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The Euclidian Algorithm

gcd(x , y) = if (rem(x , y) = 0) then y

else gcd(y , rem(x , y)) (x ≥ y ≥ 1)

where rem(x , y) is the unique number r such that for some q,

x = yq + r , 0 ≤ r < y
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The Gaußian Algorithm

a11x1 + a12x2 . . .+ a1nxn = c1

a21x1 + a22x2 . . .+ a2nxn = c2

.

.

.

am1x1 + am2x2 . . .+ amnxn = cm
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Differential equations

x ′′ + 3x ′ + 2x = cos(t)

y ′′ + 3y ′ + 2y = sin(t)

eit = cos(t) + i sin(t) (the Euler-de Moivre formula)

z ′′ + 3z ′ + 2z = eit

Trial solution : z = Aeit
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y ′′ + y = 5etsin(t)

Trial solution : z = Ae(1+i)t
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Conservativity I

Definition (Conservativity for type <1,1> quantifiers)
A type <1,1> quantifier Q is called conservative (Conserv) iff,
for all M and A,B ⊆ M,

QM(A,B)↔ QM(A,A ∩ B)
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Conservativity II

(1) a. At least four students smoke.
b. At least four students are students who smoke.

(2) a. All but five teams made it to the finals.
b. All but five teams are teams and made it to the

finals.

(3) John’s two bikes were stolen.
(3) John’s two bikes are bikes that were stolen.

(4) a. Only bikes were stolen.
b. Many bikes were stolen.
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Conservativity III

(5) Only(A,B)⇔ B ⊆ A

(6) Many(A,B)⇔ |A ∩ B| > |A|×|B|
|M|
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Conservativity IV
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Conservativity V

QMXY ⇐⇒ QMXX ∩ Y Conservativity
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The effect of Conserv and Ext I

Definition (Ext for arbitrary quantifiers)
A quantifier Q of type < 1,1 > satisfies Ext iff the following
holds:

If X ,Y ⊆ M, and M ⊆ M ′, then

QM(X ,Y )⇔ QM′(X ,Y )

X X∩Y
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'$�
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Semantische Automaten I

(7) All poets have low self-esteem.

(8) Some dean danced nude on the table.

(9) At least 7 grad students prepared presentations.

(10) An even number of the students saw a ghost.

(11) Most of the students think they are smart.

(12) Less than half of the students received good grades.
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Semantische Automaten II
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aABaAB

Γ = {aAB,aAB,aAB,aAB}
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Semantische Automaten III

Example

αM = aABaABaABaABaAB

c1 ∈ AB, c2 ∈ AB, c3 ∈ AB, c4 ∈ AB, c5 ∈ AB

Definition
The class Q corresponding to a quantifier is represented by the
set of words (language) LQ describing all elements (models) of
the class.
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Theorem
A quantifier Q is first-order definable iff LQ is accepted by an
acyclic finite automaton.

Theorem
A monadic quantifier Q is definable in divisibility logic iff LQ is
accepted by a finite automaton.

Theorem
A quantifier Q of type <1,1> is definable in Presburger
Arithmetic iff LQ is accepted by a push-down automaton.
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χ ≡ (∀x)(∃y)R(x , y) ∨ (∃z)Q(z)

1 Step (1). Do steps (2) and (4). If one of them returns the
value t, give the value t; if both of them return the value f,
give the value f.

2 Step (2). For each a ∈ A, do step (3). If for every a ∈ A the
value t is returned, return the value t; if for some a ∈ A the
value f is returned, return the value f.

3 Step (3). Given a ∈ A, examine for each b ∈ A the value
R(a,b). If one of these values is t, return the value t; if all
these values are f, return the value f.

4 Step (4). For each c ∈ A, examine the value Q(c). If one of
these values is t, return the value t; if all the values are f,
return the value f.

Fritz Hamm Referential Intensions



Referential Intension

int(χ) = the algorithm which computes the truth value of χ
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Frege’s Sense and Denotation

A −→ sense(A) −→ den(A)

• Terms (denoting objects) include sentences, which denote
either 1 (truth) or 0 (falsity).

• The sense (meaning) of a term
“contains the mode of presentation of the denotation.”

• The function A −→ sense(A) is compositional.
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Standard approach: possible worlds

(13) a. There are infinetly many prime numbers.
b. There are infinetly many odd numbers.

Way out: structured meanings

the sense of a complex term A can be determined
from the syntactic structure of A and the senses or
denotations of the basic constituents of A.

(14) Theaetetus flies.
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Program A −→ value(A)

• Many implementations
• To prove (or express) implementation correctness you need
an independent definition of “algorithm” and “program value”.

Kaplan’s Architecture

Character −→ Content −→ Denotation
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PART I: THE EXTENSIONAL SYSTEM

The typed λ–calculus with acyclic recursion, Lλar

Types
σ :≡ e | t | s | (σ1 → σ2)

Ontologies
Tt = Te
T(σ→τ) = the set of all functions p : Tσ → Tτ
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Carnap intensions

σ̃ ≡ (s → σ)

Examples:
t̃ ≡ (s → t) = the type of Carnap intensions.

ẽ ≡ (s → t) = the type of state–dependend entities.

q̃ ≡ ((ẽ→ t̃)→ t̃) = the type of unary quantifiers.
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Constants

Entities 0, 1, 2,. . . , er: e
Names, demonstratives I, he, him, today: ẽ
Common nouns man, unicorn, temperature: ẽ→ t̃
Adjectives tall, young: (ẽ→ t̃)→ (ẽ→ t̃)
Propositions it rains: t̃
Intransitive verbs stand, run, rise: ẽ→ t̃
Transitive verbs find, love, be, seek: (ẽ × ẽ)→ t̃
Adverbs rapidly, allegedly: (ẽ→ t̃)→ (ẽ→ t̃)

(ẽ × ẽ)→ t̃ ≡ (ẽ→ (ẽ→ t̃))
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Variables and terms

Two types of variables
• pure variables (of type σ): vσ0 , v

σ
1 . . .

• recursion variables or locations (of type σ): pσ0 ,p
σ
1 . . .

Terms
A :≡ c | x | B(C) | λ(v)(B) |

A0 where {p1 := A1, . . . ,pn := An}

c is a constant of type σ, c : σ
x is a variable of either kind of type σ, x : σ

C : σ,B : (σ → τ), and B(C) : τ
B : τ, v a pure variable of type σ, and λ(v)(B) : (σ → τ)
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Ai : σi , for i ≤ n,pi , . . . ,pn distinct recursion variables
(locations) of type pi : σi , the system {p1 := A1, . . . ,pn := An} is
acyclic, and

A0 where {p1 := A1, . . . ,pn := An} : σ0

Definition
A system of equations

{p1 := A1, . . . ,pn := An}

is acyclic if it is possible to assign a natural number rank(pi) to
each of the locations, so that

rank(pi) > rank(pj)⇔ pj occurs free in Ai
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Example

{f := father(m),m := mother(j), j = John} is acyclic.

{p := c(p)} is not acyclic.

A term is explicit if the recursion (“where”) construct does not
occur in it, and recursive if it is of the form
A0 where {p1 := A1, . . . ,pn := An};
it is closed if it has no free occurrences of variables.
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Denotations

A = (Te,Ts, {c | c ∈ K})

(D1) den(x)(g) = g(x); den(c)(g) = c.
(D2) den(A(B))(g) = den(A)(g)(den(B)(g)).
(D3) den(λ(v)(B)(g) = h, where, for all t ,

h(t) = den(B)(g{v := t})

(D4) den(A0 where {p1 := A1, . . . ,pn := An})(g) =
den(A0(g{p1 := p1, . . . ,pn := pn})

The values pi are defined for i = 1, . . . ,n by recursion on
rank(pi):

pi = den(Ai)(g{pk1 := pk1 , . . . ,pkm := pkm})

where pk1 , . . . ,pkm are the variables with lower rank than
rank(pi).
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Example
John loves Mary and dislikes her husband

Stage 1: j := John,m := Mary
Stage 2: h := husband(m) = Mary’s husband

p := loves(j ,m) = the truth value of
“John loves Mary”

Stage 3: q := dislikes(j ,h) the truth value of
“John dislikes Mary’s husband”

Stage 4: den(A) = p&q the truth value of
“John loves Mary and
dislikes her husband”.
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Congruence

Definition
Congruence is the smallest equivalence relation ≡c between
terms which satisfies the following conditions:

(C1) If A ≡c A′ and B ≡c B′, then A(B) ≡c A′(B′).
(C2) If A ≡c B, then

λ(u)(A) ≡c λ(v)(B{u := v}),

where B{u := v} is the result of replacing u by v in all its free
occurrences in B and v is not bound in (B{u := v}).
(C3) If Ai ≡c Bi for i = 0, . . . ,n and q1, . . . ,qn are distinct
recursion variables of the same respective types as p1, . . . ,pn,
then
A0 where {p1 := A1, . . . ,pn := An} ≡c
B0{~p :≡ ~q} where {q1 := B1{~p :≡ ~q}, . . . ,qn := Bn{~p :≡ ~q}};

here C{~p :≡ ~q} symobolizes the n–fold replacement
C{p1 :≡ q1}{p2 :≡ q2} . . . {pn :≡ qn}
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Definition
(C4) A ≡c A where {}.
(C5) If π is a permutation of the set {1, . . . ,n}, then
A0 where {p1 := A1, . . . ,pn := An} ≡c
A0 where {pπ(1) := Aπ(1), . . . ,pπ(n) := Aπ(n)}

Example

A where {p := B,q := C} ≡c {q := C,p := B}

π(1) = 2 and π(2) = 1
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States: A state is an quintuple
a =< i , j , k ,A, δ > where i is a possible world, j a moment of
time, k a point in space, A a speaker, and δ a function which
assigns values to all occurrences of proper names and
demonstratives.

Carnap objects of type σ̃ ≡ (s → σ)

it rains(a) = 1⇔ it is raining in state a.

A Carnap object x : σ̃ is rigid if for all states a, b x(a) = x(b)

dere(y ,a) = λ(b)y(a)
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Common nouns and intransitive verbs of type (ẽ→ t̃).

man(x ,a)⇔ x(a) is a man in state a

temperature(x ,a)⇔ x(a) the temperature in state a is x(a)

stand(x ,a)⇔ x(a) is standing in state a

rise(x ,a)⇔ x is rising in state a
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Locality

An object p of type (ẽ→ t̃) is local if each value p(x ,a)
depends only on x(a), i.e.

x(a) = x ′(a)⇒ p(x ,a) = p(x ′,a).

rise(x ,a)⇔ ∂x(a{j := t})
∂t

(a) > 0
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Logical constants

=σ: σ × σ → t̃
¬, 2: t̃ → t̃
&, ∨: t̃ × t̃ → t̃
every , some: (ẽ→ t̃)→ t̃
the: (ẽ→ t̃)→ ẽ

(p&q)(a) =


1 if p(a) = q(a) = 1,
0, if p(a) = 0 and [q(a) = 0 or q(a) = 1],
0, if q(a) = 0 and [p(a) = 0 or p(a) = 1],
er , otherwise.

Descriptions

the(p)(a) =


the unique y ∈ Te such that p(dere(ỹ ,a),a),

if it exists,
er , otherwise.
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Modal operators

2(p)(a)⇔ (∀b)p(b).

2dere(p, x)⇔ x necessarily has property p (p : (ẽ→ t̃ , x : ẽ).

21(p, x)(a) = 2(p(dere(x ,a)))(a).

2n(p, x1, . . . , xn)(a) = 2(p(dere(x1,a), . . . ,dere(xn,a)))(a)
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(15) I am necessarily here.

2(reside(I,here)) 21(λ(x)reside(x ,here), I)

21(λ(y)reside(I, y),here) 22(reside, I,here)

reside : ẽ × ẽ→ t̃
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(16) John kissed his wife −→ kissed(John,wife(his))
−→λ (λ(j)kissed(j ,wife(j)))(John)

(17) John loves his wife and he honors her
−→ loves(John,wife(his))&honors(he,her)
−→λ λ(j)[loves(j ,wife(j))&honors(j ,her)(John)]
−→λ

λ(j)[λ(w)(loves(j ,w)&honor(j ,w)(wife(j)))](John)
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(18) If Xi −→ Xi : ẽ, set
X1 and X2 −→ λ(r)(r(x1)&r(x2))
where {x1 = X1, x2 = X2}

John and Mary
−→ λ(r)(r(x1)&r(x2) where {x1 = John, x2 = Mary}

(19) If X −→ X : ẽ and Q −→ Q : q̃, set
X and Q −→ λ(r)(r(x)&q(r)
where {x = X ,q = Q}

the teacher and every student
−→ λ(r)(r(x)&q(r)) where {x = the teacher ,q =
every student}
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(20) If Qi −→ Qi : q̃, set
Q1 and Q2 −→ λ(r)(q1(r)&q2(r)
where {q1 = Q1,q2 = Q2}

some boy and every girl
−→ λ(r)(b(x)&g(r)) where {b = some(boy),g =
every(girl)}

(21) If Pi −→ Xi : ẽ→ t̃ , set
P1 and P2 −→ λ(i)(p1(i)&p2(i))
where {p1 = P1,p2 = P2} : ẽ→ t̃

the temperature is ninty and rising
−→ (λ(t)(n(t)&r(t) where {n = λ(x)[x = 90], r =
rises})(the temperature)
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(22) John loves himself. −→ loves(John,himself )
−→ara loves(j , j) where {j = John}

(23) John kissed his wife.
−→ kissed(John,wife(his))
−→ar kissed(j ,wife(j)) where {j = John}

(24) John loves his wife and he honors her
−→ loves(John,wife(his))&honors(he,her)
−→ar loves(j ,wife(j))&honors(j ,her) where {j = John}
−→ar (loves(j ,w)&honor(j ,w) where {w = wife(j)})
where {j = John}

loves(j ,w)&honors(j ,w) where {w = wife(j), j = John}
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PART II: REFERENTIAL INTENSIONS AND REFERENTIAL
SYNONYMY

I. Reduction, irreducability, canonical forms

A⇒ B ⇔ A ≡c B (A is congruent with B) or A and B have the
same meaning and B expresses that meaning “more simply”.

A is irreducible⇔ for all B, if A⇒ B, then A ≡c B.
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Theorem (Canonical Form Theorem)
For each term A, there is an irreducible term

cf (A) ≡ A or cf (A) ≡ A0 where {p1 := A1, . . . ,pn := An},

such that A⇒ cf (A); moreover, cf (A) is the unique (up to
congruence) irreducible term to which A can be reduced, i.e.

if A⇒ B and B is irreducible, then B ≡c cf (A)
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II. Referential intensions

cf (A) ≡ A0 where {p1 := A1, . . . ,pn := An}

The referential intension of A int(A) is (intuitively) the abstract
algorithm which computes for each assignment g the
denotation den(A)(g), as described in case (D4).
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(D4) den(A0 where {p1 := A1, . . . ,pn := An})(g) =
den(A0(g{p1 := p1, . . . ,pn := pn})

The values pi are defined for i = 1, . . . ,n by recursion on
rank(pi):

pi = den(Ai)(g{pk1 := pk1 , . . . ,pkm := pkm})

where pk1 , . . . ,pkm are the variables with lower rank than
rank(pi).
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II. Referential synonymy

Two non–immediate terms are referentially synonymous if their
referential intensions are naturally isomorphic, so that they
model – they are, from the mathematical point of view –
identical algorithms.

A ≈ B ⇔ A and B are referentially synonymous.
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Theorem (Referential Synonymy Theorem)
Two terms A, B are referentially synonymous if and only if

A⇒nf A0 where {p1 := A1, . . . ,pn := An},

B ⇒nf B0 where {p1 := B1, . . . ,pn := Bn},

for some n ≥ 0 and suitable, A0,A1, . . . ,An,B0,B1, . . . ,Bn, so
that

|= Ai = Bi
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Reduction rules: part I

(cong) If A ≡c B, then A⇒ B
(tans) If A⇒ B and B ⇒ C, then A⇒ C
(rep1) If A⇒ A′ and B ⇒ B′, then A(B)⇒ A′(B′)
(rep2) If A⇒ B , then λ(u)(A)⇒ λ(u)(B)
(rep3) If Ai ⇒ Bi for i = 0, . . . ,n, then

A0 where {p1 := A1, . . . ,pn := An} ⇒
B0 where {p1 := B1, . . . ,pn := Bn}
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The reduction calculus: rules for recursion

(head) (A0 where {~p := ~A}) where {~q := ~B
⇒ A0 where {~p := ~A, ~q := ~B}

(B–S) A0 where {p := (B0 where {~q := ~B}), ~p := ~A}
⇒ A0 where {p := B0, ~q := ~B, ~p := ~A}

(recap) (A0 where {~p := ~A})(B)

⇒ A0(B) where {~p := ~A}
(ap) A(B)⇒ A(b) where {b := B}
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Example
(head rule)
(loves(j ,w) where {w := wife(p),p := Paul}) where
{j := John} ⇒
loves(j ,w) where {w := wife(p),p := Paul, j := John}
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The Bekič–Scott rule (B–S)

A0 where {p := (B0 where {~q := ~B}), ~p := ~A}

⇒ A0 where {p := B0, ~q := ~B, ~p := ~A}

Example
((B–S)–rule)
loves(j ,w) where {w := (wife(p) where {p := Paul}), j :=
John}
⇒ loves(j ,w) where {w := (wife(p),p := Paul, j := John}
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The recursion application rule (recap)

(A0 where {~p := ~A})(B)⇒ A0(B) where
{~p := ~A}

Example
(recap–rule)
Let A ≡ (h = s) where {h := He, s := Scott}.

A(a)⇒ B where

B ≡ (h = s)(a) where {h := He, s := Scott}
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Immediate terms and the application rule

X :≡ x | p(v1, . . . , vn) | λ(u1, . . . ,um)(p(v1, . . . , vn)) |
λ(u1, . . . ,um)(p(v1, . . . , vn)

(p a location, vi ,uj pure)

A(B)⇒ A(b) where {b := B}

(B proper, b fresh)

Example

John is tall −→ tall(John)⇒ tall(j) where {j := John}

tall(j)⇒ tall(j ′) where {j ′ := j}

tall(John)⇒ tall(j) where {j := John}
⇒ (tall(j ′) where {j ′ := j}) where {j := John}
tall(j ′) where {j ′ := j , j := John}.

tall(j) where {j := John} ≈ tall(j ′) where {j ′ := j , j := John}.
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Canonical forms and the λ–rule

tall(John)⇒nf tall(j) where {j := John}

John loves Mary

loves(John)⇒ loves(j) where {j := John} (ap)
loves(John)(Mary)⇒ (loves(j) where
{j := John})(Mary) (rep1)
⇒ loves(j)(Mary) where {j := John} (recap)
⇒ (loves(j)(m) where {m := Mary}) where
{j := John} (ap)
⇒nf loves(j)(m) where {m := Mary, j := John} (head)
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λ(u)(A0 where {p1 := A1, . . . ,pn := An}
⇒ λ(u)(A′0 where {p′1 := λ(u)A′1, . . . ,p

′
n := λ(u)A′n}

where for i = 1, . . . ,m,p′i is a fresh location and A′i is defined by
the replacement

A′i :≡ Ai{p1 :≡ p′1(u), . . . ,pn :≡ p′n(u)}
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Example
(λ–rule)
λ(u)danced(u,w) where {w := wife(u)}

⇒ λ(u)danced(u,w ′(u)) where {w ′ := λ(u)wife(u)}
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THEOREMS

Theorem
If A⇒ B, then |= A = B.

Theorem
a. Constants and immediate terms are irreducible.
b. An application term A(B) is irreducible if and only if B is

immediate and A is explicit (up to congruence) and
irreducible.

c. A λ–term λ(u)(A) is irreducible if and only if A is explicit
(up to congruence) and irreducible.

d. A recursive term

A0 where {p1 := A1, . . . ,pn := An}

is irreducible if and only if all the parts A0, . . . ,An are
explicit (up to congruence) and irreducible.
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(CF1) cf (c) :≡ c(≡ c where {}), cf (x) :≡ (≡ x where {}
(CF2) suppose cf (A) ≡ A0 where {p1 := A1, . . . ,pn := An} (n ≥ 0). If
X is immediate, then

cf (A(X ) :≡ A0(X ) where {p1 := A1, . . . ,pn := An}

and if B is proper and cf (B) ≡ B0{q1 := B1, . . . ,qn := Bm}, then

cf (A(B)) := A0(q0) where {p1 := A1, . . . ,pn := An,

q0 := B,q1 := B1, . . . ,qm := Bm}

(CF3) For any pure variable u, if

cf (A) ≡ A0 where {p1 := A1, . . . ,pn := An (n ≥ 0)}

then,

cf (λ(u)A) ≡ λ(u)A′
0 where {p′

1 := λ(u)A′
1, . . . ,p

′
n := λ(u)A′

n}

where (as in the λ-rule for reduction) each p′
i is a fresh location and

A′
i ≡ Ai{p := p′

i , . . . ,pn := p′
n(u)} (ki ≥ 0)
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(CF4) If A ≡ A0 where {p1 := A1, . . . ,pn := An} with n ≥ 0 and if , for
i = 0, . . . ,n,

cf (Ai ) ≡ Ai,0 where {pi,1 := Ai,1, . . . ,pi,k := Ai,ki}

then

cf (A) :≡ A0,0 where {p0,1 := A0,1, . . . ,p0,k0 := A0,k0 , }

p1 := A1,0,p1,1 := A1,1, . . . ,p1,k1 := A1,k1

...

pn := An,0,pn,1 := An,1, . . . ,pn,kn := An,kn}
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Theorem
For every term A:

1 The canonical form of A is a term

cf (A) ≡ A0 where {p1 : A1, . . . ,pn := An} (n ≥ 0)

with explicit, irreducible parts A0,A1, . . . ,An, so that its is
irreducible. A constant c or a variable x occur (free) in
cf (A) if and only if it occurs (free) in A.

2 A⇒ cf (A)

3 If A is irreducible, then cf (A) = A.
4 If A⇒ B, then cf (A) ≡c cf (B).
5 If A⇒ B and B is irreducible, then B ≡c cf (A).
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Theorem

1 If A⇒ D and B ⇒ D for some D, then A ≈s B; and similarly, if D ⇒ A and
D ⇒ B for some D, then A ≈s B.

2 If A ≈s X for some immediate term X, then A is also immediate and A ≡c X.
3 ≈s is an equivalence relation on terms which extends congruence and respects

application, λ-abstraction and the formation of recursive terms, i.e.,

A1 ≈s B1 A2 ≈s B2 A ≈s B
A1(A2) ≈s B1(B2) λ(u)A ≈s λ(u)B

A0 ≈s B0, A1 ≈s B1, . . . ,An ≈s Bn
A0 where {p1 := A1, . . . , pn := An} ≈s B0 where {p1 := B1, . . . , pn := Bn}

4 If z : σ is a constant c, or a variable of either kind, C : σ is a proper term of the
same type and the substitution {z :≡ C} is free in A then

A{z :≡ C} ≈s (cf (A)){z :≡ C}.
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Definition
Let A be a non–immediate term with canonical form

cf (A) ≡ A0 where {p1 := A1, . . . ,pn := An},

and for i = 0, . . . ,n set

αi(g,d1, . . . ,dn) = den(Ai)(g{p1 := d1, . . . ,pn := dn}).

The referential intension of A is the tuple of functions

int(A) = (α0, α1, . . . , αn)
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Example

int(loves(John,Mary) = (α0, α1, α2) where,

α0(g, j ,m) = loves(j ,m)

α1(g, j ,m) = John

α2(g, j ,m) = Mary

(25) α0 : G × Tσ1 × . . .Tσn → Tσ,

(26) for i = 1, . . . ,n
αi : G × Tσ1 × . . .Tσn → Tσi .

(27) For all g,d1, . . . ,dn,d ′1, . . . ,d
′
n with rank(j) = rank(pj):

If dj = d ′j for all j such that rank(j) < rank(i), then

αi(g,d1, . . . ,dn) = αi(g,d ′1, . . . ,d
′n)
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Acyclic recursors

A tuple of functions (α0, α1, . . . , αn) which satisfies conditions
(25) – (27) with some

rank : {1, . . . ,n} → {1, . . . ,n}

is called an acyclic recursor on G to Tσ.

α = (α0, α1, . . . , αn) : G ; Tσ

α : G→ Tσ

α(g) = α0(g,d1, . . . ,dn)

di = αi(g,d1, . . . ,dn) (i = 1, . . . ,n)
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Intensions

int(A) : G ; Tσ A : σ

int(A)(g) = den(A)(g)
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Definition
Two acyclic recursors

α = (α0, α1, . . . , αn), β = (β0, β1, . . . , βn) : G ; Tσ

of respective types σ1×, . . . ,×σn and τ1×, . . . ,×τn and into the
same output set Tσ are naturally isomorphic, if they have the
same dimension (m = n) and there is a permutation

π {0,1, . . . ,n} → {0,1, . . . ,n}, with π(0) = 0

such that σπ(i) = τi for i = 1, . . . ,n and

απ(i)(g,d1, . . . ,dn) = βi(g,dπ(1), . . . ,dπ(n))

for (g ∈ G,di ∈ Tσi , i = 0, . . . ,n)
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α ' β ⇔ α and β are naturally isomorphic.

A ≈ B ⇔ A,B are immediate and for all g,
den(A)(g) = den(B)(g).

or A and B are proper and int(A) ' int(B).
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A Logical Calculus for Meaning and Synonymy

A⇒ B
A ≈ B

A ≈ A A ≈ B A ≈ B B ≈ C
B ≈ A A ≈ C

A1 ≈ B1 A2 ≈ B2 A ≈ B
A1(A2) ≈ B1(B2) λ(u)A ≈ λ(u)B

A0 ≈ B0, A1 ≈ B1, . . . An ≈ Bn
A0 where {p1 := A1, . . . , pn := An} ≈ B0 where {p1 := B1, . . . , pn := Bn}
|= A = B

A ≈ B (λ(u)A(u))(v) ≈ A{u := v}

|= A = B ⇔ for all assignments g, den(A)(g) = den(B)(g)
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Compositionality

Theorem
For all terms A, B, C and every variable x such that type(x) =
type(B) = type(C),

if B ≈ C, then A{x :≡ B} ≈ A{x :≡ C},

assuming that the substitution is free.
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Theorem
a. No location occurs in more than one part of an explicit

term.
b. Suppose a location p occurs in two parts Ak and Al of a

term A, and neither Ak nor Al denotes a function which
is independent of p, i.e., for some assignment to the
variables g and objects r, r’,

den(Ak )(g{p := r}) 6= den(Ak )(g{p := r ′})

and similarly with Al . It follows that A is not referentially
synonymous with any explicit term.
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John loves his wife and he honors her.

Example

p&q where {p := loves(j ,w),q := honors(j ,w), j := John,w :=
wife(j)}
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Definition (Utterance)

An utterance is a pair (A, a) of a closed Carnap intension A : t̃
and a state a.

A⇒cf A0 where {p1 := A1, . . . ,pn := An} : t̃

↓ recap

A(a)⇒cf A0(a) where {p1 := A1, . . . ,pn := An} : t

Example

loves(John,Mary)(a)⇒cf loves(j ,m)(a) where {j :=
John,m := Mary}
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Petros emigrated from his native Greece to the United States at
a rather advanced age, and immediately fell in love with the city
of Los Angeles, where he settled. Every chance he gets he
declares proudly

(A) I live in Los Angeles.

When, however, a new acquaintance who had heard of this
tried to start conversation with an innocent “I hear you live in
LA”, Petros looked puzzled, declarded again that he lives in Los
Angeles, and added emphatically:

(B) I do not live in LA.
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Assume: Los Angeles, LA: ẽ
and: |= Los Angeles = LA

this implies: Los Angeles ≈ LA

By compositionality: reside(I Los Angeles) ≈ reside(I, LA)

(28) a. He doesn’t know that Los Angeles is LA.
b. He doesn’t know that Los Angeles is Los Angeles.
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(29) a. Los Angeles is between the desert and the sea.
b. Los Angeles is between the sea and the desert.

|= between(x, y, x) = between(z, y, x)

Main Conjecture: If the set of constants is finite, then the
relation of referential synonymy between closed term Lλar (K ) is
decidable.
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Let us suppose that in a book-signing ceremony given by “the
author of Waverly”, a cleverly disguised Scott autographs King
Georges’s copy of Waverly. King George, being fooled by
Scott’s disguise, concludes that Waverly was written by
someone other than Scott. He sincerely declares

(D) He is not Scott.

pointing at the disguised author: yet King George surely
disbelieves, and would vigorously deny that

(E) Scott is not Scott.
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Consider: He(a) = Scott(a)

This implies: He(a) ≈ Scott(a)

???: (He is Scott)(a) ≈ (Scott is Scott)(a)
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(He is Scott)(a) −→render (He = Scott)(a)

⇒cf (h = s)(a) where {h := He, s := Scott}

≈ h(a) = s(a) where {h := He, s := Scott}

(Scott is Scott)(a) −→render (Scott = Scott)(a)

⇒cf (s′ = s)(a) where {s′ := Scott , s := Scott}

≈ s′(a) = s(a) where {s′ := Scott , s := Scott}
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By referential synonymy

(¬(He = Scott)(a) ≈ (Scott = Scott)(a))

Since

|= He 6= Scott
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The Euclidian Algorithm

gcd(x , y) = if (rem(x , y) = 0) then y

else gcd(y , rem(x , y)) (x ≥ y ≥ 1)
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The Euclidian Algorithm: explicit form

gcd(x , y) = p(x , y) where {p := λ(x)λ(y)C(q1(x , y), y , r(x , y)},

q1 := λ(x)λ(y)rem(x , y),

r := λ(x)λ(y)p(y ,q2(x , y)),

q2 := λ(x)λ(y)rem(x , y),

ε = (α0, α1, α2, α3, α4)
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α0(x , y ,p,q1, r ,q2) = p(x , y),

α1(x , y ,p,q1, r ,q2) = λ(x)λ(y)C(q1(x , y), y , r(x , y)),

α2(x , y ,p,q1, r ,q2) = λ(x)λ(y)rem(x , y) = rem,

α3(x , y ,p,q1, r ,q2) = λ(x)λ(y)p(y ,q2(x , y),

α4(x , y ,p,q1, r ,q2) = λ(x)λ(y)rem(x , y) = rem,

(N,C, rem)

where N are the natural numbers, C is the construct

C(u, s, t) = if (u = 0) then s else t

and rem is reminder.
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(cong) If A ≡c B, then A⇒ B
(tans) If A⇒ B and B ⇒ C, then A⇒ C
(rep1) If A⇒ A′ and B ⇒ B′, then A(B)⇒ A′(B′)
(rep2) If A⇒ B , then λ(u)(A)⇒ λ(u)(B)
(rep3) If Ai ⇒ Bi for i = 0, . . . , n, then

A0 where {p1 := A1, . . . , pn := An} ⇒
B0 where {p1 := B1, . . . , pn := Bn}

(head) (A0 where {~p := ~A}) where {~q := ~B
⇒ A0 where {~p := ~A, ~q := ~B}

(B–S) A0 where {p := (B0 where {~q := ~B}), ~p := ~A}
⇒ A0 where {p := B0, ~q := ~B, ~p := ~A}

(recap) (A0 where {~p := ~A})(B)

⇒ A0(B) where {~p := ~A}
(ap) A(B)⇒ A(b) where {b := B}

λ(u)(A0 where {p1 := A1, . . . , pn := An}
⇒ λ(u)(A′

0 where {p′
1 := λ(u)A′

1, . . . , p
′
n := λ(u)A′

n}
where for i = 1, . . . ,m, p′

i is a fresh location and A′
i is defined by the replacement

A′
i :≡ Ai{p1 :≡ p′

1(u), . . . , pn :≡ p′
n(u)}
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