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Note (1):

Semantic representations that are assigned to lexical items and
internal nodes in the tree can be anything – currently it’s lambda
expressions.
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Note (2):

Is the syntactic grammar a “black box”?
Yes and no. Though any semantic rules adhering to the interface
can be used with it, the parsing process is guided by syntactic and
semantic rules at the same time. Example:

s(s(NP_st,VP_st),[coord:no,sem:Sem])-->

np(NP_st,[coord:_,num:Num,gap:[],sem:NP]),

vp(VP_st,[coord:_,inf:fin,num:Num,gap:[],sem:VP]),

{combine(s:Sem,[np:NP,vp:VP])}.
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Scope ambiguities

◮ arise in sentences containing more than one quantifying noun
phrase (QNP)

◮ Every criminal hates a man

◮ ∀x(criminal(x) → ∃y(man(y) ∧ hate(x , y)))

◮ ∃y(man(y) ∧ ∀x(criminal(x) → hate(x , y)))

◮ Only the first reading is produced by our system
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Scope ambiguities (cont.)

◮ Semantically, the two quantifiers can be applied in either
order.

◮ Problem: In our system, the order is determined by syntax
(example)
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Montague’s Solution

To generate a reading were some QNP has wide scope,

◮ replace it with a placeholder pronoun
e.g. it-1, semantics: λw .(w@z3)

◮ process the sentence as usual (you get a formula with a free
variable)

◮ lambda abstract over the formula with respect to the free
variable and apply the semantic representation of the original
QNP to it
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Montague’s Solution (cont.)

◮ can be viewed syntactically as moving the QNP to a syntactic
top position, hence a.k.a quantifier raising
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Can be applied to multiple QNPs, meaning:

◮ every QNP may be replaced with a placeholder pronoun whose
semantic representation has the form λw .(w@zi ) where i is
some unique index

Note: Need to keep track of which index belongs to which QNP!
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Montague’s Solution (cont.)

Can be applied to multiple QNPs, meaning:

◮ every QNP may be replaced with a placeholder pronoun whose
semantic representation has the form λw .(w@zi ) where i is
some unique index

◮ the resulting formula for the sentence contains free variables

Note: Need to keep track of which index belongs to which QNP!
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Montague’s Solution (cont.)

Can be applied to multiple QNPs, meaning:

◮ every QNP may be replaced with a placeholder pronoun whose
semantic representation has the form λw .(w@zi ) where i is
some unique index

◮ the resulting formula for the sentence contains free variables

◮ to get a sentential formula, the free variables are removed one
by one, in any order, by lambda abstracting over the formula
with respect to the free variable and apply the semantic
representation of the appropriate QNP to it

Note: Need to keep track of which index belongs to which QNP!
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Montague’s Solution – How to Implement

◮ additional syntactic rules for introducing placeholder pronouns

◮ additional semantic rules for lambda abstracting over
semantic representations with free variables

◮ additional syntactic rules for combining “raised” QNPs with
sentences with placeholders

Mess with syntax to solve a semantic problem?
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Cooper’s Solution

◮ don’t apply QNPs during parsing, just collect them

◮ Every criminal hates a man: Somebody hates somebody, and
then there is some information about QNPs.

◮ This is a store:
〈love(z6, z7),
(λu.∀x(criminal(x) → u@x), 6),
(λu.∀y(man(y) ∧ u@y), 7))〉

◮ core representation, freezer
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Representations are Stores

The lambda expressions in the lexicon are just put into sequences,
e.g.
hates: 〈λz .λu.(z@λv .hate(u, v))〉
The freezer is initially empty.
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Storage (Cooper)

If the store
〈φ, (β, j), . . . , (β′, k)〉
is a semantic representation for a quantified NP, then the store
〈λu.(u@zi), (φ, i), (β, j), . . . , (β′, k)〉,
where i is some unique index,
is also a representation for that NP.
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Retrieval (Cooper)

Let σ1 and σ2 be (possibly empty) sequences of binding operators.
If the store
〈φ, σ1, (β, i), σ2〉 is associated with an expression of category S,
then the store 〈β@λzi .φ, σ1, σ2〉 is also associated with this
expression.
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Implementation
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Representing structures in Prolog

◮ index binding operators as terms of the form
bo(Quant,Index)

◮ indexes represented as Prolog variables (simpler than in
theory)

◮ stores as lists - example:
walk(X),bo(lam(P,all(Y,imp(boxer(Y),app(P,Y)))),X]
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Changing the machinery

1. semantic lexicon: make store-based semantic representations

2. semantic rules: combining stores, applying storage

3. semantic rules: retrieval
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Semantic Lexicon: Store-Based Semantic Representations

semLex(iv,M):-

M = [symbol:Sym,

sem:[lam(X,Formula)]],

compose(Formula,Sym,[X]).

semLexStorage.pl
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Semantic Rules: Combining Stores, Applying Storage

combine(vp:[app(A,B)|S],[av:[A],vp:[B|S]]).

combine(np:[app(app(B,A),C)|S3],[np:[A|S1],

coord:[B],np:[C|S2]]):-

appendLists(S1,S2,S3).

combine(np:[lam(P,app(P,X)),bo(app(A,B),X)|S],

[det:[A],n:[B|S]]).

combine(np:[app(A,B)|S],[det:[A],n:[B|S]]).

semRulesCooper.pl
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Semantic Rules: Retrieval
Retrieval takes place at the end, i.e. at the sentence level.

combine(s:S,[np:[A|S1],vp:[B|S2]]):-

appendLists(S1,S2,S3),

sRetrieval([app(A,B)|S3],Retrieved),

betaConvert(Retrieved,S).

semRulesCooper.pl

sRetrieval([S],S).

sRetrieval([Sem|Store],S):-

selectFromList(bo(Q,X),Store,NewStore),

sRetrieval([app(Q,lam(X,Sem))|NewStore],S).

cooperStorage.pl
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The Top-Level Predicate

cooperStorage:-

readLine(Sentence),

setof(Sem,t([sem:Sem],Sentence,[]),Sems1),

filterAlphabeticVariants(Sems1,Sems2),

printRepresentations(Sems2).

cooperStorage.pl
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Filtering Alphabetic Variants

filterAlphabeticVariants(L1,L2):-

selectFromList(X,L1,L3),

memberList(Y,L3),

alphabeticVariants(X,Y), !,

filterAlphabeticVariants(L3,L2).

filterAlphabeticVariants(L,L).

cooperStorage.pl
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Why is Storage Optional?
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Conclusion

Lambda Montague Cooper

Semantic λ-expressions λ-expressions storages
representations

Additional operations replace QNPs by extend
during parsing indexed pronouns storage

Addtional operations λ-abstract, retrieve,
after parsing apply filter
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