
Introduction to Computational
Linguistics
PD Dr. Frank Richter

fr@sfs.uni-tuebingen.de.

Seminar für Sprachwissenschaft

Eberhard-Karls-Universität Tübingen

Germany

NLP Intro – WS 2005/6 – p.1

Replacement Operators

Unconditional obligatory replacement:

A → B =def [[∼$[A - []] [A .x. B]]∗ ∼$[A - []]]

Unconditional optional replacement:

A (→) B =def [[∼$[A - []] [A .x. A | A .x. B]]∗

∼$[A - []]]

Contextual obligatory replacement:

A → B ‖ L R

meaning: “Replace A by B in the context L R.”

NLP Intro – WS 2005/6 – p.2

Non-determinism of replace

Example: ab → ba | x

meaning: “replace ab by ba or x

non-deterministically”

Sample input: abcdbaba

Outputs: bacdbbaa,bacdbxa,

xcdbbaa,xcdbxa

NLP Intro – WS 2005/6 – p.3

Non-determinism of replace (2)

Example: [a b | b | b a | a b a] → x

meaning: “replace ab or b or ba or aba by x”

Sample input: a ba aba a b a a b a

Outputs: x a axa a x x

NLP Intro – WS 2005/6 – p.4

Longest match, left-to-right replace

For many applications, it is useful to define another
version of replacement that in all such cases yields a
unique outcome.

The longest-match, left-to-right replace operator, @->,
defined in Karttunen (1996), imposes a unique
factorization on every input.

The replacement sites are selected from left to right, not
allowing any overlaps.

If there are alternate candidate strings starting at the
same location, only the longest one is replaced.

NLP Intro – WS 2005/6 – p.5

A Grammar for Date Expressions

1To9 = [1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9]

0To9 = [%0 | 1To9]

SP = [", "]

Day = [Monday | ... | Saturday | Sunday]

Month = [January | ... | November | December]

Date = [1To9 | [1 | 2] 0To9 | 3 [%0 | 1]]

Year = 1To9 (0To9 (0To9 (0To9)))

DateExp = Day | (Day SP) Month " " Date (SP Year)

NLP Intro – WS 2005/6 – p.6

Marking Date Expressions

A parser for date expressions can be compiled from the
following simple regular expression:
DateExp @-> %[... %]

The above expression can be compiled into a
finite-state transducer.

@-> is replace operator which scans the input from left
to right and follows a longest-match.

Due to the longest match constraint, the transducer
brackets only the maximal date expressions.

The dots mean: identity with the upper string. The
whole expression means: replace DateExp by DateExp
surrounded by brackets.

NLP Intro – WS 2005/6 – p.7

Overgeneration Problem

The grammar for date expressions accepts illegal dates.

For example: it admits dates like “February 30, 2006”

More generally:
If a grammar admits strings that should not be
accepted by the grammar, the grammar is said to
overgenerate.
If a grammar does not admit strings that should be
accepted by the grammar, the grammar is said to
undergenerate.

NLP Intro – WS 2005/6 – p.8

Tokenizing Date Expressions

Example:

Today is [Wednesday, August 28, 1996] because yesterday
was [Tuesday] and it was [August 27] so tomorrow must be
[Thursday, August 29] and not [August 30, 1996] as it says
on the program.

NLP Intro – WS 2005/6 – p.9

Incremental Tokenization

input layer one, two, and so on.

single word layer one || , || two || , || and || so || on || . ||

multi-word layer one || , || two || , || and so on || . ||

NLP Intro – WS 2005/6 – p.10

Advantages of Incremental Tokenization

With finite-state transducers incremental tokenization is
implemented by the composition operator for
transducers.

Separation of grammar specification and program code:
Each analysis level is specified in a well-defined
language of regular expressions.

Transducers for each layer can be stated independently
of each other

Regular expressions can be compiled automatically into
(composed) finite state transducers.

NLP Intro – WS 2005/6 – p.11

A Quick Guide to Morphology (1)

Morphology studies the internal structure of words.

The building blocks are called morphemes. One
distinguishes between free and bound morphemes.

Free morphemes are those which can stand alone
as words.
Bound morphemes are those that always have to
attach to other morphemes.

NLP Intro – WS 2005/6 – p.12

A Simple Morphological Typology

Isolating languages: no bound morphemes

Agglutinative languages: all bound forms are affixes

Inflectional languages: distinct features merged into
single bound form; same underlying feature expressed
differently, depending on paradigm

Polysynthetic languages: more structural information
expressed morphologically

NLP Intro – WS 2005/6 – p.13

A Simple Morphological Typology

Isolating languages: no bound morphemes

Agglutinative languages: all bound forms are affixes

Inflectional languages: distinct features merged into
single bound form; same underlying feature expressed
differently, depending on paradigm

Polysynthetic languages: more structural information
expressed morphologically

NLP Intro – WS 2005/6 – p.13

A Simple Morphological Typology

Isolating languages: no bound morphemes

Agglutinative languages: all bound forms are affixes

Inflectional languages: distinct features merged into
single bound form; same underlying feature expressed
differently, depending on paradigm

Polysynthetic languages: more structural information
expressed morphologically

NLP Intro – WS 2005/6 – p.13

A Simple Morphological Typology

Isolating languages: no bound morphemes

Agglutinative languages: all bound forms are affixes

Inflectional languages: distinct features merged into
single bound form; same underlying feature expressed
differently, depending on paradigm

Polysynthetic languages: more structural information
expressed morphologically

NLP Intro – WS 2005/6 – p.13

A Quick Guide to Morphology (2)

Linguists commonly distinguish three types of
morphological processes:

Inflectional morphology: refers to the class of bound
morphemes that do not change word class.

Derivational morphology: refers to the class of bound
morphemes that do change word class.

Compounding: a morphologically complex word can be
constructed out of two or more free morphemes.

NLP Intro – WS 2005/6 – p.14

Inflectional Morphemes

Bound morphemes which do not change part of speech,
e.g. big and bigger are both adjectives.

Typically indicate syntactic or semantic relations
between different words in a sentence, e.g. the English
present tense morpheme -s in waits shows agreement
with the subject of the verb.

Typically occur with all members of some large class of
morphemes, e.g. the pural morpheme -s occurs with
most nouns.

Typically occur at the margins of words as affixes
(prefix, suffix, circumfix)

NLP Intro – WS 2005/6 – p.15

Derivational Morphemes

Bound morphemes which change part of speech, e.g.
-ment forms nouns, such as judgment, from verbs such
as judge.

Typically indicate semantic relations within the word,
e.g. the morpheme -ful in painful has no particular
connection with any other morpheme beyond the word
painful.

Typically occur with only some members of a class of
morphemes, e.g. the suffix -hood occurs with just a few
nouns such as brother, neighbor, and knight, but not
with many others, e.g. friend, daughter, candle, etc.

Typically occur before inflectional suffixes, e.g. in
interpretierbare (Antwort) the derivational suffix bar
before the inflectional suffix -e.

NLP Intro – WS 2005/6 – p.16

Compounding

A compound is a word formed by the combination of
two independent words.

The parts of the compound can be free morphemes,
derived words, or other compounds in nearly any
combination:

girlfriend (two independent morphemes),
looking glass (derived word + free morpheme),
life insurance salesman (compound + free
morpheme).

NLP Intro – WS 2005/6 – p.17

Morphology: The Naive Solution

The simplest, but for most cases naive solution:

Compile a full-form lexicon which lists all possible word
forms together with their morphological analyses.

If a given word has only one morphological analysis, the
full-form lexicon stores exactly one reading.

If a given word has more than one morphological
analysis, the full-form lexicon stores all possible
readings separately.

NLP Intro – WS 2005/6 – p.18

Morphological Analysis: Lemmatization

Lemmatization refers to the process of relating
individual word forms to their citation form (lemma) by
means of morphological analysis.

Lemmatization provides a means to distinguish
between the total number of word tokens and distinct
lemmata that occur in a corpus.

Lemmatization is indispensible for highly inflectional
languages which have a large number of distinct word
forms for a given lemma.

NLP Intro – WS 2005/6 – p.19

Examples from English (1)

Input: spies

Analysis:
spies spy+Noun+Pl
spies spy+Verb+Pres+3sg

Input: travelling

Analysis:
travelling travel+Verb+Prog
travelling travelling+Adj
travelling travelling+Noun+Sg

NLP Intro – WS 2005/6 – p.20

Examples from English (2)

Input: foxes

Analysis:
foxes fox+Noun+Pl
foxes fox+Verb+Pres+3s

Input: moved

Analysis:
moved move+Verb+PastBoth+123SP
moved moved+Adj

NLP Intro – WS 2005/6 – p.21

Examples from German (1)

Input: Staubecken

Analysis:

1. Stau+Noun+Common+Masc+Sg#
Becken+Noun+Common+Neut+Sg+NomAccDat

2. Stau+Noun+Common+Masc+Sg#
Becken+Noun+Common+Neut+Pl+NomAccDatGen

3. Staub+Noun+Common+Masc+Sg#
Ecke+Noun+Common+Fem+Pl+NomAccDatGen

NLP Intro – WS 2005/6 – p.22

Examples from German (2)
<form>hat</form> <ENGLISH>has</ENGLISH>

<lemma wkl=VER typ=AUX pers=3 num=SIN modtemp=PRÄ>haben</lemma>

<lemma wkl=VER pers=3 num=SIN modtemp=PRÄ konj=NON>haben</lemma>

<form>man</form> <ENGLISH>one</ENGLISH>

<lemma wkl=PRO typ=IND kas=NOM num=SIN gen=ALG stellung=STV>man</lemma>

<form>mir</form> <ENGLISH>me</ENGLISH>

<lemma wkl=PRO typ=REF kas=DAT num=SIN gen=ALG pers=1>sich</lemma>

<lemma wkl=PRO typ=PER kas=DAT num=SIN gen=ALG pers=1>ich</lemma>

<form>gesagt</form> <ENGLISH>told</ENGLISH>

<lemma wkl=VER form=PA2 konj=SFT>sagen</lemma>

<lemma wkl=PA2 gebrauch=PRD komp=GRU>gesagt</lemma>

<form>,</form>

<lemma wkl=SZK>,</lemma>

<form>ja</form> <ENGLISH>right</ENGLISH>

<lemma wkl=ADV typ=MOD>ja</lemma>

NLP Intro – WS 2005/6 – p.23

Stemmers

Stemmers are the simplest type of morphological
analyzer.

One of the main advantages of stemmers is that they
do not require a lexicon.

The function of a stemmer is to remove the most
common morphological and inflexional endings from
words.

Its main use is as part of a term normalisation process
that is usually done when setting up Information
Retrieval systems.

NLP Intro – WS 2005/6 – p.24

Finite-State Morphology

Basic Idea: Encode morphological analysis and
generation as composition of finite-state transducers.

Resources needed:

Morpho-syntactic lexicon that specifies which
combinations of free and bound morphemes are
grammatical
Context-sensitive replacement rules for spelling
alternations

NLP Intro – WS 2005/6 – p.25

2-level Rules: Restriction Operators

Two-level morphology employs a set of particular restriction
operators:

=> the correspondence only occurs in the environment

<= the correspondence always occurs in the environment

<=> the correspondence always and only occurs in the
environment

/<= the correspondence never occurs in the environment

Idea: Rules with restriction operators function as
constraints on the mapping between lexcial and surface
form of morphs.

NLP Intro – WS 2005/6 – p.26

2-level Rules: Restriction Operators

Two-level morphology employs a set of particular restriction
operators:

=> the correspondence only occurs in the environment

<= the correspondence always occurs in the environment

<=> the correspondence always and only occurs in the
environment

/<= the correspondence never occurs in the environment

Idea: Rules with restriction operators function as
constraints on the mapping between lexcial and surface
form of morphs.

NLP Intro – WS 2005/6 – p.26

Toy Rules for English (1)

i:y-spelling

die+ing tie+ing
dy00ing ty00ing

Rule: i:y <= _ e:? +:0 i

Elision

agree+ed dye+ed hoe+ed hoe+ing
agre00ed dy00ed ho00ed hoe0ing

Rule: e:0 <= C { V, y } _ +:? e:e
with V = { a e i o u } and

C = { b c d f g h j k l m n p q r s t v w x y z sh ch }

NLP Intro – WS 2005/6 – p.27

Toy Rules for English (2)

Epenthesis

fox+s kiss+s church+s spy+s
foxes kisses churches spies

Rule: +:e <=> { Csib, y:i, o:o } _ s
with Csib = { s x z sh ch }

NLP Intro – WS 2005/6 – p.28

	Replacement Operators
	Non-determinism of {em replace}
	Non-determinism of {em replace} (2)
	Longest match, left-to-right replace
	A Grammar for Date Expressions
	Marking Date Expressions
	Overgeneration Problem
	Tokenizing Date Expressions
	Incremental Tokenization
	Advantages of Incremental Tokenization
	A Quick Guide to Morphology (1)
	A Simple Morphological Typology
	A Quick Guide to Morphology (2)
	Inflectional Morphemes
	Derivational Morphemes
	Compounding
	Morphology: The Naive Solution
	Morphological Analysis: Lemmatization
	Examples from English (1)
	Examples from English (2)
	Examples from German (1)
	Examples from German (2)
	Stemmers
	Finite-State Morphology
	2-level Rules: Restriction Operators
	Toy Rules for English (1)
	Toy Rules for English (2)

