretations (which are created
and manipulated in the graph window).

Every signature in MoMo starts with the key word type hierarchy and ends with
a period in the last line. These hierarchies are alternately called type hierarchy or
sort hierarchy in the literature, and the symbols in the hierarchy are called types and
sorts (in RSRL) or concept names (in DL). Every sort declared in the hierarchy is
printed on a separate line. In Fig. 1, the first symbol in each line of the signature
area between the key words type hierarchy and relation declares a sort and its
place in the sort hierarchy. All subsorts of a supersort S are below S and are further
indented than S. Each sort in MoMo hierarchies may have more than one immediate

MoMo: Software for Teaching and Visualizing RSRL and Description Logics 3

Fig. 1. Screen shot of MoMo: Note pad

supersort, in which case it occurs more than once in the signature declaration. A
symbol in the hierarchy may be followed by a sequence of attribute (or role) symbols
and their values. They play different roles in RSRL and DL and will thus be explained
below in the context of the respective formalisms.

The syntax of the logical languages is slightly different in RSRL and in DL. In both
formalisms, however, the logical languages comprise the usual logical connectives.
Conjunction is expressed by the symbol “,” and disjunction by “;”. The symbol “∼”
stands for negation; “*>” represents implication and “<*>” equivalence; “̂ ” and “V”
denote existential and universal quantification, respectively. The equation symbol
“=” is available for equating variables. Variables are printed with initial capital
letters, all other non-logical symbols in lower case letters.

The graph window (Fig. 2) contains a toolbar in the left panel for drawing inter-
pretations. Objects in interpretations are depicted as labeled nodes. The node labels
come from the elements in the type hierarchy, the sorts of RSRL and the concept

names of DL. Relationships between the objects are depicted as labeled arrows. The
arrow labels are taken from the second set of non-logical symbols of the signature, the
attributes of RSRL and the roles of DL. In RSRL mode the user usually works with
feature structures (see Section 3). Feature structures in MoMo are rooted connected
graphs. Root nodes are circled in red. A relation field at the bottom of the graph
window (shown in Fig. 2 with the relation member) is available only in RSRL mode.

By pressing the buttons in the right panel of the graph window, the user can
investigate various relationships between signatures or formulae and the configuration
of nodes and arrows. The system responses to the user queries (described in more
detail below) are shown graphically on the configurations themselves and by two
status lights in the upper right corner of the window (the status panel). The green
light Success indicates that all structures in the graph window have passed a test;

4 MoMo: Software for Teaching and Visualizing RSRL and Description Logics

Fig. 2. Screen shot of MoMo: Graph window

otherwise the red Failure light lights up. MoMo is also equipped with a message
window which informs about the results of user actions and provides links to Web
resources such as an on-line tutorial. For syntax checks of formulae the message
window gives detailed error reports, and similar error analyses are provided for well-
formedness checks of configurations relative to a signature or a set of formulae.

By pressing the Check Modeling button, the user can check whether the structures
in the graph window model the set of formulae in the note pad. An interpretation
models a set of formulae iff every object in the interpretation satisfies every formula.
If all the structures in the graph window model the set of formulae, then they will
be outlined in red. If not, only those nodes in the interpretations are outlined in red
that satisfy all the formulae in the note pad. All other nodes receive black circles, as
illustrated in the screen shot on the right-hand side in Fig.3.

3 Relational Speciate Re-entrant Language

RSRL is a very expressive language belonging to the family of feature logics and de-
signed to capture, as precisely as possible, the mathematical foundations of HPSG.2

Its syntax uses feature paths, path equations, the standard boolean connectives, rela-
tional expressions (such as member and append) and a special kind of existential and
universal quantification with restricted quantification domains (as required by HPSG).
The syntax of RSRL is implemented in MoMo as a syntactic parallel to the feature
logic descriptions of the HPSG grammar implementation environment TRALE3 in
order to establish a direct link to grammar implementations. More precisely, the syn-

2See [5] for mathematical details and a thorough explanation of the use of RSRL in HPSG.
3www.sfs.uni-tuebingen.de/hpsg/archive/projects/trale/

MoMo: Software for Teaching and Visualizing RSRL and Description Logics 5

Fig. 3. Graph window: Well-typedness checking (left) and model checking (right)

tax of MoMo is an extension of the feature logic descriptions of the TRALE system.
MoMo can read in TRALE’s parsing output and generate interpretations of parse
results.4

RSRL descriptions depend on signatures consisting of a set of sorts, a partial or-
der on the sorts (the sort hierarchy), a set of attributes, attribute appropriateness
conditions, and a set of relation symbols. The sorts, attributes and relation symbols
provide the non-logical symbols of the language. Attribute appropriateness condi-
tions declare certain attributes appropriate to certain sorts, and assign a second sort
to each of these sort-attribute pairs as value. They impose restrictions on well-formed

interpretations by requiring the presence of certain attribute arcs and of certain values
of these arcs. An example of appropriateness conditions can be seen in the signature
displayed in the signature area of Fig. 1: Each sort symbol in the hierarchy may
be followed by a sequence of attribute-value pairs that are appropriate to it. Each
attribute-value pair consists of an attribute followed by a colon and the sort that is
appropriate for this attribute at the sort in the hierarchy stated at the beginning of
the line. Attribute-value pairs are inherited by subsorts. In our example, the attribute
likes-best is appropriate to the sort person, and the value of likes-best at person
must be a physical-entity. Since man and woman are subsorts of person, they inherit
these appropriateness specifications from person.

The symbols declared in the signature are used in descriptions of the formal lan-
guage. The description area of the note pad in Fig. 1 shows three well-formed state-
ments using our signature. Paraphrased in natural language, the three formulae say
roughly the following: (1) It (i.e. the object being described) is a car or a person.
(2) If it is a bmw, then the values of the attributes owner and driver are identical.
(3) Two objects x and y are in the member relation iff either x is the first element on
list y or there is a tail z of list y and x is in the member relation with that tail z.

The effect of a signature on interpretations becomes clear when we consider graphs

4MoMo is not a complete implementation of RSRL as presented in [5], since it does not comprise the syntax

and semantics of a construct called chains. Chains are an idiosyncratic construct of RSRL introduced for handling

certain highly specialized uses of lists in the arguments of relational expressions in HPSG.

6 MoMo: Software for Teaching and Visualizing RSRL and Description Logics

in the graph window. MoMo provides two kinds of interpretations for RSRL: (1) inter-
pretations populated by totally well-typed and sort-resolved (concrete) feature struc-
tures with designated root nodes (feature structure semantics), and (2) more general
interpretations which do not obey all algebraic restrictions of feature structure models
(standard semantics). For simplicity we will concentrate on the feature structure se-
mantics. The important underlying intuition about RSRL interpretations is the idea
that the structures in the denotation of RSRL theories correspond to – or represent
– structured objects in the real world which are described by logical theories.

The two feature structures shown in Fig. 2 illustrate interpretations of signatures
in RSRL. The signature is taken from Fig. 1. Nodes in interpretations are labeled
by maximally specific sorts only, i.e. sorts from the sort hierarchy which do not have
any proper subsorts. Each node has an outgoing arc labeled with an attribute that
is declared appropriate to it in the signature. Each of these attribute arcs points
to a node which is either equal to the sort σ declared appropriate for the value
of this attribute in the signature, or a subsort of σ. For any structure the user
creates in the graph window, he can check (using the button Obeys Signature) whether
the configurations on the canvas are well-formed with respect to the appropriateness
requirements of the signature. The left-hand side of Fig. 3 shows the result of such
a well-formedness test on the configuration in Fig. 2: The feature structure with
root node A0 (of sort mercedes) is almost completely outlined in green, signaling
that the colored part is well-formed. The exception is the node woman which lacks
the attribute likes-best. The second feature structure (with root node B6 of sort
man) is entirely ill-formed: An attribute arc labeled likes-best is missing from
both nodes in the feature structure, and passenger is not appropriate to man. The
message window, not shown in the figure, gives the user exact information on the
ill-formedness of the feature structures.

Check Satisfaction implements the RSRL notion of constraint satisfaction: Infor-
mally, a particular node n in an interpretation satisfies a description iff its substruc-
ture (i.e. the configuration of nodes reachable from n by following attribute arcs) is
well-formed relative to the signature and it is in the denotation of the description.
As described in Section 2, the notion of modeling builds on satisfaction: In RSRL, a
feature structure models a description iff it satisfies it and so does every node which is
accessible from the root node by following a sequence of arcs in the feature structure.
The notion of substructure employed in this definition is also important in the defi-
nition of universal and existential quantification in RSRL. Unlike in first order logic,
quantification in RSRL is not over the entire universe of objects, but rather over the
substructures of feature structures, or over the nodes that we can reach from a given
node by following the sequences of arcs accessible from the node. As a consequence,
existence statements in terms of modeling are statements about the existence of nodes
with certain properties within all substructures of a given feature structure. Similarly,
universal statements are statements about properties of all nodes within all substruc-
tures of a given feature structure (or set of feature structures). The statement ‘there
exists an x such that x is of sort woman’ is satisfied by each feature structure that
contains a node labeled woman. It is modeled by each feature structure in which the
substructure of each node in the feature structure contains a node labeled woman.

The right-hand side of Fig. 3 shows the result of model checking for a feature
structure representing a bmw. It is well-formed with respect to the signature, but

MoMo: Software for Teaching and Visualizing RSRL and Description Logics 7

it does not model the theory in Fig. 1 because the BMW is owned and driven by
different persons, and the node labeled black violates the constraint ‘car ; person’.

The relation field at the bottom of the graph window (see Fig. 2) contains tuples of
nodes (chosen by the user) which are in the relations given by the signature. In order
to visualize nodes in relations, each node on the canvas is automatically assigned
a letter-integer combination by which it can be addressed. In Fig. 2 the node A4
with label woman stands in the member relation with the non-empty list node A2,
which corresponds to the intuition that the woman is the only element on the list of
passengers in the feature structure with root node A0 depicted in the graph window.
The concrete feature structure with root node A0 and the member relation depicted in
the relation field are thus a model of the definition of the member relation, the third
logical statement in the description area of the note pad in Fig. 1.5 For each node in
the feature structure, any two nodes x and y in its substructure which are described
by the right-hand side of the equivalence are in the member relation in the relation
field. Alternatively, we can say that no nodes in the feature structure with root node
A0 besides A4 and A2 fulfill the conditions stated for the member relation.

Fig. 4. Signature, theory and interpretation
Signature:

top

sign head:head

phrase h-dtr:sign nh-dtr:sign

word phon:phonstring

head

verb numb:numb

noun numb:numb case:case

case

nom

acc

numb

sg

pl

phonstring

kim

walks

Theory:

phrase*> head:Head,h-dtr:head:Head.

phrase*> h-dtr:head:(verb,numb:X),nh-dtr:head:(noun,numb:X,case:nom).

word*> (phon:kim,head:(noun,numb:sg));(phon:walks,head:(verb,numb:sg)).

Fig. 4 shows a simplified linguistic example of the use of RSRL in HPSG-style
grammars. The example has three simple grammar principles: The first one is a
version of a Head Feature Principle (see [4]) saying that the head value of each

5Modulo the fact that the feature structure is not entirely well-formed with respect to the signature because the

node A4 is missing an appropriate attribute.

8 MoMo: Software for Teaching and Visualizing RSRL and Description Logics

phrase must equal the head value of the head daughter.6 The second principle says
that the head daughter of each phrase is a verb, and its number value must equal
the number value of the non-head daughter, which is a noun. The last principle
is a simple version of a Word Principle. It defines the words in the lexicon: If
something is a word, it is either a singular noun with phonology Kim, or it is a
verb with singular agreement features and phonology walks. Under modeling, this
grammar licenses structures like the one depicted in Fig. 4. In other words, the
logical statements we listed are true of every node in this feature structure. For most
of the nodes the statements are trivially true, since they are neither words nor phrases.
For the two nodes labeled word and the one node labeled phrase it is easy to verify
that the consequents of the implicational descriptions hold.

Additional functions of MoMo in RSRL mode allow the manipulation of interpre-
tations: MoMo can map concrete feature structures on their corresponding abstract
feature structure representations, which are an elegant encoding of equivalence classes
of isomorphic concrete feature structures. Partial feature structures can be extended
automatically to complete feature structures which obey all requirements of a given
signature. For a more comprehensive description of these and other features, the
reader is referred to the User’s Manual7 and to [6].

4 Description Logics

Description logics are a widely used class of model-theoretic logics, designed for the
representation of terminological knowledge (ontologies) and for reasoning based on
this knowledge (see [2]). Logical formulae in DL can be translated into first order logic
(FOL) or a slight extension thereof. For a subset of description logics called ALCN
there is a close, illuminating correspondence to a variant of RSRL (see Section 5). Due
to this relationship the graphical interface of MoMo is well-suited for the visualization
of the central concepts of ALCN . The implementation of DL in MoMo is expected to
be useful for knowledge engineering purposes as well as for teaching the mathematical
foundations of knowledge bases.8 Here we will focus on those aspects of description
logics which are directly relevant to the implementation of DL in MoMo.

An ontology expressed in a description logic represents a terminological knowledge
base which makes it possible to draw inferences and thus gain new knowledge. A
knowledge base in DL consists of a terminology TBox representing a vocabulary and
application domain and an ABox containing assertions about the concrete individuals
(objects) in the denotation of the concepts from the vocabulary. In what follows we
will focus on TBoxes, because at present ABoxes are not implemented in MoMo.

A TBox contains terminological axioms of the form C ⊑ D and C ≡ D (written
in MoMo as C*>D and C<*>D), where C and D are concept descriptions. Concept
descriptions are constructed from concept names (denoting sets of individuals) and
role names (denoting binary relations between individuals) by syntactic rules which
are interpreted model-theoretically. An interpretation I is a pair 〈∆I , ·I〉, where ∆I

is the domain of interpretation and ·I is an interpretation function. For every atomic

6Variables in descriptions which are not explicitly bound by a quantifier are assumed to be bound by an implicit

existential quantifier taking wide scope.
7User’s Manual: milca.sfs.uni-tuebingen.de/A4/Course/Momo/manual/momo-manual-par.pdf
8This work was carried out in the project Adaptive Ontologies on Extreme Markup Structures, concerned with the

automatic extension of ontologies. See tcl.sfs.uni-tuebingen.de/tt/english.html for further information.

MoMo: Software for Teaching and Visualizing RSRL and Description Logics 9

concept A : AI ⊆ ∆I and for every role R: RI ⊆ ∆I × ∆I . At the moment MoMo
implements ALCN -DL (see [2] for definition). The syntax, semantics and MoMo
notation of the concept descriptions in the logic are defined in Table 1. R depicts role
names and C depicts concept descriptions.

Table 1. Description logic ALCN : Syntax, semantics and MoMo notation

DL Syntax Semantics MoMo Notation

⊤ ⊤I = ∆I top

⊥ ⊥I = {} ∼ top

C1 ⊓ C2 (C1 ⊓ C2)
I = CI

1 ∩ CI

2 C1, C2

C1 ⊔ C2 (C1 ⊔ C2)
I = CI

1 ∪ CI

2 C1; C2

¬C (¬C)I = ∆I \ CI ∼ C

∃R.C (∃R.C)I = {x | ∃y : 〈x, y〉 ∈ RI and y ∈ CI} ̂R.C

∀R.C (∀R.C)I = {x | ∀y : 〈x, y〉 ∈ RI → y ∈ CI} VR.C

≤ nR (≤ nR)I = {x | |{(x, y) ∈ RI}| ≤ n} <= nR

≥ nR (≥ nR)I = {x | |{(x, y) ∈ RI}| ≥ n} >= nR

An interpretation I satisfies an axiom C ⊑ D iff CI ⊆ DI . I satisfies C ≡ D iff
CI = DI . I is called a model of a TBox iff it satisfies all axioms in the TBox. The
intuition is that interpretations in DL represent networks of relations between objects
that instantiate the concepts defined in the ontology.

In MoMo the user can construct interpretations as graphs and check if they model
a TBox contained in the note pad. Nodes in a graph represent individuals belonging
to the interpretation of the atomic concepts listed as node labels. Arrows represent
relations between objects. In contrast to interpretations in RSRL, individuals may
be instances of several atomic concepts in DL.

The example in Fig. 5 contains an ontology that describes family relations. The
taxonomy is automatically inferred by MoMo from the ontology. The ontology in
Fig. 5 can be paraphrased as follows: (1) If a person has children or spouses then the

children and spouses are persons. (2) A woman is a person. (3) A man is a person

who is not a woman, and vice versa. (4) A parent is a person who has a child, and

vice versa. (5) A grandmother is a woman who has a child that is a parent, and vice

versa. (6) A wife is a woman who has a spouse who is a man, and vice versa. (7) A

husband is a man who has a spouse who is a woman, and vice versa.

The interpretation in Fig. 5 shows a small family that consists of a grandmother
with a daughter who is married to a man and has a daughter with him.

One important DL inference task carried out by MoMo is subsumption hierarchy
extraction, resulting in a taxonomy of the concept names in the knowledge base. Fig. 5
shows the extracted subsumption hierarchy for the TBox in our example. Note that
the binary relations of DL correspond to the attributes of RSRL, but unlike in RSRL
there are no type restrictions in DL on the arguments of relations. In the hierarchy
they are simply declared appropriate to the root type top, and their values are again
of type top. The presence of the type top is obligatory in every hierarchy; it is the

10 MoMo: Software for Teaching and Visualizing RSRL and Description Logics

Fig. 5. TBox, interpretation and extracted taxonomy
Ontology:

person*>VhasChild.person,VhasSpouse.person.

woman*>person.

man<*>person,~woman.

parent<*>person,^hasChild.top.

grandmother<*>woman,^hasChild.parent.

wife<*>woman,^hasSpouse.man.

husband<*>man,^hasSpouse.woman.

Inferred taxonomy:

top hasChild:top hasSpouse:top

person

woman

grandmother

wife

man

husband

parent

grandmother

top concept subsuming all other concepts.
The subsumption hierarchy helps to keep the interpretation graphs compact. If a

node is labeled with an atomic concept C, it is assumed that the node belongs to
the interpretation of all superconcepts of C in the subsumption hierarchy. It follows
that the interpretation in Fig. 5 models the TBox under the subsumption hierarchy,
although the nodes labeled grandmother and wife, parent do not explicitly belong to
the interpretation of person, woman, the node husband, parent is not labeled person,

man, and the node woman is not labeled person. At present only simple structural
subsumption has been implemented.9 There are plans to integrate the KAON2 plug-in
that reasons over OWL-Lite and SWRL ontologies.10

5 On the Relationship between RSRL and DL

The fact that RSRL and DL live side by side in MoMo naturally prompts questions
about their suggestive model-theoretic similarities. However, RSRL and DL were
made for substantially different application areas. RSRL is a feature logic designed for
the description of the structure of linguistic signs, whereas description logics describe
networks of relations between objects in the world. DL can be translated into FOL
(the converse is false) and constitutes a relatively weak formalism. RSRL theories
cannot in general be expressed in FOL, nor vice versa.11

Crucial mathematical differences between RSRL and description logics are salient:
(1) RSRL interprets attributes as partial functions, while the corresponding DL roles
are relations. (2) RSRL theories comprise an elaborate signature that imposes restric-

9See [2] for further discussion and explanations.
10http://kaon2.semanticweb.org/, www.kaon2.semanticweb.org, www.w3.org/2004/OWL/, and www.w3.org/Submission/SWRL/
11RSRL theories using only the SRL fragment of the formalism can be translated into FOL (see [1]).

MoMo: Software for Teaching and Visualizing RSRL and Description Logics 11

tions on interpretations: Well-typedness entails that only totally well-typed structures
can model a theory. Nothing like this is required in description logics. (3) In RSRL
exactly one (maximally specific) sort is assigned to every object in the interpretation.
In DL an object may simultaneously be in the denotation of several atomic concepts.

To see the relationship between DL and RSRL it is useful to relax several constraints
on RSRL interpretations. Let RSRL* be a variant of RSRL in which interpretations
are not required to be well-typed, attributes are relational instead of functional, and
sorts are mapped to sets of objects. In addition we demand that each RSRL* signature
have a top sort subsuming all other sorts in the signature, and we call this sort top.
With these modifications in place, Table 2 shows how ALCN -DL (defined in Section 4)
and its sublogics can be translated into RSRL*.12 The translation is based on the
MoMo syntax of RSRL informally described in Section 3.

Table 2. Translation of the description logic ALCN into RSRL*

DL RSRL*

⊤ top

⊥ ∼ top

C1 ⊓ C2 C1 , C2

C1 ⊔ C2 C1 ; C2

¬C ∼ C

∃R.C ̂X(R : X, X : C)

∀R.C V X(R : X *> X : C)

≤ nR V X1...V Xn+1((R : X1, ..., R : Xn+1)*> (X1 = X2; ...; Xn = Xn+1))

≥ nR ̂X1...̂ Xn((R : X1, ..., R : Xn), (∼ (X1 = X2), ...,∼ (Xn−1 = Xn))

The translation indicated in Table 2 is defined in such a way that every model of
a DL ontology is a model of the corresponding RSRL* theory, and vice versa. While
we will not prove this result here, we want to draw the reader’s attention to an im-
portant property of the interpretation of quantifiers. RSRL employs non-standard
quantification over restricted quantification domains, whereas DL uses standard FOL
quantification ranging over the entire set of objects in a given universe. Given that,
the question arises how quantificational expressions can be translated correctly. The
answer lies in the actual use of quantification in DL. When we translate DL expres-
sions into FOL13 we observe that quantification is always over variables occurring in
the second arguments of roles, i.e. in terms of RSRL it is over feature values. Thinking
in terms of the graph representation of the DL models, it is clear that for every node
n in the interpretation graph, terminological definitions from the ontology are verified
with respect to the substructure of n. But this means that terminological definitions
are modeled by a variant of feature structures. As a result, while the relationship
between RSRL and DL is intricate it is close enough to express a DL ontology in the
syntax of RSRL and to obtain corresponding feature structure models in RSRL*. In
fact, this correspondence is at the heart of the MoMo implementation of DL.

12The translation in Table 2 ignores the necessary uniqueness of variable names.
13The translation of DL expressions into FOL is similar to the one shown in Table 2 (see [2]).

12 MoMo: Software for Teaching and Visualizing RSRL and Description Logics

6 Conclusions

MoMo has been used successfully both in HPSG grammar implementation courses as
well as in teaching courses in HPSG, both in face-to-face teaching and in e-Learning.
In classes that focused on linguistic problems MoMo functioned as a quick and in-
formal primer on the logical foundations of HPSG; it served as the introduction to
mathematically oriented courses on the logical foundations of constraint-based gram-
mar formalisms, where the use of MoMo preceded an in-depth study of feature log-
ics; and it was used in classes on grammar engineering, where it served to explain
the declarative meaning of logical grammatical constraints and to complement and
strengthen the students’ understanding of the computational tasks carried out by
parsing systems for constraint-based grammars.

MoMo is a central interactive software element in a web-based course on constraint-
based grammar formalisms and parsing (see [6] and references therein for a description
of the course design and goals). In this course, MoMo serves to visualize the expla-
nations and examples of the electronic textbook in the introductory section on the
feature logic of HPSG (five to six weeks of course work). The textbook provides MoMo
files with exercises that students complete at regular intervals and submit for evalua-
tion. The software gives immediate feedback in self-paced study and guides students
toward correct solutions. Evaluation questionnaires of the web-based course showed
that MoMo was very popular with the students. The use of the software substantially
improves their grasp of the relationship between a constraint-based grammar and its
meaning in terms of sets of feature structures compared to traditional face-to-face
teaching, which provides less opportunity for working through a sufficient number
of examples for each new concept and does not adapt as well to differences in the
background knowledge of students. In the near future, we also plan to use MoMo in
seminars on DL ontologies.

The next inference task to be implemented in MoMo is the automatic construction
of models satisfying not only a given signature but also a theory. This functionality
is important both in HPSG and for DL frameworks. Since the general problem is
undecidable in RSRL, this is a non-trivial task which cannot receive a general and fully
automatic solution. We are, however, confident that we can implement a satisfactory
solution for an interesting class of cases.

References

[1] Aldag, B. A proof theoretic investigation of prediction in HPSG. Magisterarbeit, Universität
Tübingen, 1997.

[2] Baader, F., D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider, eds. Description

Logic Handbook: Theory, Implementation and Applications. Cambridge University Press, 2003.

[3] Etchemendy, J. and J. Barwise. Language, Proof and Logic. Stanford: CSLI Publications, 1999.

[4] Pollard, C. and I. A. Sag. Head-Driven Phrase Structure Grammar. U. of Chicago Press, 1994.

[5] Richter, F. A mathematical formalism for linguistic theories with an application in Head-driven
Phrase Structure Grammar. Dissertation (2000), Universität Tübingen, 2004.

[6] Richter, F., E. Ovchinnikova, B. Trawiński, D. Meurers. Interactive Graphical Software for
Teaching the Formal Foundations of Head-Driven Phrase Structure Grammar. In Jäger, G., P.
Monachesi, G. Penn, S. Wintner, eds. Proceedings of Formal Grammar 2002, pp. 137–148, 2002.

Received 31 May 2007.

