Przepiórkowski-inspired Quantification in TRALE

Jonathan Khoo

jkhoo@sfs.uni-tuebingen.de

Grammar Engineering Summer Semester 2006

Agenda

- Background
- Przepiórkowski 1998
- 3 Development of the Grammar
- 4 In Action
- **5** Summary

Agenda

- Background
- Przepiórkowski 1998
- Development of the Grammar
- 4 In Action
- 5 Summary

Quantifiers and Quantificational NPs

Representing quantifiers:

every car a car

 $\forall x(CAR(x))$ $\exists x(CAR(x))$

Universal quantification Existential quantification

Quantifier Scope Ambiguity

A representative visits each customer.

- There is a different representative for each customer.
- There is one representative for all customers.

Quantifier Scope Ambiguity

A representative visits each customer.

- There is a different representative for each customer. $\forall y \in \mathcal{Y}(CUSTOMER(y) \rightarrow \exists x (REPRESENTATIVE(x) \land VISITS(x, y)))$
- There is one representative for all customers. $\exists x (REPRESENTATIVE(x) \land \forall y (CUSTOMER(y) \rightarrow VISITS(x, y)))$

Given that we only have one syntactic structure, how can we represent the ambiguity?

Quantifier Storage to the Rescue!

- "Cooper Storage"
- As a sentence is parsed, quantifiers go into storage as they are encountered
- They can be *retrieved* appropriately when enough information
- Goal: Represent all possibilities

Quantifier Scope Ambiguity

A unicorn appears to be approaching.

- Something appears to be approaching, and it is a unicorn.
- Something appears to be approaching, and it appears to be a unicorn.

Development of Quantification in HPSG

Pollard and Sag (1994) (from Pollard and Yoo (1998))

Development of Quantification in HPSG

Pollard and Yoo (1998)

Fixed: Filler-gap and raising constructions

Agenda

- Background
- 2 Przepiórkowski 1998
- Development of the Grammar
- 4 In Action
- **5** Summary

Fixes

- Simpler analysis: completely lexical
 - No complex constraints
 - Semantics completely in CONTENT
- Works with traceless extractions [ARG-ST]
- PY: Retrieval at all psoas → spurious ambiguities [word restriction]

Spurious Ambiguities in PY

Retrievals at VP₂, VP₃, VP₄, and V₄ yield the same reading

 $(1.3) word \rightarrow \mathsf{Desc}_1 \vee \mathsf{Desc}_2$

$$(1.4) \quad \mathsf{Desc}_1 = \begin{bmatrix} \mathsf{ss}|\mathsf{Loc}|\mathsf{cont} & \begin{bmatrix} \mathsf{nom\text{-}obj} \lor \mathsf{quant} \\ \mathsf{QSTORE} & 1 \end{bmatrix} \lor \begin{bmatrix} \mathsf{psoa} \\ \mathsf{QSTORE} & 2 \end{bmatrix} \\ \mathsf{NEW\text{-}QUANTIFIERS} \quad \boxed{5} \\ \mathsf{where} \quad \boxed{1 = 5} \uplus \mathsf{union} \; \mathsf{QSTOREs} \; \mathsf{of} \; \mathsf{selected} \; \mathsf{arguments} \\ \boxed{4 = \mathsf{set} \; \mathsf{of} \; \mathsf{elements} \; \mathsf{of} \; \boxed{3}} \\ \boxed{1 = 2} \uplus \boxed{4}$$

(1.5)
$$\mathsf{Desc}_2 = \begin{bmatrix} \mathsf{SS}|\mathsf{Loc}|\mathsf{CONT} & \mathbb{1} \\ \\ \mathsf{ARG-ST} & \left\langle \dots, \left[\mathsf{SS}|\mathsf{Loc}|\mathsf{CONT} & \mathbb{1} \right], \dots \right\rangle \end{bmatrix}$$

 $(1.3) \qquad \textit{word} \rightarrow \mathsf{Desc}_1 \vee \mathsf{Desc}_2$

$$(1.4) \quad \mathsf{Desc_1} = \begin{bmatrix} \mathsf{ss|Loc|cont} & \begin{bmatrix} \mathsf{nom\text{-}obj} \lor \mathsf{quant} \\ \mathsf{QSTORE} & 1 \end{bmatrix} \lor \begin{bmatrix} \mathsf{psoa} \\ \mathsf{QSTORE} & 2 \end{bmatrix} \\ \mathsf{NEW\text{-}QUANTIFIERS} & 5 \end{bmatrix}$$
 where
$$\begin{aligned} 1 &= 5 \uplus \mathsf{union} \mathsf{QSTOREs} \mathsf{of} \mathsf{selected} \mathsf{arguments} \\ 4 &= \mathsf{set} \mathsf{of} \mathsf{elements} \mathsf{of} \; 3 \\ 1 &= 2 \uplus 4 \end{aligned}$$

(1.5)
$$\mathsf{Desc}_2 = \begin{bmatrix} \mathsf{SS}|\mathsf{LOC}|\mathsf{CONT} & \boxed{1} \\ \mathsf{ARG-ST} & \left\langle \dots, \left[\mathsf{SS}|\mathsf{LOC}|\mathsf{CONT} & \boxed{1} \right], \dots \right\rangle \end{bmatrix}$$

$$(1.3) \qquad \textit{word} \rightarrow \mathsf{Desc}_1 \vee \mathsf{Desc}_2$$

$$(1.4) \qquad \mathsf{Desc}_1 = \begin{bmatrix} \mathsf{ss|Loc|cont} & \begin{bmatrix} \mathsf{nom\text{-}obj} \lor \mathsf{quant} \\ \mathsf{QSTORE} & \boxed{1} \end{bmatrix} \lor \begin{bmatrix} \mathsf{psoa} \\ \mathsf{QSTORE} & \boxed{2} \\ \mathsf{QUANTS} & \boxed{3} \end{bmatrix} \\ \mathsf{where} \qquad \boxed{1 = 5} \ \uplus \ \mathsf{union} \ \mathsf{QSTOREs} \ \mathsf{of} \ \mathsf{selected} \ \mathsf{arguments}$$

4 = set of elements of 3 1 = 2 ⊎ 4

(1.5)
$$\mathsf{Desc}_2 = \begin{bmatrix} \mathsf{SS}|\mathsf{LOC}|\mathsf{CONT} & \boxed{1} \\ \mathsf{ARG-ST} & \left\langle \dots, \left[\mathsf{SS}|\mathsf{LOC}|\mathsf{CONT} & \boxed{1} \right], \dots \right\rangle \end{bmatrix}$$

$$(1.3) \qquad \textit{word} \rightarrow \mathsf{Desc}_1 \vee \mathsf{Desc}_2$$

4 =set of elements of 3

 $1 = 2 \oplus 4$

(1.5)
$$\mathsf{Desc}_2 = \begin{bmatrix} \mathsf{SS}|\mathsf{LOC}|\mathsf{CONT} & \boxed{1} \\ \mathsf{ARG-ST} & \left\langle \dots, \left[\mathsf{SS}|\mathsf{LOC}|\mathsf{CONT} & \boxed{1} \right], \dots \right\rangle \end{bmatrix}$$

Concepts

- QSTORE filled from selected arguments
 - QSTORE accumulates quantifiers from QSTOREs of those members of ARG-ST not raised from other arguments
- ARGUMENT-STRUCTURE
 - Semantics-driven subcategorization frame
- Devolution of Semantics Principle
 - "The CONTENT value of a phrase is token-identical to that of the head daughter." (PS94)

A unicorn appears to be approaching.

(1.6)SYNSEM 4 LOC CONT 2 wordwordPHON (a) PHON (unicorn) nproQSTORE {2} ...CONT 1 INDEX 3 RESTR $\left\{ \begin{bmatrix} unicorn \\ INST \boxed{3} \end{bmatrix} \right\}$ ARG-ST () ARG-ST (4) NEW-QS {}

A unicorn appears to be approaching. (bottom)

narrow 2:

[psoa | QSTORE {}
QUANTS (4)
NUCL | approach

wide $\boxed{2}$: $\begin{bmatrix} psoa \\ \text{QSTORE} & \boxed{4} \end{bmatrix}$ $\begin{bmatrix} \text{QUANTS} & \langle \rangle \\ \text{NUCL} & \text{approach} \end{bmatrix}$

A unicorn appears to be approaching. (top)

Agenda

- Background
- Przepiórkowski 1998
- 3 Development of the Grammar
- 4 In Action
- 5 Summary

End Point

End Points

Primary goal:

"A representative visits each customer." (two quantifiers, one retrieval site)

Secondary goal:

"A unicorn appears to be approaching." (one quantifier, two retrieval sites)

At First Glance...

$$(1.3) \qquad \textit{word} \rightarrow \mathsf{Desc}_1 \vee \mathsf{Desc}_2$$

4 =set of elements of 3

 $1 = 2 \oplus 4$

(1.5)
$$\mathsf{Desc}_2 = \begin{bmatrix} \mathsf{SS}|\mathsf{LOC}|\mathsf{CONT} & \boxed{1} \\ \mathsf{ARG-ST} & \left\langle \dots, \left[\mathsf{SS}|\mathsf{LOC}|\mathsf{CONT} & \boxed{1} \right], \dots \right\rangle \end{bmatrix}$$

Starting Point

- Given this preliminary information, what would make sense?
- Choices
 - Scratch
 - Group Project Grammar
 - Core Fragment from Richter (2005)
- Why Core Fragment?
 - ARG ST set up
 - Basic principles set up (Subcat, Semantics)
 - Repurpose LEs

Preliminary Signature Changes

- Sign level of word: NEWQS { }, CR boolean
- Attribute of content: QSTORE { }
- Subsorts of content
 - psoa (already present)
 - visit_rel: VISITOR:ref VISITEE:ref
 - nom_obj
 - quant
- Subsorts of quantifier
 - forall_quant
 - exists_quant

Preliminary Goals for the Theory

- New quantifiers are placed in NEWQS
- Move NEWQS to QSTORE
- Amalgamate QSTOREs of selected arguments
- Pass CONTENT values up
- ARG_ST captures valence information
- Semantically vacuous words take CONTENT value from argument
- Retrieve by moving quantifiers from QSTORE to QUANTS @ psoas

Fist Step: NPs

- "a representative"
- "each customer"

Lexical Entries for the Nouns

• Use "Mary" as the basis for "representative" and "customer"

Lexical Entries for Quantifiers

• How to represent quantifiers in the QSTORE?

- In Przepiórkowski: quant is a subsort of content
 No separate sort for quantifiers makes it easier!
- Instead of setting up QSTORE and NEWQS in the LE, do it via a principle

Lexical Entries for Quantifiers

Very simple:

New Quantifier Principle

Sets the NEWQS and QSTORE for quantifiers

```
(word, synsem:loc:cont:(quant)) *>
          (synsem:Synsem, newqs:[Synsem], synsem:loc:cont:qstore:[Synsem]).
```

"A representative"

- At this point, 2 results
- Both take the quantifier as the CONTENT
- One has the noun in SUBJ, the other in COMPS
 - Ran into trouble with Subj-Aux Inversion and Head-Complement Rule, and later, Head-Adjunct Rule
- Thought about using something like the Functional Preposition Principle to set SUBJ and COMPS:

Head Adjunct Rule for Quantifiers

New PSR by reversing HA

```
head adjunct rule q ##
(phrase,
 synsem:loc:cat:val:(subj:List,
                       comps:e list).
 daughters: (qh_struc,
            hdtr:Hdtr,
            ndtr:Ndtr))
   ===>
cat> (Ndtr, synsem:loc:cat:(head:mod:Synsem,
                             val: (subi:e list,
                                   comps:e list))),
cat> (Hdtr, synsem: (Synsem,
                    loc: (cat:val: (subj:List,
                                   comps:e list),
                         cont:nom_obj))).
```

- New subsort of const_struc: qh_struc
- Added cat:val:comps:e_list to the SAI phrase structure rule to prevent application

Lexical Entry for the Verb

Use "likes" as the basis for "visits"

```
visits ~~> (synsem:loc:(cat:(head:(verb,
                                    vform: fin,
                                    pred: plus.
                                    aux: minus).
                              val:subj:[(loc:cont:(psoa;index:(pers:third,
                                                                 num:sq)))]),
                         cont: (visit rel.
                               visitor: Index1.
                               visitee: Index2)),
            arg_st:[(loc:(cat:(head:noun,
                                val: (subj:e list,
                                     comps:e list)),
                           cont:index:Index1)),
                      (loc: (cat: (head: noun,
                                val: (subj:e list,
                                     comps:e list)),
                           cont:index:Index2)))).
```

QSTORE Accumulation and Problems with the Content Principle

- Make quantifier accumulation part of phrase structure rule?
- Semantics principle says CONTENT of mother = CONTENT of hdtr
- BUT QSTORE involves ndtr
- Conflict because parent QSTORE (and thus, CONTENT) different from hdtr QSTORE

- Problem: semantics parvigle says moon conte FUT need to so the GOODE NQ. Y astone lot eran war DAORE Jonathan Khoo (jkhoo@sfs) Quantification & TRALE **Grammar Engineering SS06** 33 / 44

- Continue and try to find a solution
- Separate the quantifiers from the "nucleus" inside CONTENT
- Move the quantifiers from CONTENT
- Have some sort of temporary storage (QSTORETEMP external to CONTENT)

- Continue and try to find a solution
- Separate the quantifiers from the "nucleus" inside CONTENT
- Move the quantifiers from CONTENT
- Have some sort of temporary storage (QSTORETEMP external to CONTENT)

- Continue and try to find a solution
- Separate the quantifiers from the "nucleus" inside CONTENT
- Move the quantifiers from CONTENT
- Have some sort of temporary storage (QSTORETEMP external to CONTENT)

- Continue and try to find a solution
- Separate the quantifiers from the "nucleus" inside CONTENT
- Move the quantifiers from CONTENT
- Have some sort of temporary storage (QSTORETEMP external to CONTENT)

Digging a Hole

```
% Quantifier Accumulation and Distribution Principle for psoa
(phrase, daughters: (hs struc)) *>
      (daughters:ndtr:synsem:loc:cont:gstore:OstoreA,
       daughters:hdtr:synsem:loc:cont:gstore:QstoreB,
       daughters:ndtr:gstoretemp:OstoreC,
       daughters:hdtr:gstoretemp:OstoreD,
       qstoretemp:Qcombo)
goal
     append (QstoreA, QstoreC, Qcombol),
     append (QstoreB, QstoreD, Qcombo2),
     append (Ocombo1, Ocombo2, Ocombo).
(phrase, daughters: (hc struc)) *>
      (daughters:ndtr:synsem:loc:cont:gstore:OstoreA,
       qstoretemp:QstoreA).
```

New Direction: A Principled Decision

- Move from using DTRS to having principles on words only
- Returns back to original Przepiórkowski theory

First Version of Quantifier Accumulation Principle

Combinatorics

- Six possibilities
- Realized QSTORE + QUANTS must be the sum of the QSTOREs of the selected arguments

QUANTS
$\langle \rangle$
$\langle \rangle$
$\langle \exists \rangle$
$\langle \forall \rangle$
$\langle \exists \forall \rangle$
$\langle \forall \exists \rangle$

Final Quantifier Accumulation Principle

- Three parts, (ne_list/ne_list, e_list/ne_list, ne_list/e_list)
- Retrieval (all combinations from QSTORE to QUANTS)

Elimination of Invalid Combinations

- We need all combinations if there are two retrieval sites
- Also need to ensure that QSTORE empty at the top of the tree

...2 results!

Agenda

- Background
- Przepiórkowski 1998
- Development of the Grammar
- 4 In Action
- 5 Summary

Agenda

- Background
- Przepiórkowski 1998
- Development of the Grammar
- 4 In Action
- **5** Summary

Summary

- Quantifier storage viable option for quantifier semantics
- System inspired by Przepiórkowski can be successfully implemented in TRALE
 - At least for "A representative visits each customer."
- Lessons learned
 - TRALE is intimidating

 - Learn the syntax
 - Path errors won't be caught; principles appear not to work
 - Draw things out, keep notes
 - Overgeneration is better than undergeneration
 - Chip away at the problem little by little

Questions?

References

Carl Pollard and Ivan A. Sag.

Head-Driven Phrase Structure Grammar.

University of Chicago Press and CSLI Publications, Chicago, Illinois, 1994.

Carl Pollard and Eun Jung Yoo.

A unified theory of scope for quantifiers and wh-phrases.

J. Linguistics, 34:415-445, 1998.

Adam Przepiórkowski.

Quantifiers, adjuncts as complements and scope ambiguities. Unpublished manuscript, December 1997.

Adam Przepiórkowski.

'A Unified Theory of Scope' revisited: Quantifier retrieval without spurious ambiguities.

In Gosse Bouma, Geert-Jan Kruijff, and Richard Oehrle, editors, *Proceedings of FHCG'98*, 1998. To appear.

Frank Richter.

A Web-based Course in Grammar Formalisms and Parsing.

http://milca.sfs.uni-tuebingen.de/A4/Course/PDF/gramandpars.pdf, 2005.

Electronic textbook.