Quantifier Retrieval a la Przepiérkowski

Jonathan Khoo
jkhoo@sfs.uni-tuebingen.de

Introduction to HPSG
Winter Semester 2005/2006

Jonathan Khoo Quantifier Retrieval a la Przepiorkowski

0 Introduction

e Background
@ Theory review
@ Pollard and Yoo

e Przepidrkowski’s Account
@ Foundations
@ Theory in Action: Examples
@ Problems

Jonathan Khoo Quantifier Retrieval a la Przepiorkowski

Introduction

Benefits

@ Retrieval only at certain sites — no spurious ambiguities
@ Simpler analysis: completely lexical

@ No complex constraints
@ Semantics completely in CONTENT

@ Works with traceless extractions

Jonathan Khoo Quantifier Retrieval a la Przepiorkowski

Background HPSG PY

Outline

e Background
@ Theory review

Jonathan Khoo Quantifier Retrieval a la Przepiorkowski

Background HPSG PY

RIP suBCAT

word
synsem
local

SYNSEM
category

SUBCAT <[1],[2],[38]>

LOCAL
CATEGORY

Jonathan Khoo antifier Retrieval a la Przepiorkowski

Background HPSG PY

VALENCE and ARG-ST

[word
[synsem 1
[local T
category
SYNSEM LOGAL valence
CATEGORY | o\ oo SuBJ list[1]
SPR list[2]
comps ist[3]
|ARG-sT ([1],[2],[3]) |

@ ARG-ST is a list of SYNSEMS.

Jonathan Khoo ifier Retrieval a la Przepiorkowski

Background HPSG PY

Semantics Principle (paraphrased)

In a headed phrase...

@ RETRIEVED = subset list of union of daughters’ QSTORES,
and QSTORE is relative complement of that set
@ If semantic head’s CONTENT is psoa then...

@ NUCLEUS is identical to NUCLEUS of semantic head
@ QUANTS is QUANTS of semantic head + RETRIEVED

else...

@ RETRIEVED = ()
@ CONTENT is token-identical to CONTENT of semantic head

Jonathan Khoo Quantifier Retrieval a la Przepiorkowski

Background HPSG PY

Outline

e Background

@ Pollard and Yoo

Jonathan Khoo Quantifier Retrieval a la Przepiorkowski

Background HPSG PY

Pollard and Yoo’s sign

[sign

PHONOLOGY (phonstring)
[CATEGORY category |
CONTENT|NUCLEUS gfpsoa

SYSNSEM LOCAL | asTORE {quantifier*}
POOL { quantifier* }

| RETRIEVED (quantifier*)

POOL = union of QSTORESs of selected arguments (—VALENCE)
POOL = QSTORE U set of elements of RETRIEVED

Jonathan Khoo Quantifier Retrieval a la Przepiorkowski

Background HPSG PY

Spurious Ambiguities in PY

@ Retrievals at VP,, VP53, VP4, and V, yield the same reading

(25) Narrow scope reading

N
QUANTS {)
[QS {} }
RETRIEVED ()
POOL {}
2 np VP,
1
[580m][]

aunicorn v/

VP,
[QS It) } quants (1)
POOL {} qs {}
RETRIEVED ([1])

roor {[1}
appears

[QS (l) } [os <l> }

rooL {11} roo ([}

to

[Qs (I] [QS {D))}

POOL | rooL {1]
. 5
rusaﬂ [QS (@]
POOL (.)

[

approaching

Jonathan Khoo Quantifier Retrieval a la Przepiorkowski

Przepiorkowski Foundations Examples Problems

Outline

e Przepidrkowski’s Account
@ Foundations

Jonathan Khoo Quantifier Retrieval a la Przepiorkowski

Przepiorkowski Foundations Examples Problems

Overview

word
content

(1.2a) (1.2b)

QSTORE {quant} NEW-QUANTIFIERS {quant*}

psoa nom-obj quant

(1.3) word — Descy Vv Desc,

) psoa
nom-obj v quant
SS|LOC|CONT vV | QsSTORE
(1.4) Descq = QSTORE [1]
QUANTS

NEW-QUANTIFIERS

where = [5] W union QSTORES of selected arguments
= set of elements of
=[2lw[4

SS|LOC|CONT
(1.5 Desco= | oo < [SS\LOC|CONT] >

Jonathan Khoo ntifier Retrieval a la Przepiorkowski

Przepiorkowski Foundations Examples Problems

Selected Arguments

@ Pollard and Yoo

@ POOL is union of quantifiers from QSTORES of selected
arguments:

@ thematic elements from SUBJ or COMPS feature,
@ elements selected via SPR feature, or
@ elements selected via MOD feature

@ NOTE: reliance on VALENCE!
@ Przepidérkowski

@ QSTORE accumulates quantifiers from QSTORES of those
members of ARG-ST not raised from other arguments

Jonathan Khoo Quantifier Retrieval a la Przepiorkowski

Przepiorkowski Foundations Examples Problems

Outline

e Przepidrkowski’s Account

@ Theory in Action: Examples

Jonathan Khoo Quantifier Retrieval a la Przepiorkowski

Przepiorkowski Foundations Examples Problems

A unicorn appears to be approaching.

A unicorn appears to be approaching

exists (1) may not exist (2)
@ Something appears to be approaching, and it is a unicorn.
© Something appears to be approaching, and it appears to
be a unicorn.

(But then again, it could just be a dog wearing a party hat ﬁ)

Jonathan Khoo Quantifier Retrieval a la Przepiorkowski

Przepiorkowski Foundations Examples Problems

A unicorn appears to be approaching.

(1.6)
phrase
PHON (a unicorn)
...CONT
phrase phrase
PHON (a) PHON (unicorn)
SYNSEM [[Loc|conT 2] ...CONT
['word i [word]
PHON (a) PHON (unicorn)
quant npro
STORE STORE
...CONT Q . &} Q &}
DET exists ...CONT INDEX
RESTIND unicorn
RESTR
ARG-ST () { INST }
| NEW-Qs {2} | ARG-ST ([])
| NEW-Qs {}]

Jonathan Khoo Quantifier Retrieval a la Przepiorkowski

Przepiorkowski Foundations Examples Problems

A unicorn appears to be approaching. (bottom)

NP
phrase >
PHON (a unicorn) K
ss [Loc\CONT\QS{H . s
- Vog VP3
word phrase 4
PHON (to) ss [{1]Loc|cONT
ss[Loc|conT [2]] ;
narrow |2:

psoa ARG-ST <7 >

QSTORE {} .

QUANTS <@>

NUCL approach d 'V3P h VP4< .

wor(phrase
PHON (be) {ss -[LOC\CONT }
y S [LOC|CONT [2]] ‘
wide .

psoa ARG-ST ([1],[10]) v

astore {[4]} word %

QUANTS () . PHON (approaching)

NUCL approac ss [LOC‘CONT

NEW-Qs{}

ARG-sT {[i])

Jonathan Khoo Quantifier Retrieval a la Przepiérkowski

Przepiorkowski Foundations Examples Problems

A unicorn appears to be approaching. (top)

S< ... V2
word
phrase - PHON (to)
SS|LOC|CONT ss [LOC|CONT{}]

/\ : ARG-ST < >
NP VP.

_ narrow [3]:
phrase phrase psoa
PHON (a unicorn) |ss|Loc|conT [3] QSTORE {}
QUANTS ()
S .[LOC|CONT|QS {./\ NUCL appear
2) wide [3]:
word phrase - psoa
PHON (appears) ss[12]Loc|coNT [2] QSTORE {}
‘ ‘ .] QUANTS <E]>
SS [LOC|CONT

NUCL
NEW-Qs {} PP

ARG-sT ([1],[i2])

Jonathan Khoo ifier Retrieval a la Przepiorkowski

Przepiorkowski Foundations Examples Problems

Traceless Extraction

@ “A book, | know [Tlyou gave [2Kim.” (But a car, | didn't know!)

[word
PHON (gave)

phrase SUBJ <>
PHON (a book) LOCAL|CATEGORY|VALENCE
Ss comps {[2])
ss Loc]
NONLOGC|INHER|SLASH {@}

| ARG-sT ([1],[3], [2])

@ PY fail because trace for “a book” does not appear in
VALENCE
e A trace would appear on COMPS

e Traceless: COMPS <'> —COMPS ([2]), sLAsH {(4]}
via lexical rule (4} =[3])
@ Przepidrkowski works because “a book” appears in
ARG-ST, thus quantifier available via Descq

Jonathan Khoo Quantifier Retrieval a la Przepiorkowski

Przepiorkowski Foundations Examples Problems

Wh- Retrieval Constraints (Paraphrased)

@ At afiller-head node, if the filler's QUE is nonempty, then
the member in its QUE is retrieved in that node’s QUANTS.
You must retrieve a filler wh- as soon as possible.

“...a fronted wh-phrase has exactly the scope indicated by the surface

realization of the phrase.”

Jonathan Khoo Quantifier Retrieval a la Przepiorkowski

Przepiorkowski Foundations Examples Problems

Wh- Retrieval Constraints (Paraphrased)

@ If the QUANTS of a psoa contains a wh- quantifier (i.e., a
wh- quantifier is retrieved), you must also retrieve the QUE
member of a left-peripheral daughter of a semantic
projection.

You may retrieve a stored wh- quantifier if and only if you
also retrieve a wh- quantifier from a left-hand node.
“...the quantifier corresponding to an in situ wh- phrase. .. can be retrieved only

when there is a left periphery. .. wh- phrase.”

Non-local: Must dig around the sentence to get the QUE

Jonathan Khoo Quantifier Retrieval a la Przepiorkowski

Przepiorkowski Foundations Examples Problems

Wh- Retrieval Example 1

Jonathan Khoo Quantifier Retrieval a la Przepiorkowski

Przepiorkowski Foundations Examples Problems

Wh- Retrieval Example 1

McMURRY FAY

Chemistry

FOURTH ENTION

@ “Who remembers whege,«,-,,e, we bought whicr|1 book?”

e For each book, who remembers where we bbught it?
“John remembers where we bought the physics book and
Jill remembers where we bought the chemistry book.”

e Who remembers, for each book, where we bought it?
“John and Jill remember (where we bought which book).”

Jonathan Khoo Quantifier Retrieval a la Przepiorkowski

Przepiorkowski Foundations Examples Problems

Wh- Retrieval Example 2

Jonathan Khoo ntifier Retrieval a la Przepiorkowski

Przepiorkowski Foundations Examples Problems

Wh- Retrieval Example 2

@ “Who remembers which vegetablesge, Bill bought?”
b

e "For each vegetable Bill bought, who remembers it?
“Glen remembers Bill bought carrots, and Carla remembers
Bill bought broccoli.” (NOT an appropriate answer!)

e Who remembers the vegetables Bill bought?
“Judy remembers (which vegetables Bill bought).”

Jonathan Khoo Quantifier Retrieval a la Przepiorkowski

Przepiorkowski Foundations Examples Problems

Wh- Retrieval Example 3

Jonathan Khoo Quantifier Retrieval a la Przepiorkowski

Przepiorkowski Foundations Examples Problems

Wh- Retrieval Example 3

@ “Who predicted who would win?”

e For each team, who predicted they would win?
“Marcie predicted Northwestern would win, and Tony
prediCted Miami of Ohio would win.” (Naturally, Tony was wrong.)

e Who predicted the winning team?

“Rick did.”

Jonathan Khoo Quantifier Retrieval a la Przepiorkowski

Przepiorkowski Foundations Examples Problems

Outline

e Przepidrkowski’s Account

@ Problems

Jonathan Khoo Quantifier Retrieval a la Przepiorkowski

Przepiorkowski Foundations Examples Problems

“Every student knows a poem.”

Sy
phrase
ss 1] [cONT

N

NP2 NP1
phrase phrase
PHON (every student) Ss [cONT

ss [CONT|QS

v, VP,
word phrase

PHON (knows) | | PHON (a poem)

-+~ CONT ss [conT|as [2]
NEW-as {}

ARG-ST ([20] [1])

[3]: student>poem
psoa
QSTORE {}

QUANTS < >

NUCL know

[3]: poem>student
psoa
QSTORE {}

QUANTS < >

NUCL know

Jonathan Khoo ntifier Retrieval a la Przepiorkowski

Przepiorkowski Foundations Examples Problems

“I think every student knows a poem.” ®

(tree continues up)

Vo T Sy [3]: poem>student
word) phrase [psoa 7
PHON (think) ss [CONT QSTORE {}
.-+ CONT QUANTS <>
NEW-as {} [NUCL know |
ARG-sT (I,[{])
NP» NP4 [4]: poem>student
phrase phrase gz?l'fJHE {}
PHON (every student) ss [CONT QUANTS <>
ss [conT|as

/\ [NUCL think |

V1 VP1 Spurious ambiguity!
word phrase
PHON (knows) | | PHON (a poem)
-+ CONT ss [conT|as [2])
NEw-as {}

ARG-sT ([20],[i])

Jonathan Khoo ntifier Retrieval a la Przepiorkowski

Przepiorkowski Foundations Examples Problems

Spurious ambiguities

“I think every student knows a poem.”

@ One quantifier passed up
@ a poem retrieved at think =
a poem retrieved before every student at knows
e cvery student retrieved at think =
every student retrieved before a poem at knows

@ Both quantifiers passed up

e a poem retrieved before every student think =
a poem retrieved before every student at knows
e every student retrieved before a poem at think =
every student retrieved before a poem at knows

Jonathan Khoo Quantifier Retrieval a la Przepiérkowski

Przepiorkowski Foundations Examples Problems

Semantics Principle (paraphrased)

In a headed phrase...
@ RETRIEVED = subset list of union of daughters’ QSTORES,
and QSTORE is relative complement of that set

@ If semantic head’s CONTENT is psoa then...

@ NUCLEUS is identical to NUCLEUS of semantic head
@ QUANTS is QUANTS of semantic head + RETRIEVED

else...

@ RETRIEVED = ()
@ CONTENT is token-identical to CONTENT of semantic head

Problem: No more RETRIEVED!

Jonathan Khoo Quantifier Retrieval a la Przepiorkowski

Przepiorkowski Foundations Examples Problems

Semantics Principle, redux

[[psoa 7]
QUANTS
: SS|LOC|CONT
Mother lLoc| QSTORE
[NUGLEUS [3]]
[[psoa 7]
QUANTS
: SS|LOC|CONT
Daughter |Loc]| QSTORE
[NUGLEUS [3]]

@ Forget the complicated one and go back to Chapter 1:

For a headed phrase, the CONTENT value is
token-identical to that of the semantic head. (przepisrkowski 1997)

Jonathan Khoo Quantifier Retrieval a la Przepiérkowski

Summary

Summary

@ Lexical retrieval fixes (some) spurious ambiguity problems
@ Traceless extraction and wh- retrieval accounted for
@ Simpler: Fewer constraints, all semantics in CONTENT

@ What's left?
e Further constraints on retrieval to fix remaining spurious
ambiguity problems
e Does reliance on older definition of Semantics Principle
cause problems?

Jonathan Khoo Quantifier Retrieval a la Przepiorkowski

Summary

Questions?

References

Carl Pollard and Ivan A. Sag.

Head-Driven Phrase Structure Grammar.
University of Chicago Press and CSLI Publications, Chicago, lllinois, 1994.

[=)

Carl Pollard and Eun Jung Yoo.

A unified theory of scope for quantifiers and wh-phrases.
J. Linguistics, 34:415-445, 1998.

(=)

Adam Przepidrkowski.

Quantifiers, adjuncts as complements and scope ambiguities.
Unpublished manuscript, December 1997.

(=)

Adam Przepidrkowski.

‘A Unified Theory of Scope’ revisited: Quantifier retrieval without spurious ambiguities.
In Gosse Bouma, Geert-Jan Kruijff, and Richard Oehrle, editors, Proceedings of FHCG'98, 1998
To appear.

[=)

Frank Richter.

A Web-based Course in Grammar Formalisms and Parsing.
http://milca.sfs.uni-tuebingen.de/A4/Course/PDF/gramandpars.pdf, 2005.
Electronic textbook.

@ David Spollen.
An HPSG analysis of French clitic pronouns.
B.A. Thesis, Trinity College, Dublin, 2004.

Jonathan Khoo uantifier Retrieval a la Przepiorkowski

	Introduction
	Background
	Theory review
	Pollard and Yoo

	Przepiórkowski's Account
	Foundations
	Theory in Action: Examples
	Problems

	Summary

