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76 CHAPTER 2. FORMAL FOUNDATIONS 1

resentation is isomorphic to each possible token in an equivalence class of
indistinguishable possible tokens of the language, and for each equivalence
class of indistinguishable possible tokens, the strong generative capacity of
the grammar contains a representation of the tokens in the class. One of
the three definitions of the strong generative capacity of a grammar of Pol-
lard 1999 will establish a direct connection to the exhaustive models of a
grammar, thus completing the picture of how the three explanations of the
meaning of a grammar are related.

2.2.2.1 SRL

My presentation of SRL follows the definitions of King 1999,3* which gener-
alizes some of the original definitions of King 1989. For ease of comparison
with corresponding notions in HPSG 87 and with the extended formalism of
HPSG 94 of Chapter 3, I adopt the notational conventions that I use there.

The fundamental intuition about formal languages that underlies SRL is
that each expression of its formal languages is true or false of an entity in
an interpretation. Given an interpretation, an expression thus denotes a set
of entities. It is because of this property that logics like SRL are sometimes
referred to as logics of descriptions. The idea is that the languages are used
to describe entities. As formal languages of HPSG, they are used to describe
the entities that constitute a natural language. SRL provides a class of formal
languages, each of which consists of a signature and a class of interpretations
of the signature. Each signature provides the non-logical symbols from which
the formal language is constructed.

Definition 15 ¥ is an SRL signature iff

Y is a triple (S, A, F),
S is a set,
A is a set, and

F is a total function from the Cartesian product of S and A to the
power set of S.

I call each element of S a species, each element of A an attribute, and F
the appropriateness function. The symbols :, ~, =, =, [, |, A, V, and —

34The definitions of King 1999 are consistent with the ones presented in Pollard 1999.
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are reserved symbols, and I will henceforth assume that none of them are
a species or an attribute symbol. In contrast to King 1989, infinite sets of
species are admitted. The original definition was more restrictive, because
King 1989 was interested in logical aspects of SRL that will not play a role
below.

It is useful to have a compact terminology to talk about the appropriate-
ness of attributes and species. I say that an attribute « is appropriate to a
species o if F (o, «) is a nonempty set of species. A species o’ is appropriate
for an attribute a at some species ¢ if ¢’ is an element of F (o, a).

A striking difference between an SRL signature and an 87 signature is
that an SRL signature does not include a sort hierarchy. Instead, it simply
provides a set of species. This simplification also means that the appropri-
ateness function is much simpler, because it no longer has to enforce the
inheritance of appropriate attributes and attribute values in accordance with
the ordering of the sorts in the sort hierarchy. In Pollard and Sag 1994 the
appropriateness function is given in so-called “feature declarations” that obey
the 87 appropriateness conditions that we have seen in 87 signatures: If an
attribute « is 87 appropriate to some sort o, then it is also 87 appropriate
to all of its subsorts; and the sort that is the value of the 87 appropriateness
function at the subsorts of ¢ and « is at least as specific as the value of F at
o and «. At first blush, the lack of an explicit sort hierarchy seems to be a
problem for using SRL in formalizing HPSG 94 grammars, because, just as
HPSG 87 grammars, they make heavy use of sort hierarchies and of attribute
inheritance. However, King 1999, pp. 329-331, shows that the inclusion of a
sort hierarchy in the signature of the formal languages for HPSG 94 is math-
ematically superfluous and that the essential information that is encoded in
sort hierarchies can be expressed without them. Before I can explain why
this is the case, I need to introduce interpretations of signatures:

Definition 16 For each SRL signature ¥ = (S, A, F), | is a ¥ interpre-
tation iff

| is a triple (U,S, A),
U is a set,

S s a total function from U to S,

A is a total function from A to the set of partial functions from U to
U,
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for each o € A and each u € U,

A(a)(u) is defined iff F (S(u),a) # 0, and
if A(a)(u) is defined then S(A(a)(u)) € F(S(u), a).

U is the set of entities in the universe, S is the species assignment function,
and A is the attribute interpretation function.

S partitions the universe of entities by assigning each entity exactly one
species. I sometimes simply say that an entity has a species. Informally, I also
say that a species denotes a set of entities, which is the set of entities that have
that species. The attribute interpretation function provides a denotation for
the attribute symbols. Each attribute denotes a partial function from entities
to entities. The attribute interpretation function must obey appropriateness.
That means that an attribute is defined on an entity exactly if the attribute
is appropriate to the species of the entity; and if an attribute is defined on an
entity, u, then the species of the entity «’ which is the result of interpreting
o on u, is appropriate for the species of u and .

With the definition of ¥ interpretations in hand, I can now return to the
question of how SRL can express HPSG 94 sort hierarchies without repre-
senting them in its signatures. The reason that an SRL signature suffices to
express the sort hierarchies of HPSG 94 grammars as characterized in Pollard
and Sag 1994, pp. 395-396, is the intended interpretation of sort hierarchies.
Algebraically, the sort hierarchies of HPSG 94 are finite partial orders.?® The
terminology that Pollard and Sag 1994 uses to describe the direction of the
ordering relation is not entirely consistent. Pollard and Sag assume a sort,
object, which subsumes all other sorts and denotes all entities, and they call
all sorts subsorts of object. Sorts that do not have a proper subsort are called
maximal or maximally specific. This terminology agrees with the sort hier-
archy of 87 signatures (DEFINITION 1, page 30). On the other hand, Pollard
and Sag 1994, pp. 17-18, assumes a reversed ordering that agrees with the

35The reader might notice that the behavior of attribute interpretation with respect to
appropriateness corresponds to the total well-typedness of concrete feature structures.

36Pollard and Sag 1994, p. 395, also postulates that, for each sort oy, for each sort oo,
for each sort o3, if o is a subsort of o5 and of o3, then either oy is a subsort of o3 or vice
versa. In other words, no sort is an immediate proper subsort of two distinct sorts. While
that condition holds for the grammar of Pollard and Sag 1994, it is not met by grammars
with so-called multiple inheritance hierarchies (see Kathol 1995; Sag 1997; Przepiorkowski
1999a, among many others). Since I am interested in a formalism that captures as much of
the literature of HPSG 94 as possible, I will ignore Pollard and Sag’s additional restriction.
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one in Carpenter 1992, where the more inclusive sorts are lower in the or-
dering. For example, according to that convention sign is immediately below
the sorts word and phrase. Since the direction of the ordering is merely a
matter of convention, and no mathematical properties depend on which one
we choose, I choose to retain the direction of ordering of 87 signatures to keep
my terminology coherent across the different formalisms, and because that
ordering is consistent with the intuitive understanding of the terms subsort,
supersort, and maximally specific sort.

With respect to the denotation of sorts, Pollard and Sag assume that if
o’ is a subsort of o, then ¢’ denotes a subset of o. The root sort, object,
denotes all entities in the interpretation. FEach entity is in the denotation
of exactly one maximally specific sort. Given the assumptions about the
sort hierarchy, the denotation of each of its sorts is thus fully determined
by the denotation of the maximally specific sorts that it subsumes. Given
the assumptions about attribute inheritance of Pollard and Sag 1994, the
domain and range of the function in the denotation of each attribute is also
fully determined by the appropriateness of the attribute to maximally specific
sorts. For each signature with a sort hierarchy of the kind described above
and with the respective attribute inheritance, we can thus give a function
that maps it to an SRL signature such that each interpretation of the original
signature is also an interpretation of the derived SRL signature. In addition,
as King 1999, p. 330, shows, the use of nonmaximal sorts in descriptions
of the formal language can easily be understood as metasyntactic notation
for bigger, disjunctive descriptions that only use maximal sorts. It follows
immediately that the formal languages of SRL are capable of expressing all
aspects of HPSG 94 that are related to sort hierarchies.

The SRL signature in Figure 2.4 illustrates how a sort hierarchy is ex-
pressed in an SRL signature without having it explicitly included. It corre-
sponds directly to the 87 signature with sort hierarchy in Figure 2.2. § is the
set of maximally specific sorts of the 87 signature. The set of attributes, A,
does not change. The appropriateness function, F, is now a total function,
and it states for every species and every attribute which species are appro-
priate for them. If no species is appropriate for a given pair then the value of
JF at that pair is the empty set. For example, DRIVER is not appropriate to
man, thus F (man, DRIVER) = (). For every species, o, in the 87 signature for
which an attribute, «, is 87 appropriate, the value of the corresponding ap-
propriateness function in our SRL signature without sort hierarchy, F (o, o),
is the set of the maximally specific sorts subsumed by its sort value in the 87
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signature. For example, since person is appropriate to the pair ‘(vw, OWNER)’
in the 87 signature of Figure 2.2, the value of F (vw, OWNER) is now the set
{man, woman}.

Figure 2.4: An example of an SRL signature
S = {vw, bmw, man, woman},

A = {DRIVER, OWNER, LIKES-BEST}, and

({(vw, OWNER) , { man, woman}) , ({(vw, DRIVER) , {man, woman}) ,
(vw, LIKES-BEST) , { }), ({bmw, OWNER) , { man, woman}) ,

(bmw, DRIVER) , {man, woman}) , ((bmw, LIKES-BEST) , {}) ,
(man, LIKES-BEST) , {vw, bmw, man, woman}) ,

(man,DRIVER) , {}), ({(man, OWNER) , {}),

(woman, LIKES-BEST) , { vw, bmw, man, woman}) ,

(woman, DRIVER) , {}) , ({(woman, OWNER) , { })

{
{
{
{
{
{

From a more general perspective, the fact that an explicit sort hierarchy
is mathematically superfluous in HPSG 94 but not in HPSG 87 is a conse-
quence of the fact that signatures no longer form the basis of a subsumption
ordering of feature structures that is meant to capture their relative degree of
informativeness. The lack of a subsumption ordering on the level of entities
is directly reflected by the fact that there are no entities of nonmaximal sorts
in the interpretations of SRL signatures. The entities are no longer thought
of as information bearing objects, but as models of linguistic entities of some
kind.

The fact that each 87 signature with a sort hierarchy can be translated
into a corresponding SRL signature without a sort hierarchy that has the
same interpretations does not mean that sort hierarchies are not linguisti-
cally relevant. In principle, it is conceivable that psycholinguistic evidence
which supports the representational reality of a sort hierarchy can be found.
One research area where this question could be investigated is language acqui-
sition.?” Green 2000 programmatically explores the idea that first language
acquisition proceeds along incremental and largely monotonic extensions of a

37To the best of my knowledge, ideas about the psychological reality of sort hierar-
chies, although alluded to occasionally, are mere speculations that have not been tested
in scientific experiments yet. Moreover, the computational results about the description
languages of HPSG 94 of Section 3.3 caution against far-reaching assumptions about their
psychological reality.
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sort hierarchy that is extended as more and more types of linguistic entities
are distinguished by the child.*® From the practical perspective of a gram-
mar writer, sort hierarchies provide the means for a more compact notation
of principles and for a useful structuring of the empirical domain in the eyes
of the linguist. Even if finite sort hierarchies are superfluous from a math-
ematical perspective, they can still be an expedient syntactic construct for
writing grammars.

The logical language of SRL is designed to describe (sets of) entities.
Given an interpretation, essentially, we can say that entities have a certain
sort (“sort assignment”); or that a certain attribute is defined on an entity,
whose interpretation then leads to another entity; or that one entity equals
another entity. To achieve this, SRL provides a set of terms, which are com-
posed of the reserved symbol, ‘:’, and the attributes of a given SRL signature,
Y, and a set of descriptions, which are built from the terms, the species of
., and reserved symbols for expressing sort assignment and equality, ‘~’ and
‘~’. The descriptions are closed under negation, conjunction, disjunction,
and implication. Other logical connectives can be obtained by combinations
of these. I define X terms and ¥ descriptions simultaneously:

Definition 17 For each SRL signature ¥ = (S, A, F), T* and D* are the
smallest sets such that

e T>,

for each o € A and each T € T>, T € T,

for each o € S, for each T € T>, 7 ~ 0 € D¥,

for each 7 € T, for each 7 € T=, 71 = 15 € D%,

for each § € D*, =§ € D*,

for each 6, € D, for each 5, € D=, [0, A 0o] € D=,

for each 6, € D, for each §, € D*, [6, V &) € D*, and
for each 6, € D, for each 5, € D*, [, — 0] € D*.

38The formal foundations underlying Green’s account are, however, not entirely clear to
me, as her terminology fluctuates between HPSG 87, HPSG 94 and terms that apparently
stem from other sources not directly related to HPSG formalisms. It remains to be seen
if her research program can be rigorously rendered in a formalism for HPSG.
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For each SRL signature ¥, I call each element of the set 7> a ¥ term, and
each element of D* a ¥ description.

A ¥ term consists of the reserved symbol, ¢’ followed by a (possibly
empty) finite string of ¥ attributes. Just as in Chapter 2, I will use the
term “paths” to refer to finite strings of attributes. The symbol :” can be
viewed as the single variable of the languages of SRL. When we define
denotations for our expressions, it will denote the entities being described. 1
call 3 descriptions of the form 7 ~ o sort assignments; 3 descriptions of the
form 7 & 7 are path equations.

Superficially, the ¥ descriptions of SRL do not bear any apparent re-
semblance to the conventional, loosely specified syntax of AVM diagrams
that linguists use. King 1989, pp. 106135, addresses this issue, and provides
a translation from the expressions of formally defined languages of attribute
value matrices to SRL’s descriptions that, under certain conditions, preserves
the intuitively intended meaning of the attribute value matrices. For my dis-
cussion of the SRL-based formalisms of HPSG 94, it suffices to know that
a translation is possible in principle, and to appeal to an informal under-
standing of how AVM diagrams and Y descriptions correspond. Once I have
presented my extension of SRL in Section 3.1, I will return to the issue of
linguistic notation in Section 3.2 and define an AVM syntax for the extended
formalism that is modeled after the notational conventions of the HPSG lit-
erature.

Before discussing a few examples of descriptions, I want to define the
denotation of descriptions in interpretations. To understand the denotation
of terms, it might initially be helpful to compare the term interpretation
function, T, of a given ¥ interpretation | = (U, S, A), to the iterated transition
function, A*, of a given concrete feature structure under 3 with transition
function A. The denotation of the term consisting of the colon corresponds
to the transition from one node to another by interpreting the empty path,
and the denotation of a term of the form : 7, where 7 is a nonempty path,
corresponds to the transition from one node to another by interpreting .
The elements of U correspond to the nodes of the concrete feature structure.
That means that by interpreting a term at an element, u, of U, we transit

39There is, of course, no connectivity condition on interpretations that stipulates that
each element of U be reachable from some root element in U. The ¥ interpretations
of SRL are more general structures than (totally well-typed and sort resolved) concrete
feature structures. I will discuss the relationship between concrete feature structures and
interpretations of SRL signatures in more detail in Sections 2.2.2.3 and 2.2.2.4.
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from u to another element of U. In the special cases of a cyclic transition
or a term consisting only of the colon, the element that we reach is identical
to u. Since descriptions are built from terms, their interpretation depends
directly on the interpretation of terms, and I define the two interpretation
functions simultaneously:

Definition 18 For each SRL signature ¥ = (S, A, F), for each X interpre-
tation | = (U,S,A), T, is the total function from T to the set of partial
functions from U to U, and D, is the total function from D* to the power set
of U such that for each u € U,

Ti(:)(u) is defined and T,(: ) (u) = u,
for each 7 € T*, for each a € A,

Ti(ra)(u) is defined
iff Ti(7)(u) is defined and A(a)(Ti(7)(u)) is defined, and
if Ti(ta)(u) is defined
then Ti(ra)(u) = A(a)(Ti(7)(w)),

for each T € T, for each o € S,

Di(r ~ o) = {u cU ‘T.m(u) is defined, and}

S(Ti(7)(u)) = o
for each 7, € T*, for each 7, € T%,

Ti(71)(u) is defined,
Ti(mo)(u) is defined, and },

D|(7’1 ~ 7'2) = {U eU
Ti(m1)(u) = Ti(72)(u)

for each § € D, Dy(=6) = U\Dy(9),

for each 6, € D, for each 5y € D*, Dy([0; A &s]) = Dy(61) N Dy(5s),
for each 6, € D=, for each §; € D, Dy([0,V &s]) = Di(61) UDy(d), and
for each 6, € D=, for each 6y € D¥, Di([6; — &a]) = (U\Dy(8))UDy ().
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For each SRL signature X, I call T} the X term interpretation function with
respect to |, and D, the X description interpretation function with respect
to . As discussed already, a ¥ term interpretation function with respect to
(U, S, A) is a partial function from U to U. More specifically, the colon denotes
the identity function, and we obtain the denotation of each term in which a
nonempty string of attributes succeeds the colon by functional composition
of the denotation of the colon and the attribute interpretation of each of the
attribute symbols in the term, with the interpretation of the last attribute
coming first.

The denotation of ¥ descriptions follows naturally from the denotation
of ¥ terms: Each ¥ description 7 ~ ¢ denotes the subset of entities in U on
whose members the ¥ term interpretation function (with respect to (U, S, A))
of 7 is defined and yields an entity of species o. Each ¥ description of
the form 7, ~ 7 denotes the set of those entities in U on which the X
term interpretation function (with respect to (U,S,A)) of both 7 and 7
is defined and yields the same entity in both cases. Negation, conjunction,
disjunction and implication of X descriptions are interpreted classically as set
complement of the denotation of the description, as the intersection and union
of the denotations of the two descriptions of the complex description, and as
the union of the set complement of the denotation of the first description in
the implication with the denotation of the second description, respectively.

A signature expresses how we conceive of the world that we want to talk
about as being structured. Assume the particular SRL signature given in
Figure 2.4. For the purposes of the following examples, I will take it as fixed
and leave it implicit when talking about terms and descriptions. According
to the signature, the entities in our universe are of sort man, woman, bmw
and vw; and there are no other entities. A bmw and a vw have a DRIVER
and an OWNER, who are either a woman or a man.“® But neither a vw nor
a bmw have the property of liking somebody or something best. Each man
and each woman, on the other hand, likes some entity of the universe best,
and the entity that they like best can be of any sort. Neither a woman nor
a man has a DRIVER or an OWNER. Let us now construct one of the many
possible interpretations of this SRL signature.

Suppose the following scenario involving two cars on the parking lot in
front of the Seminar fiir Sprachwissenschaft in Tiibingen: The first car, which

4ONote that these appropriateness conditions exclude, among other conceivable scenar-
ios, multiple owners of a single car.
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belongs to Anke, is a Volkswagen. Anke is in the driver’s seat. We know that
Anke is married, and she likes her husband best. Her husband, of course,
likes her best. The second car is a Volkswagen, too. It is owned by Kordula,
but since she is on vacation, Detmar is driving it. Kordula and Detmar like
each other best. We can capture some facts of this little scenario in an in-
terpretation of our signature. The two cars, Anke, her husband, Detmar and
Kordula are the entities in the interpretation. They are assigned the obvious
species given the intuitive meaning of the species symbols. The attributes
receive a denotation that obeys appropriateness and gives the attributes their
natural denotations with respect to the above scenario. Figure 2.5 shows this
interpretation, which I will call I 5.

Figure 2.5: An interpretation of the SRL signature of Figure 2.4
Let |2.5 = <U, S, A>, with:
U = {Anke, Anke’s husband, Detmar, Kordula, first car, second car}

Anke) = woman,
Kordula) = woman,
Anke’s husband) = man,
Detmar) = man,

first car) = vw, and
second car) = vw

LIKES-BEST)(Anke) = Anke’s husband,

LIKES-BEST)(Anke’s husband) = Anke,

LIKES-BEST)(Detmar) = Kordula,

LIKES-BEST)(Kordula) = Detmar,

OWNER)(first car) = Kordula,

OWNER)(second car) = Anke,

DRIVER)(first car) = Detmar,

DRIVER)(second car) = Anke,

LIKES-BEST) is undefined on the first car and on the second car,

OWNER) is undefined on Anke, Anke’s husband, Detmar and Kordula, and
A(DRIVER) is likewise undefined on Anke, Anke’s husband, Detmar and Kor-
dula

> OUOLLLLOLW

(
(
(
(
(
(
(
(
(
(

We can now inspect the denotation of descriptions in the interpreta-
tion ly5. In (15a) we see that the set of women in ly5 consists of Anke
and Kordula. There is no BMW in ly5 (15b). Finally, only the second car
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is a Volkswagen whose owner is also its driver (15c), because Anke drives
her own car, whereas Detmar drives Kordula’s car; and there is no other car
in |2.5.

(15) a. Dy, .(: ~ woman) = {Anke, Kordula}
b. D|2'5(I ~ bmw) = @
c. Dy, ([:~ vw A : OWNER =: DRIVER|) = {second car}

Note that in a different interpretation of the same signature, the descriptions
in (15) might denote different sets of entities. As soon as there are BMWs in
the interpretation, ‘: ~ bmw’ denotes that set of cars. Moreover, it is easy to
see how the symbols of the sort hierarchy of the 87 signature of Figure 2.2
that are not present in our corresponding SRL signature can be understood
as an abbreviation of disjunctive descriptions. For example, ‘: ~ person’ can
be defined as a metasyntactic notation for ‘[: ~ man V : ~ woman]’, which
denotes the set comprising Anke, Anke’s husband, Detmar and Kordula. In
other words, a sort assignment with a sort ¢ that is not a species is interpreted
as the disjunction of the sort assignments with the species that ¢ subsumes
in the envisaged sort hierarchy of an 87 signature.

An HPSG 94 grammar is a pair consisting of a signature and a set of
expressions of the description language, the principles of grammar. DEFINI-
TION 19 captures this conception of a grammar with the notion of an SRL
grammar:

Definition 19 I' is an SRL grammar iff
T is a pair (3,0),
Y is an SRL signature, and
6 C D*.

Since an SRL grammar always includes a fixed signature, >, I will simply
talk about descriptions of SRL grammars below instead of ¥ descriptions of
SRL grammars.

The purpose of a grammar is to describe a natural language. In HPSG 94,
the most important means to delineate a natural language is clearly the set
of principles. It is, therefore, a prerequisite for determining what an SRL
grammar means to define what a set of descriptions means. The denotation
of a set of descriptions, 6, in a given interpretation, |, is the set of all entities
in | of which each description in 6 is true:
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Definition 20 For each SRL signature ¥, for each ¥ interpretation | =
(U,S,A), Oy is the total function from the power set of D* to the power set
of U such that for each 0 C D*,

01(6) = {u eu

for each 6 €0,
u e D|(5) '

I call ©) the theory denotation function with respect to |. For example, the
theory 0, = {[: ~ bmw — —:=~:], [~ vw — : OWNER ~ woman]} describes
every entity in the interpretation Iy 5, i.e., Oy, . (01) = {Anke, Anke’s husband,
Detmar, Kordula, first car, second car}. This is so, because each of the
descriptions of #; describes every entity in ly5: The first, [: ~ bnw — —:~: ]
describes all entities that are not BMWs or not identical with themselves.
This is true of all entities that are not BMWSs and false of all BMWs. Since
l[,5 does not contain any entity of sort bmw, the description is true of all
entities in ly 5. The second description in #; describes entities that are not
VWs or whose owner is a woman. That is true of all entities that are not
VWs and of all VWs whose owner is a woman. In other words, it is true of all
entities in ly 5, because Anke, Anke’s husband, Detmar and Kordula are men
and women, and the two VWs are owned by Anke and Kordula, respectively.

As the example shows, the theory denotation of a finite set of descriptions
equals the description denotation of the conjunction of the descriptions that
the set contains. A finite theory can thus be expressed by the conjunction of
the descriptions in it, and for the finite case, theories and theory denotation
functions are not strictly necessary. However, the inductive definition of
the languages of SRL does not permit infinite conjunctions. The theory
denotation functions with respect to an interpretation thus add the possibility
of interpreting infinite theories.

Denotations of theories in interpretations do not yet determine the mean-
ing of a grammar by themselves. The theory denotation function only tells
us of which entities in an interpretation a set of descriptions is true. This
property can, however, be exploited in a first approximation of the intended
interpretations of a grammar. Clearly, the linguist is only interested in those
interpretations of a grammar in which every description is true of every entity:
Every description of the grammar describes every entity in the interpreta-
tions, or, equivalently, no description is false of any entity in the intended
interpretations. Interpretations that have that property with respect to a
given grammar are called models of the grammar:
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Definition 21 For each SRL grammar ' = (X,0), for each 3 interpretation
I=(U,S,A),

| is a I' model iff ©,(8) = U.

The theory, 6, of an SRL grammar, [', denotes the entire universe of entities,
U, in each I" model, | = (U, S, A). Since every entity in the interpretation Iy 5
is in the denotation of each element of 61, |55 is a I' model of the grammar
I' that consists of the signature of Figure 2.4 and #,. Intuitively speaking,
no entity in ly5 violates the conditions of not being a BMW and of being
owned by a woman if it is a Volkswagen. Not every theory has a nonempty
model. Consider the theory, #,, that contains the single description ‘: ~ vw.’
A T model with the theory 6, may only contain entities of sort vw, because
““~ vw’ is only true of VWs and false of all other entities. But by virtue of
the signature, each Volkswagen must have an owner who is either a woman or
a man. Therefore, no I' model with the theory 6, can contain a Volkswagen;
each I" model with the theory #; must have an empty universe.

Considering the notion of a model of a grammar from a linguistic per-
spective, it restricts the candidates for the meaning of a grammar to those
interpretations whose entities do not violate any principles. For example,
assuming that a grammar contains a correct specification of subject verb
agreement in English, the sentence John love Mary cannot be in any model
of the grammar, because it violates subject verb agreement. The sentence
contains at least one entity that is not described by at least one description in
the theory of the grammar. The models of SRL grammars will be the starting
point for all three explications of the meaning of HPSG 94 grammars in the
following three sections.

My introduction to SRL deliberately omitted the logic of SRL and results
pertaining to it, because the logic of SRL is of no immediate relevance for
the characterization of natural languages in the SRL formalism. For com-
pleteness, I mention some of the logical aspects of SRL here.*! For each SRL
signature ¥ with a finite set of species, King 1989 provides a Hilbert and
Ackermann style calculus, and shows that the inference relation that the cal-
culus determines is sound and complete with respect to entailment, i.e., for
each set of X descriptions # and for each ¥ description 6, @ infers ¢ if and only
if  entails 0. Kepser 1994 then proceeds to show that for each SRL signature

41See King 1999, pp. 328-329, and the literature cited there for a more comprehensive
overview over the logical results about SRL.
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with a finite set of species and a recursive set of attributes, the satisfiability
problem is decidable: There is an effective algorithm that decides for each
SRL signature of the kind indicated, and for each description ¢ generated by
that signature, whether there is an interpretation of the signature in which
0 has a nonempty denotation. In Section 3.3, I will return to the question of
the significance of these and related results to a theoretical linguist who uses
formal languages of the kind that HPSG 94 envisages in order to describe
natural languages.

2.2.2.2 Exhaustive Models

In a substantial reformulation of an earlier attempt to characterize the mean-
ing of HPSG 94 grammars in King 1994, King 1999 investigates the question
of when an SRL grammar is true of a natural language. King (1999) formu-
lates three necessary conditions for an SRL grammar to be true of a natural
language. These conditions are met if a natural language belongs to a certain
class of models of a given SRL grammar. King calls that class of models the
class of ezhaustive models of a grammar. The meaning of an SRL grammar
is thus determined as delineating the class of its exhaustive models, and the
grammar is true of a language, L, if £ is an exhaustive model of the grammar.

In this section, I present the motivation behind King’s notion of exhaus-
tive models, and their definition. As the introductory, short description in
the preceding paragraph of King’s approach reveals, the perspective of King
1999 is realistic in the sense that the task of SRL grammars is to directly
characterize natural languages without the intervention of some modeling
mathematical structure.*?> The natural languages themselves are the intended
models of grammars. The realistic approach to the meaning of scientific the-
ories is the most important feature that distinguishes King’s explanation of
the meaning of HPSG 94 grammars from the explanations of Pollard and Sag
1994 and of Pollard 1999, which choose a representational approach. Despite
their fundamentally different assumptions about the ontological status of the
structures that grammars characterize, the three formalisms are very similar
and mathematically closely related. Understanding the technical side to the

42The term realistic is meant in a pre-theoretical sense here; it is not meant to be a
technical characterization of King’s philosophy of science. In particular, King does not
explicitly call himself a realist. I use the term to refer to his view because it emphasizes
his predominant interest in describing linguistic behavior directly, and stresses the contrast
to the representational view of Pollard and Sag.
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