
Outline
Introduction

Montague’s Solution
Cooper’s Solution

Summary

Scope Ambiguities, Montague and Cooper
Storage

Kilian Evang

May 21, 2008

Kilian Evang Scope Ambiguities, Montague and Cooper Storage

Outline
Introduction

Montague’s Solution
Cooper’s Solution

Summary

Introduction
The Big Picture
Scope ambiguties

Montague’s Solution

Cooper’s Solution
Storage
Retrieval
Implementation

Summary

Kilian Evang Scope Ambiguities, Montague and Cooper Storage

Outline
Introduction

Montague’s Solution
Cooper’s Solution

Summary

The Big Picture
Scope ambiguties

NL Sentence

tree with SR

first-order formula model

truth value

synlex

syngra

semlex

semgra

“postprocessing”

Kilian Evang Scope Ambiguities, Montague and Cooper Storage

Outline
Introduction

Montague’s Solution
Cooper’s Solution

Summary

The Big Picture
Scope ambiguties

NL Sentence

tree with SR

first-order formula model

truth value

synlex

syngra

semlex

semgra

“postprocessing”

Kilian Evang Scope Ambiguities, Montague and Cooper Storage

Outline
Introduction

Montague’s Solution
Cooper’s Solution

Summary

The Big Picture
Scope ambiguties

Note (1):

Semantic representations that are assigned to lexical items and
internal nodes in the tree can be anything – currently it’s lambda
expressions.

Kilian Evang Scope Ambiguities, Montague and Cooper Storage

Outline
Introduction

Montague’s Solution
Cooper’s Solution

Summary

The Big Picture
Scope ambiguties

Note (2):

Is the syntactic grammar a “black box”?
Yes and no. Though any semantic rules adhering to the interface
can be used with it, the parsing process is guided by syntactic and
semantic rules at the same time. Example:

s(s(NP_st,VP_st),[coord:no,sem:Sem])-->

np(NP_st,[coord:_,num:Num,gap:[],sem:NP]),

vp(VP_st,[coord:_,inf:fin,num:Num,gap:[],sem:VP]),

{combine(s:Sem,[np:NP,vp:VP])}.

Kilian Evang Scope Ambiguities, Montague and Cooper Storage

Outline
Introduction

Montague’s Solution
Cooper’s Solution

Summary

The Big Picture
Scope ambiguties

Scope ambiguities

◮ arise in sentences containing more than one quantifying noun
phrase (QNP)

◮ Every criminal hates a man

◮ ∀x(criminal(x) → ∃y(man(y) ∧ hate(x , y)))

◮ ∃y(man(y) ∧ ∀x(criminal(x) → hate(x , y)))

◮ Only the first reading is produced by our system

Kilian Evang Scope Ambiguities, Montague and Cooper Storage

Outline
Introduction

Montague’s Solution
Cooper’s Solution

Summary

The Big Picture
Scope ambiguties

Scope ambiguities (cont.)

◮ Semantically, the two quantifiers can be applied in either
order.

◮ Problem: In our system, the order is determined by syntax
(example)

Kilian Evang Scope Ambiguities, Montague and Cooper Storage

Outline
Introduction

Montague’s Solution
Cooper’s Solution

Summary

The Big Picture
Scope ambiguties

Kilian Evang Scope Ambiguities, Montague and Cooper Storage

Outline
Introduction

Montague’s Solution
Cooper’s Solution

Summary

Montague’s Solution

Kilian Evang Scope Ambiguities, Montague and Cooper Storage

Outline
Introduction

Montague’s Solution
Cooper’s Solution

Summary

Montague’s Solution

To generate a reading were some QNP has wide scope,

◮ replace it with a placeholder pronoun
e.g. it-1, semantics: λw .(w@z3)

◮ process the sentence as usual (you get a formula with a free
variable)

◮ lambda abstract over the formula with respect to the free
variable and apply the semantic representation of the original
QNP to it

Kilian Evang Scope Ambiguities, Montague and Cooper Storage

Outline
Introduction

Montague’s Solution
Cooper’s Solution

Summary

Kilian Evang Scope Ambiguities, Montague and Cooper Storage

Outline
Introduction

Montague’s Solution
Cooper’s Solution

Summary

Montague’s Solution (cont.)

◮ can be viewed syntactically as moving the QNP to a syntactic
top position, hence a.k.a quantifier raising

Kilian Evang Scope Ambiguities, Montague and Cooper Storage

Outline
Introduction

Montague’s Solution
Cooper’s Solution

Summary

Montague’s Solution (cont.)

Can be applied to multiple QNPs, meaning:

◮ every QNP may be replaced with a placeholder pronoun whose
semantic representation has the form λw .(w@zi) where i is
some unique index

Note: Need to keep track of which index belongs to which QNP!

Kilian Evang Scope Ambiguities, Montague and Cooper Storage

Outline
Introduction

Montague’s Solution
Cooper’s Solution

Summary

Montague’s Solution (cont.)

Can be applied to multiple QNPs, meaning:

◮ every QNP may be replaced with a placeholder pronoun whose
semantic representation has the form λw .(w@zi) where i is
some unique index

◮ the resulting formula for the sentence contains free variables

Note: Need to keep track of which index belongs to which QNP!

Kilian Evang Scope Ambiguities, Montague and Cooper Storage

Outline
Introduction

Montague’s Solution
Cooper’s Solution

Summary

Montague’s Solution (cont.)

Can be applied to multiple QNPs, meaning:

◮ every QNP may be replaced with a placeholder pronoun whose
semantic representation has the form λw .(w@zi) where i is
some unique index

◮ the resulting formula for the sentence contains free variables

◮ to get a sentential formula, the free variables are removed one
by one, in any order, by lambda abstracting over the formula
with respect to the free variable and apply the semantic
representation of the appropriate QNP to it

Note: Need to keep track of which index belongs to which QNP!

Kilian Evang Scope Ambiguities, Montague and Cooper Storage

Outline
Introduction

Montague’s Solution
Cooper’s Solution

Summary

Montague’s Solution – How to Implement

◮ additional syntactic rules for introducing placeholder pronouns

◮ additional semantic rules for lambda abstracting over
semantic representations with free variables

◮ additional syntactic rules for combining “raised” QNPs with
sentences with placeholders

Mess with syntax to solve a semantic problem?

Kilian Evang Scope Ambiguities, Montague and Cooper Storage

Outline
Introduction

Montague’s Solution
Cooper’s Solution

Summary

Storage
Retrieval
Implementation

Cooper’s Solution

Kilian Evang Scope Ambiguities, Montague and Cooper Storage

Outline
Introduction

Montague’s Solution
Cooper’s Solution

Summary

Storage
Retrieval
Implementation

Cooper’s Solution

◮ don’t apply QNPs during parsing, just collect them

◮ Every criminal hates a man: Somebody hates somebody, and
then there is some information about QNPs.

◮ This is a store:
〈love(z6, z7),
(λu.∀x(criminal(x) → u@x), 6),
(λu.∀y(man(y) ∧ u@y), 7))〉

◮ core representation, freezer

Kilian Evang Scope Ambiguities, Montague and Cooper Storage

Outline
Introduction

Montague’s Solution
Cooper’s Solution

Summary

Storage
Retrieval
Implementation

Representations are Stores

The lambda expressions in the lexicon are just put into sequences,
e.g.
hates: 〈λz .λu.(z@λv .hate(u, v))〉
The freezer is initially empty.

Kilian Evang Scope Ambiguities, Montague and Cooper Storage

Outline
Introduction

Montague’s Solution
Cooper’s Solution

Summary

Storage
Retrieval
Implementation

Storage (Cooper)

If the store
〈φ, (β, j), . . . , (β′, k)〉
is a semantic representation for a quantified NP, then the store
〈λu.(u@zi), (φ, i), (β, j), . . . , (β′, k)〉,
where i is some unique index,
is also a representation for that NP.

Kilian Evang Scope Ambiguities, Montague and Cooper Storage

Outline
Introduction

Montague’s Solution
Cooper’s Solution

Summary

Storage
Retrieval
Implementation

Kilian Evang Scope Ambiguities, Montague and Cooper Storage

Outline
Introduction

Montague’s Solution
Cooper’s Solution

Summary

Storage
Retrieval
Implementation

Retrieval (Cooper)

Let σ1 and σ2 be (possibly empty) sequences of binding operators.
If the store
〈φ, σ1, (β, i), σ2〉 is associated with an expression of category S,
then the store 〈β@λzi .φ, σ1, σ2〉 is also associated with this
expression.

Kilian Evang Scope Ambiguities, Montague and Cooper Storage

Outline
Introduction

Montague’s Solution
Cooper’s Solution

Summary

Storage
Retrieval
Implementation

Implementation

Kilian Evang Scope Ambiguities, Montague and Cooper Storage

Outline
Introduction

Montague’s Solution
Cooper’s Solution

Summary

Storage
Retrieval
Implementation

Representing structures in Prolog

◮ index binding operators as terms of the form
bo(Quant,Index)

◮ indexes represented as Prolog variables (simpler than in
theory)

◮ stores as lists - example:
walk(X),bo(lam(P,all(Y,imp(boxer(Y),app(P,Y)))),X]

Kilian Evang Scope Ambiguities, Montague and Cooper Storage

Outline
Introduction

Montague’s Solution
Cooper’s Solution

Summary

Storage
Retrieval
Implementation

Changing the machinery

1. semantic lexicon: make store-based semantic representations

2. semantic rules: combining stores, applying storage

3. semantic rules: retrieval

Kilian Evang Scope Ambiguities, Montague and Cooper Storage

Outline
Introduction

Montague’s Solution
Cooper’s Solution

Summary

Storage
Retrieval
Implementation

Semantic Lexicon: Store-Based Semantic Representations

semLex(iv,M):-

M = [symbol:Sym,

sem:[lam(X,Formula)]],

compose(Formula,Sym,[X]).

semLexStorage.pl

Kilian Evang Scope Ambiguities, Montague and Cooper Storage

Outline
Introduction

Montague’s Solution
Cooper’s Solution

Summary

Storage
Retrieval
Implementation

Semantic Rules: Combining Stores, Applying Storage

combine(vp:[app(A,B)|S],[av:[A],vp:[B|S]]).

combine(np:[app(app(B,A),C)|S3],[np:[A|S1],

coord:[B],np:[C|S2]]):-

appendLists(S1,S2,S3).

combine(np:[lam(P,app(P,X)),bo(app(A,B),X)|S],

[det:[A],n:[B|S]]).

combine(np:[app(A,B)|S],[det:[A],n:[B|S]]).

semRulesCooper.pl
Kilian Evang Scope Ambiguities, Montague and Cooper Storage

Outline
Introduction

Montague’s Solution
Cooper’s Solution

Summary

Storage
Retrieval
Implementation

Semantic Rules: Retrieval
Retrieval takes place at the end, i.e. at the sentence level.

combine(s:S,[np:[A|S1],vp:[B|S2]]):-

appendLists(S1,S2,S3),

sRetrieval([app(A,B)|S3],Retrieved),

betaConvert(Retrieved,S).

semRulesCooper.pl

sRetrieval([S],S).

sRetrieval([Sem|Store],S):-

selectFromList(bo(Q,X),Store,NewStore),

sRetrieval([app(Q,lam(X,Sem))|NewStore],S).

cooperStorage.pl
Kilian Evang Scope Ambiguities, Montague and Cooper Storage

Outline
Introduction

Montague’s Solution
Cooper’s Solution

Summary

Storage
Retrieval
Implementation

The Top-Level Predicate

cooperStorage:-

readLine(Sentence),

setof(Sem,t([sem:Sem],Sentence,[]),Sems1),

filterAlphabeticVariants(Sems1,Sems2),

printRepresentations(Sems2).

cooperStorage.pl

Kilian Evang Scope Ambiguities, Montague and Cooper Storage

Outline
Introduction

Montague’s Solution
Cooper’s Solution

Summary

Storage
Retrieval
Implementation

Filtering Alphabetic Variants

filterAlphabeticVariants(L1,L2):-

selectFromList(X,L1,L3),

memberList(Y,L3),

alphabeticVariants(X,Y), !,

filterAlphabeticVariants(L3,L2).

filterAlphabeticVariants(L,L).

cooperStorage.pl

Kilian Evang Scope Ambiguities, Montague and Cooper Storage

Outline
Introduction

Montague’s Solution
Cooper’s Solution

Summary

Storage
Retrieval
Implementation

Why is Storage Optional?

Kilian Evang Scope Ambiguities, Montague and Cooper Storage

Outline
Introduction

Montague’s Solution
Cooper’s Solution

Summary

Conclusion

Lambda Montague Cooper

Semantic λ-expressions λ-expressions storages
representations

Additional operations replace QNPs by extend
during parsing indexed pronouns storage

Addtional operations λ-abstract, retrieve,
after parsing apply filter

Kilian Evang Scope Ambiguities, Montague and Cooper Storage

Outline
Introduction

Montague’s Solution
Cooper’s Solution

Summary

References

Patrick Blackburn and Johan Bos.
Representation and Inference for Natural Language. A First

Course in Computational Semantics, chapter 3.1–3.3.
CSLI Publications, 2005.

Kilian Evang Scope Ambiguities, Montague and Cooper Storage

	Outline
	Introduction
	The Big Picture
	Scope ambiguties

	Montague's Solution
	Cooper's Solution
	Storage
	Retrieval
	Implementation

	Summary

