
Constraint-based Computational

Semantics:

LTAG and LRS

Frank Richter, Laura Kallmeyer

University of Tübingen

July 2006, Varna, Bulgaria

1

The Topic

• Model-theoretic semantics in constraint-based grammar

frameworks

• Constraint-based techniques of semantic composition

– properties

– advantages

• Consequences for research in model-theoretic semantics

2

Structure of the Tutorial

Part I: Introduction to the Frameworks

– Constraint-based Model-theoretic Semantics

– Introduction to LTAG and LTAG Semantics

– Introduction to Lexical Resource Semantics (LRS)

Part II: Analyses

– Quantifier Scope

– Restrictions on Quantifier Scope

– Negative Concord

– Negative Polarity Items

– Conclusions

3

Constraint-based Model-theoretic

Semantics

4

Constraint-based Model-theoretic Semantics (1)

We will discuss constraint-based semantics in 2 different but

mathematically explicit frameworks. The semantic systems have

important properties in common:

• Ty2 as the language of semantic representations

• Semantic composition not based on the lambda calculus

• Feature logical specification of semantic composition

• Application of underspecification techniques

• Some fundamental notions about semantic representations in

syntactic structures are very similar

These common properties make the 2 systems comparable in a

meaningful way.

5

Constraint-based Model-theoretic Semantics (2)

The 2 systems also exhibit important differences. They can be

traced to the fundamentally different grammar architectures of

LTAG and HPSG:

LTAG

– Based on Context free grammars (CFGs)

– More precisely: Mild extension of CFGs

– The categories of the nodes are non-atomic: Described by

statements in a (very weak) feature logic

– The feature logic will be important for LTAG semantics

HPSG

– Model-theoretic grammar framework: Grammars as systems

of constraints with a logical interpretation

– LRS defined alongside syntax in the same system

6

Lexicalized Tree Adjoining Grammars:

Syntax and Semantics

7

Overview

1. Motivation for LTAG

2. Tree Adjoining Grammars (TAG)

3. LTAG and natural languages

4. LTAG Semantics with Semantic Unification

8

Motivation for LTAG

1. CFG and natural languages

2. Lexicalizing CFGs

9

CFG and natural languages (1)

Idea of mildly context-sensitive grammar formalisms: keep the

grammar formalism as simple as possible in terms of generative

power, i.e., just as complex as needed, nothing more.

Question: is CFG enough?

Answer: No.

Example: cross-serial dependencies in Dutch and in Swiss German

cannot be adequately described within CFG.

(1)

... dat Wim Jan Marie de kinderen zag helpen leren zwemmen

... that Wim Jan Marie the children saw help teach swim

‘... that Wim saw Jan help Marie teach the children to swim’

10

CFG and natural languages (2)

A formalism that can generate cross-serial dependencies must be

able to generate the copy language {ww |w ∈ {a, b}∗}.

The copy language is not context-free.

Idea of Tree Adjoining Grammars (TAG): replacing not only leaves

with new trees (substitution) as in CFG but replacing also internal

nodes with new trees (adjunction).

11

CFG and natural languages (3)

Example: TAG derivation of abab:

S

ε

SNA

a S

S∗

NA a

;

SNA

a S

S∗

NA a

ε

SNA

a S

S∗

NA a

ε

SNA

b S

S∗

NA b

;

SNA

a SNA

b S

S∗

NA b

S∗

NA a

ε

12

Lexicalizing CFGs (1)

In a lexicalized grammar, each element of the grammar contains at

least one lexical item (terminal symbol), and the operation used to

put these elements together is non-erasing.

Lexicalized grammars are

• computationally interesting since in a lexicalized grammar the

number of analyses for a sentence is finite (if the grammar is

finite of course).

• linguistically interesting: each lexical item comes with the

possibility of certain partial syntactic constructions, therefore

one would like to associate it to a set of substructures.

13

Lexicalizing CFGs (2)

Question: can CFGs be lexicalized such that the set of trees

remains the same (strong lexicalization)?

Answer: No. Only weak lexicalization (same string language)

possible for CFGs (Greibach Normal Form).

Example: the CFG S → SS, S → a cannot be strongly lexicalized.

Problem: minimal length of a path from root to a leaf can be

arbitrarily large.

But: the distance between two nodes on the same path cannot

increase in CFG.

14

Lexicalizing CFGs (3)

Strongly equivalent LTAG:

S

a

S

S∗ S

a

LTAG

• strongly lexicalize CFGs, and

• are closed under lexicalization

15

Tree Adjoining Grammars (TAG)

1. Adjunction and substitution

2. Adjunction constraints

3. Derivation trees

16

Adjunction and substitution (1)

Tree Adjoining Grammars (TAG): Tree-rewriting system: set of

elementary trees with two operations:

• adjunction: replacing an internal node with a new tree.

The new tree is an auxiliary tree and has a special leaf, the

foot node.

• substitution: replacing a leaf with a new tree.

The new tree is an initial tree

A good LTAG introduction: Joshi & Schabes (1997)

17

Adjunction and substitution (2)

(2) John sometimes laughs

NP

John

S

NP VP
VP

ADV VP∗ V

sometimes laughs

derived tree:

S

NP VP

John ADV VP

sometimes V

laughs

18

Adjunction constraints (1)

Additionally, adjunction constraints specify for each node

1. whether adjunction is mandatory and

2. which trees can be adjoined.

Example: TAG for the copy language:

S

ε

SNA

a S

S∗

NA a

SNA

b S

S∗

NA b

19

Adjunction constraints (2)

Example:

(3) John seems to sleep

NP

John

S

NP VPOA

V

to V

sleep

VP

V VP∗

seems

20

Derivation trees (1)

TAG derivations are described by derivation trees:

For each derivation in a TAG there is a corresponding derivation

tree. This tree contains

• nodes for all elementary trees used in the derivation, and

• edges for all adjunctions and substitutions performed

throughout the derivation.

Whenever an elementary tree γ was attached to the node at

address p in the elementary tree γ′, there is an edge from γ′ to γ

labeled with p.

21

Derivation trees (2)

Example:

derivation tree for the derivation of (3) John seems to sleep

sleep

1 2

john seems

Derivation trees

• are context-free, and

• uniquely determine the derived tree.

⇒ TAG is a linear context-free rewriting system, LCFRS

22

LTAG and natural languages

1. The nature of elementary trees

2. Constituency and dependency

3. Feature-Structure Based TAG (FTAG)

23

Elementary trees (1)

Important features of LTAG:

• Grammar is lexicalized

• Recursive parts are put into separate elementary trees that can

be adjoined (Factoring of recursion, FR)

• Elementary trees can be arbitrarily large, in particular

(because of FR) they can contain elements that are far apart in

the final derived tree (Extended domain of locality)

24

Elementary trees (2)

(4) a. whoi did John tell Sam that Bill likes ti

b. whoi did John tell Sam that Mary said that Bill likes ti

S

WHi SOA

COMP S

that NP VP

WHi V NP

who NP likes εi

Bill

S

INFL NP VP

did V NP S∗

NP tell

John NP

Sam

25

Elementary trees (3)

Elementary trees are extended projections of lexical items (Frank

2002). Recursion is factored away ⇒ finite set of elementary trees.

The elementary tree of a lexical predicate contains slots for all

arguments of the predicate, for nothing more.

Besides lexical predicates, there are functional elements

(complementizers, determiners, auxiliaries, negation) whose

treatment in LTAG is less clear. They can be

• either in separate elementary trees (e.g., XTAG grammar)

• or in the elementary tree of the lexical item they are associated

with.

26

Elementary trees (4)

Example:

(5) John gives a book to Mary

S

NP↓ VP

V NP↓ PP

gives P NP↓

to

27

Elementary trees (5)

Example:

(6) John expected Mary to make a comment

expected selects for a subject NP and an infinitival sentence:

NP

John

S

NP↓ VP

V S∗

expected

S

NP↓ VP

to make a comment

The sentential object is realised as a foot node in order to allow

extractions:

(7) whom does John expect to come?

28

Elementary trees (6)

to make a comment: make and comment in the same elementary

tree since they form a light verb construction:

S

NP↓ VP

V NP

to make N

comment

NP

Det NP∗

a

29

Elementary trees (7)

Example with modifiers:

(8) the good student participated in every course during the

semester

N

AP N∗

A

good

NP

Det N

the student

30

Elementary trees (8)

S

NP↓ VP

V PP

participated P NP↓

in

VP

VP∗ PP

P NP↓

during

31

Elementary trees (9)

Constraints on larger structures (constraints on “unbounded

dependencies”) need not be stipulated but follow from the

possibilities of adjunction in the extended projections.

Fundamental LTAG hypothesis: Every syntactic dependency is

expressed locally within a single elementary tree.

Non-local dependency corollary: Non-local dependencies always

reduce to local ones once recursive structure is factored away.

32

Constituency and Dependency (1)

The derived tree gives the constituent structure.

The derivation tree records the history of how the elementary trees

are put together.

⇒ the edges in the derivation tree represent predicate-argument

dependencies; the derivation tree is close to a semantic dependency

graph.

⇒ compute semantics on derivation tree

33

Constituency and Dependency (2)

(9) John buys Bill a book

Elementary trees:

NP

John

S

NP↓ VP

V NP↓ NP↓

buys

NP

Bill

NP

Det N

a book

Derivation tree:

buys

1 22 23

John Bill a book

34

Constituency and Dependency (3)

(10) Bill hopes that John wins

NP

Bill

S

NP↓ VP

V S∗

hopes

S

Comp S

that NP↓ VP

V

wins

NP

John

Derivation tree:

wins

ε 1

hopes John

1

Bill

35

Constituency and Dependency (4)

(11) John expects [Bill to win]

S

NP↓ VP

V S∗

expects

S

NP↓ VP

to win

Derivation tree:

to win

ε 1

expects Bill

1

John

36

Constituency and Dependency (5)

(12) John persuades Bill [PRO to leave]

S

NP↓ VP

V NP↓ S∗

persuades

S

NP VP

PRO to leave

Derivation tree:

to leave

ε

persuades

1 22

John Bill

37

Constituency and Dependency (6)

(13) John seems to like Bill

VP

V VP∗

seems

S

NP↓ VP

VP NP↓

to like

Derivation tree:

to like

1 2 22

John seems Bill

38

Constituency and Dependency (7)

The derivation tree is not always the semantic dependency

structure:

(14) John claims Bill is likely to win

to win

1 ε 2

Bill claims is likely

1

John

39

FTAG (1)

Feature-structure based TAG (FTAG): Vijay-Shanker & Joshi

(1988).

Each node has a top and a bottom feature structure (except

substitution nodes that have only a top). Nodes in the same

elementary tree can share features (extended domain of locality).

Intuition:

• The top feature structure tells us something about what the

node presents within the surrounding structure, and

• the bottom feature structure tells us something about what the

tree below the node represents.

In the final derived tree, both must be the same.

40

FTAG (2)

Example:

[

cat S

]

[

cat S

]

[

cat NP

agr 1

]






cat VP

agr 1

[

pers 3

num sing

]







[

cat VP

]

[

cat V

]

[

cat V

]

sings

41

FTAG (3)

Example:

[

cat S

]

[

cat S

]

[

cat NP

agr 1

] 





cat VP

agr 1

mode ind







[

cat VP

mode ger

]

[

cat V

]

[

cat V

]

singing

42

FTAG (4)

Unification during derivation:

• Substitution: the top of the root of the new initial tree

unifies with the top of the substitution node

• Adjunction: the top of the root of the new auxiliary tree

unifies with the top of the adjunction site,

and the bottom of the foot of the new tree unifies with the

bottom of the adjunction site.

• In the final derived tree, top and bottom unify for all nodes.

43

FTAG (5)

Example:

[]







cat NP

agr

[

pers 3

num sing

]







John

[

cat S

]

[

cat S

]

[

cat NP

agr 1

]






cat VP

agr 1

[

pers 3

num sing

]







[

cat VP

]

[

cat V

]

[

cat V

]

sings

44

FTAG (6)

Example:

[

cat VP

]







cat VP

agr 2

mode ind







[

cat V

]

[

cat VP

mode ger

]







cat V

agr 2

[

pers 3

num sing

]







[

cat VP

]

∗

is

[

cat S

]

[

cat S

]

[

cat NP

agr 1

] 





cat VP

agr 1

mode ind







[

cat VP

mode ger

]

[

cat V

]

[

cat V

]

singing

45

FTAG (7)

In FTAG, there are no explicit adjunction constraints. Instead,

adjunction constraints are expressed via feature unification

requirements.

Important: LTAG feature structures are restricted; there is only a

finite set of possible feature structures.

Therefore, the following can be shown:

For each FTAG there exists a weakly equivalent TAG with

adjunction constraints and vice versa. The two TAGs generate even

the same sets of trees, only with different node labels.

46

LTAG Semantics with Semantic
Unification

1. Semantic Representations and Semantic Feature Structures

2. Semantic Unification

3. Disambiguation

4. Global Features

47

Semantic Representations (1)

Problems where derivation tree does not provide all links necessary

for semantic computation:

(15) Mary claims John seems to laugh

laugh

s vp

claim seem

claim′(m, (seem′(laugh′(j))))

no link between claim and seem

(16) Who does Paul think John said Bill liked?

like
wh s

who say

s

think

who′(x, think′(p, say′(j, like′(b, x))))

no link between like and think

(neither between who and think)

48

Semantic Representations (2)

Observation: whenever a semantic link in the derivation tree is

missing, it is

1. either a link between trees attaching to different nodes in the

same tree, i.e., attaching to nodes that can share features

inside an elementary tree,

2. or a link between trees γ1 and γ2 such that γ2 adjoins to the

root of a tree that (adjoins to the root of a tree that ...)

attaches to some node n in γ1. In this case, indirectly, the top

of n and the top of the root of γ2 unify and thereby features

can be shared.

⇒ the feature unification in FTAG provides the necessary links

(Gardent & Kallmeyer 2003)

49

Semantic Representations (3)

To separate more neatly between syntax and semantics, augment

the derivation tree with semantic feature structure descriptions and

do semantic unification on the derivation tree (Kallmeyer &

Romero 2006):

• each elementary tree is linked to a semantic representation and

a semantic feature structure description

• semantic composition = conjunction and additional feature

value equations between these feature structure descriptions.

The feature structures link top and bottom features to the nodes in

the elementary tree. Feature value identifications proceed parallel

to syntactic feature structure unification.

50

Semantic Representations (4)

(17) John sometimes laughs

l1 : laugh′(1)

























s

[

b

[

p 2

]

]

np

[

t

[

i 1

]

]

vp





t

[

p 2

]

b

[

p l1

]





























np vp

l0 : john′(x) l2 : sometimes′(3), 3 ≥ 4

[

np

[

t

[

i x

]

]

] 









vpr

[

b

[

p l2

]

]

vpf

[

t

[

p 4

]

]











51

Semantic Unification (1)

for each edge in the derivation tree from γ1 to γ2 with position p:

1. the top of p in γ1 and the top of the root in γ2 are identified

2. and if γ2 is an auxiliary tree, then the bottom of the foot node

of γ2 and the bottom of p in γ1 are identified.

Furthermore, for all γ and all p in γ such that there is no edge with

position p from γ to some other tree: the top and bottom of γ.p are

identified.

52

Semantic Unification (2)

l1 : laugh′(1)





























s





t

[]

b

[

p 2

]





np

[

t

[

i 1

]

]

vp





t

[

p 2

]

b

[

p l1

]

































np vp

l0 : john′(x) l2 : sometimes′(3), 3 ≥ 4







np





t

[

i x

]

b

[]































vpr





t

[]

b

[

p l2

]





vpf





t

[

p 4

]

b

[]

























53

Semantic Unification (3)

After unification the union of the semantic representations is built

and the assignments obtained from the unifications is applied to it.

Assignment in our example: 1 → x, 4 → l1, 2 → l2

Result:
l1 : laugh′(x), l0 : john′(x), l2 : sometimes′(3),

3 ≥ l1

Underspecified representation.

54

Disambiguation (1)

Disambiguation: Function assigning propositional labels to the

remaining propositional metavariables while respecting the scope

constraints.

l1 : laugh′(x), l0 : john′(x), l2 : sometimes′(3),

3 ≥ l1

Only one disambiguation: 3 → l1. Leads to

l0 : john′(x), l2 : sometimes′(l1 : laugh′(x))

The resulting set is interpreted conjunctively.

This yields john′(x) ∧ sometimes′(laugh′(x))

55

Global features (1)

Intuition: Some features are linked to elementary trees as a whole.

Examples:

• Feature i in NP trees.

• Minimal proposition contributed by a verb.

Each tree has a feature global and “requests” for global features

of other trees can be put on specific node positions.

56

Global features (2)

l1 : laugh′(1)































global

[

mins l1

]

s

[

b

[

p 2

]

]

np

[

global

[

i 1

]

]

vp





t

[

p 2

]

b

[

p l1

]



































np vp

john′(x) l2 : sometimes′(3), 3 ≥ 4

[

global

[

i x

]

] 









vpr

[

b

[

p l2

]

]

vpf

[

t

[

p 4

]

]











57

LTAG Semantics: Summary

elementary trees

linked to adj./subst determine equations

semantic representations sem. fs descriptions
linked

to

union assignment

underspecified repr.

disambiguations

logical form

Interface structure: derivation tree, determines locally the

compositions of elementary trees and of fs descriptions.

58

Short Introduction to

Lexical Resource Semantics (LRS)

59

A Short Introduction to LRS

• HPSG: Grammar = 〈Signature, Set of Principles〉

• Model theoretic: Linguistic expressions as sets of structures

• Consequences for LRS in HPSG:

– LRS principles describe Ty2 terms; do not contain Ty2

terms

– Underspecification on the description level

60

LRS (Framework 2)

• Grammar (signature and principles) of Ty2

• Feature geometry for LRS with separaton of local content and

an lf attribute on signs with lrs value:

sign















synsem loc content

[

var me

main me

]

lf
lrs





external content me

internal content me

parts list



















• Principles

– excont Principle, incont Principle

– lrs Projection Principle

– Semantics Principle

61

LRS: Quantified NP

3(x, . . . girl′(x). . . , . . .)

Det




exc 4

inc 4 3(x, γ, δ)

ps 〈 4 , 4a x 〉





three

N




exc 4

inc 3 girl(x)

ps 〈 3 , 3a girl〉





girls

comp head

NP




exc 4 3(x, γ, δ)

inc 3

ps 〈 4 , 4a , 3 , 3a 〉





& 3 / γ

62

The Core Principles (1)

The Incont Principle (IContP):

In each lrs, the incont value is an element of the parts list and a

component of the excont value.

The Excont Principle (EContP):

Clause (a):

In every phrase, the excont value of the non-head daughter is an

element of the non-head daughter’s parts list.

Clause (b):

In every utterance, every subexpression of the excont value of the

utterance is an element of its parts list, and every element of the

utterance’s parts list is a subexpression of the excont value.

63

The Core Principles (1)

LRS Projection Principle: In each headed-phrase,

the excont value of the head and the mother are identical,

the incont value of the head and the mother are identical,

the parts value contains all and only the elements of the parts

values of the daughters.

Semantics Principle: In each headed-phrase,

if the non-head is a quantifier then its incont value is of the form

Qx[ρ ◦ ν], the incont value of the head is a component of ρ, and

the incont value of the non-head daughter is identical with the

excont value of the head daughter;

if the non-head is a quantified NP with an excont value of the

form Qx[ρ ◦ ν], then the incont value of the head is a component

of ν.

64

LRS: Simple Sentence

NP




excont 1

incont 1

parts 〈 1 john〉





John

A




excont 5

incont 5 sometimes(3)
parts 〈 5 , 5a sometimes〉





sometimes

V




excont 4

incont 2 laugh(1 john)
parts 〈 2 , 2a laugh〉





laughs

adj head

VP




excont 4

incont 2

parts 〈 2 , 2a , 5 , 5a 〉





& 2 / 3 & 5 / 4

comp head

S




excont 4 sometimes(laugh(john))

incont 2

parts 〈 2 , 2a , 5 , 5a , 1 〉





65

LRS: Lexical Entry





































phon
〈

laughs
〉

ss loc













cat

[

head verb

subcat
〈

NP
X

〉

]

cont

[

main walk’

var e

]













lf











lrs

excont me

incont 2 laugh’@(e, X)

parts
〈

2 laugh’@(e, X), 2a @, 2b e, 2c , 3 ∃e φ
〉















































∧ 2 / 3

66

The LRS Architecture (Summary)

• Typed feature logic for syntax and semantics

• Interleaved specification of syntax and semantics

• Underspecification on the level of the feature logic (subterm

constraints)

• Components of an LRS theory:

1. A grammar (signature and principles) of Ty2

2. LRS principles for semantic composition on the basis of

– excont, incont and parts, using

– subterm constraints

3. Lexical entries for each word

67

End of Part I

68

Part II

69

Overview

1. Constraint-based computational semantics

2. Specific analyses in LRS and LTAG

(a) Quantifier Scope

(b) Restrictions for Quantifier Scope

(c) Negative Concord

(d) Negative Polarity Items

3. Compositionality

4. Comparing the frameworks

70

1. Constraint-based computational semantics

2. Specific analyses in LRS and LTAG

(a) Quantifier Scope

(b) Restrictions for Quantifier Scope

(c) Negative Concord

(d) Negative Polarity Items

3. Compositionality

4. Comparing the frameworks

71

Constraint-based computational semantics (1)

Summary of the characteristics of LRS and LTAG.

Things LRS and LTAG have in common:

• Ty2 language for semantics

• scope constraints ≥ in LTAG and component-of constraints �

in LRS for scope ambiguities

• feature logic for specifying and computing semantic

representations

72

Constraint-based computational semantics (2)

Differences between LRS and LTAG:

• Extended domain of locality in LTAG

• General principles in LRS vs. lexicalization in LTAG

• Interleaved specification of syntax and semantics in LRS

vs. modular architecture in LTAG

• LRS: (partial) descriptions of fully specified models vs

LTAG: underspecified representations in the style of Bos with

subsequent disambiguation (pluggings)

73

Specific analyses in LRS and LTAG

1. Quantifier Scope

2. Restrictions on Quantifier Scope

3. Negative Concord

4. Negative Polarity Items

74

Quantifier Scope (1)

Quantificational NPs: can in principle scope freely; their scope is

not directly linked to their surface position.

(18) Exactly one student admires every professor

∃ > ∀, ∀ > ∃

(19) Two policemen spy on someone from every city

∀ > ∃ > 2 (among others)

(20) John seems to have visited everybody

seem > ∀, ∀ > seem

(21) Three girls are likely to come

three > likely, likely > three

75

Quantifier Scope (2)

Two things must be guaranteed:

1. the proposition to which a quantifier attaches must be in its

nuclear scope

2. a quantifier cannot scope higher than the next finite clause

Idea: scope window delimited by some maximal scope and some

minimal scope for a quantifier.

Both, LTAG and LRS specify such scope windows for quantifiers.

76

Quantifier Scope (3)

LTAG analysis: global features maxs and mins.

NP

everybody

l2 : every′(x, 4 , 5),

l3 : person′(x),

4 ≥ l3,

6 ≥ 5 , 5 ≥ 7











global

[

i x

]

np

[

global

[

maxs 6

mins 7

]

]











77

Quantifier Scope (4)

(22) everybody laughs

l1 : laugh′(1),

2 ≥ 3

































global

[

mins l1

maxs 2

]

s

[

b

[

p 3

]

]

vp





t

[

p 3

]

b

[

p l1

]





np

[

global

[

i 1

]

]































np

l2 : every′(x, 4 , 5),

l3 : person′(x),

4 ≥ l3,

6 ≥ 5 , 5 ≥ 7











global

[

i x

]

np

[

global

[

maxs 6

mins 7

]

]











78

Quantifier Scope (5)

Result:

l1 : laugh′(x),

l2 : every′(x, 4 , 5), l3 : person′(x)

2 ≥ l1,

4 ≥ l3, 2 ≥ 5 , 5 ≥ l1

Disambiguation:

2 → l2, 4 → l3, 5 → l1

yields every′(x, person′(x), laugh′(x))

79

Quantifier Scope (6)

LRS analysis:

Excont Principle:

a) The excont of the non-head daughter is an element of the

parts list of the non-head daughter.

b) In an utterance, everything on the parts list is a component of

the excont.

⇒ maximal scope of a quantifier: excont of the next embedding

utterance.

Semantics Principle:

If the non-head of a headed phrase is a quantified NP, then the

incont of the head is a component of its nuclear scope.

⇒ minimal scope of a quantifier: incont of the verb it combines

with.

80

Quantifier Scope (7)

S






exc 6

inc 1

p 〈x, 1 , 1a , 2 , 2a , 4 , 4a , 〉







NP VP






exc 4 ∀x : α → β

inc 2 human′x

p 〈x, 2 , 2a human′, 4 , 4a α → β〉













exc 6

inc 1 laugh′x

p 〈x, 1 , 1a laugh′〉







everybody laughs

Constraints: 2 � α (from lexical entry of everybody), 1 � β, 4 � 6

81

Quantifier Scope (8)

A simple example with scope ambiguity, illustrated in LRS:

(23) Three girls are likely to come.

(24) Two readings:

a. 3(x, girl′(x), likely′(come′(x)))

b. likely′(3(x, girl′(x), come′(x)))

82

Quantifier Scope (9)

NP




exc 4 3(x, γ, δ)
inc 3 girl(4a x)

ps 〈 4 , 4a , 3 , 3a 〉





& 3 / γ

Three girls
V

[

inc 1

ps

〈

1

〉

]

are

A
[

inc 1

ps 〈 1 , 2 likely(α), 2a 〉

]

& 1 / α

likely

VP




exc 1

inc 1 come(x)
ps 〈 1 , 1a come〉





to come

head comp

AP
[

inc 1

ps 〈 2 , 2a , 1 , 1a 〉

]

head comp

VP
[

inc 1

ps 〈 2 , 2a , 1 , 1a 〉

]

comp head

S




exc 5

inc 1 come(x)
ps 〈 4 , 4a , 3 , 3a , 2 , 2a , 1 , 1a 〉





& 1 / δ

83

Quantifier Scope (10)

NP




exc 4 3(x, γ, δ)
inc 3 girl(4a x)

ps 〈 4 , 4a , 3 , 3a 〉





& 3 / γ

Three girls
V

[

inc 1

ps

〈

1

〉

]

are

A
[

inc 1

ps 〈 1 , 2 likely(α), 2a 〉

]

& 1 / α

likely

VP




exc 1

inc 1 come(x)
ps 〈 1 , 1a come〉





to come

head comp

AP
[

inc 1

ps 〈 2 , 2a , 1 , 1a 〉

]

head comp

VP
[

inc 1

ps 〈 2 , 2a , 1 , 1a 〉

]

comp head

S




exc 5

inc 1 come(x)
ps 〈 4 , 4a , 3 , 3a , 2 , 2a , 1 , 1a 〉





& 1 / δ

The grammar specifies two possible values for 5 :

1. 5 = 3(x, girl′(x), likely′(come′(x)))

2. 5 = likely′(3(x, girl′(x), come′(x)))

84

Quantifier Scope (11)

Summary: both approaches model the freedom of quantifiers wrt

scope

• using features for a quantifier scope window, and

• using underspecified representations involving

‘component-of’-constraints

The use of feature structures and feature value identifications in

combination with underspecification allows to avoid movements (in

the syntax or in LF) as assumed in traditional generative semantics.

85

1. Constraint-based computational semantics

2. Specific analyses in LRS and LTAG

(a) Quantifier Scope

(b) Restrictions for Quantifier Scope

(c) Negative Concord

(d) Negative Polarity Items

3. Compositionality

4. Comparing the frameworks

86

Restrictions on Quantifier Scope (1)

Three things may happen to the upper boundary of the scoping

possibilities of an NP when that NP is the argument of some

predicate P embedded under some higher predicate Q:

1. Q blocks NP-scope,

(25) Mary thinks John likes everybody

thinks > everybody, *everybody > thinks

2. Q lets the NP-scope pass imposing no limitations,

(26) Mary tries to be nice to everybody

tries > everybody, *everybody > tries

3. Q lets NP-scope pass imposing some limitations.

(27) Two policemen spy on someone from every city

∀ > ∃ > 2 (among others), *∀ > 2 > ∃

87

Restrictions on Quantifier Scope (2)

In LTAG, because of the extended domain of locality, it is

straightforward to define some elements as blocking the embedded

scope window and defining a new one for higher quantifiers:

(28) Mary thinks John laughs

maxs1 S excont

Mary VP

mins1 : think′

thinks S

maxs2

John VP

mins2 : laugh′ laughs incont: laugh′

88

Restrictions on Quantifier Scope (3)

S

NP VP

thinks S∗

S

NP VP

laughs

Argument of attitude

verb embeds maxs

of embedded verb

l1 : laugh′(j),

1 ≥ 2























global

[

maxs 1

]

s

[

b

[

p 2

]

]

vp





t

[

p 2

]

b

[

p l1

]



























s

l2 : think′(m, 3),

4 ≥ 5 , 3 ≥ 6































global

[

maxs 4

]

sr

[

b

[

p 5

]

]

vp





t

[

p 5

]

b

[

p l2

]





sf

[

global

[

maxs 6

]

]































89

Restrictions on Quantifier Scope (4)

(29) Mary thinks John likes everybody

l1 : like′(j, x),

1 ≥ l1

[

global

[

maxs 1

mins l1

]

]

s np2

l2 : think′(m, 2),

4 ≥ l2, 2 ≥ 3

l3 : every′(x, 5 , 6), l4 : person′(x),

5 ≥ l4, 7 ≥ 6 , 6 ≥ 8









global

[

maxs 4

]

sf

[

global

[

maxs 3

]

]









[

np

[

global

[

maxs 7

mins 8

]

]]

only one scope order: think′(m, every′(x, person′(x), like′(j, x)))

90

Restrictions on Quantifier Scope (5)

LRS analysis:

LRS specifies scope islands in general grammar principles, like any

other restrictions in HPSG.

Universal Boundary Principle

Universal quantifiers may not outscope finite clauses.

Or, slightly more technically:

For each finite clause, each universal quantifier contributed within

the clause (= member of its parts list) is a component of the

excont of the clause.

91

Restrictions on Quantifier Scope (6)

(30) Two policemen spy on someone from every city.

Restriction: if every scopes over some, then no other quantifiers

can scopally intervene, i.e., every has immediate scope over some.

Constraint cannot be captured with component-of constraints of

the form l ≤ h with l being a label, h a hole.

Therefore, LTAG allows for slightly different scope constraints.

92

Restrictions on Quantifier Scope (7)

LTAG maxs versus LRS excont as upper quantifier scope limit:

• excont: contains quantifier itself as component:

NP node: exc 4∀x[α → β].

4 is a component of the excont of the utterance.

• maxs (e.g., 6) limits nuclear scope, not the quantifier:

l3 : every′(x, 4 , 5). 6 ≥ 5 (not 6 ≥ l3)

I.e., the quantifier can be higher than the maxs limiting its

nuclear scope.

93

Restrictions on Quantifier Scope (8)

(31) Two policemen spy on someone from every city.

∗every > two > someone

LTAG analysis: exclude this order by deriving a constraint saying

that the maximal nuclear scope of every′ is the some′ proposition.

⇒ every′ can take scope over some′ but if it does so, then it has to

take immediate scope over some′.

94

Restrictions on Quantifier Scope (9)

(32)

l1 : spy′(x, y),

l2 : 2(x, 3 , 4), l3 : policeman′(x)

l4 : some′(y, 7 , 8), l5 : person′(y) ∧ 18 ,

l7 : from′(y, z)

l8 : every′(z, 13 , 14), l9 : city′(z)

1 ≥ l1,

3 ≥ l3, 1 ≥ 4 , 4 ≥ l1,

7 ≥ l5, 1 ≥ 8 , 8 ≥ l1

18 ≥ l7,

13 ≥ l9, l4 ≥ 14 , 14 ≥ l7

95

Restrictions on Quantifier Scope (10)

LRS analysis:

As with the scope island constraints for finite clauses discussed

above, LRS imposes a construction specific scope constraint to

enforce the relevant restriction.

Quantified Complex NP Constraint

In a complex quantified NP, embedded quantifiers may only

outscope the quantifier of the NP if they take immediate scope

over it.

96

Restrictions on Quantifier Scope (11)

Summary: The two theories differ with respect to their treatment

of imposing quantifier scope restrictions in the empirical domains

we considered.

• LTAG semantics prevents the quantifiers from taking wide

scope by restricting them lexically.

• LRS formulates conditions in principles of grammar which are

formulated with respect to certain syntactic environments

(finite clauses, complex quantified NPs,. . .)

97

1. Constraint-based computational semantics

2. Specific analyses in LRS and LTAG

(a) Quantifier Scope

(b) Restrictions for Quantifier Scope

(c) Negative Concord

(d) Negative Polarity Items

3. Compositionality

4. Comparing the frameworks

98

Negative Concord (1)

Polish:

(33)Janek nie pomaga ojcu.

Janek NM help father

‘... Janek doesn’t help his father’

(34) a.Janek nie pomaga nikomu.

Janek NM help nobody

‘... Janek doesn’t help anybody’

b. ∗Janek pomaga nikomu.

Only one negation in (34a.).

99

Negative Concord(2)

LRS analysis

• “nie” introduces a negation and every N-word introduces a

negation

• crucial: in LRS, descriptions of formulas ⇒ identifications of

different negations possible

• Negation Complexity Constraint: makes sure there is

only one negation per clause taking scope over the main verb

(language specific)

• Neg First Principle: if there is a negation and a verb, then

the negation must be on the verb’s parts list (i.e., verbal

prefix “nie” obligatory)

100

Negative Concord in Polish (3)






exc 6

inc 1

p 〈e, x, 0 , 1 , 1a , 1b , 2 , 3 , 3a , 4 , 5 , 5a , 〉







nikt nie przyszed l










exc 5 ∃x : γ ∧ δ

inc 3 human′x

p 〈x, 3 , 3a human′,

4 ¬β, 5 , 5a γ ∧ δ, 〉





















exc 6

inc 1 come′e, x

p 〈e, x, 1 , 1a come′e,

1b come′, 2 ¬α, 0 ∃eφ〉











1 � α, 2 � 6 , 5 � β, 3 � γ, 1 � δ, 1 � φ, 1 � α

101

Negative Concord (4)

LTAG analysis:

• only one negation introduced, coming from the negated verb.

• N-word as existential quantifier in the scope of the negation

• N-word needs licensing negation

Consider

(35)nikt nie przyszed l.

nobody NM comes

‘Nobody comes’

102

Negative Concord (5)

S

NP VP

V

nie V

przyszed l

l1 : ¬ 1 , l2 : come′(2 , 3)

1 ≥ l2, 4 ≥ l1


















global









maxs 4

n-scope 1

mins l2

neg yes









np

[

global

[

i 2

]

]



















neg marks verb as negated

n-scope provides scope of negation as maximal scope of N-words.

103

Negative Concord (6)

NP

nikt

l3 : some′(x, 5 , 6),

l4 : person′(x)

5 ≥ l4,

7 ≥ 6 , 6 ≥ 8















global

[

i x

]

np







global





n-scope 7

mins 8

neg yes

























N-word requires a negated verb and takes the n-scope of the verb

as maximal scope.

104

Negative Concord (7)

Summary: LRS’ flexible and powerful feature logic allows to

introduce different descriptions of the same formula in different

places of the analysis.

LTAG tries to stay close to normal dominance constraints.

Therefore, each subformula of the final semantic representation is

introduced exactly once.

105

1. Constraint-based computational semantics

2. Specific analyses in LRS and LTAG

(a) Quantifier Scope

(b) Restrictions for Quantifier Scope

(c) Negative Concord

(d) Negative Polarity Items

3. Compositionality

4. Comparing the frameworks

106

Negative Polarity Items (1)

(36) a. He hasn’t seen any students.

b. *He has seen any students.

(37) a. Es schert ihn nicht

it bothers him not

‘He does not give a damn about it’

b. *Es schert ihn.

107

Negative Polarity Items (2)

Licensing of NPIs obeys the following conditions (cf. Linebarger’s

Immediate Scope Constraint):

• 1. licensing condition (L1):

NPIs are in the scope of a negation that is semantically

interpreted in the same finite clause.

• 2. licensing condition (L2):

No regular quantifier is scopally intervening between the

negation and the NPI.

108

Negative Polarity Items (3)

LTAG analysis (Lichte & Kallmeyer 2006):

1. global feature n-scope: indicates the scope of a negation

2. global feature neg: indicates whether a tree semantically

contains a negation

3. local feature neg: indicates the presence of a negation at the

verbal spine

4. global feature minp for the minimal proposition coming with a

verb

109

Negative Polarity Items (4)

(38) dass Hans nicht kommt

that John not comes

VP

NP V

kommt

V

nicht V∗

l1 : come′(1)



































global





n-scope 2

minp l1

neg 3





vp





t

[

neg 3

]

b

[

neg 4

]





v





t

[

neg 4

]

b

[

neg no

]







































v

l2 : ¬ 7

7 ≥ 8













vr

[

b

[

neg yes

]

]

vf

[

global

[

n-scope 7

minp 8

]

]













110

Negative Polarity Items (5)

(39) Es schert ihn nicht

it bothers him not

‘He does not give a damn about it’

Lexical entry of the NPI schert (‘to give a damn about’):

Elementary tree:

VP [V F+]

[V F−]

V [LK+, RK−] VP [V F−, MF+]

schert NPnom VP [V F−, MF+]

NPacc V [LK−, RK+]

ε

111

Negative Polarity Items (6)

l1 : scheren′(1 , 2)

7 ≥ 8 , 8 ≥ l1,

8 ≥ 9 , 9 ≥ l1

1. negation required (neg)

2. NPI in scope of negation:

n-scope ≥ minp

3. quantifiers scope over negation:

mins ≥ n-scope, i.e., no

quantifier scopes between

neg and NPI



































































global









minp l1

mins 8

n-scope 9

neg yes









vpε





t

[

neg yes

]

b

[

neg 4

]





vp2





t

[

neg 4

]

b

[

neg 5

]





vp22





t

[

neg 5

]

b

[

neg 6

]





v





t

[

neg 6

]

b

[

neg no

]







































































112

Negative Polarity Items (7)

The LRS analysis of NPI licensing of Richter & Soehn (2006)

encompasses several modules of grammar. The following

components are most prominent:

• A collocation module of grammar restricting the distribution of

NPIs to their idiosyncratic licensing domains. The licensing

domain can be syntactic, semantic and pragmatic (and any

combination thereof)

• A (potentially discontinuous) lexical LRS analysis of scope

taking licensers (e.g. quantifiers)

• A semantic licenser hierarchy of NPIs, encoded in relations

that identify anti-morphic, anti-additive, downward entailing

and other semantically relevant environments

113

Negative Polarity Items (8)

An example of a lexical entry of an NPI in LRS:























word

phon

〈

scheren
〉

synsem

[

local

[

cat head verb

cont main 1 scheren
′

]

]

coll

〈[

complete-clause

lf-lic

[

exc deint-strength-op(1)
]

]〉























114

Negative Polarity Items (9)

Locality of NPI licensing and of negative concord: Comparison

LTAG-LRS.

In NPI licensing, the licenser must occur within a certain local

domain. (The same holds for the negative marker in negative

concord.)

In LTAG, because of the extended domain of locality, this is

straightforward to model. (Though sometimes, the information of

the presence of a licenser must percolate because the licensee does

not always attach to the verb carrying the licenser.)

In NPI licensing in LRS, the licensing domain must be explicitely

specified (in lexical entries). This is achieved by a collcoation

theory which enforces appropriate contextual conditions.

115

1. Constraint-based computational semantics

2. Specific analyses in LRS and LTAG

(a) Quantifier Scope

(b) Restrictions for Quantifier Scope

(c) Negative Concord

(d) Negative Polarity Items

3. Compositionality

4. Comparing the frameworks

116

Compositionality (1)

LTAG can be written as a linear context-free rewriting system

(LCFRS) consisting of

• a generalized context free grammar (GCFG) generating terms

in a term algebra that correspond to the derivation trees,

• the denotations of these terms (the derived trees), and

• functions specifying how to compute the strings they yield.

117

Compositionality (2)

Sample TAG:

αj NP

John

αm NP

Mary

αl S

NP VP

V NP

loves

β VP

usually VP∗

NA

118

Compositionality (3)

Sample derivation tree and corresponding term tree:

(40) John usually usually loves Mary

αl

1 2 22

αj β αm

ε

β

fαl:1,2,22

fαj
fβ:ε fαm

fβ

119

Compositionality (4)

The functions in the term trees specify syntactic compositions.

It is also possible to give them a semantic composition denotion.

I.e., the GCFG productions also specify semantic composition.

Example:

(41) John loves Mary

GCFG term tree:

fαl:1,22

fαj
fαm

120

Compositionality (5)

[[fαj
()]]sem = 〈σαj

, δ′αj
, 0 〉 with

σαj
= john′(x)

δ′αj
= i(global(0)) = x

∧t(ε(0)) = b(ε(0))

[[fαm
()]]sem = 〈σαm

, δ′αm
, 1 〉 with

σαm
= mary′(y)

δ′αm
= i(global(1)) = y

∧t(ε(1)) = b(ε(1))

121

Compositionality (6)

[[fαl:1,22(fαj
(), fαm

)]]sem = 〈σαl
, δαl

′, 4 〉 with

σαl
= john′(x), mary′(y), l1 : love′(x, y)

δ′αl
= i(global(np1(4))) = 2 ∧ i(global(np2(4))) = 3

∧p(t(vp(4))) = 5 ∧ p(b(vp(4))) = l1

∧δ′αj
∧ δ′αm

∧global(0) = global(np1(4))

∧global(1) = global(np2(4))

∧t(s(4)) = b(s(4)) ∧ t(vp(4)) = b(vp(4))

∧t(v(4)) = b(v(4))

122

Compositionality (7)

Summary: the context-free LTAG derivation tree uniquely specifies

not only syntactic composition but also semantic composition.

⇒ even including semantic computation, the grammar remains

mildly context-sensitive.

The semantic denotation of a node in the derivation tree depends

only the denotations of the daughters, the semantic representation

from the lexicon chosen for this node and the way the daughters

combine with the mother. In this sense, LTAG semantics is

compositional.

123

Comparison and Results

124

Summing up: Similarities

What LRS and LTAG have in common:

• Ty2 language for semantics

• scope constraints ≥ in LTAG and component-of constraints �

in LRS for scope ambiguities

• scope window to delimit quantifier scope: maxs and mins in

LTAG, excont and incont in LRS

• feature logic for specifying and computing semantic

representations

125

Summing up: Differences

Differences between LRS and LTAG:

• Extended domain of locality in LTAG

• ‘Global’ principles in LRS vs. lexicalization in LTAG

• Interleaved specification of syntax and semantics in LRS

vs. more sequential architecture in LTAG

• LRS: (partial) descriptions of fully specified models vs.

LTAG: Underspecified representations in the style of Bos with

subsequent disambiguation (pluggings)

• LRS: Does not contain formulas but descriptions of formulas ⇒

different descriptions can denote the same formula

LTAG: Two formulas in semantic representations are always

distinct syntactic objects

126

Summing up: Architectures at a Glance

1. Architecture:

• LTAG: Trees + tree building operations +

(underspec.) semantic representations + FL decorations

• HPSG: Uniform FL specification with model-theoretic

interpretation

2. Implementation:

• LTAG: Formalism mildly context sensitive

• LRS: Implementation in separate, denotationally equivalent

constraint language

3. Feature Logic:

• LTAG: FL as computational glue

• LRS: Expressive FL for interleaving syntax and semantics

127

Consequences for Model-theoretic Semantics (1)

• Semantic argument identification by feature value identification

instead of higher order type shifting

• Combination of scope windows and underspecification:

– No complex LF movement for the sake of describing scoping

possibilities of quantifiers and operators

→ questions about restrictions on pseudo-syntactic

movement don’t even arise

– Local specification of the scope potential of scope taking

elements

– Clear separation of the scope taking part of the semantics of

words and their ‘nuclear’ semantic contribution (e.g.

‘nobody’)

128

Consequences for Model-theoretic Semantics (2)

• Compositionality

– Compositionality is not given by a homomorphism from

(‘derived’) syntactic tree structure to a semantic algebra

– The systems can still be compositional (as sketched already

for LTAG semantics)

• Computational properties

– Polynomial parsability in LTAG

– LRS implemented in the CLLRS module of TRALE

– Claim: Logical representations qualify as semantic only to

the extent that they support inference

– Idea: Use underspecification and the type system to guide

constraint-solving and to support inferencing

129

Thank You

130

