
Problems of Generating German
from First-Order Formulae
in Automatic Translation
from English to German

B.A. Thesis
Seminar für Sprachwissenschaft
Universität Tübingen

Course: Computational Semantics
Instructor: PD Dr. Frank Richter

Kilian Evang
Kyffhäuserstraße 86a
42115 Wuppertal

Hiermit versichere ich, dass ich die vorgelegte Arbeit
selbstständig und nur mit den angegebenen Quellen
und Hilfsmitteln einschließlich des WWW und anderer
elektronischer Quellen angefertigt habe. Alle Stellen
der Arbeit, die ich anderen Werken dem Wortlaut
oder dem Sinne nach entnommen habe, sind kenntlich
gemacht.

(Kilian Evang)

CONTENTS 3

Contents

1 Introduction 4

2 NLG from First-Order Formulae 5
2.1 What to Generate from . 5
2.2 Generation with Reversible Grammars . 7

2.2.1 Semantic Monotonicity . 8
2.2.2 Semantic Heads . 8

2.3 The Problem of SR Equivalence . 10
2.3.1 Solution 1: Minimal Structure . 11
2.3.2 Solution 2: Isomorphic Grammars 12

2.4 Are Logical Formulae Adequate for Translation? 13
2.5 The Semantic Representation Language of BB1 13

3 GG1: Architecture and Implementation 14
3.1 From Semantics to Syntax . 15
3.2 Unscoping Quantifiers . 16
3.3 The Lexicon . 19
3.4 Sex, Gender, and the Verb “ist” . 20
3.5 Negation . 22

4 Evaluation 23
4.1 Fundamental Problems . 23
4.2 Possible Improvements of Details . 25
4.3 Possible Improvents of the Overall Design 26

5 Conclusion 26

Bibliography 29

A Prolog Code 29
A.1 translate.pl . 29
A.2 rules.pl . 31
A.3 lex.pl . 36
A.4 stems.pl . 40
A.5 util.pl . 41

4 1 INTRODUCTION

1 Introduction

Computational Semantics (CS) is a discipline with the aim “to find techniques for au-
tomatically constructing semantic representations for expressions of human language,
representations that can be used to perform inference” (Blackburn and Bos, 2003, p. 1).
Since semantic representations are representations of the propositional content of natural
language expressions, they suggest themselves for another task, namely to automatically
generate expressions of a different natural language that convey the same propositional
content. This would bring the semantic representation language (SRL) used close to
being an interlingua in the context of Machine Translation (MT).

The purpose of the present thesis is to make use of an SRL as an interlingua in order
to build a small MT system from English to German. To this end, I have developed a
Natural Language Generation (NLG) component for a fragment of German to extend
an existing CS system, which is already capable of assigning semantic representations to
expressions of a fragment of English.

In theory, an interlingua is a formal language capable of representing linguistic con-
tent independently of the particularities of any natural language, thus serving as an
intermediate format for translating from any source language for which a suitable ana-
lysis component can be made into any target language for which a suitable generation
component can be made. In practice, the design of these components is not the only fun-
damental problem in interlingua MT. Finding a sufficiently expressive and unambiguous
interlingua alone necessitates compromises concerning the range of source and target
languages, translation quality, and the range of syntactic constructions and vocabulary
covered (Hutchins and Somers, 1992, p. 118–124).

Rather than devising an interlingua that meets the requirements of a particular limi-
ted translation task, this thesis puts the cart before the horse in opting for a particular
SRL as interlingua and trying to find out how far one can get with that in translating
sentences automatically. The CS system chosen to be extended is BB1, the Prolog
software accompanying the textbook by Blackburn and Bos (2005). The SRL it uses
is a language of first-order logic, generated from English sentences using a technique
based on Montague semantics (Blackburn and Bos, 2005, p. xii). The remaining task
for the NLG component is thus to generate German sentences from first-order semantic
representations. No other input is used in the NLG component, in accordance with the
modular architecture of interlingua MT systems.

Existing approaches to NLG from first-order formulae, sketched in section 2, point
in the direction of some fundamental difficulties that the choice of a logical language as
interlingua might create when the system is extended to larger fragments of German or
to other languages. Despite such problems, it seems worthwhile to start a new attempt
at generating sentences from first-order SRLs in the context of CS. First, the increasing
availability of CS applications presently makes it more convenient than ever to experi-
ment with semantic representations, e.g. to derive them from text, perform inference
with them or, as in the present case, try MT with them, where BB1 can serve as a
readily available analysis component.

2 NLG FROM FIRST-ORDER FORMULAE 5

Secondly, there certainly is potential for fruitful contact between Computational
Semantics on one side and Machine Translation and Natural Language Generation on
the other side. For example, a part of BB1 not used in this thesis is Curt, an interactive
application used to demonstrate the power of semantic inferencing. One can envision
to develop Curt into a real dialog system with near-natural linguistic exchange between
human and computer. For this purpose, NLG from the semantic representations used
internally would be indispensable. As another example, the inferencing capabilities of
CS systems could be used together with world knowledge and situational knowledge for
disambiguation in MT.

The structure of the thesis is as follows: Section 2 sketches the development of the
most important strand of research in NLG from first-order formulae, shows implica-
tions of the choice of SRL for generation, details the SRL chosen in this system and
discusses possible alternatives within the realm of first-order languages and close vari-
ants. Section 3 proposes a pragmatic solution for generating German from the SRL at
hand and describes its architecture and implementation in detail, giving an account of
the treatment of different logical and syntactic constructions involved. An evaluation of
the system is given in section 4, discussing its place in the MT landscape, fundamental
problems, and possible improvements. Section 5 concludes with an assessment of what
has been achieved and shown, and what directions seem most promising to explore from
there in order to create a useful link between Computational Semantics and Machine
Translation.

2 Natural Language Generation from First-Order Formulae

2.1 What to Generate from

The question of what to generate from has been called the “most vexing” (McDonald,
1993, p. 191) one in NLG. The answer given so far for this thesis is “formulae of first-order
logic”, but this answer is not very specific. Before work can begin on a natural language
generator, it needs to be clarified what the formulae it is going to be fed with encode
and how they encode it. In other words, the language of first-order logic to be used as
an SRL (a first-order SRL for short) needs to be specified. There are different possible
answers, and they can have dramatic consequences for the design of the generator.

First, what should the input to the generator in an MT system encode? An obvious
answer would be “meaning”, but Phillips (1993, p. 219) rejects this term because of its
vagueness. In the introduction to this thesis, I used the term “propositional content”
because pragmatic or stylistic content is not represented in the SRL here, although such
content could be considered part of the meaning of natural language expressions. This
seems to be compatible with Phillips’s more concrete answer: “What is required for
machine translation is not an accurate representation of ‘meaning’, whatever that may
be, but an unambiguous representation of the entities involved in the discourse (objects,
events, etc.) and the relations between them” (ibid.)

6 2 NLG FROM FIRST-ORDER FORMULAE

Phillips’s focus on entities and relations already hints at how first-order formulae
can conveniently encode propositional contents. A first-order SRL will have a domain
containing precisely those “entities involved in the discourse”. In formulae, the entities
will thus be represented by constants and variables. Relations between them will be
represented by relation symbols (cf. Ebbinghaus et al. (1994) for use of terminology).

Phillips’s answer also raises a new question: What kinds of entities are involved in
a discourse? In other words, what kinds of entities should the domain of a first-order
SRL contain? And what kinds of relation symbols are needed? (2) shows two possible
representations of the propositional content of the sentence (1). They differ considerably
with respect to this question.

(1) A big boxer dates Mia.

(2) (a) ∃b(boxer(b) ∧ big(b) ∧ date(b,mia))

(b) ∃e(date(e) ∧ ∃b(boxer(b) ∧ big(b) ∧ subj(b, e)) ∧ obj(mia, e))

In (2a), all domain elements assumed are real-world individuals like people and ob-
jects. The contributions of common nouns, adjectives, and intransitive verbs to the
propositional content are represented by one-place relation symbols, the contributions
of transitive verbs by two-place relation symbols. The representation in (2b) assumes
additional, more abstract domain elements: events. This allows for the use of event
variables in a fashion known as “neo-Davidsonian” (Copestake et al., 1995, p. 19). One
advantage of event variables is that they provide other subformulae with a means to refer
to the event, offering an elegant way to flexibly add more information, as exemplified
in (4).

(3) A big boxer dates Mia in the park on Sunday.

(4) ∃e(date(e)∧ ∃b(boxer(b)∧ big(b)∧ subj(b, e))∧obj(mia, e)∧ place(park, e)∧
time(sunday, e))

As Blackburn and Bos (2005, p. 47–50) argue, first-order logic is flexible enough to allow
a great deal of freedom in choosing the domain elements and vocabulary for an SRL.
The choice should be guided by the range of propositional contents one wishes to be
able to express, and on the semantic theory one wishes to apply. Beyond events, it is
perfectly possible to add situations or possible worlds to the domain, or points and spans
in time, or to represent even properties, represented above as one-place relation symbols,
as domain elements.

The freedom that Blackburn and Bose emphasize pertains particularly to first-order
logic as a representational system, and to the use of inference tools such as theorem
provers and model builders, which are generally applicable to formulae of all kinds of first-
order languages. On the other hand, considerations of building semantic representations
from natural language expressions, and of generating natural language expressions from
semantic representations, depend on the choice of SRL a lot, as will be seen in the
following sections.

2 NLG FROM FIRST-ORDER FORMULAE 7

s/love(X,Y) --> np/X, vp/love(X,Y).
np/vincent --> vincent.
np/mia --> mia.
vp/love(X,Y) --> v/love(X,Y), np/Y.
v/love(_,_) --> loves.

s/love(vincent,mia)

np/vincent

vincent

vp/love(vincent,mia)

v/love(vincent,mia)

loves

np/mia

mia

Figure 1: An example DCG grammar and an analysis tree for the sentence Vincent loves
Mia.

2.2 Generation with Reversible Grammars

A distinction is commonly made between strategic NLG – deciding “what to say” –
and tactical NLG – deciding “how to say it” (cf. van Noord, 1990, p. 141). With the
construction of semantic representations (SRs), the strategic part can be expected to be
covered, so I am concerned with tactical NLG only. Used as input for tactical NLG,
first-order SRLs have played their most important role in a field one might call Reversible
Grammar Engineering (RGE). This is a strand of research that views generation and
parsing as two sides of the same problem: Constructing an analysis tree for a natural
language expression. When the terminal nodes are given, it is called parsing – when the
root node is given, it is called generation.

The set of admitted analysis trees is specified by a grammar, typically of a logic- or
unification-based grammar formalism (cf. Shieber, 1988, p. 614). The non-terminal nodes
of analysis trees are assumed to be complex structures and contain semantic information,
typically in the form of expressions of a logical SRL. Figure 1 shows a miniature example
grammar in the unification-based DCG formalism (cf. Covington, 1994, chapter 3) along
with an analysis tree.

An important desideratum in RGE is that the same grammar be used for generation
and parsing. The algorithms should be such that the process is reversible: Whenever
parsing produces an analysis tree with a particular root node, generation from this root
node should produce the original expression, and vice versa. However, the mapping is
not required to be one-to-one. This would not be sensible to require, given that 1) many

8 2 NLG FROM FIRST-ORDER FORMULAE

natural language expressions are ambiguous, and 2) many propositional contents can be
expressed in natural language in more than one way. Grammars for which a parser and
a generator can be found such that the requirement of reversibility is fulfilled are called
reversible grammars. For a motivation of RGE, see e.g. Kay (1975, p. 12) or Appelt
(1989, p. 199 f.).

Two more characteristics of the grammar formalisms typically used in RGE deserve
mention, as they influence the choice of SRL: The derivation of syntactic structure and
of semantic representations are governed by the same set of rules, so they take place
simultaneously. SRs are derived compositionally, i.e. the SR of any non-terminal node
in the analysis tree (except the pre-terminals) is determined by the SRs of its child
nodes. This implies that every node in an analysis tree (except the terminals) has an
SRL. Thus the SRL must be able to represent the content not only of whole utterances
to be generated, but also of smaller phrases.

2.2.1 Semantic Monotonicity

Further restrictions are often imposed on the grammar and on the SRL in order to
make efficient generation possible. One such restriction is that of semantic monoto-
nicity, introduced by Shieber (1988). It requires that in every analysis tree admitted
by the grammar, the SR of each non-terminal node contains the SRs of all sub-nodes
in a recognizable form (recognizable e.g. by string comparison or term unification).
For illustration, consider the non-terminal rules of the semantically monotonic example
grammar in figure 1: In each rule, each right-hand side SR unifies with a part of the
left-hand side SR.

Shieber tackles the problem of parsing and generation as one of deductive proving:
He regards a grammar as a set of axioms that can be used for constructively proving
the grammaticality of a string (parsing) or the existence of a string matching some
given SR (generation). He presents a common theorem-proving architecture that can
be parameterized to be efficient for one process or the other. In either situation, the
difficulty lies in making the constructive process goal-directed – it is not practical to
construct every possible analysis tree and then check whether it conforms to the input
requirements.

In parsing, goal-directedness is achieved e.g. by only considering lexical entries whose
syntax matches the tokens in the input string. To make the generation process goal-
directed, Shieber exploits semantic monotonicity. For example, faced with the task of
constructing a tree with root s/love(vincent,mia), it is possible to discard speedily any
rule with a right-hand side SR that does not unify with any part of love(vincent,mia),
such as s/snort(X) --> np/X, vp/snort, snort being the offending SR.

2.2.2 Semantic Heads

The requirement of semantic monotonicity proved to be very restrictive with respect
to certain linguistically plausible analyses. For example, the grammar in figure 2 is
semantically nonmonotonic because one rule “swallows” the SR up. The “semantic-

2 NLG FROM FIRST-ORDER FORMULAE 9

s/pick_up(X,Y) --> np/X, vp/pick_up(X,Y).
np/vincent --> vincent.
np/mia --> mia.
vp/pick_up(X,Y) --> vp(up)/pick_up(X,Y), p/up.
vp(up)/pick_up(X,Y) --> v(up)/pick_up(X,Y), np/Y.
v(up)/pick_up(_,_) --> picks.
p/up --> up.

s/pick up(vincent,mia)

np/vincent

vincent

vp/pick up(vincent,mia)

vp(up)/pick up(vincent,mia)

v(up)/pick up(vincent,mia)

picks

np/mia

mia

p/up

up

Figure 2: An example DCG grammar and an analysis tree for the sentence Vincent picks
Mia up

10 2 NLG FROM FIRST-ORDER FORMULAE

head-driven generation” algorithm of Shieber et al. (1990) is both less restrictive and
more restrictive than the algorithm of Shieber (1988): Not every right-hand side SR has
to occur in the left-hand side SR of the respective rule, but in order to avoid highly
non-deterministic top-down generation, there must be a pivot node as deep as possible
in the analysis tree, ideally a leaf. A pivot node is defined as a node such that there
exists a path from the root to it such that the SRs of all nodes on this path unify. The
trick of the algorithm is to construct the pivot and its descendants as early as possible
in order to have a great deal of structure already instantiated in subsequent top-down
generation of the rest of the analysis tree.

Various extensions and improvements to semantic-head-driven generation are dis-
cussed in van Noord (1990). It quickly became “the single best-known algorithm for
surface generation” (Reiter, 1994, p. 168), and apart from the original DCG implemen-
tation, it has been implemented at least for HPSG (Wilcock and Matsumoto, 1998).
That it did not catch on in application-oriented systems (cf. Reiter, 1994, p. 168) may
partly be due to a fundamental problem that is not limited to principled approaches like
RGE, but still probably easier to avoid in less principled approaches: The problem of
SR equivalence.

2.3 The Problem of SR Equivalence

In RGE, generators usually require that the input SR could have been derived from some
natural language expression by the corresponding parser, working with the same gram-
mar (cf. Phillips, 1993, p. 214). This natural language expression is then in the output of
the generator. To say it pointedly, generation algorithms for reversible grammars seem
to be specialized in an exercise with no practical value. In practical applications, the
input to a tactical generator does not come from a corresponding parser. More likely, it
is produced

• by a strategic generator or “reasoner” of some sort (cf. Shieber, 1993, p. 180), or

• in interlingua MT, by a parser that necessarily works with a different grammar
(that of the source language), or

• in transfer MT, by a transfer component from the output of the source language
parser (cf. Phillips, 1993, p. 214).

For such components, it is difficult to ensure that their output is, in its exact form,
admitted by the grammar that the tactical generator works with. Even seemingly su-
perficial and insignificant differences can thwart generation. In first-order logic, such
“insignificant” differences are exemplified in (6) – both formulae are logically equivalent,
but differ in form due to the nesting of quantifier scopes and the order of the arguments
to conjunction. If a reversible grammar associates the sentence (5) with the SR (6a) but
not with (6b), feeding (6b) to the generator will not produce the desired output.

(5) A boxer loves a woman.

2 NLG FROM FIRST-ORDER FORMULAE 11

(6) (a) ∃b(∃w(boxer(b) ∧ woman(w) ∧ love(b, w)))

(a) ∃w(∃b(woman(w) ∧ boxer(b) ∧ love(b, w)))

This problem is in fact a very fundamental one and goes by many names, like the
“subset problem” (Landsbergen, 1987, p. 129), “the completeness of the generator with
respect to the logic” (Phillips, 1993, p. 214), or “the problem of logical-form equivalence”
(Shieber, 1993). Note that the problem is not specific to the reversible grammar scenario
– it occurs whenever the SRL contains equivalent expressions that should be treated alike
by the generator. An apparent solution is to introduce a new step into the pipeline, before
tactical generation, to resolve SR equivalence, e.g. by converting the SR to a “canonical
form” that the generator, or its grammar, is attuned to and guaranteed to cope with.
For first-order logic, this is not feasible because equivalence of first-order formulae is an
undecidable problem.

Note, however, that logical equivalence need not be a good approximation to meaning
equivalence anyway. For example, the two formulae in (8) are equivalent, but arguably,
only the former captures the content of sentence (7) adequately.

(7) Butch snorts and either Mia is a boxer or Mia is not a boxer.

(8) (a) snort(butch) ∧ (boxer(mia) ∨ ¬boxer(mia))

(b) snort(butch)

For a brief discussion of such philosophical problems in the context of SR equivalence,
see Shieber (1993, p. 187 f.).

2.3.1 Solution 1: Minimal Structure

Due to the undecidability of equivalence in first-order logic, many efforts have been di-
rected towards generation algorithms for SRLs based on weaker variants of first-order
logic, SRLs for which a useful and efficiently computable notion of equivalence can be
found. Phillips (1993) and Kay (1996) are representatives of this approach. The SRLs
their generation algorithms work with are characterized by minimal structure, such as
to avoid spurious ambiguity due to nested scopes, commutativity and asscociativity. Mi-
nimal structure is achieved by opting for a “neo-Davidsonian” representation as in (2b)
and essentially restricting formulae to being conjunctions of simple formulae built exclu-
sively from relation symbols, constants, and variables. (Phillips and Kay call variables
“indices”.) All occurring variables can be regarded as implicitly existentially quantified
over. The order of the conjuncts is regarded as immaterial. The following example SR
for the sentence John wrote a letter is from Phillips (1993, p. 223):

(9) john(j)&write(e)&letter(l)&past(e)&actor(e, j)&patient(e, l)

The SRLs Phillips and Kay use remain purely exemplary and expositional, as the two
papers are primarily concerned with their respective generation algorithms, both chart-
based and optimized using lexical information from the SR. The idea of an SRL with

12 2 NLG FROM FIRST-ORDER FORMULAE

minimal structure is made more explicit by Copestake et al. (1995), who propose a
“meta-level language” for SRLs called Minimal Recursion Semantics (MRS). They also
note the need for explicitly representing the scopes of universal quantification, negation,
disjunction, etc. They do this while retaining minimal structure by representing scope
numerically, which at the same time offers an elegant way to represent underspecification,
as in the following representation for two readings of the sentence Every dog chased some
cat, taken from Copestake et al. (1995, p. 20):

(10) every1(x, 3, n),dog3(x),cat7(y), some5(y, 7, m),chase4(e, x, y)

After an introduction to their framework, Copestake et al. withdraw from the field of
first-order-like representations and turn to feature structures. But even their expository
approach, thanks to its sophistication and conciseness, bodes well for the possibility of
principled and efficient generation from first-order-like representations.

2.3.2 Solution 2: Isomorphic Grammars

A completely different solution to the problem of SR equivalence was chosen in the
Rosetta project, a long-term effort to build an MT system based on Montague Grammar
(Landsbergen, 1987, p. 113 f.). The original approach was to use reversible grammars
as outlined above for all source and target languages, in fashion strongly influenced
by the work of Richard Montague. The SRL used as an interlingua was, in this case,
a language of intensional logic. The grammar formalism used was a variant of that
described in Montague (1973), modified to have better computational properties and
called M-grammars (Landsbergen, 1987, p. 120–124). The problem of SR equivalence
manifested itself in the fact that not all of the grammars could be guaranteed to map
natural language expressions to the same subset of intensional logic, unless the grammars
were developed in close conjunction. This measure would have relinquished the main
advantage of interlingua MT: inter-independence of the modules for the individual source
and target languages.

The approach eventually taken in the Rosetta project does require this sacrifice, but
also offers a reward: It is not necessary to worry about adequate semantic representations
at all. SRs were discarded, instead the grammars used were made isomorphic. In this
quite unique approach, for each pair of grammars, each rule in one grammar corresponds
to (at least) one rule in the other grammar (Landsbergen, 1987, p. 131–137). Parsing
of the input expression then amounts to determining which rules of the source grammar
could have been applied to derive this expression, and deriving the output expression
amounts to applying the corresponding rules of the target grammar. The downside is
that isomorphy is a very tough requirement, even if all grammars are developed together.
According to Copestake et al. (1995, p. 16), it leads to unnatural analyses and is not
really feasible for multiple languages.

2 NLG FROM FIRST-ORDER FORMULAE 13

2.4 Are Logical Formulae Adequate for Translation?

Landsbergen’s (p. 128 f.) three reasons for discarding Montagovian intensional logic as
an interlingua form a very concise account of some, if not all fundamental issues in MT
with logical formulae. For the most part, they pertain to logical SRLs in general. What
are their implications for the present thesis?

One of Landsbergen’s reasons is the problem of SR equivalence, which he calls the
“subset problem”. Within the field of MT with a purely semantic interlingua, it appears
that this problem can only be solved by relatively sophisticated techniques and, more
importantly, restricting the SR to something less expressive than first-order logic. This
has not been done for the SRL used by BB1, but for the endeavor at hand, there is hope
that the fragment of English dealt with and the set of logical formulae produced is so
small that the problem will come up only in a restricted form that can be dealt with
rather ad-hoc.

Another of Landsbergen’s reasons for discarding Montagovian intensional logic is that
it represents only “meaning in the model-theoretic sense”, i.e. propositional content, and
leaves out “information on pragmatic and stylistic aspects” which may be relevant for
translation. While this pertains to Montagovian intensional logic and most logical SRLs
used in expository material, the representational flexibility of first-order logic mentioned
in section 2.1 suggests that, once the pragmatic and stylistic information relevant to
translation is identified, it could also be encoded in the SRL. But how this should be
done in first-order or even in more restricted logics is beyond the scope of this thesis,
which does restrict itself to propositional content.

Finally, there is an argument against semantic representations in MT in general:
To state and exploit translational equivalences between words and constructions of two
languages, it is not always necessary to give an adequate account of their semantics. For
example, the difficulties of describing the semantics of an intensional verb like believe
should not impede the process of translating it to Dutch, where the verb geloven serves
the same purpose. This is a very valid point but of course does not pertain to the present
effort, where it is an explicit aim to explore possibilities of MT in the same “medium”
as CS, with semantic representations.

2.5 The Semantic Representation Language of BB1

Copestake et al. (1995, p. 18) name three requirements that an SRL suitable for Machine
Translation should fulfill: It should not have much structural complexity, it should
allow for underspecified representations, and it should support inference. Only this last
requirement is fulfilled by the first-order SRL of BB1. Underspecified representations
are used internally in derivation but not in the output formulae. Finally, the structure
is not “flat” but rather inclined towards nesting. Consider the logical formula (11)
and its Prolog representation in (12), representing one reading of the sentence Every big
boxer that does not kill a robber loves a woman. Every quantifier and boolean connective
introduces a level of nesting. In particular, conjunctions are far from being flat unordered

14 3 GG1: ARCHITECTURE AND IMPLEMENTATION

sets as in (10) – the boolean connective and is binary, thus conjunctions of multiple
formulae are multiply nested.

(11) ∀x(((boxer(x) ∧ ¬∃y(robber(y) ∧ kill(x, y))) ∧ big(x))→
∃z(woman(z) ∧ love(x, z)))

(12) all(G, imp(and(and(boxer(G), not(some(S, and(robber(S), kill(G,
S))))), big(G)), some(X, and(woman(X), love(G, X)))))

Despite the structural complexity, it is still a simple language, easy to overlook
intuitively. For the exercise at hand, to generate German from the SRL, it is presumably
more straightforward to hand-craft rules that turn formulae into German step by step
than trying to write a reversible grammar for German that maps to the same SRL. An
implementation of the former approach will be described in the next section.

For an account of first-order logic, the way Blackburn and Bos use it to represent
meaning, and how it is represented in Prolog, see Blackburn and Bos (2005, p. 1–
18, 32 f.). Due to the application-oriented nature of the remainder of this thesis, prefer-
ence will be given to the Prolog notation for formulae as in (12).

3 GG1: Architecture and Implementation

I have implemented an NLG component for generating German sentences from the kind
of logical formulae produced by BB1, the software of Blackburn and Bos (2005). In honor
of their work, I called the generation component GG1 (GG for generating German). It
provides a user interface for translating sentences from a certain fragment of English to
a corresponding fragment of German. BB1 is used to derive logical formulae from the
English sentences; subsequently, German sentences are generated from the logical for-
mulae. In this section, I describe the architecture and implementation of GG1, focusing
on linguistically relevant details. Analyses of and judgements about German sentences
are based on my own background knowledge and intuition, unless otherwise stated.

GG1 is organized into five Prolog modules. At the top level there is translate, which
provides the glue between BB1 and the generation code. The predicate translate/2
delegates the construction of semantic representations to the holeSemantics module of
BB11 and collects the results, which may be multiple formulae due to semantic ambiguity.
For each formula, it tries to generate a German sentence. The predicate translate/0
provides the user interface, allowing users to type in an English sentence and showing
them the German translation(s), numbered, punctuated, capitalized, and filtered such
as not to display duplicates. (Duplicates may arise when German translations show the
same ambiguity as the original English sentence.)

1holeSemantics is the last in a series of steps in which Blackburn and Bos develop and explain key ideas
of building semantic representations, becoming gradually more complex. holeSemantics was chosen over
the other, less complex modules, because it accounts for scope ambiguities in English most exhaustively.
The proper treatment of scope was of special interest to generating German (see section 3.5).

3 GG1: ARCHITECTURE AND IMPLEMENTATION 15

SSV O → DP V PSV O

SSOV → DP V PSOV

DP → D NP

NP → N

NP → NP CP

NP → AP NP

CP → Drel SSOV

AP → A

V PSV O → V DP Neg Part

V PSOV → DP Neg PartV

Neg → ∅
Neg → nicht

Figure 3: Sketch of the grammar assumed for German

The rules module is where generation from first-order formulae takes place and where
knowledge about German syntax and its relation to first-order SRs is encoded. A few
helper predicates that it uses to manipulate data structures are collected in the util
module, others are imported from the comsemPredicates module of BB1. Lexical infor-
mation is provided by the lex module which maps atomic symbols from the SRL and sets
of morphosyntactic features to forms of German words. It does so partly in a hard-coded
fashion, partly via lexical rules describing inflection and taking information about word
stems and their semantics from the stems module.

3.1 From Semantics to Syntax

GG1 produces German sentences with an active voice, present tense, third person sin-
gular verb and a subject. If the verb is ist (“is”), there is also a predicate noun. If the
verb is transitive, there is also an accusative object. Subjects, objects, and predicate
nouns are always either a proper name, an existentially quantified determiner phrase, or
a universally quantified determiner phrase. Determiner phrases consist of a determiner
and a noun phrase. A noun phrase contains one noun and may contain any number of
adjectives and relative clauses. Finally, the negation marker nicht may occur.

A simple model of German syntax underlies the generation methodology of GG1.
This model mainly serves as a tool for enforcing linguistic constraints in a reasonably
systematic way. No special consideration is therefore given to the adequacy of the model
with respect to any theory of German syntax. Figure 3 shows a sketch of the assumed

16 3 GG1: ARCHITECTURE AND IMPLEMENTATION

underlying phrase structure grammar, using widely known atomic labels for non-terminal
nodes (such as S, DP, VP). The grammar is binary-branching for the most part, except
for verb phrases which have a flat structure.

At no point in the code is the assumed phrase structure grammar declared explicitly,
but it is manifest in that for each phrasal category, there is (at least) one Prolog predi-
cate in the rules module that corresponds to it. For example, the s/5 predicate generates
sentences; vp intrans/6 generates intransitive verb phrases, vp trans/7 generates transi-
tive verb phrases, and so on. Generation proceeds by recursive descent: Predicates
corresponding to one category call predicates corresponding to its subcategories, passing
down information about both semantic and morphosyntactic features of the phrases to
generate. This is depicted in figure 4 by a partial simplified proof tree. The nodes of the
tree represent the respective predicates, with arguments instantiated as at the point of
calling. By looking at the underlined parts, you can follow the semantic information as
it disperses across the different phrases.

The semantic information initially passed to s/5 is a whole logical formula as pro-
duced by BB1. The semantic information passed to predicates generating smaller phrases
is created by progressively disassembling the formula into its parts. For example,
vp trans/5 has three semantic arguments: One for the symbol of the verb, one for a
constant or a quantified term (see section 3.2) corresponding to the accusative object,
and one indicating whether the verb phrase to be generated should be negated. Symbols,
like boxer, collapse, or blue, are the smallest meaningful parts of the formulae. They can
be looked up in the lexicon to obtain the corresponding content words.

In general, the phrase-generating predicates have between one (s/5, dp/5) and five
(np/10) arguments for semantic information, followed by a number of arguments for
morphosyntactic information, followed by the final argument that contains the generated
phrase after the predicate succeeds. The semantic and morphosyntactic features are
usually fully instantiated when a predicate is called: The semantics of a phrase to
generate is pre-determined by the formula; its morphosyntactic features must match the
syntactic context determined by its ancestor phrases. The most important exceptions to
this rule are Prolog variables representing logical variables – these never get instantiated
– and the arguments for sex and gender (see section 3.4) – these mostly do not get
instantiated before lexical lookup.

The generating predicates do not generate strings (or flat lists of words) directly.
Rather, sentences are constructed as syntactic trees corresponding to the assumed gram-
mar, represented as Prolog terms. The main reason for this design decision is to preserve
syntactic information for use in post-processing. For example, punctuation is performed
based on where phrases with the label CP begin and end.

3.2 Unscoping Quantifiers

The most significant structural difference between the English sentences that BB1 can
process and the corresponding logical formulae is how quantification is represented: In
the fragment of English, quantification is indicated by determiners like a (for existential
quantification) or every (for universal quantification) in noun phrases. A noun phrase

3 GG1: ARCHITECTURE AND IMPLEMENTATION 17

s
(
a
l
l
(
B
,
i
m
p
(
b
o
x
e
r
(
B
)
,
s
o
m
e
(
W
,
a
n
d
(
w
o
m
a
n
(
W
)
,
l
o
v
e
(
B
,
W
)
)
)
)
)
,
0
,
f
a
l
s
e
,
s
v
o
,
S
)

s
(
s
o
m
e
(
W
,
a
n
d
(
w
o
m
a
n
(
W
)
,
l
o
v
e
(
q
a
l
l
(
B
,
b
o
x
e
r
(
B
)
,
1
)
,
W
,
1
)
)
)
,
1
,
f
a
l
s
e
,
s
v
o
,
S
)

s
(
l
o
v
e
(
q
a
l
l
(
B
,
b
o
x
e
r
(
B
)
,
1
)
,
q
s
o
m
e
(
W
,
w
o
m
a
n
(
W
)
,
2
)
)
,
2
,
f
a
l
s
e
,
s
v
o
,
S
)

d
p
(
q
a
l
l
(
B
,
b
o
x
e
r
(
B
)
,
1
)
,

,
n
o
m
,
G
e
n
d
e
r
,
D
P
)

n
p
(
B
,
b
o
x
e
r
(
B
)
,
S
e
x
,
n
o
m
,
s
i
n
g
,
m
a
s
c
,
f
a
l
s
e
,
N
P
)

v
p
(
l
o
v
e
,
q
s
o
m
e
(
W
,
w
o
m
a
n
(
W
)
,
2
)
,
f
a
l
s
e
,
t
h
i
r
d
,
s
i
n
g
,
s
v
o
,
V
P
)

d
p
(
q
s
o
m
e
(
W
,
w
o
m
a
n
(
W
)
,
2
)
,
S
e
x
,
a
c
c
,
G
e
n
d
e
r
,
D
P
)

n
p
(
W
,
w
o
m
a
n
(
W
)
,
S
e
x
,
a
c
c
,
s
i
n
g
,
f
e
m
,
f
a
l
s
e
,
N
P
)

F
ig

ur
e

4:
P

ar
ti

al
si

m
pl

ifi
ed

pr
oo

ft
re

e
fo

r
ge

ne
ra

ti
ng

th
e

se
nt

en
ce

Je
de

r
B

ox
er

lie
bt

ei
ne

Fr
au

.
O

nl
y

ca
lls

to
ph

ra
se

-g
en

er
at

in
g

pr
ed

ic
at

es
ar

e
sh

ow
n.

T
he

se
m

an
ti

c
ar

gu
m

en
ts

ar
e

un
de

rl
in

ed

18 3 GG1: ARCHITECTURE AND IMPLEMENTATION

with such a determiner is called a quantified noun phrase and realized, like other noun
phrases, at a position determined by the syntax of the verb whose argument it is. By
contrast, in logical formulae, quantifiers are realized outside of the argument slots of
verbs. The argument slots are filled by placeholder variables bound by quantifiers. This
allows to express quantifier scope unambiguously. For example, two readings of the
sentence (13) are shown in (14). Possibilities to express each reading unambiguously in
English are shown in (15). Such possibilities exist also in German, but the question of
when they are appropriate in everyday language and when they sound markedly formal
is too complex to consider in this thesis. The scope of quantifiers is therefore always
reduced again to “in-place” quantified noun phrases as in (13), resulting in translations
which are again ambiguous, like (17).

(13) Every boxer loves a woman.

(14) (a) all(X, imp(boxer(X), some(Y, and(woman(Y), love(X, Y)))))

(b) some(X, and(woman(X), all(Y, imp(boxer(Y), love(Y, X)))))

(15) (a) For every boxer there is a woman that he loves.

(b) There is a woman that every boxer loves.

(16) (a) love(q all(B, boxer(B), 1), q some(W, woman(W), 2))

(b) love(q all(B, boxer(B), 2), q some(W, woman(W), 1))

(17) Jeder Boxer liebt eine Frau.

To bridge the gap between logical formulae and syntax with respect to quantifiers, a
first step is to change the formulae to hold unscoped representations of quantification, as
in (16). These are produced as follows: When given a quantified formula, the sentence-
generating predicate s/5 extracts the restriction and the nuclear scope from the scope
of the quantifier and generates a quantified term (QT) from the restriction. QTs were
used, in a different notation, by Alshawi et al. (1991, p. 162) in their SRL called Quasi
Logical Form. In GG1, a quantified term is a term whose functor is one of q some, q all,
q no, and q notall, chosen depending on the type of quantification and on whether the
formula was negated. Every quantified term has three arguments: One for the variable
quantified over, one numerical argument indicating the order in which this quantifier
was unscoped (thus retaining scope information), and one for the restriction. The QT
is then substituted for the variable quantified over in the nuclear scope, and the result
is the new formula, which is recursively passed to s/5 again.

The upper part of the proof tree in figure 4 shows how unscoping gets applied to (14a)
twice to yield the representation in (16a). This is closer to the syntactic arrangement
to be generated and can be processed by those rules of s/5 that proceed with the actual
generation of the syntax tree. Note that the unscoped form of (14b), shown in (16b), is
almost the same, only the numbers indicating the order in which quantifiers take scope
are swapped. From this point on, the generation process is exactly the same for both

3 GG1: ARCHITECTURE AND IMPLEMENTATION 19

formulae, as the numbers are consulted only in certain cases involving negation (see
section 3.5).

One technique deserves explanation, namely how the scope of a quantifier is dissected
into restriction and nuclear scope. In the case of universal quantification, this is trivial
because the scope of a universal quantifier is an implication where the antecedent is the
restriction and the consequent is the nuclear scope. (This does not necessarily hold for
formulae denoting propositions about all domain elements, like all(X, boxer(X)), but
these do not seem very relevant for natural language and are in any case not produced
by BB1.) In the case of existential quantification, this is not so simple. Admittedly, in
formulae produced by BB1, the scope is always a binary conjunction where the restriction
is the first and the nuclear scope is the second argument. But relying on this superficial
property is not desirable if at least some generality with respect to first-order formulae is
aimed for. The nuclear scope is therefore found by a check implemented in the dissect/3
predicate that accepts as a nuclear scope any term whose functor is one of all, some, not,
eq, or the symbol of a verb entry in the lexicon. These are the terms from which, after
substitution of free variables by quantified terms, sentences can be generated.

3.3 The Lexicon

Word forms are an important resource to the generation process: They are the building
blocks of the string that will eventually be presented to the user. The generation process
must choose word forms according to semantic and morphosyntactic features. It is the
purpose of the lex module to map combinations of semantic and morphosyntactic features
to word forms.

For the most part, the lexicon consists of lexical entries in the form of Prolog facts.
The predicates that these facts belong to are organized like the phrase-generating pre-
dicates in the rules module. For every part of speech category (and for certain subca-
tegories) there is a predicate: n common/6 for common nouns, n proper/4 for proper
names, v be/4 for the verb sein (“to be”), v/5 for other verbs, d indef/5 for indefinite
articles, d indef neg/5 for negative indefinites, d univ/5 for the determiner jede (“eve-
ry”), d univ neg/5 for its negated version, nicht jede (“not every”), d rel/6 for relative
pronouns, and a/6 for adjectives.

The last argument of a lexical entry contains a tree fragment with a preterminal (the
part-of-speech symbol) and a terminal (the word form). Common nouns, proper names,
verbs other than sein, and adjectives are content words. Every content word corresponds
to an atomic symbol in the SRL of BB1. This symbol is the first argument of a lexical
entry. Nouns also have a semantic argument for sex (see section 3.4). The rest of the
arguments contain morphosyntactic features by which words are selected according to
morphosyntactic context.

The morphosyntactic features of nouns distinguished here are case (nom or acc), num-
ber (currently always sing), and gender (masc, fem, or neut). Determiners and adjectives
additionally have a feature indicating whether a particular form is inflected according
to the “strong” declension (true or false). Verbs have person and number (currently
always third and sing). The word forms of verbs are represented a bit differently in order

20 3 GG1: ARCHITECTURE AND IMPLEMENTATION

to accomodate particle verbs, which can split into two parts depending on the syntactic
context. The second-to-last argument of a verbal lexical entry contains the simplex form,
the last one may contain a particle.

Since there is a separate lexical entry for every possible combination of semantic
and morphosyntactic features, the lexicon is represented in a very redundant way. For
example, all words except for verbs have at least two entries that differ only in the case
feature (nom vs. acc). It would be relatively easy to capture systematic occurrences like
these in lexical rules, thus representing the lexicon in a more compact and easily exten-
sible way. For adjectives, where the number of morphosyntactic feature combinations
relevant to GG1 is no less than twelve, this measure has in fact already been taken. A
separate module called stems maps the semantic symbols to base forms of adjectives,
and twelve lexical rules in the lex module append the right inflectional ending depending
on morphosyntactic features.

3.4 Sex, Gender, and the Verb “ist”

All German nouns have grammatical gender – they are masculine, feminine, or neuter.
Adjectives and determiners agree with the gender of their noun. Thus, the lexicon
predicates for nouns, adjectives, and determiners have a morphosyntactic argument for
gender whose value is one of fem, masc, and neut. In addition, most nouns that refer
to persons have a “sex feature”, i.e. they imply that the persons they refer to are of
a particular sex. This is obvious in cases like “Frau” (woman), which only refers to
female persons, or “Mann” (man), which only refers to male persons. Apart from that,
there are many pairs of words like Boxerin/Boxer (“boxer”), where Boxerin only refers
to female boxers and Boxer (usually) only refers to male boxers. To reflect this, the
lexicon predicates for nouns have a semantic argument for sex which is either masc or
fem – or none, if a noun has no preference concerning the sex of the referent. The
latter is, of course, the case for all nouns denoting inanimate entities, and also for some
denoting persons, like Krüppel (“gimp”).

Unlike case or number, gender and sex are features that nouns have independently
of their inflectional forms. Because of this, the corresponding arguments of phrase-
generating predicates (cf. section 3.1) are not instantiated before the word form is
looked up in the lexicon. After the lookup, the predicates np/10 and dp/5 enforce the
constraint that adjectives and determiners match the gender of the corresponding noun.

In certain cases, the sex feature needs to be matched as well. The SRL of BB1
contains the two-place relation symbol eq/2 that is special with respect to the logic in
that it denotes equality between its arguments (cf. Blackburn and Bos, 2005, p. 17, 32).
With respect to generation, it is not much different from relation symbols representing
transitive verbs, except that the verb ist (“is”) has a predicate noun in nominative case
instead of an object in accusative case.

Under certain conditions, it is desirable for the sex of the subject to match the sex of
the predicate noun. For example, the formula (18), stating that Mia is a boxer, should
be rendered as (19a) but not as (19b) because the lexicon specifies Mia’s sex as female,
thus the female translation of boxer is appropriate. On the other hand, for seemingly

3 GG1: ARCHITECTURE AND IMPLEMENTATION 21

absurd formulae like (20) and (22) it is okay to receive absurd translations where the
sexes do not match – failing to generate (21) or (23) is not desirable.

(18) some(X, and(boxer(X), eq(mia, X)))

(19) (a) Mia ist eine Boxerin.

(b) * Mia ist ein Boxer.

(20) some(X, and(woman(X), eq(vincent, X)))

(21) Vincent ist eine Frau.

(22) some(X, and(qpwc(X), eq(vincent, X)))

(23) Vincent ist ein Hamburger Royal.

The desired behavior is achieved with a relatively simple technique: When generating a
sentence with ist, s/5 requires that the Sex arguments of the generated subject DP and
of the generated VP can be unified – but enforces this requirement only if it does not
rule out all possible solutions. This way, Boxerin wins against Boxer as a noun to apply
to Mia, but Frau (“woman”) can be applied to Vincent since there is no entry with male
sex for the symbol woman.

The current setup, where pairs of words with a sex preference like Boxer/Boxerin
are represented as separate lexical entries with the same semantic symbol (boxer) leaves
some room for improvement. Consider the English sentence Every boxer snorts. It asserts
that every boxer, regardless if male or female, snorts. Its semantic representation all(X,
imp(boxer(X), snort(X))) is just as neutral. Unfortunately, GG1 currently treats this
formula as if it were ambiguous between “Every female boxer snorts” and “Every male
boxer snorts”, offering the two translations in (24), but not a single one that captures
the meaning correctly. Arguably, (24b) can be interpreted as a “generic male”, but
nowadays usage tends to avoid this for reasons of gender neutrality. A more politically
correct and unambiguous rendering would be (25). An improvement to be envisioned
is thus to generate such “slashed” forms automatically, preferrably in generation rather
than in post-processing for efficiency. This would require some way of percolating among
generating predicates feature sets that are underspecified with respect to sex, gender,
and strong vs. weak inflection.

(24) (a) Jede Boxerin prustet.

(b) Jeder Boxer prustet.

(25) Jede/r Boxer/in prustet.

22 3 GG1: ARCHITECTURE AND IMPLEMENTATION

3.5 Negation

Besides quantifiers, negation too gives rise to scope ambiguities in English. The hole-
Semantics module of BB1 is very thorough in accounting for all possible readings. For
example, the sentence (26) receives no less than six readings, shown in (27), of which
however some are logically equivalent. In (a) and (b), there is no boxer whatsoever that
loves any woman whatsoever. This is the logical inverse of the sentence A boxer loves a
woman. (c) asserts that there is some boxer who does not love any woman. (d) and (f)
assert that there is some woman that some boxer does not love. (e) asserts that there is
some woman that no boxer loves.

(26) A boxer does not love a woman.

(27) (a) not(some(G, and(boxer(G), some(N, and(woman(N), love(G, N))))))

(b) not(some(N, and(woman(N), some(G, and(boxer(G), love(G, N))))))

(c) some(G, and(boxer(G), not(some(N, and(woman(N), love(G, N))))))

(d) some(G, and(boxer(G), some(N, and(woman(N), not(love(G, N))))))

(e) some(N, and(woman(N), not(some(G, and(boxer(G), love(G, N))))))

(f) some(N, and(woman(N), some(G, and(boxer(G), not(love(G, N))))))

The only form of negation in English that BB1 deals with is sentential negation with one
of is not and does not. The syntactically corresponding type of negation in German, with
the marker nicht, does not convey as many readings. In the cases where negation applies
to a quantified formula, such as in (27a,b,c,e), it must be realized in the corresponding
quantified DP. In the case of existential quantification, this can be done by replacing the
indefinite article ein by the negative indefinite kein. Thus, the German renderings for
(27) are as follows:

(28) (a) Kein Boxer liebt eine Frau.

(b) Kein Boxer liebt eine Frau.

(c) Ein Boxer liebt keine Frau.

(d) Ein Boxer liebt eine Frau nicht.

(e) Kein Boxer liebt eine Frau.

(f) Ein Boxer liebt eine Frau nicht.

Note that in (28b) negation is realized in the boxer DP instead of the Frau DP although
in (27b) it is the quantified formula corresponding to woman that is negated. To obtain
(28b), which is far more easily understood as meaning (27b) than Ein Boxer liebt keine
Frau, one additional trick was required: If a “positive” QT (with functor q some or
q all) ends up in the subject position of a transitive verb and a “negative” QT (with
functor q no or q notall) ends up in the object position and the negative object QT has
wider scope than the positive subject QT, then negation is “moved” to the subject by

4 EVALUATION 23

replacing the functors of the QTs by their “inverse”. This behavior is implemented by
the adjustTransNeg/4 predicate in the rules module.

The following example derivation shows the relevant steps for (27b):

not(some(N, and(woman(N), some(G, and(boxer(G), love(G, N))))))

Unscoping yields: some(G, and(boxer(G), love(G, q no(N, woman(N), 1))))

Unscoping yields: love(q some(G, boxer(G), 2), q no(N, woman(N), 1))

Moving negation yields: love(q no(G, boxer(G), 2), q some(N, woman(N), 1))

Just like in the English original, some of the readings in such constructions depend
heavily on stress and context in order to be understood. This is particularly true when
universal quantification is involved. In a sentence-based translation system like this (i.e.
there is no context) that focuses on propositional content (i.e. there are no style issues
to consider), it would be best to generate sentences that convey the respective reading as
overtly as possible. (29) and (30) show examples of formulae, the way they are currently
rendered by GG1 and how the content could be expressed more clearly in German.
Defining such cases clearly and implementing the additional syntactic operations (e.g.
fronting) has to be left for future work.

(29) (a) Formula: not(all(N, imp(woman(N), some(G, and(boxer(G), love(G,
N))))))

(b) Current rendering: Ein Boxer liebt nicht jede Frau.

(c) Suggestion: Nicht jede Frau liebt ein Boxer.

(30) (a) Formula: all(N, imp(woman(N), not(some(G, and(boxer(G), love(G,
N))))))

(b) Current rendering: Kein Boxer liebt jede Frau.

(c) Suggestion: Kein Boxer liebt eine Frau.

(31) (a) Formula: all(I, imp(restaurant(I), not(know(mia, I))))

(b) Current rendering: Mia kennt jedes Restaurant nicht.

(c) Suggestion: Mia kennt kein Restaurant.

4 Evaluation

4.1 Fundamental Problems

Machine Translation systems are commonly classified along various dimensions – see
for example Hutchins and Somers (1992, chapter 4) or Carstensen (2008, chapter 10)
for an overview. Among other dimensions, systems can be classified by the workflow
between human and machine, the number of supported language pairs, and the depth
of processing.

The sytem presented in this thesis is a representative of Fully Automatic Trans-
lation (FAT), as opposed to Machine-Aided Human Translation (MAHT) or Human-
Aided Machine Translation (HAMT), since there is no interaction between user and

24 4 EVALUATION

system beyond the input of a sentence and the output of possible translations. At
present, it is bilingual rather than multilingual and monodirectional rather than
bidirectional because only translation from English to German is supported. The fact
that there is only one language pair and one direction of translation could, in theory,
make it hard to tell whether it is an interlingual or a transfer-based system because pro-
cessing is a single pipeline from one language to another, with no points that are shared
between multiple language pairs and could be identified as the points where analysis
ends and synthesis starts, or where transfer starts or ends. In practice, however, it is
clear that the interface between BB1 and GG1 is meant as the interlingual point in the
processing architecture. For translating to a different target language, one would have
to replace GG1 by a corresponding generation component. So the answer is: The system
is interlingual.

Whether the interlingua used is good is another question. As noted in section 2.5,
the SRL used as an interlingua has a relatively rich structure which makes it difficult to
solve the problem of SR equivalence. The pragmatic approach taken in GG1 takes vari-
ous measures to tackle it, but a complete solution is not in sight. The prime example is
the structure of conjunction: In the SRL conjunction is always represented in a binary-
branching fashion, which happens to mirror the syntactic analysis of the original English
sentence closely. Consider the sentence in (32) and its SR in (33). The structure of the
SR betrays the order of the two adjectives in the sentence, although this is immaterial
to the propositional content. Since, as Landsbergen (1987, p. 128) argues, “making use
of the form of logical expressions is (...) in conflict with the spirit of Montague Gram-
mar” or of any framework where content should be conveyed purely semantically, GG1
repudiates the structural information and puts the formulae representing the meaning of
the adjectives into a list. (The same happens, in np/7, for formulae representing relative
clauses, and for formulae representing nouns.) The order of the adjectives is then chosen
nondeterministically, leading to the two translations in (34). Thus, the strategy for dea-
ling with SR equivalence in nested conjunctions is to flatten them, explicitly discardig
information that does not contribute to the propositional content.

(On a side note, (34) illustrates the third of Jan Landsbergen’s reasons against using
logical SRLs rendered in section 2.4: (34b) is a completely adequate translation of (32),
and it is not necessary to have an alternative translation with a different ordering of
adjectives, so it would be wise to stay close to the source syntax in translating. A counter-
argument could be that if the order of adjectives has any significance in English, then
in a more sophisticated semantic system the interlingua should be capable of expressing
this significance, and the generator would be concerned with expressing this significance
in a way appropriate to the target language. This way could happen to be the same
order.)

(32) Butch is a big blue boxer.

(33) some(G, and(and(and(boxer(G), blue(G)), big(G)), eq(G, butch)))

(34) (a) Butch ist ein blauer großer Boxer.

4 EVALUATION 25

(b) Butch ist ein großer blauer Boxer.

Nested conjunctions are by far not the only way in which first-order formulae can be
equivalent. Another example that emerges as a practical problem in GG1 is the interplay
between negation and quantification, discussed before in section 3.5. Recall that the
formulae in (35) are logically equivalent – meaning “There is no boxer that loves any
woman” – and best translated to German as (36a). Unfortunately, GG1 renders (35b)
as (36b).

Similarly to flattening nested conjunctions, this particular problem could probably
be fixed without too much effort by some clever ad-hoc measure. But in general, the
problem remains that the semantics of formulae is hidden from the system, and for this
reason, it is constantly in danger of missing the optimal target language rendering. This
is because GG1 analyzes logical formulae in a purely syntactical fashion and does not
perform any inference. As mentioned before, for first-order logic, the equivalence problem
is undecidable. Also, inferencing is arguably not the job of a tactical generator. The call
for an SRL where inferring equivalence is tractable (cf. section 2.3.1) is becoming more
and more understandable.

(35) (a) not(some(G, and(boxer(G), some(N, and(woman(N), love(G, N))))))

(b) all(N, imp(woman(N), not(some(G, and(boxer(G), love(G, N))))))

(36) (a) Kein Boxer liebt eine Frau.

(b) Kein Boxer liebt jede Frau.

Another problem of the interlingua is that its lexicon mirrors the fragment of English
BB1 deals with one-to-one, carrying over all ambiguities and not making certain distinc-
tions that would be needed for translation to German. The word plant (“Pflanze” vs.
“Fabrik”) is such an example, and so is the transitive verb shoot which denotes different
relations between individuals depending on what its object is – shooting a gun is not
doing the same thing to a gun that you do to a robber when shooting a robber. In
an MT system with a truly unambiguous interlingua, such disambiguations would have
to be made in analysis, but generation faces complex challenges as well, for example
structural idiosyncrasies of the target language. As a simple example, the two-place
relation date in the SRL has been translated somewhat insufficiently with the transitive
verb (jemanden) treffen instead of e.g. the syntactically more complex mit (jemandem)
ausgehen. These problems show how quickly one runs into the “big issues” of MT, the
problems of dealing with ambiguities and differences between languages (Hutchins and
Somers, 1992, p. 99–106) even with a system that translates just between toy fragments
of two relatively similar languages.

4.2 Possible Improvements of Details

This said, certain loose ends will certainly stay loose, but other aspects may be consi-
derably improved in future work. As already envisioned in section 3.4, the capability to

26 5 CONCLUSION

generate “artifical” forms like jede/r große Boxer/in would help to give more accurate
translations for gender-neutral English forms like every big boxer. Also, the adjectives
male and female could be added to the lexicon and treated specially in generation – for
example, a female boxer would then simply be translated as eine Boxerin.

An improvement envisioned in section 3.5 concerns the interplay of quantification
and negation, where there is potential to give more natural and less ambiguous German
translations than currently produced.

A handful of syntactic phenomena from BB1’s fragment of English, namely condi-
tional sentences, disjunction, and prepositions, cannot yet be translated because they
lack counterparts in the generator. Support for more complex lexical entries, such as
Luftgitarre spielen, and for German verbs with a more complex valency than nominative
subject/accusative object, could enhance the coverage of the generator.

4.3 Possible Improvents of the Overall Design

Further possible improvements concern the overall design of the generator. The design
choice to work without an explicit grammar and to encode linguistic knowledge in spe-
cialized predicates might have adverse consequences when it comes to extensibility. For
example, as of now, the dp/5 predicate in the rules module is defined by six Prolog
rules, specialized to different kinds of semantic inputs, and quite some portions of code
are duplicated. Future extensions, for example by additional arguments, risk causing a
combinatorial explosion in the number of rules needed to define a predicate. If not an
explicit grammar, then maybe a more rigid organization of the generating code could
help to eliminate redundancies, ease extensibility and also increase efficiency by avoiding
unsuccessful attempts to apply rules.

A final shortcoming of the interlingua used could be rectified without inventing or
looking for a comletely different one. At present, BB1 undergoes the trouble of produ-
cing the full range of fully specified SRs for every sentence to be translated. GG1 then
generates from each of them, often only to see identical syntactic outcomes in German
and filter the duplicates. The procedure could be made more efficient by making the
connection between BB1 and GG1 at a slightly lower level and adapting generation to the
underspecified (hole semantics) formulae that BB1 works with internally. Differentiation
into multiple forms would then be made in generation, and only if necessary. However,
this would require a very considerate approach because hole semantics formulae are much
less perspicuous than the fully specified logical formulae.

5 Conclusion

In this thesis I have shown how a first-order semantic representation language can be used
as an interlingua in a very simple Machine Translation system which translates sentences
of a fragment of English to German. After outlining some fundamental problems of
generation from first-order formulae, I presented a pragmatic, yet reasonably systematic

5 CONCLUSION 27

approach, tailored to the semantic representation language used by Blackburn and Bos
(2005).

Many features that are essential for more sophisticated Machine Translation sys-
tems are not incorporated in the system at all, such as components for resolving lexical
ambiguities, transfer ambiguities, or anaphora (cf. Hutchins and Somers, 1992, chap-
ter 5; p. 99–106). That it works without such components hinges in many ways on the
very confined range of syntactic structures and lexical elements that the system deals
with, inherited from the toy grammar that Blackburn and Bos use. The confined range of
English sentences accepted as input is reflected in an equally confined range of semantic
representations possible as output. This eased the initial development of the generation
component significantly.

Slowly proceeding form very simple sentences to slightly more complex ones, it turned
out that the structural richness of the first-order semantic representation language used
becomes a difficult problem rather soon, since it hides logical meaning behind syntactic
differences. Future work in combining Computational Semantics systems with Machine
Translation should not use first-order logic but a more confined framework tailored to
the needs of representing natural language semantics.

There is reason to believe that the general idea of the exercise at hand – to use a
semantic representation language as an interlingua – could successfully be applied in
more sophisticated MT systems. What makes semantic representation languages special
as interlinguae is that they allow inference. This important property is not yet used in
the present system, and this would be the next major step to take. Specifically, semantic
representations should lend themselves well to knowledge-based MT (cf. Hutchins and
Somers, 1992, p. 124 f.) that uses world knowledge and discourse knowledge built up
over the course of translation to drive certain decisions in source text analysis and target
text generation.

What can be said with certainty is that each of Machine Translation and Compu-
tational Semantics is partly about extracting some kind of information from natural
language expressions. In one case, it is the information required for expressing the same
content in another language, in the other case, it is the information required for perfor-
ming inference. At least in my intutition these two kinds of information are not entirely
different. Thus, beyond syntactic parsing, CS should be able to borrow many other
techniques used in MT in order to achieve a better “understanding” of natural language
expressions – techniques such as for resolving anaphora and ambiguities; or generation,
in case a CS system is desired to communicate in natural language itself.

One preliminary for research at the interface of Computational Semantics and Ma-
chine Translation deserves especially careful consideration, namely common representa-
tions for CS and MT. The three criteria for SRLs proposed by Copestake et al. (1995,
p. 18) – simplicity of structure, possibility of underspecification, and, of course, possiblity
of inferencing – should be taken seriously. A very carefully designed and stable semantic
representation language will probably prove to be very important, since changes that one
component copes with well may pose fundamental difficulties to another – remember the
difficulties discussed in section 2, of making grammars suitable for complete and efficient

28 REFERENCES

parsing and generation alike.
For using Computational Semantics in Machine Translation, it will then be impor-

tant to answer questions like the following precisely: How can analysis, transfer, and
generation usefully interact with inferencing? What kind of models are useful for a
translation system to build? What kind of information is useful for a translation system
to query? The field of MT is so manifold that very different answers are imaginable.

References

Hiyan Alshawi, David Carter, Manny Rayner, and Björn Gambäck. Translation by quasi
logical form transfer. In Proceedings of the 29th Annual Meeting of the Association
for Computational Linguistics, pages 161–168, 1991.

Douglas E. Appelt. Bidirectional Grammars and the Design of Natural Language Gen-
eration Systems. Lawrence Erlbaum, 1989.

Patrick Blackburn and Johan Bos. Computational semantics. Theoria, 18(46):27–45,
2003.

Patrick Blackburn and Johan Bos. Representation and Inference for Natural Language.
A First Course in Computational Semantics. CSLI, 2005.

Kai-Uwe Carstensen. Sprachtechnologie – ein Überblick. Web document, 2008. URL
http://www.cl.uzh.ch/CL/carstens/Materialien/SprachtechnologieCarstensen.pdf.

Ann Copestake, Dan Flickinger, Rob Malouf, Susanne Riehemann, and Ivan Sag. Trans-
lation using Minimal Recursion Semantics. In Proceedings of the Sixth International
Conference on Theoretical and Methodological Issues in Machine Translation, pages
15–32, July 1995.

Michael A. Covington. Natural Language Processing for Prolog Programmers. Prentice
Hall, 1994.

H.-D. Ebbinghaus, J. Flum, and W. Thomas. Mathematical Logic. Undergraduate Texts
in Mathematics. Springer-Verlag, second edition, 1994.

W. John Hutchins and Harold L. Somers. An Introduction to Machine Translation.
Academic Press, 1992.

Martin Kay. Syntactic processing and functional sentence perspective. In TINLAP
’75: Proceedings of the 1975 Workshop on Theoretical Issues in Natural Language
Processing, pages 12–15. Association for Computational Linguistics, 1975.

Martin Kay. Chart generation. In Proceedings of the 34th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 200–204. Association for Computational
Linguistics, 1996.

A PROLOG CODE 29

Jan Landsbergen. Montague grammar and machine translation. In P. Whitelock, M. M.
Wood, H. L. Somers, R. Johnson, and P. Bennett, editors, Linguistic Theory and
Computer Applications, pages 113–147. Academic Press, 1987.

David D. McDonald. Issues in the choice of a source for natural language generation.
Computational Linguistics, 19(1):191–197, March 1993.

Richard Montague. The proper treatment of quantification in ordinary English. Ap-
proaches to Natural Language, 49:221–242, 1973.

John D. Phillips. Generation of Text from Logical Formulae. Machine Translation, 8
(4):209–235, 1993.

Ehud Reiter. Has a Consensus NL Generation Architecture Appeared, and is it Psy-
cholinguistically Plausible? In Proceedings of the Seventh International Workshop on
Natural Language Generation, pages 163–170, 1994.

Stuart M. Shieber. A uniform architecture for parsing and generation. In Proceedings
of the 12th International Conference on Computational Linguistics, pages 614–619.
Association for Computational Linguistics, 1988.

Stuart M. Shieber. The Problem of Logical-Form Equivalence. Computational Linguis-
tics, 19(1):179–190, March 1993.

Stuart M. Shieber, Gertjan van Noord, Fernando C. N. Pereira, and Robert C. Moore.
Semantic-head-driven generation. Computational Linguistics, 16(1):30–42, 1990.

Gertjaan van Noord. An Overview of Head-driven Bottom-up Generation, pages 141–
165. Academic Press, 1990.

Graham Wilcock and Yuji Matsumoto. Head-driven generation with HPSG. In Pro-
ceedings of the 36th Annual Meeting of the Association for Computational Linguistics
and 17th International Conference on Computational Linguistics, volume 2, pages
1393–1397. Association for Computational Linguistics, 1998.

A Prolog Code

A.1 translate.pl

/***

File: translate.pl

Copyright (C) 2008 Kilian Evang

This file is part of GG1 , version 1.0 (August 2008).

GG1 is free software; you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation; either version 2 of the License , or

(at your option) any later version.

30 A PROLOG CODE

GG1 is distributed in the hope that it will be useful ,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with BB1; if not , write to the Free Software Foundation , Inc.,

59 Temple Place , Suite 330, Boston , MA 02111 -1307 USA

***/

:- module(translate , [printTranslations /1,

translate/0,

translate /2]).

:- use_module(’BB1/comsemPredicates ’, [memberList /2]).

:- use_module(’BB1/holeSemantics ’, [holeSemantics /2]).

:- use_module(’BB1/readLine ’, [readLine /1]).

:- use_module(rules , [s/2]).

/*==

Top -level predicates for translating from English to German.

==*/

translate :-

readLine(Sentence),

% filter identical translations

setof(Translation , translate(Sentence , Translation), Translations),

printTranslations(Translations).

translate(Sentence , Translation) :-

holeSemantics(Sentence , Sems),

memberList(Sem , Sems),

s(Sem , Translation).

/*==

Converts syntactic trees to punctuated and capitalized strings.

==*/

printTranslations(Translations) :-

printTran(Translations , 0).

printTran ([], _) :-

nl.

printTran ([Translation|OtherTranslations], M) :-

N is M + 1,

nl,

write(N),

tab(1),

leaves(Translation , Leaves),

chunks(Leaves , Chunks),

flatChunks(Chunks , [FirstFlatChunk|OtherFlatChunks]),

capitalize(FirstFlatChunk , Capitalized),

concat_atom ([Capitalized|OtherFlatChunks], ’, ’, Sentence),

atom_concat(Sentence , ’.’, Dotted),

print(Dotted),

printTran(OtherTranslations , N).

/*==

A list of the occurences of atoms in the input formula , in the

original order , with occurences of t eliminated , and the descendants

of cp ’s enclosed as arguments of sub/N expressions , possibly nested.

==*/

leaves(t, []).

leaves(Formula , [Leaf]) :-

Formula =.. [Leaf],

\+ Leaf = t.

leaves(Formula , Leaves) :-

Formula =.. [Cat|Children],

Children = [_|_],

\+ Cat = cp ,

listLeaves(Children , Leaves).

leaves(Clause , [Result]) :-

Clause =.. [cp|Children],

listLeaves(Children , Leaves),

Result =.. [sub|Leaves].

A PROLOG CODE 31

listLeaves ([] ,[]).

listLeaves ([FirstFormula|OtherFormulae], Leaves) :-

leaves(FirstFormula , FirstLeaves),

listLeaves(OtherFormulae , OtherLeaves),

append(FirstLeaves , OtherLeaves , Leaves).

/*==

Input: A list of atoms , possibly recursively nested as arguments of

predicates

Output: A list of chunk/N expressions , possibly recursively nested

==*/

chunks(Leaves , Chunks) :-

chunks(Leaves , [], [], Chunks).

chunks ([], CurrentChunk , ChunksSoFar , Chunks) :-

CurrentChunk =.. [_|_],

ChunkExp =.. [chunk|CurrentChunk],

append(ChunksSoFar , [ChunkExp], Chunks).

chunks ([], [], ChunksSoFar , ChunksSoFar).

chunks ([First|Rest], CurrentChunk , ChunksSoFar , Chunks) :-

atom(First),

append(CurrentChunk , [First], CurrentChunk1),

chunks(Rest , CurrentChunk1 , ChunksSoFar , Chunks).

chunks ([First|Rest], CurrentChunk , ChunksSoFar , Chunks) :-

First =.. [sub|Children],

Chunk1Exp =.. [chunk|CurrentChunk],

chunks(Children , Subchunks),

Chunk2Exp =.. [chunk|Subchunks],

append(ChunksSoFar , [Chunk1Exp , Chunk2Exp], ChunksSoFar1),

chunks(Rest , [], ChunksSoFar1 , Chunks).

/*==

Input: A list of chunk/N expressions , possibly recursively nested

Output: A list of lists of atoms

==*/

flatChunks(Chunks , FlatChunks) :-

flatChunks(Chunks , [], FlatChunks).

flatChunks ([], FlatChunksSoFar , FlatChunksSoFar).

flatChunks ([FirstChunk|OtherChunks], FlatChunksSoFar , FlatChunks) :-

FirstChunk =.. [chunk , FirstChild|OtherChildren],

atom(FirstChild),

concat_atom ([FirstChild|OtherChildren], ’ ’, FlatChunk),

append(FlatChunksSoFar , [FlatChunk], FlatChunksSoFar1),

flatChunks(OtherChunks , FlatChunksSoFar1 , FlatChunks).

flatChunks ([FirstChunk|OtherChunks], FlatChunksSoFar , FlatChunks) :-

FirstChunk =.. [chunk , FirstChild|OtherChildren],

FirstChild =.. [chunk|_],

flatChunks ([FirstChild|OtherChildren], FlatSubchunks),

append(FlatChunksSoFar , FlatSubchunks , FlatChunksSoFar1),

flatChunks(OtherChunks , FlatChunksSoFar1 , FlatChunks).

/*==

Converts the first character of an atom to upper case

==*/

capitalize(Word , Capitalized) :-

atom_chars(Word , [FirstLetter|OtherLetters]),

upcase_atom(FirstLetter , Capital),

atom_chars(Capitalized , [Capital|OtherLetters]).

A.2 rules.pl

/***

File: rules.pl

Copyright (C) 2008 Kilian Evang

This file is part of GG1 , version 1.0 (August 2008).

GG1 is free software; you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

32 A PROLOG CODE

the Free Software Foundation; either version 2 of the License , or

(at your option) any later version.

GG1 is distributed in the hope that it will be useful ,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with BB1; if not , write to the Free Software Foundation , Inc.,

59 Temple Place , Suite 330, Boston , MA 02111 -1307 USA

***/

:- module(rules , [s/2,

s/5]).

:- use_module(’BB1/comsemPredicates ’, [memberList /2,

selectFromList /3,

substitute /4]).

:- use_module(lex).

:- use_module(util).

/*==

Top -level predicate. Arguments:

1. A formula

2. The generated sentence

==*/

s(Formula , S) :-

s(Formula , 0, false , svo , S).

/*==

Generation of sentences. Arguments:

1. A formula

2. How many quantifiers have already been "unscoped" into the formula

3. Whether the sentence is to be negated

4. Word order (svo or sov)

==*/

% simple intransitive sentence

s(Formula , _, Neg , Order , S) :-

Formula =.. [Pred , Subj],

dp(Subj , _, nom , _, DP),

vp_intrans(Pred , Neg , third , sing , Order , VP),

S = s(DP, VP).

% simple transitive sentence

s(Formula , _, Neg , Order , S) :-

Formula =.. [Pred , Subj , Obj],

adjustTransNeg(Subj , Obj , NewSubj , NewObj),

vp_trans(Pred , NewObj , Neg , third , sing , Order , VP),

dp(NewSubj , _, nom , _, DP),

S = s(DP, VP).

% sentence with "ist"

s(Formula , _, Neg , Order , S) :-

Formula =.. [eq, PredN , Subj],

setof((PredSex , VP , SubjSex , DP), (

vp_be(PredN , PredSex , Neg , third , sing , Order , VP),

dp(Subj , SubjSex , nom , _, DP)),

Results),

((\+ memberList ((Sex , VP, Sex , DP), Results),

memberList ((_, VP, _, DP), Results));

memberList ((Sex , VP, Sex , DP), Results)),

S = s(DP, VP).

% universal quantification

s(all(X, imp(Restriction , NuclearScope)), Store , false , Order , S) :-

NewStore is Store + 1,

substitute(Y, X, Restriction , NewRestriction),

substitute(q_all(Y, NewRestriction , NewStore), X, NuclearScope , NewFormula),

s(NewFormula , NewStore , false , Order , S).

% negated universal quantification

s(all(X, imp(Restriction , NuclearScope)), Store , true , Order , S) :-

NewStore is Store + 1,

substitute(Y, X, Restriction , NewRestriction),

substitute(q_notall(Y, NewRestriction , NewStore), X, NuclearScope ,

NewFormula),

s(NewFormula , NewStore , false , Order , S).

A PROLOG CODE 33

% existential quantification

s(some(X, Scope), Store , false , Order , S) :-

dissect(Scope , NuclearScope , Restriction),

NewStore is Store + 1,

substitute(Y, X, Restriction , NewRestriction),

substitute(q_some(Y, NewRestriction , NewStore), X, NuclearScope , NewFormula),

s(NewFormula , NewStore , false , Order , S).

% negated existential quantification

s(some(X, Scope), Store , true , Order , S) :-

dissect(Scope , NuclearScope , Restriction),

NewStore is Store + 1,

substitute(Y, X, Restriction , NewRestriction),

substitute(q_no(Y, NewRestriction , NewStore), X, NuclearScope , NewFormula),

s(NewFormula , NewStore , false , Order , S).

% negation

s(not(Formula), Store , false , Order , S) :-

s(Formula , Store , true , Order , S).

/*==

Dealing with negation

==*/

% Object NPs not negatively quantified are unproblematic.

adjustTransNeg(Subj , Obj , Subj , Obj) :-

\+ Obj =.. [q_no|_],

\+ Obj =.. [q_notall|_].

% So are subject NPs that are not quantified.

adjustTransNeg(Subj , Obj , Subj , Obj) :-

atom(Subj).

% When the subject NP is positively quantified and the object NP is negatively

% quantified , then if the latter quantification has wider scope the negation

% is moved to the subject NP.

adjustTransNeg(Subj , Obj , NewSubj , NewObj) :-

nonvar(Subj),

Subj =.. [SubjQPred , X, SubjScope , SubjStore],

positive_qpred(SubjQPred),

Obj =.. [ObjQPred , Y, ObjScope , ObjStore],

negative_qpred(ObjQPred),

((ObjStore < SubjStore , inv_qpred(SubjQPred , InvSubjQPred),

NewSubj =.. [InvSubjQPred , X, SubjScope , SubjStore],

inv_qpred(ObjQPred , InvObjQPred),

NewObj =.. [InvObjQPred , Y, ObjScope , ObjStore]);

(SubjStore < ObjStore , NewSubj = Subj ,

NewObj = Obj)).

positive_qpred(q_some).

positive_qpred(q_all).

negative_qpred(q_no).

negative_qpred(q_notall).

inv_qpred(q_some , q_no).

inv_qpred(q_no , q_some).

inv_qpred(q_all , q_notall).

inv_qpred(q_notall , q_all).

/*==

Generation of determiner phrases. Arguments:

1. Symbol of an individual or a quantified term

2. Sex

3. Case

4. Gender

5. The generated DP

==*/

% name of an individual

dp(Indi , Sex , Case , Sex , DP) :-

nonvar(Indi),

n_proper(Indi , Sex , Case , N),

DP = dp(N).

% trace

dp(t, _, _, _, dp(d(t))).

% universally quantified DP

dp(q_all(X, Restriction , _), Sex , Case , Gender , DP) :-

d_univ(Case , sing , Gender , Infl , D),

% Adjectives inflect strong iff the determiner is "not inflected ":

invertBool(Infl , Strong),

34 A PROLOG CODE

np(X, Restriction , Sex , Case , sing , Gender , Strong , NP),

DP = dp(D, NP).

% negative universally quantified DP

dp(q_notall(X, Restriction , _), Sex , Case , Gender , DP) :-

d_univ_neg(Case , sing , Gender , Infl , D),

invertBool(Infl , Strong),

np(X, Restriction , Sex , Case , sing , Gender , Strong , NP),

DP = dp(D, NP).

% existentially quantified DP

dp(q_some(X, Scope , _), Sex , Case , Gender , DP) :-

d_indef(Case , sing , Gender , Infl , D),

invertBool(Infl , Strong),

np(X, Scope , Sex , Case , sing , Gender , Strong , NP),

DP = dp(D, NP).

% negative existentially quantified DP

dp(q_no(X, Scope , _), Sex , Case , Gender , DP) :-

d_indef_neg(Case , sing , Gender , Infl , D),

invertBool(Infl , Strong),

np(X, Scope , Sex , Case , sing , Gender , Strong , NP),

DP = dp(D, NP).

/*==

Generation of noun phrases. Arguments:

1. A variable

2. Scope with propositions about the individual the variable stands for

3. Case

4. Number

5. Gender

6. Strong inflection

7. The generated NP

==*/

np(X, Scope , Sex , Case , Num , Gender , Strong , NP) :-

flattenConjunction(Scope , FlatScope),

sortProps(FlatScope , NounProps , AdjProps , RelProps),

np(X, NounProps , AdjProps , RelProps , Sex , Case , Num , Gender , Strong , NP).

/*==

Generation of noun phrases - internal. Arguments:

1. A variable

2. List of simple formulae translating to nouns (length must be 1)

3. List of simple formulae translating to adjectives

4. List of complex formulae translating to relative clauses

5. Case

6. Number

7. Gender

8. Strong inflection

9. The generated NP

==*/

% NP with a relative clause

np(X, NounProps , AdjProps , RelProps , Sex , Case , Num , Gender , Strong , NP) :-

selectFromList(RelProp , RelProps , OtherRelProps),

np(X, NounProps , AdjProps , OtherRelProps , Sex , Case , Num , Gender , Strong ,

NP1),

cp_rel(X, RelProp , Num , Gender , CP),

NP = np(NP1 , CP).

% NP with an AP

np(X, NounProps , AdjProps , [], Sex , Case , Num , Gender , Strong , NP) :-

selectFromList(AdjProp , AdjProps , OtherAdjProps),

np(X, NounProps , OtherAdjProps , [], Sex , Case , Num , Gender , Strong , NP1),

ap(X, AdjProp , Case , Num , Gender , Strong , AP),

NP = np(AP, NP1).

% simple NP

np(X, [NounProp], [], [], Sex , Case , Num , Gender , _, NP) :-

NounProp =.. [Pred|X],

n_common(Pred , Sex , Case , Num , Gender , N),

NP = np(N).

/*==

Generation of relative clauses. Arguments:

1. A variable

2. A complex formula

3. Number

4. Gender

5. The generated CP

==*/

A PROLOG CODE 35

cp_rel(X, RelProp , Num , Gender , CP) :-

% TODO analyze RelProp to allow for object relative clauses

d_rel(nom , Num , Gender , _, D),

substitute(t, X, RelProp , NewRelProp),

s(NewRelProp , 0, false , sov , S),

CP = cp(D, s(S)).

/*==

Generation of adjective phrases. Arguments:

1. A variable

2. A simple formula

3. Case

4. Number

5. Gender

6. Strong inflection

7. The generated AP

==*/

ap(X, AdjProp , Case , Num , Gender , Strong , AP) :-

AdjProp =.. [AdjPred , X],

a(AdjPred , Case , Num , Gender , Strong , A),

AP = ap(A).

/*==

Generation of intransitive verb phrases. Arguments:

1. Semantic symbol of the verb

2. Whether the VP should be negated

3. Person

4. Number

5. Word order (svo or sov)

6. The generated VP

==*/

vp_intrans(Pred , Neg , Person , Number , Order , VP) :-

v(Pred , Person , Number , SimplexForm , ParticleForm),

assembleVP(SimplexForm , ParticleForm , [], Neg , Order , VP).

/*==

Generation of transitive verb phrases. Arguments:

1. Semantic symbol of the verb

2. Symbol of an individual or a quantified term

3. Whether the VP should be negated

4. Person

5. Number

6. Word order (svo or sov)

7. The generated VP

==*/

vp_trans(Pred , Obj , Neg , Person , Number , Order , VP) :-

v(Pred , Person , Number , SimplexForm , ParticleForm),

dp(Obj , _, acc , _, DP),

assembleVP(SimplexForm , ParticleForm , [DP], Neg , Order , VP).

/*==

Generation of verb phrases with "sein". Arguments:

1. Semantic symbol of the verb

2. Whether the VP should be negated

3. Person

4. Number

5. Word order (svo or sov)

6. The generated VP

==*/

vp_be(PredN , Sex , Neg , Person , Number , Order , VP) :-

v_be(Person , Number , SimplexForm , ParticleForm),

dp(PredN , Sex , nom , _, DP),

assembleVP(SimplexForm , ParticleForm , [DP], Neg , Order , VP).

/*===

Helper for the generation of verbal phrases

===*/

assembleVP(SimplexForm , ParticleForm , DPs , Neg , Order , VP) :-

((ParticleForm = ’’, ParticleList = []);

(\+ ParticleForm = ’’, ParticleList = [part(ParticleForm)])),

SimplexList = [v(SimplexForm)],

((Neg = false , Nonheads = DPs);

(Neg = true , append(DPs , [neg(nicht)], Nonheads))),

((Order = svo , append(SimplexList , Nonheads , Children1),

append(Children1 , ParticleList , Children));

(Order = sov , atom_concat(ParticleForm , SimplexForm , VForm),

append(Nonheads , [v(VForm)], Children))),

VP =.. [vp|Children].

36 A PROLOG CODE

/*==

From a formula , extracts the proposition to use as the nucleus

for the sentence to generate. For example , a suitable nucleus to

extract from

and(love(q_some(X, woman(X)), Y), boxer(Y))

would be

love(q_some(X, woman(X)), Y).

==*/

dissect(Formula , Nucleus , Cloud) :-

formula_conjuncts(Formula , Conjuncts),

selectFromList(Nucleus , Conjuncts , OtherConjuncts),

Nucleus =.. [Pred|_],

\+ \+ isNuclear(Pred),

formula_conjuncts(Cloud , OtherConjuncts).

/*==

Indicates for a given predicate symbol whether it can be the top

predicate of a formula that is translated to a sentence or clause.

==*/

isNuclear(all).

isNuclear(some).

isNuclear(not).

isNuclear(eq).

isNuclear(Pred) :-

v(Pred , _, _, _, _).

/*===

Sorts formulae by what they are going to become: Nouns , adjectives , or

relative clauses.

===*/

sortProps ([Prop|OtherProps], NounProps , AdjProps , RelProps) :-

sortProps(OtherProps , OtherNounProps , OtherAdjProps , OtherRelProps),

Prop =.. [Pred|_],

((\+ \+ isNuclear(Pred), NounProps = OtherNounProps ,

AdjProps = OtherAdjProps ,

RelProps = [Prop|OtherRelProps]);

(\+ \+ a(Pred , _, _, _, _, _), NounProps = OtherNounProps ,

AdjProps = [Prop|OtherAdjProps],

RelProps = OtherRelProps);

(\+ \+ n_common(Pred , _, _, _, _, _), NounProps = [Prop|OtherNounProps],

AdjProps = OtherAdjProps ,

RelProps = OtherRelProps)).

sortProps ([], [], [], []).

A.3 lex.pl

/***

File: lex.pl

Copyright (C) 2008 Kilian Evang

This file is part of GG1 , version 1.0 (August 2008).

GG1 is free software; you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation; either version 2 of the License , or

(at your option) any later version.

GG1 is distributed in the hope that it will be useful ,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with BB1; if not , write to the Free Software Foundation , Inc.,

59 Temple Place , Suite 330, Boston , MA 02111 -1307 USA

***/

:- module(lex , [n_common/6,

n_proper/4,

A PROLOG CODE 37

v_be/4,

v/5,

d_indef/5,

d_indef_neg /5,

d_univ/5,

d_univ_neg /5,

d_rel/5,

a/6]).

:- use_module(stems).

/*==

Common nouns. Arguments:

1. Semantic symbol

2. Sex

3. Case

4. Number

5. Gender

6. Preterminal and terminal

==*/

% sex -neutral nouns

n_common(animal , none , nom , sing , neut , n(’Tier ’)).

n_common(animal , none , acc , sing , neut , n(’Tier ’)).

n_common(beverage , none , nom , sing , neut , n(’äGetrnk ’)).

n_common(beverage , none , acc , sing , neut , n(’äGetrnk ’)).

n_common(building , none , nom , sing , neut , n(’äGebude ’)).

n_common(building , none , acc , sing , neut , n(’äGebude ’)).

n_common(cup , none , nom , sing , fem , n(’Tasse ’)).

n_common(cup , none , acc , sing , fem , n(’Tasse ’)).

n_common(burger , none , nom , sing , masc , n(’Hamburger ’)).

n_common(burger , none , acc , sing , masc , n(’Hamburger ’)).

n_common(car , none , nom , sing , neut , n(’Auto ’)).

n_common(car , none , acc , sing , neut , n(’Auto ’)).

n_common(chainsaw , none , nom , sing , fem , n(’äKettensge ’)).

n_common(chainsaw , none , acc , sing , fem , n(’äKettensge ’)).

n_common(drug , none , nom , sing , fem , n(’Droge ’)).

n_common(drug , none , acc , sing , fem , n(’Droge ’)).

n_common(episode , none , nom , sing , fem , n(’Episode ’)).

n_common(episode , none , acc , sing , fem , n(’Episode ’)).

n_common(fdshake , none , nom , sing , masc , n(’üFnf -Dollar -Shake ’)).

n_common(fdshake , none , acc , sing , masc , n(’üFnf -Dollar -Shake ’)).

n_common(footmassage , none , nom , sing , fem , n(’ßFumassage ’)).

n_common(footmassage , none , acc , sing , fem , n(’ßFumassage ’)).

n_common(gimp , none , nom , sing , masc , n(’üKrppel ’)).

n_common(gimp , none , acc , sing , masc , n(’üKrppel ’)).

n_common(glass , none , nom , sing , neut , n(’Glas ’)).

n_common(glass , none , acc , sing , neut , n(’Glas ’)).

n_common(gun , none , nom , sing , fem , n(’Pistole ’)).

n_common(gun , none , acc , sing , fem , n(’Pistole ’)).

n_common(hammer , none , nom , sing , masc , n(’Hammer ’)).

n_common(hammer , none , acc , sing , masc , n(’Hammer ’)).

n_common(hashbar , none , nom , sing , masc , n(’Coffeeshop ’)).

n_common(hashbar , none , acc , sing , masc , n(’Coffeeshop ’)).

n_common(person , none , nom , sing , fem , n(’Person ’)).

n_common(person , none , acc , sing , fem , n(’Person ’)).

n_common(joke , none , nom , sing , masc , n(’Witz ’)).

n_common(joke , none , acc , sing , masc , n(’Witz ’)).

n_common(needle , none , nom , sing , fem , n(’Nadel ’)).

n_common(needle , none , acc , sing , fem , n(’Nadel ’)).

n_common(piercing , none , nom , sing , fem , n(’Durchbohrung ’)).

n_common(piercing , none , acc , sing , fem , n(’Durchbohrung ’)).

n_common(plant , none , nom , sing , fem , n(’Pflanze ’)).

n_common(plant , none , acc , sing , fem , n(’Pflanze ’)).

n_common(qpwc , none , nom , sing , masc , n(’Hamburger Royal ’)).

n_common(qpwc , none , acc , sing , masc , n(’Hamburger Royal ’)).

n_common(radio , none , nom , sing , neut , n(’Radio ’)).

n_common(radio , none , acc , sing , neut , n(’Radio ’)).

n_common(restaurant , none , nom , sing , neut , n(’Restaurant ’)).

n_common(restaurant , none , acc , sing , neut , n(’Restaurant ’)).

n_common(suitcase , none , nom , sing , masc , n(’Koffer ’)).

n_common(suitcase , none , acc , sing , masc , n(’Koffer ’)).

n_common(shotgun , none , nom , sing , fem , n(’Schrotflinte ’)).

n_common(shotgun , none , acc , sing , fem , n(’Schrotflinte ’)).

n_common(sword , none , nom , sing , neut , n(’Schwert ’)).

n_common(sword , none , acc , sing , neut , n(’Schwert ’)).

n_common(vehicle , none , nom , sing , neut , n(’Fahrzeug ’)).

n_common(vehicle , none , acc , sing , neut , n(’Fahrzeug ’)).

n_common(weapon , none , nom , sing , fem , n(’Waffe ’)).

n_common(weapon , none , acc , sing , fem , n(’Waffe ’)).

% male/female pairs

n_common(boss , fem , nom , sing , fem , n(’Chefin ’)).

38 A PROLOG CODE

n_common(boss , fem , acc , sing , fem , n(’Chefin ’)).

n_common(boss , masc , nom , sing , masc , n(’Chef ’)).

n_common(boss , masc , acc , sing , masc , n(’Chef ’)).

n_common(boxer , fem , nom , sing , fem , n(’Boxerin ’)).

n_common(boxer , fem , acc , sing , fem , n(’Boxerin ’)).

n_common(boxer , masc , nom , sing , masc , n(’Boxer ’)).

n_common(boxer , masc , acc , sing , masc , n(’Boxer ’)).

n_common(criminal , fem , nom , sing , fem , n(’Verbrecherin ’)).

n_common(criminal , fem , acc , sing , fem , n(’Verbrecherin ’)).

n_common(criminal , masc , nom , sing , masc , n(’Verbrecher ’)).

n_common(criminal , masc , acc , sing , masc , n(’Verbrecher ’)).

n_common(customer , fem , nom , sing , fem , n(’Kundin ’)).

n_common(customer , fem , acc , sing , fem , n(’Kundin ’)).

n_common(customer , masc , nom , sing , masc , n(’Kunde ’)).

n_common(customer , masc , acc , sing , masc , n(’Kunde ’)).

n_common(owner , fem , nom , sing , fem , n(’Besitzerin ’)).

n_common(owner , fem , acc , sing , fem , n(’Besitzerin ’)).

n_common(owner , masc , nom , sing , masc , n(’Besitzer ’)).

n_common(owner , masc , acc , sing , masc , n(’Besitzer ’)).

n_common(robber , fem , nom , sing , fem , n(’äRuberin ’)).

n_common(robber , fem , acc , sing , fem , n(’äRuberin ’)).

n_common(robber , masc , nom , sing , masc , n(’äRuber ’)).

n_common(robber , masc , acc , sing , masc , n(’äRuber ’)).

% excklusively female

n_common(wife , fem , nom , sing , fem , n(’Ehefrau ’)).

n_common(wife , fem , acc , sing , fem , n(’Ehefrau ’)).

n_common(woman , fem , nom , sing , fem , n(’Frau ’)).

n_common(woman , fem , acc , sing , fem , n(’Frau ’)).

% exclusively male

n_common(husband , masc , nom , sing , masc , n(’Ehemann ’)).

n_common(husband , masc , acc , sing , masc , n(’Ehemann ’)).

n_common(man , masc , nom , sing , masc , n(’Mann ’)).

n_common(man , masc , acc , sing , masc , n(’Mann ’)).

/*==

Proper names. Arguments:

1. Semantic symbol

2. Sex/gender

3. Case

4. Preterminal and terminal

==*/

n_proper(butch , masc , nom , n(’Butch ’)).

n_proper(butch , masc , acc , n(’Butch ’)).

n_proper(esmarelda , fem , nom , n(’Esmarelda ’)).

n_proper(esmarelda , fem , acc , n(’Esmarelda ’)).

n_proper(honey_bunny , fem , nom , n(’Honey Bunny ’)).

n_proper(honey_bunny , fem , acc , n(’Honey Bunny ’)).

n_proper(jimmy , masc , nom , n(’Jimmy ’)).

n_proper(jimmy , masc , acc , n(’Jimmy ’)).

n_proper(jody , fem , nom , n(’Jody ’)).

n_proper(jody , fem , acc , n(’Jody ’)).

n_proper(jules , masc , nom , n(’Jules ’)).

n_proper(jules , masc , acc , n(’Jules ’)).

n_proper(lance , masc , nom , n(’Lance ’)).

n_proper(lance , masc , acc , n(’Lance ’)).

n_proper(marsellus , masc , nom , n(’Marsellus ’)).

n_proper(marsellus , masc , acc , n(’Marsellus ’)).

n_proper(marvin , masc , nom , n(’Marvin ’)).

n_proper(marvin , masc , acc , n(’Marvin ’)).

n_proper(mia , fem , nom , n(’Mia ’)).

n_proper(mia , fem , acc , n(’Mia ’)).

n_proper(pumpkin , masc , nom , n(’Pumpkin ’)).

n_proper(pumpkin , masc , acc , n(’Pumpkin ’)).

n_proper(thewolf , masc , nom , n(’Wolf ’)).

n_proper(thewolf , masc , acc , n(’Wolf ’)).

n_proper(vincent , masc , nom , n(’Vincent ’)).

n_proper(vincent , masc , acc , n(’Vincent ’)).

n_proper(yolanda , fem , nom , n(’Yolanda ’)).

n_proper(yolanda , fem , acc , n(’Yolanda ’)).

/*==

The verb ’sein ’. Arguments:

1. Person

2. Number

3. Simplex form

4. Particle (or empty atom)

==*/

v_be(third , sing , ’ist ’, ’’).

A PROLOG CODE 39

/*==

Verbs. Arguments:

1. Semantic symbol

2. Person

3. Number

4. Simplex form

5. Particle (or empty atom)

==*/

% intransitive

v(collapse , third , sing , ’bricht ’, ’zusammen ’).

v(dance , third , sing , ’tanzt ’, ’’).

v(die , third , sing , ’stirbt ’, ’’).

v(growl , third , sing , ’knurrt ’, ’’).

v(smoke , third , sing , ’raucht ’, ’’).

v(snort , third , sing , ’prustet ’, ’’).

v(shriek , third , sing , ’kreischt ’, ’’).

v(walk , third , sing , ’geht ’, ’’).

% transitive

v(clean , third , sing , ’reinigt ’, ’’).

v(drink , third , sing , ’trinkt ’, ’’).

v(date , third , sing , ’trifft ’, ’’).

v(discard , third , sing , ’verwirft ’, ’’).

v(eat , third , sing , ’isst ’, ’’).

v(enjoy , third , sing , ’ßgeniet ’, ’’).

v(hate , third , sing , ’hasst ’, ’’).

v(have , third , sing , ’hat ’, ’’).

v(kill , third , sing , ’öttet ’, ’’).

v(know , third , sing , ’kennt ’, ’’).

v(like , third , sing , ’mag ’, ’’).

v(love , third , sing , ’liebt ’, ’’).

v(pickup , third , sing , ’holt ’, ’ab ’).

v(shoot , third , sing , ’ßschiet ’, ’ab ’).

/*==

Determiners. Arguments:

1. Case

2. Number

3. Gender

4. Strong inflection

5. Preterminal and terminal

==*/

d_indef(nom , sing , masc , false , d(’ein ’)).

d_indef(acc , sing , masc , true , d(’einen ’)).

d_indef(nom , sing , fem , true , d(’eine ’)).

d_indef(acc , sing , fem , true , d(’eine ’)).

d_indef(nom , sing , neut , false , d(’ein ’)).

d_indef(acc , sing , neut , false , d(’ein ’)).

d_indef_neg(nom , sing , masc , false , d(’kein ’)).

d_indef_neg(acc , sing , masc , true , d(’keinen ’)).

d_indef_neg(nom , sing , fem , true , d(’keine ’)).

d_indef_neg(acc , sing , fem , true , d(’keine ’)).

d_indef_neg(nom , sing , neut , false , d(’kein ’)).

d_indef_neg(acc , sing , neut , false , d(’kein ’)).

d_univ(nom , sing , masc , true , d(’jeder ’)).

d_univ(acc , sing , masc , true , d(’jeden ’)).

d_univ(nom , sing , fem , true , d(’jede ’)).

d_univ(acc , sing , fem , true , d(’jede ’)).

d_univ(nom , sing , neut , true , d(’jedes ’)).

d_univ(acc , sing , neut , true , d(’jedes ’)).

d_univ_neg(nom , sing , masc , true , d(’nicht ’, ’jeder ’)).

d_univ_neg(acc , sing , masc , true , d(’nicht ’, ’jeden ’)).

d_univ_neg(nom , sing , fem , true , d(’nicht ’, ’jede ’)).

d_univ_neg(acc , sing , fem , true , d(’nicht ’, ’jede ’)).

d_univ_neg(nom , sing , neut , true , d(’nicht ’, ’jedes ’)).

d_univ_neg(acc , sing , neut , true , d(’nicht ’, ’jedes ’)).

d_rel(nom , sing , masc , true , d(’der ’)).

d_rel(acc , sing , masc , true , d(’den ’)).

d_rel(nom , sing , fem , true , d(’die ’)).

d_rel(acc , sing , fem , true , d(’die ’)).

d_rel(nom , sing , neut , true , d(’das ’)).

d_rel(acc , sing , neut , true , d(’das ’)).

/*==

Adjectives. Arguments:

1. Semantic symbol

2. Case

40 A PROLOG CODE

3. Number

4. Gender

5. Strong inflection

6. Preterminal and terminal

==*/

a(Sem , nom , sing , masc , false , a(Syn)) :-

a_stem(Sem , Stem),

atom_concat(Stem , ’e’, Syn).

a(Sem , acc , sing , masc , false , a(Syn)) :-

a_stem(Sem , Stem),

atom_concat(Stem , ’en ’, Syn).

a(Sem , nom , sing , masc , true , a(Syn)) :-

a_stem(Sem , Stem),

atom_concat(Stem , ’er ’, Syn).

a(Sem , acc , sing , masc , true , a(Syn)) :-

a_stem(Sem , Stem),

atom_concat(Stem , ’en ’, Syn).

a(Sem , nom , sing , fem , false , a(Syn)) :-

a_stem(Sem , Stem),

atom_concat(Stem , ’e’, Syn).

a(Sem , acc , sing , fem , false , a(Syn)) :-

a_stem(Sem , Stem),

atom_concat(Stem , ’e’, Syn).

a(Sem , nom , sing , fem , true , a(Syn)) :-

a_stem(Sem , Stem),

atom_concat(Stem , ’e’, Syn).

a(Sem , acc , sing , fem , true , a(Syn)) :-

a_stem(Sem , Stem),

atom_concat(Stem , ’e’, Syn).

a(Sem , nom , sing , neut , false , a(Syn)) :-

a_stem(Sem , Stem),

atom_concat(Stem , ’e’, Syn).

a(Sem , acc , sing , neut , false , a(Syn)) :-

a_stem(Sem , Stem),

atom_concat(Stem , ’e’, Syn).

a(Sem , nom , sing , neut , true , a(Syn)) :-

a_stem(Sem , Stem),

atom_concat(Stem , ’es ’, Syn).

a(Sem , acc , sing , neut , true , a(Syn)) :-

a_stem(Sem , Stem),

atom_concat(Stem , ’es ’, Syn).

A.4 stems.pl

/***

File: stems.pl

Copyright (C) 2008 Kilian Evang

This file is part of GG1 , version 1.0 (August 2008).

GG1 is free software; you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation; either version 2 of the License , or

(at your option) any later version.

GG1 is distributed in the hope that it will be useful ,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with BB1; if not , write to the Free Software Foundation , Inc.,

59 Temple Place , Suite 330, Boston , MA 02111 -1307 USA

***/

:- module(stems , [a_stem /2]).

A PROLOG CODE 41

/*==

Adjectives

==*/

a_stem(big , ’ßgro ’).

a_stem(blue , ’blau ’).

adj_stem(female , ’weiblich ’).

adj_stem(happy , ’öfrhlich ’).

adj_stem(male , ’ämnnlich ’).

adj_stem(married , ’verheiratet ’).

adj_stem(red , ’rot ’).

adj_stem(sad , ’traurig ’).

adj_stem(small , ’klein ’).

adj_stem(tall , ’ßgro ’).

A.5 util.pl

/***

File: util.pl

Copyright (C) 2008 Kilian Evang

This file is part of GG1 , version 1.0 (August 2008).

GG1 is free software; you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation; either version 2 of the License , or

(at your option) any later version.

GG1 is distributed in the hope that it will be useful ,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with BB1; if not , write to the Free Software Foundation , Inc.,

59 Temple Place , Suite 330, Boston , MA 02111 -1307 USA

***/

:- module(util , [flattenConjunction /2,

formula_conjuncts /2,

invertBool /2]).

/*==

Flattening binary -branching conjunctions

==*/

flattenConjunction(and(C1, C2), Flat) :-

flattenConjunction(C1, Flat1),

flattenConjunction(C2, Flat2),

append(Flat1 , Flat2 , Flat).

flattenConjunction(Term , [Term]) :-

\+ Term =.. [and|_].

/*==

Convert between formulas and lists of conjuncts , e.g.

woman(X) <-> [woman(X)]

and(woman(X), robber(X)) <-> [woman(X), robber(X)]

==*/

formula_conjuncts(Formula , [Conjunct1 , Conjunct2|OtherConjuncts]) :-

Formula =.. [and , Conjunct1 , Conjunct2|OtherConjuncts].

formula_conjuncts(Formula , [Conjunct]) :-

nonvar(Formula),

\+ Formula =.. [and|_],

Conjunct = Formula.

formula_conjuncts(Formula , [Conjunct]) :-

var(Formula),

Formula = Conjunct.

/*==

Converts between the atoms true and false.

==*/

invertBool(true , false).

42 A PROLOG CODE

invertBool(false , true).

