P. Blackburn and J. Bos: "Representation and Inference for Natural Language" – Ch. 4

Propositional Resolution

Andreas Rudin
Frank Richter, Fritz Hamm:
"Algorithmic Semantics"

Outline

- Conjunctive Normal Form
 - Terminology
 - Set CNF
 - Transformation
- Resolution Rule
 - Terminology
 - Usage in Theorem Proving
- Prolog Implementation
 - Structure
 - Converting formulas into set CNF
 - Performing Resolution
- Conclusion

Propositional Resolution

Conjunctive
Normal Form

Resolution Rule

Implementation

Introduction

- Informativity check:
 Is a formula "capable" of delivering any information?
- Refutation method (reductio ad impossibile):
 If the negation has a contradiction (i.e. is always false) the original formula is always true = valid.
- Another example: Tableau-Method

Propositional Resolution

Conjunctive
Normal Form

Resolution Rule

Implementation

Conjunctive Normal Form Terminology

Literals

- Positive Literals: p, q, r
- Negative Literals: ¬p, ¬q, ¬r

Clauses

- Disjunction of literals: pV¬qVr
- Can be written as: [p, ¬q, r]
- If at least one of the literals is true, the clause is true.
- Empty clauses are always false: [] = \bot

<u>Propositional</u> Resolution

Conjunctive Normal Form

Resolution Rule

Implementation

Conjunctive Normal Form Terminology

- Conjunctive Normal Form (CNF)
 - A formula is in CNF iff it is a conjunction of clauses:

$$(pV-q)\Lambda(qVr)\Lambda(rV-sV-q)$$

– Can also be written as:

$$[[p,\neg q],[q,r],[r,\neg s,\neg q]]$$

 If a formula in CNF contains an empty clause, it is unsatisfiable (i.e. can never be true) Propositional Resolution

Conjunctive Normal Form

Resolution Rule

Implementation

Conjunctive Normal Form Set CNF

- A Formula is in set CNF if no clause:
 - occurs more than once:

$$[[\neg s,p],[r,\neg q,t],[r,\neg q,s],[p,\neg s]]$$

– contains a repeated literal:

$$[[-r],[p,-t,q,p,s],[-s,-t,-r]]$$

Propositional Resolution

Conjunctive Normal Form

Resolution Rule

Implementation

Conjunctive Normal Form Transformation

• First: Transformation to NNF (Negation Normal Form)

Transformation to NNF Rules		
1) $\neg(\varphi \land \psi) \blacktriangleright \neg \varphi \lor \neg \psi$	3) $\neg(\varphi \rightarrow \psi) \blacktriangleright \varphi \land \neg \psi$	
 ¬(φ∨ψ) ► ¬φ∧¬ψ 	4) $\varphi \rightarrow \psi \blacktriangleright \neg \varphi \lor \psi$	
5) ¬¬φ ▶ φ		

Second: Transformation to CNF
 By repetitive applications of the distributive and associative rules.

Distributive Rules	Associative Rules
$\theta \lor (\varphi \land \psi) \blacktriangleright (\theta \lor \varphi) \land (\theta \lor \psi)$	$(\varphi \wedge \psi) \wedge \theta \triangleright \theta \wedge (\varphi \wedge \psi)$
$(\varphi \land \psi) \lor \theta \blacktriangleright (\varphi \lor \theta) \land (\psi \lor \theta)$	$(\varphi \lor \psi) \lor \theta \blacktriangleright \theta \lor (\varphi \lor \psi)$

<u>Propositional</u> Resolution

Conjunctive Normal Form

Resolution Rule

Implementation

Resolution Rule Terminology

- Complementary structures:
 - Complementary pairs:
 A positive literal in one clause and its negation in another clause are a complementary pair, also called resolvents
 - Complementary clauses:
 Those clauses that contain c.-pairs are complementary clauses.

[[p,-t],[q,p],[t,-s]]

Propositional Resolution

Conjunctive
Normal Form

Resolution Rule

Implementation

Resolution Rule Terminology

Binary Resolution Rule:

$$[p_1,...,p_n,r,p_{n+1},p_m]$$
 and $[q_1,...,q_n,\neg r,q_{n+1},q_m]$

$$[p_1,...,p_n,p_{n+1},p_m,q_1,...,q_n,q_{n+1},q_m]$$

– Explanation:

Since we know that clauses are disjunctions and r and ¬r can't be true at the same time, we can be certain that at least one of the other literals must be true.

Propositional Resolution

Conjunctive
Normal Form

Resolution Rule

Implementation

Resolution Rule Usage in Theorem Proving

- Refutation: In order to show the validity of φ , we try to show a contradiction in $\neg \varphi$
- The contradiction becomes apparent when we can show that $\neg \varphi$ in CNF contains an empty clause (\bot)
- Two-step process:
 - $\neg \varphi \rightarrow \text{CNF} \rightarrow \text{Repeatedly use the}$ Resolution Rule to generate an empty clause.

Propositional Resolution

Conjunctive
Normal Form

Resolution Rule

Implementation

Resolution Rule Usage in Theorem Proving

Is it possible to find two complementary clauses in the clause set and apply the resolution rule to the resolvents?

No:

Make a set CNF set(C) from C by simply eliminating all multiple literals. Add set(C) to the clause set if it isn't already contained in it.

Yes: Halt! φ has been proved

Propositional Resolution

Conjunctive
Normal Form

Resolution Rule

Implementation

Conclusion

Conclusio

No:

Halt! φ hasn't

been proved

Yes:

Is the resulting

clause C the

empty clause?

Prolog Implementation Structure

1. Converting formulas into set CNF

```
cnf(Formula, SetCNF): -
   nnf(Formula, NNF),
   nnf2cnf([[NNF]], [], CNF),
   setCnf(CNF, SetCNF).
```

2. Performing Resolution

```
rprove(Formul a): -
  cnf(not(Formul a), CNF),
  Refute(CNF).
```

<u>Propositional</u> Resolution

Conjunctive
Normal Form

Resolution Rule

Implementation

Prolog Implementation Converting formulas into set CNF

Transformation to NNF Rules 1) $\neg(\varphi \land \psi) \blacktriangleright \neg \varphi \lor \neg \psi$ 3) $\neg(\varphi \rightarrow \psi) \blacktriangleright \varphi \land \neg \psi$ 2) $\neg(\varphi \lor \psi) \blacktriangleright \neg \varphi \land \neg \psi$ 4) $\varphi \rightarrow \psi \blacktriangleright \neg \varphi \lor \psi$ 5) $\neg \neg \varphi \blacktriangleright \varphi$

Rule 1):

Rule 3):

```
nnf(not(i mp(F1, F2)), and(N1, N2)): -
    nnf(F1, N1),
    nnf(not(F2), N2).
```

<u>Propositional</u> Resolution

Conjunctive
Normal Form

Resolution Rule

Implementation

Prolog Implementation Performing Resolution

Input C is the negation of a formula in set CNF.

```
Is there a [] in C?
                                           Continue if not
refute(C): -
                                              Resolve and add all
   \+ memberList([], C)
                                              possible solutions to
   resolveList(C, [], Output),
                                              Output
   uni onSets(Output, C, NewC),
                                            Unite Output and C to
                                            NewC (NewC must be
   \+ NewC = C, -
                                            made a set if needed!)
   refute(NewC).
                                       Is NewC = C?
                                       Continue if not
                                     Recurse with input NewC
```

Propositional Resolution

Conjunctive
Normal Form

Resolution Rule

Implementation

Conclusion Overview

With the Resolution method...

- we can find out if a formula is *valid* if we can show that its negation has a contradiction.
- we also can find out if a formula itself has a contradiction and thus is unsatisfiable.

Propositional Resolution

Conjunctive
Normal Form

Resolution Rule

Implementation

Conclusion Computational Complexity

- Problems: Pigeon Hole Comparison
- co-NP-complete problem
 - → It is believed that there is no efficient algorithm for determining propositional validity.

Propositional Resolution

Conjunctive
Normal Form

Resolution Rule

Implementation