
Konditionale und die Logik des “Suppression
Effekts”

Fritz Hamm

12. Juli 2010

Überblick

Struktur

I Byrnes Daten zum Modus Ponens

I Planning und Logikprogrammierung

I Syntax und Semantik von normalen Logikprogrammen

I Eine logische Form für Konditionale

I Anwendungen 1. Teil

I Integritätsbedingungen

I Anwendungen 2. Teil

Reasoning to an interpretation

(1) If there is an emergency then you press the alarm button. The
driver will stop if any part of the train is in a station.

(2) The driver will stop the train if someone presses the alarm
button and any part of the train is in a station.

Die Daten von Byrne: Modus Ponens I

(3) 95 %

a. If she has an essay to write she will study late in the library.
b. She has an essay to write.
c. She will study late in the library.

(4) 38%

a. If she has an essay to write she will study late in the library.
b. If the library stays open then she will study late in the

library.
c. She has an essay to write.
d. She will study late in the library.

Die Daten von Byrne: Modus Ponens II

Alternative premisses

(5) 90 %

a. If she has an essay to write she will study late in the library.
b. If she has some textbooks to read, she will study late in the

library.
c. She has an essay to write.
d. She will study late in the library.

Die Daten von Byrne: Affirmation of the Consequent

(6) 71%

a. If she has an essay to write she will study late in the library.
b. She will study late in the library.
c. She has an essay to write.

Die Daten von Byrne: Denial of the Antecedent

(7) 49%

a. If she has an essay to write she will study late in the library.
b. She doesn’t have an essay to write.
c. She will not study late in the library.

Die Daten von Byrne: Modus Tollens

(8) 69 %

a. If she has an essay to write, she will study late in the library.
b. She will not study late in the library.
c. She does not have an essay to write

Die Daten von Byrne: Additional Premisses I

(9) AC 54%

a. If she has an essay to write she will study late in the library.
b. If the library stays open then she will study late in the

library.
c. She will study late in the library.
d. She has an essay to write.

(10) DA 22%

a. If she has an essay to write she will study late in the
library.

b. If the library stays open then she will study late in the
library.

c. She doesn’t have an essay to write.
d. She will not study late in the library.

Die Daten von Byrne: Additional Premisses II

(11) MT 44 %

a. If she has an essay to write, she will study late in the
library.

b. If the library stays open then she will study late in the
library.

c. She will not study late in the library.
d. She does not have an essay to write

Die Daten von Byrne: Alternative Premisses I

(12) AC 16 %

a. If she has an essay to write she will study late in the
library.

b. If she has some textbooks to read, she will study late in
the library.

c. She will study late in the Library.
d. She has an essay to write.

(13) DA 4 %

a. If she has an essay to write she will study late in the
library.

b. If she has some textbooks to read, she will study late in
the library.

c. She does not have an essay to write.
d. She will not study late in the library.

Die Daten von Byrne: Alternative Premisses II

(14) MT 69 %

a. If she has an essay to write, she will study late in the
library.

b. If she has a textbook to read, she will study late in the
library.

c. She will not study late in the library.
d. She does not have an essay to write

Logic Programming: Positive Programs I

Definition

A positive clause is a formula of the form

p1, . . .pn→ q,

where the q, pi are propositional variables; the antecedent may be
empty.
In this formula, q is called the head, and p1, . . .pn the body of the
clause.
A positive program is a finite set of positive clauses.

Definition

A query is a finite (possibly empty) sequence of atomic formulae
denoted as ?p1, . . . ,pm. Alternatively, a query is called a goal. The
empty query, canonically denoted by 2, is interpreted as ⊥, i.e. a
contradiction.

Logic Programming: Positive Programs II

Definition
Unit-resolution is a derivation rule which takes as input a program clause
p1, . . .pn→ q and a query ?q and produces the query ?p1, . . .pn.

?A B1, . . . ,Bn→ A

dddddddddddddddddddddddd

?B1, . . . ,Bi , . . . ,Bn C1, . . . ,Cm→ Bi

eeeeeeeeeeeeeeeeeeeeee

?B1, . . . ,Bi−1,C1, . . . ,Cm,Bi+1, . . . ,Bn

...

An illustration of a derivation with unit resolution

Logic Programming: Positive Programs III

Definition

Let P be a positive program on a finite set of proposition letters L. An
assignment M of truthvalues {0,1} to L is a model of P if for q ∈ L,

1. M (q) = 1 if there is a clause p1, . . .pn→ q in P such that for all
i , M (pi) = 1

2. M (q) = 0 if for all clauses p1, . . .pn→ q in P there is some pi for
which M (pi) = 0.

Theorem

Let P be a positive program, A an atomic formula. Then P |= A if and
only if the empty query can be derived from ?A using P.

Logic Programming: Positive Programs IV

Definition
Let P be a positive program.

a. The completion of a positive program P is given by the following
procedure:

1. take all clauses ϕi → q whose head is q and form the
expression

W
i ϕi → q

2. if q does not occur as a head, introduce the clause ⊥→ q
3. replace the implications (→) by bi-implications (↔) .
4. take the conjunction of the (finitely many) sentences thus

obtained; this gives the completion of P, which will be denoted
by comp(P).

b. If P is a positive logic program, define the non-monotonic
consequence relation |≈ by

P |≈ ϕ iff comp(P) |= ϕ.

Logic Programming: Positive Programs V

P = {>→ p,p→ q}

Comp(P) = {>↔ p,p↔ q}

Constructing Models I

Definition

The operator TP associated to P transforms an assignment V
(identified with the set of proposition letters made true true by V) into
a model TP(V) according to the following stipulations: if u is a
proposition letter,

1. TP(V)(u) = 1 if there exists a set of proposition letters C, made
true by V , such that

V
C→ u ∈ P

2. TP(M)(u) = 0 otherwise.

Constructing Models II

Definition

An ordering ⊆ on assignments V ,W is given by: V ⊆W if all
proposition letters true in V are true in W .

Lemma

If P is a positive logic program, TP is monotone in the sense that
V ⊆W implies TP(V)⊆ TP(W).

Definition

A fixed point of TP is an assignment V such that TP(V) = V .

Lemma

If TP is monotone, it has a least and a greatest fixed point.

Logic Programming: Negation I

Definition

a. A (definite) clause is a formula of the form
(¬)p1∧ . . .∧ (¬)pn→ q,
where the pi are either propositional variables, > or ⊥ and q
is a propositional variable.

b. A definite logic programm P is a conjunction of definite
clauses.

Problem: negation in the antecedent

¬p→ p

Logic Programming: Negation II

Strong Kleene

p ¬p
1 0
0 1
u u

p q p∧q
1 1 1
0 0 0
u u u
1 0 0
1 u u
0 1 0
0 u 0
u 1 u
u 0 0

p q p∨q
1 1 1
0 0 0
u u u
1 0 1
1 u 1
0 1 1
0 u u
u 1 1
u 0 u

p q p→ q
1 1 1
0 0 1
u u u
1 0 0
1 u u
0 1 1
0 u 1
u 1 1
u 0 u

p q p↔ q
1 1 1
0 0 1
u u u
1 0 0
1 u u
0 1 0
0 u u
u 1 u
u 0 u

Logic Programming: Negation III

ŁUKASIEWICZ

p ¬p
1 0
0 1
u u

p q p∧q
1 1 1
0 0 0
u u u
1 0 0
1 u u
0 1 0
0 u 0
u 1 u
u 0 0

p q p∨q
1 1 1
0 0 0
u u u
1 0 1
1 u 1
0 1 1
0 u u
u 1 1
u 0 u

p q p ⊃ q
1 1 1
0 0 1
u u 1
1 0 0
1 u u
0 1 1
0 u 1
u 1 1
u 0 u

p q p ≡ q
1 1 1
0 0 1
u u 1
1 0 0
1 u u
0 1 0
0 u u
u 1 u
u 0 u

Logic Programming: Negation IV

Definition

A three-valued model is an assignment of the truth values u,0,1 to the
set of proposition letters. If the assignment does not use the value u,
the model is called two-valued. If M ,N are models, the relation
M ≤N means that the truth value of a proposition letter p in M is
less than or equal to the truth value of p in N in the canonical ordering
on u,0,1.

Completion and Fixpoints I

Definition

The completion of a definite logic program comp(P) is defined by the
following clauses:

a. If a propositional variable p does not occur in the consequent
of a clause, add a formula ⊥→ p.

b. If a formula is of the form q, i.e. the consequent of a clause
with empty antecedent, add a formula >→ q.

c. For each propositional variable q, collect the clauses φi → p
with q as consequent, form

W
i φi and add the formulaW

i φi ↔ q.

If P is a normal logic program, define the non-monotonic consequence
relation |≈ by

P |≈3 ϕ iff comp(P) |=3 ϕ.

Completion and Fixpoints II

More generally if S is a set of atoms occurring in P, the completion of
P relatvized to S, compS(P), is obtained by taking the conjunctions of
the definitions of the atoms q which are in S.

Example

P = {⊥→ p,p∧¬ab→ q}
comp{ab,p} = {⊥↔ p,⊥↔ ab,p∧¬ab→ q}
comp{ab,p,q} = {⊥↔ p,⊥↔ ab,p∧¬ab↔ q}

comp{ab,p,q}(P) |=3 ¬q

Completion and Fixpoints III

Definition

Let P be a definite program.

a. The operator TP applied to formulae constructed using only ¬, ∧
and ∨ is determined by the above truth tables.

b. Given a three-valued model M , TP(M) is the model determined
by
0.1 TP(M)(q) = 1 iff there is a clause ϕ→ q such that M |= ϕ

0.2 TP(M)(q) = 0 iff there is a clause ϕ→ q in P and for all clauses
ϕ→ q in P, M |= ¬ϕ

0.3 TP(M)(q) = u, otherwise

Completion and Fixpoints IV

Lemma

If P is a definite logic program, TP is monotone in the sense that
M ≤N implies TP(M)≤ TP(N).

Lemma

Let P be a program.

a. M is a model of comp(P) iff it is a fixed point of TP .
b. The least fixed point of TP exists and is reached in finitely

many steps (n +1 if the program consists of n clauses). The
least fixed point of TP will be called the minimal model of P.

Completion and Fixpoints V

Theorem

Let a definite program P be given, and let A be an atomic formula.

1. There is a successful derivation starting from ?A if and only if
P |≈3 A.

2. The query ?A fails finitely if and only if P |≈3 ¬A.

Example

P = {p→ q,⊥→ p}
M1(p) = TP(M0)(p) = 0,M1(q) = TP(M0)(q) = u
M2(p) = TP(M1)(p) = 0,M2(q) = TP(M1(q)) = 0

Conditionals: Formalization I

1. L a formal language into which N is translated

2. the expression in L which translates an expression in N
3. the semantics S for L
4. the definition of validity of arguments ψ1, . . . ,ψn/φ, with

premisses ψi and conclusion φ.

(15) If a glass is dropped on a hard surface, it will break.

(16) If a body is dropped, its velocity will increase as gt2.

Conditionals: Formalization II

Representation of If A then B
If A, and nothing abnormal is the case, then B
A∧¬ab→ B

Definition

In the following, the term program will refer to a finite set of
conditionals of the form A1∧ . . .∧A−n∧¬ab→ B, together with the
clauses ⊥→ ab for all proposition letters of the form ab occurring in
the conditionals. Here, the Ai are proposition letters or negations
thereof, and B is a proposition letter. We allow the Ai to be > or ⊥.

Application I

Example

(17) a. If she has an essay to write she will study late in the
library.

b. She has an essay to write.

p = She has an essay to write.
q = She will study late in the library.

(18) a. p∧¬ab→ q
b. p.
c. ⊥→ ab

Completion of program (18):{p,p↔ q}

Application II

Example

(19) a. p∧¬ab→ q
b. r ∧¬ab′→ q
c. ¬r → ab
d. ¬p→ ab′

e. p.

r = The library stays open.

(20) a. ¬ab′↔ p
b. ¬ab↔ r

Completion of program (19): {p∧ r ↔ q,p}

Tutorial Dialogues: Andrea Lechler I

S: Ok yeah I think it is likely that she stays late in the library tonight,
but it depends if the library is open . . . so perhaps I think [pauses],
yeah, in a way I think hmm what does it say to me? I mean the fact that
you first say that she has an essay to write then she stays late in the
library, but then you add to it if the library stays open she stays late in
the library so perhaps she’s not actually in the library tonight, because
the library’s not open. I don’t think it’s a very good way of putting it.

E: How would you put it?

S: I would say, if Marian has an essay to write, and the library stays
open late, then she does stay late in the library.

Tutorial Dialogues: Andrea Lechler II
E: Again three sentences: If the green light is on, the rabbit is in the
cage. If the door is closed, the rabbit is in the cage. I can see that the
green light is on. So imagine that’ a conversation, you hear these
sentences, what can you conclude now?

S: What I conclude? If the cage door is shut, then the rabbit is in the
cage. Again, you’ve met one of the two criteria for the rabbit being in
the cage. The green light is on, the rabbit is in the cage. Um, but we
don’t know whether or not the door is open or not. If the door’s shut,
then that’s it, we got it for sure, the rabbit is definitely in the cage.

E: So you are not sure now?

S: I’ am not sure because I don’t know whether the door is open or not.
The point about the door being open or not hasn’t been cleared up to
my satisfaction. The point about the green light has been cleared up to
my satisfaction, but not the point whether the door is open or not. If the
door is open, I’m not sure the rabbit’s in the cage, it’s probably
somewhere else at the time.

Tutorial Dialogues: Andrea Lechler III

S: The second (conditional) again has no function. If you suppose that
it is always the case that when she has an essay to write, she studies
late in the library, then of course she now stays late in the library.

Application Continued I

Example (Alternative Premisses)

(21) a. p∧¬ab→ q
b. r ∧¬ab′→ q
c. p.
d. ⊥→ ab
e. ⊥→ ab′

r = She has a textbook to read.

Completion of program (21): {p,(p∨ r)↔ q}

Application Continued II

Example (Denial of the Antecedent)

(22) a. If she has an essay to write she will study late in the
library.

b. She doesn’t have an essay to write.
c. She will not study late in the library.

(23) a. p∧¬ab→ q
b. ¬p
c. ⊥→ ab

Completion of program (22): {¬p,p↔ q}

Backward Reasoning: Integrity Constraints I

Given q and
φ1→ q
φ2→ q
...
φn→ q

we want to conclude that q can only be the case because one of the φi

is the case. The notion of completion does not achieve this.

P = {p→ q,q}
comp(P) = {(p∨>)↔ q}

Backward Reasoning: Integrity Constraints II

?A B1, . . . ,Bn→ A

dddddddddddddddddddddddd

?B1, . . . ,Bi , . . . ,Bn C1, . . . ,Cm→ Bi

eeeeeeeeeeeeeeeeeeeeee

?B1, . . . ,Bi−1,C1, . . . ,Cm,Bi+1, . . . ,Bn

...

An illustration of a derivation with unit resolution

Backward Reasoning: Integrity Constraints III

?q p→ q

ddddddddddddddddddddddddddd

?p → p???

ddddddddddddddddddddddd

2

Backward Reasoning: Integrity Constraints IV

Definition

?φ succeeds means that a given program P must be transformed via a
suitable update into a program P ′ such that P ′ |≈3 φ.

Definition

A conditional integrity constraint of the form

if ?ψ succeeds, then ?φ succeeds

means: If a program P is given and P ′ any extension of P such that
P ′ |≈3 ψ, then also P ′ |≈3 φ.

Backward Reasoning II: Application I

Example (Affirmation of the Consequent)

(24) a. If she has an essay to write she will study late in the
library.

b. She will study late in the library.
c. She has an essay to write.

if ?q succeeds, then ?p succeeds

Use rule: p∧¬ab→ q

Backward Reasoning II: Application II

Example (Modus Tollens)

(25) a. If she has an essay to write she will study late in the
library.

b. She will not study late in the library.
c. She does not have an essay to write.

if ?q fails, then ?p fails.

Assumption: ?q must fail
Then at least one of ?p and ?¬ab must fail
By negation as failure applied to ab we get that ?p fails

Backward Reasoning II: Application III

Example (AC for an additional premiss)

p∧¬ab→ q
r ∧¬ab′→ q
¬p→ ab′

¬r → ab

Assumption: ?q succeeds
Either ?p∧¬ab or ?r ∧¬ab′ must succeed
But: ¬r ↔ ab and ¬p↔ ab′

Conclusion: Both ?p and ?r must succeed

Backward Reasoning II: Application IV

Example (MT for an additional premiss)

Assumption: ?q must fail

The same reasoning as above shows that at least one of p, r must fail.
But we don’t know which one.

