
Preface

Parsing (syntactic analysis) is one of the best understood branches of computer science.
Parsers are already being used extensively in a number of disciplines: in computer sci-
ence (for compiler construction, database interfaces, self-describing data-bases, artifi-
cial intelligence), in linguistics (for text analysis, corpora analysis, machine translation,
textual analysis of biblical texts), in document preparation and conversion, in typeset-
ting chemical formulae and in chromosome recognition, to name a few; they can be
used (and perhaps are) in a far larger number of disciplines. It is therefore surprising
that there is no book which collects the knowledge about parsing and explains it to the
non-specialist. Part of the reason may be that parsing has a name for being “difficult”.
In discussing the Amsterdam Compiler Kit and in teaching compiler construction, it
has, however, been our experience that seemingly difficult parsing techniques can be
explained in simple terms, given the right approach. The present book is the result of
these considerations.

This book does not address a strictly uniform audience. On the contrary, while
writing this book, we have consistently tried to imagine giving a course on the subject
to a diffuse mixture of students and faculty members of assorted faculties, sophisticated
laymen, the avid readers of the science supplement of the large newspapers, etc. Such a
course was never given; a diverse audience like that would be too uncoordinated to
convene at regular intervals, which is why we wrote this book, to be read, studied,
perused or consulted wherever or whenever desired.

Addressing such a varied audience has its own difficulties (and rewards).
Although no explicit math was used, it could not be avoided that an amount of
mathematical thinking should pervade this book. Technical terms pertaining to parsing
have of course been explained in the book, but sometimes a term on the fringe of the
subject has been used without definition. Any reader who has ever attended a lecture on
a non-familiar subject knows the phenomenon. He skips the term, assumes it refers to
something reasonable and hopes it will not recur too often. And then there will be pas-
sages where the reader will think we are elaborating the obvious (this paragraph may
be one such place). The reader may find solace in the fact that he does not have to doo-
dle his time away or stare out of the window until the lecturer progresses.

On the positive side, and that is the main purpose of this enterprise, we hope that
by means of a book with this approach we can reach those who were dimly aware of
the existence and perhaps of the usefulness of parsing but who thought it would forever
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be hidden behind phrases like:

Let
�

be a mapping VN →
�

2(VN∪VT)*

and � a homomorphism ...

No knowledge of any particular programming language is required. The book con-
tains two or three programs in Pascal, which serve as actualizations only and play a
minor role in the explanation. What is required, though, is an understanding of algo-
rithmic thinking, especially of recursion. Books like Learning to program by Howard
Johnston (Prentice-Hall, 1985) or Programming from first principles by Richard Bornat
(Prentice-Hall 1987) provide an adequate background (but supply more detail than
required). Pascal was chosen because it is about the only programming language more
or less widely available outside computer science environments.

The book features an extensive annotated bibliography. The user of the bibliogra-
phy is expected to be more than casually interested in parsing and to possess already a
reasonable knowledge of it, either through this book or otherwise. The bibliography as
a list serves to open up the more accessible part of the literature on the subject to the
reader; the annotations are in terse technical prose and we hope they will be useful as
stepping stones to reading the actual articles.

On the subject of applications of parsers, this book is vague. Although we suggest
a number of applications in Chapter 1, we lack the expertise to supply details. It is
obvious that musical compositions possess a structure which can largely be described
by a grammar and thus is amenable to parsing, but we shall have to leave it to the
musicologists to implement the idea. It was less obvious to us that behaviour at cor-
porate meetings proceeds according to a grammar, but we are told that this is so and
that it is a subject of socio-psychological research.
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1
Introduction

Parsing is the process of structuring a linear representation in accordance with a given
grammar. This definition has been kept abstract on purpose, to allow as wide an
interpretation as possible. The “linear representation” may be a sentence, a computer
program, a knitting pattern, a sequence of geological strata, a piece of music, actions in
ritual behaviour, in short any linear sequence in which the preceding elements in some
way restrict† the next element. For some of the examples the grammar is well-known,
for some it is an object of research and for some our notion of a grammar is only just
beginning to take shape.

For each grammar, there are generally an infinite number of linear representations
(“sentences”) that can be structured with it. That is, a finite-size grammar can supply
structure to an infinite number of sentences. This is the main strength of the grammar
paradigm and indeed the main source of the importance of grammars: they summarize
succinctly the structure of an infinite number of objects of a certain class.

There are several reasons to perform this structuring process called parsing. One
reason derives from the fact that the obtained structure helps us to process the object
further. When we know that a certain segment of a sentence in German is the subject,
that information helps in translating the sentence. Once the structure of a document has
been brought to the surface, it can be converted more easily.

A second is related to the fact that the grammar in a sense represents our under-
standing of the observed sentences: the better a grammar we can give for the move-
ments of bees, the deeper our understanding of them is.

A third lies in the completion of missing information that parsers, and especially
error-repairing parsers, can provide. Given a reasonable grammar of the language, an
error-repairing parser can suggest possible word classes for missing or unknown words
on clay tablets.

� ���������������������������

† If there is no restriction, the sequence still has a grammar, but this grammar is trivial and unin-
formative.
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1.1 PARSING AS A CRAFT

Parsing is no longer an arcane art; it has not been so since the early 70’s when Aho,
Ullman, Knuth and many others put various parsing techniques solidly on their theoret-
ical feet. It need not be a mathematical discipline either; the inner workings of a parser
can be visualized, understood and modified to fit the application, with not much more
than cutting and pasting strings.

There is a considerable difference between a mathematician’s view of the world
and a computer-scientist’s. To a mathematician all structures are static: they have
always been and will always be; the only time dependence is that we just haven’t
discovered them all yet. The computer scientist is concerned with (and fascinated by)
the continuous creation, combination, separation and destruction of structures: time is
of the essence. In the hands of a mathematician, the Peano axioms create the integers
without reference to time, but if a computer scientist uses them to implement integer
addition, he finds they describe a very slow process, which is why he will be looking
for a more efficient approach. In this respect the computer scientist has more in com-
mon with the physicist and the chemist; like these, he cannot do without a solid basis in
several branches of applied mathematics, but, like these, he is willing (and often virtu-
ally obliged) to take on faith certain theorems handed to him by the mathematician.
Without the rigor of mathematics all science would collapse, but not all inhabitants of a
building need to know all the spars and girders that keep it upright. Factoring off cer-
tain detailed knowledge to specialists reduces the intellectual complexity of a task,
which is one of the things computer science is about.

This is the vein in which this book is written: parsing for anybody who has pars-
ing to do: the compiler writer, the linguist, the data-base interface writer, the geologist
or musicologist who want to test grammatical descriptions of their respective objects of
interest, and so on. We require a good ability to visualize, some programming experi-
ence and the willingness and patience to follow non-trivial examples; there is nothing
better for understanding a kangaroo than seeing it jump. We treat, of course, the popu-
lar parsing techniques, but we will not shun some weird techniques that look as if they
are of theoretical interest only: they often offer new insights and a reader might find an
application for them.

1.2 THE APPROACH USED

This book addresses the reader at at least three different levels. The interested non-
computer scientist can read the book as “the story of grammars and parsing”; he or she
can skip the detailed explanations of the algorithms: each algorithm is first explained in
general terms. The computer scientist will find much technical detail on a wide array of
algorithms. To the expert we offer a systematic bibliography of over 400 entries, which
is intended to cover all articles on parsing that have appeared in the readily available
journals. Each entry is annotated, providing enough material for the reader to decide if
the referred article is worth reading.

No ready-to-run algorithms have been given, except for the general context-free
parser of Chapter 12. The formulation of a parsing algorithm with sufficient precision
to enable a programmer to implement and run it without problems requires a consider-
able supporting mechanism that would be out of place in this book and in our experi-
ence does little to increase one’s understanding of the process involved. The popular
methods are given in algorithmic form in most books on compiler construction. The
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less widely used methods are almost always described in detail in the original publica-
tion, for which see Chapter 13.

1.3 OUTLINE OF THE CONTENTS

Since parsing is concerned with sentences and grammars and since grammars are them-
selves fairly complicated objects, ample attention is paid to them in Chapter 2. Chapter
3 discusses the principles behind parsing and gives a classification of parsing methods.
In summary, parsing methods can be classified as top-down or bottom-up and as direc-
tional or non-directional; the directional methods can be further distinguished into
deterministic and non-deterministic. This scheme dictates the contents of the next few
chapters. In Chapter 4 we treat non-directional methods, including Unger and CYK.
Chapter 5 forms an intermezzo with the treatment of finite-state automata, which are
needed in the subsequent chapters. Chapters 6 through 9 are concerned with directional
methods. Chapter 6 covers non-deterministic directional top-down parsers (recursive
descent, Definite Clause Grammars), Chapter 7 non-deterministic directional bottom-
up parsers (Earley). Deterministic methods are treated in Chapters 8 (top-down: LL in
various forms) and 9 (bottom-up: LR, etc.). A combined deterministic/non-
deterministic method (Tomita) is also described in Chapter 9. That completes the pars-
ing methods per se.

Error handling for a selected number of methods is treated in Chapter 10. The
comparative survey of parsing methods in Chapter 11 summarizes the properties of the
popular and some less popular methods. Chapter 12 contains the full code in Pascal for
a parser that will work for any context-free grammar, to lower the threshold for experi-
menting.

1.4 THE ANNOTATED BIBLIOGRAPHY

The annotated bibliography is presented in Chapter 13 and is an easily accessible sup-
plement of the main body of the book. Rather than listing all publications in alphabetic
order, it is divided into fourteen named sections, each concerned with a particular
aspect of parsing; inside the sections, the publications are listed chronologically. An
author index replaces the usual alphabetic list. The section name plus year of publica-
tion, placed in brackets, are used in the text to refer to an author’s work. For instance,
the annotated reference to Earley’s publication of the Earley parser [CF 1970] can be
found in the section CF at the position of the papers of 1970. Since the name of the
first author is printed in bold letters, the actual reference is then easily located.



2
Grammars as a generating device

2.1 LANGUAGES AS INFINITE SETS

In computer science as in everyday parlance, a “grammar” serves to “describe” a
“language”. If taken on face value, this correspondence, however, is misleading, since
the computer scientist and the naive speaker mean slightly different things by the three
terms. To establish our terminology and to demarcate the universe of discourse, we
shall examine the above terms, starting with the last one.

2.1.1 Language
To the larger part of mankind, language is first and foremost a means of communica-
tion, to be used almost unconsciously, certainly so in the heat of a debate. Communica-
tion is brought about by sending messages, through air vibrations or through written
symbols. Upon a closer look the language messages (“utterances”) fall apart into sen-
tences, which are composed of words, which in turn consist of symbol sequences when
written. Languages can differ on all these three levels of composition. The script can be
slightly different, as between English and Irish, or very different, as between English
and Chinese. Words tend to differ greatly and even in closely related languages people
call un cheval or ein Pferd, that which is known to others as a horse. Differences in
sentence structure are often underestimated; even the closely related Dutch often has an
almost Shakespearean word order: “Ik geloof je niet”, “I believe you not”, and unrelated
languages readily come up with constructions like the Hungarian “Pénzem van”,
“Money-my is”, where the English say “I have money”.

The computer scientist takes a very abstracted view of all this. Yes, a language
has sentences, and these sentences possess structure; whether they communicate some-
thing or not is not his concern, but information may possibly be derived from their
structure and then it is quite all right to call that information the meaning of the sen-
tence. And yes, sentences consist of words, which he calls tokens, each possibly carry-
ing a piece of information, which is its contribution to the meaning of the whole sen-
tence. But no, words cannot be broken down any further. The computer scientist is not
worried by this. With his love of telescoping solutions and multi-level techniques, he
blithely claims that if words turn out to have structure after all, they are sentences in a
different language, of which the letters are the tokens.
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The practitioner of formal linguistics, henceforth called the formal-linguist (to dis-
tinguish him from the “formal linguist”, the specification of whom is left to the imagi-
nation of the reader) again takes an abstracted view of this. A language is a “set” of
sentences, and each sentence is a “sequence” of “symbols”; that is all there is: no
meaning, no structure, either a sentence belongs to the language or it does not. The only
property of a symbol is that it has an identity; in any language there are a certain
number of different symbols, the alphabet, and that number must be finite. Just for con-
venience we write these symbols as a,b,c . . . , but ✆, ✈, ❑, . . . would do equally
well, as long as there are enough symbols. The word sequence means that the symbols
in each sentence are in a fixed order and we should not shuffle them. The word set
means an unordered collection with all the duplicates removed; a set can be written
down by writing the objects in it, surrounded by curly brackets. All this means that to
the formal-linguist the following is a language: {a, b, ab, ba}, and so is {a, aa, aaa,
aaaa, . . . } although the latter has notational problems that will be solved later. In
accordance with the correspondence that the computer scientist sees between
sentence/word and word/letter, the formal-linguist also calls a sentence a word and he
says that “the word ab is in the language {a, b, ab, ba}”.

Now let’s consider the implications of these compact but powerful ideas.
To the computer scientist, a language is a probably infinitely large set of sen-

tences, each composed of tokens in such a way that it has structure; the tokens and the
structure cooperate to describe the semantics of the sentence, its “meaning” if you will.
Both the structure and the semantics are new, that is, were not present in the formal
model, and it is his responsibility to provide and manipulate them both. To a computer
scientist 3+4*5 is a sentence in the language of “arithmetics on single digits” (“single
digits” to avoid having an infinite number of symbols), its structure can be shown, for
instance, by inserting parentheses: (3+(4*5)) and its semantics is probably 23.

To the linguist, whose view of languages, it has to be conceded, is much more
normal than that of either of the above, a language is an infinite set of possibly interre-
lated sentences. Each sentence consists, in a structured fashion, of words which have a
meaning in the real world. Structure and words together give the sentence a meaning,
which it communicates. Words, again, possess structure and are composed of letters;
the letters cooperate with some of the structure to give a meaning to the word. The
heavy emphasis on semantics, the relation with the real world and the integration of the
two levels sentence/word and word/letters are the domain of the linguist. “The circle
spins furiously” is a sentence, “The circle sleeps red” is nonsense.

The formal-linguist holds his views of language because he wants to study the
fundamental properties of languages in their naked beauty; the computer scientist holds
his because he wants a clear, well-understood and unambiguous means of describing
objects in the computer and of communication with the computer, a most exacting
communication partner, quite unlike a human; and the linguist holds his view of
language because it gives him a formal tight grip on a seemingly chaotic and perhaps
infinitely complex object: natural language.

2.1.2 Grammars
Everyone who has studied a foreign language knows that a grammar is a book of rules
and examples which describes and teaches the language. Good grammars make a care-
ful distinction between the sentence/word level, which they often call syntax or syn-
taxis, and the word/letter level, which they call grammar. Syntax contains rules like
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“pour que is followed by the subjunctive, but parce que is not”; grammar contains rules
like “the plural of an English noun is formed by appending an -s, except when the word
ends in -s, -sh, -o, -ch or -x, in which case -es is appended, or when the word has an
irregular plural.”

We skip the computer scientist’s view of a grammar for the moment and proceed
immediately to the formal-linguist’s one. His view is at the same time very abstract and
quite similar to the above: a grammar is any exact, finite-size, complete description of
the language, i.e., of the set of sentences. This is in fact the school grammar, with the
fuzziness removed. Although it will be clear that this definition has full generality, it
turns out that it is too general, and therefore relatively powerless. It includes descrip-
tions like “the set of sentences that could have been written by Chaucer”; platonically
speaking this defines a set, but we have no way of creating this set or testing whether a
given sentence belongs to this language. This particular example, with its “could have
been” does not worry the formal-linguist, but there are examples closer to his home that
do. “The longest block of consecutive sevens in the decimal expansion of π” describes
a language that has at most one word in it (and then that word will consist of sevens
only), and as a definition it is exact, finite-size and complete. One bad thing with it,
however, is that one cannot find this word; suppose one finds a block of one hundred
sevens after billions and billions of digits, there is always a chance that further on there
is an even longer block. And another bad thing is that one cannot even know if such a
longest block exists at all. It is quite possible that, as one proceeds further and further
up the decimal expansion of π, one would find longer and longer stretches of sevens,
probably separated by ever-increasing gaps. A comprehensive theory of the decimal
expansion of π might answer these questions, but no such theory exists.

For these and other reasons, the formal-linguists have abandoned their static, pla-
tonic view of a grammar for a more constructive one, that of the generative grammar: a
generative grammar is an exact, fixed-size recipe for constructing the sentences in the
language. This means that, following the recipe, it must be possible to construct each
sentence of the language (in a finite number of actions) and no others. This does not
mean that, given a sentence, the recipe tells us how to construct that particular sentence,
only that it is possible to do so. Such recipes can have several forms, of which some are
more convenient than others.

The computer scientist essentially subscribes to the same view, often with the
additional requirement that the recipe should imply how a sentence can be constructed.

2.1.3 Problems
The above definition of a language as a possibly infinite set of sequences of symbols,
and of a grammar as a finite recipe to generate these sentences, immediately gives rise
to two embarrassing questions:
1. How can finite recipes generate enough infinite sets of sentences?
2. If a sentence is just a sequence and has no structure and if the meaning of a sen-

tence derives, among other things, from its structure, how can we assess the mean-
ing of a sentence?
These questions have long and complicated answers, but they do have answers.

We shall first pay some attention to the first question and then devote the main body of
this book to the second.
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2.1.3.1 Infinite sets from finite descriptions
In fact there is nothing wrong with getting a single infinite set from a single finite
description: “the set of all positive integers” is a very finite-size description of a defin-
itely infinite-size set. Still, there is something disquieting about the idea, so we shall
rephrase our question: “Can all languages be described by finite descriptions?”. As the
lead-up already suggests, the answer is “No”, but the proof is far from trivial. It is,
however, very interesting and famous, and it would be a shame not to present at least
an outline of it here.

2.1.3.2 Descriptions can be enumerated
The proof is based on two observations and a trick. The first observation is that
descriptions can be listed and given a number. This is done as follows. First, take all
descriptions of size one, that is, those of only one letter long, and sort them alphabeti-
cally. This is the beginning of our list. Depending on what, exactly, we accept as a
description, there may be zero descriptions of size one, or 27 (all letters + space), or
128 (all ASCII characters) or some such; this is immaterial to the discussion which fol-
lows.

Second, we take all descriptions of size two, sort them alphabetically to give the
second chunk on the list, and so on for lengths 3, 4 and further. This assigns a position
on the list to each and every description. Our description “the set of all positive
integers”, for instance, is of size 32, not counting the quotation marks. To find its posi-
tion on the list, we have to calculate how many descriptions there are with less than 32
characters, say L. We then have to generate all descriptions of size 32, sort them and
determine the position of our description in it, say P, and add the two numbers L and P.
This will, of course, give a huge number† but it does ensure that the description is on
the list, in a well-defined position; see Figure 2.1.

{ descriptions of size 1

{ descriptions of size 2

{ descriptions of size 3

. . . . .

{descriptions of size 31

L

. . . . . . . . . . . . . . . . . . . . . . .

{descriptions of size 32
“the set of all positive integers”

P

Figure 2.1 List of all descriptions of length 32 or less

Two things should be pointed out here. The first is that just listing all descriptions
alphabetically, without reference to their lengths, would not do: there are already infin-
itely many descriptions starting with an “a” and no description starting with a higher
� ���������������������������

† Some (computer-assisted) calculations tell us that, under the ASCII-128 assumption, the
number is 248 17168 89636 37891 49073 14874 06454 89259 38844 52556 26245 57755 89193
30291, or roughly 2.5*1067.
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letter could get a number on the list. The second is that there is no need to actually do
all this. It is just a thought experiment that allows us to examine and draw conclusion
about the behaviour of a system in a situation which we cannot possibly examine physi-
cally.

Also, there will be many nonsensical descriptions on the list; it will turn out that
this is immaterial to the argument. The important thing is that all meaningful descrip-
tions are on the list, and the above argument ensures that.

2.1.3.3 Languages are infinite bit-strings
We know that words (sentences) in a language are composed of a finite set of symbols;
this set is called quite reasonably the alphabet. We will assume that the symbols in the
alphabet are ordered. Then the words in the language can be ordered too. We shall indi-
cate the alphabet by Σ.

Now the simplest language that uses alphabet Σ is that which consists of all words
that can be made by combining letters from the alphabet. For the alphabet Σ={a, b} we
get the language { , a, b, aa, ab, ba, bb, aaa, . . . }. We shall call this language Σ* , for
reasons to be explained later; for the moment it is just a name.

The set notation Σ* above started with “ { , a,”, a remarkable construction; the
first word in the language is the empty word, the word consisting of zero a’s and zero
b’s. There is no reason to exclude it, but, if written down, it may easily get lost, so we
shall write it as ε (epsilon), regardless of the alphabet. So, Σ*= {ε, a, b, aa, ab, ba, bb,
aaa, . . . }. In some natural languages, forms of the present tense of the verb “to be”
are the empty word, giving rise to sentences of the form “I student”; Russian and
Hebrew are examples of this.

Since the symbols in the alphabet Σ are ordered, we can list the words in the
language Σ* , using the same technique as in the previous section: First all words of size
zero, sorted; then all words of size one, sorted; and so on. This is actually the order
already used in our set notation for Σ* .

The language Σ* has the interesting property that all languages using alphabet Σ
are subsets of it. That means that, given another possibly less trivial language over Σ,
called L, we can go through the list of words in Σ* and put ticks on all words that are in
L. This will cover all words in L, since Σ* contains any possible word over Σ.

Suppose our language L is “the set of all words that contain more a’s than b’s”.
L={a, aa, aab, aba, baa, . . . }. The beginning of our list, with ticks, will look as fol-
lows:

ε
✔ a

b
✔ aa

ab
ba
bb

✔ aaa
✔ aab
✔ aba

abb
✔ baa



Sec. 2.1] Languages as infinite sets 21

bab
bba
bbb

✔ aaaa
... ...

Given the alphabet with its ordering, the list of blanks and ticks alone is entirely suffi-
cient to identify and describe the language. For convenience we write the blank as a 0
and the tick as a 1 as if they were bits in a computer, and we can now write
L=0101000111010001 . . . (and Σ*=1111111111111111 . . . ). It should be noted that
this is true for any language, be it a formal language like L, a programming language
like Pascal or a natural language like English. In English, the 1’s in the bit-string will
be very scarce, since hardly any arbitrary sequence of words is a good English sentence
(and hardly any arbitrary sequence of letters is a good English word, depending on
whether we address the sentence/word level or the word/letter level).

2.1.3.4 Diagonalization
The previous section attaches the infinite bit-string 0101000111010001... to the
description “the set of all the words that contain more a’s than b’s”. In the same vein
we can attach such bit-strings to all descriptions; some descriptions may not yield a
language, in which case we can attach an arbitrary infinite bit-string to it. Since all
descriptions can be put on a single numbered list, we get, for instance, the following
picture:

Description Language
Description #1 000000100...
Description #2 110010001...
Description #3 011011010...
Description #4 110011010...
Description #5 100000011...
Description #6 111011011...

... ...

At the left we have all descriptions, at the right all languages they describe. We now
claim that many languages exist that are not on the list of languages above: the above
list is far from complete, although the list of descriptions is complete. We shall prove
this by using the diagonalization process (“Diagonalverfahren”) of Cantor.

Consider the language C=100110 . . . , which has the property that its n-th bit is
unequal to the n-th bit of the language described by Description #n. The first bit of C is
a 1, because the first bit for Description #1 is a 0; the second bit of C is a 0, because the
second bit for Description #2 is a 1, and so on. C is made by walking the NW to SE
diagonal of the language field and copying the opposites of the bits we meet.

The language C cannot be on the list! It cannot be on line 1, since its first bit
differs (is made to differ, one should say) from that on line 1, and in general it cannot
be on line n, since its n-th bit will differ from that on line n, by definition.

So, in spite of the fact that we have exhaustively listed all possible finite descrip-
tions, we have at least one language that has no description on the list. Moreover, any
broken diagonal yields such a language, where a diagonal is “broken” by replacing a
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section of it as follows,

...................... . . . . . . . . . . . . . . . . . . . ...
..
..
..
..
..
..
..
..
..
...................... .....................

. . . . . . . . . . . . . . . . . . . . . →

...................... . . . . . . . . . . . . . . . . . . . ...
..
..
..
..
..
..
..
..
..
...................... .....................

. . . . . . . . . . . . . . . . . . . . .

and so does any multiply-broken diagonal. In fact, for each language on the list, there
are infinitely many languages not on it; this statement is, however, more graphical than
it is exact, and we shall not prove it.

The diagonalization technique is described more formally in most books on
theoretical computer science; see e.g., Rayward-Smith [Books 1983, pp. 5-6] or Hop-
croft and Ullman [Books 1979, pp 6-9].

2.1.3.5 Conclusions
The above demonstration shows us several things. First, it shows the power of treating
languages as formal objects. Although the above outline clearly needs considerable
amplification and substantiation to qualify as a proof (for one thing it still has to be
clarified why the above explanation, which defines the language C, is not itself on the
list of descriptions), it allows us to obtain insight in properties not otherwise assessable.

Secondly, it shows that we can only describe a tiny subset (not even a fraction) of
all possible languages: there is an infinity of languages out there, forever beyond our
reach.

Thirdly, we have proved that, although there are infinitely many descriptions and
infinitely many languages, these infinities are not equal to each other and that the latter
is larger than the former. These infinities are called ℵ0 and ℵ1 by Cantor, and the
above is just an adaptation of his proof that ℵ0<ℵ1 .

2.1.4 Describing a language through a finite recipe
A good way to build a set of objects is to start with a small object and to give rules how
to add to it and construct new objects from it. “Two is an even number and the sum of
two even numbers is again an even number” effectively generates the set of all even
numbers. Formalists will add “...and no other numbers are even”, but we’ll skip that.

Suppose we want to generate the set of all enumerations of names, of the type
“Tom, Dick and Harry”, in which all names but the last two are separated by commas.
We will not accept “Tom, Dick, Harry” nor “Tom and Dick and Harry”, but we shall
not object to duplicates: “Grubb, Grubb and Burrowes”† is all right. Although these are
not complete sentences in normal English, we shall still call them sentences since that
is what they are in our midget language of name enumerations. A simple-minded recipe
would be:

0. Tom is a name, Dick is a name, Harry is a name;
1. a name is a sentence;

� ���������������������������

† The Hobbit, by J.R.R. Tolkien, Allen and Unwin, 1961, p. 311.
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2. a sentence followed by a comma and a name is again a sentence;
3. before finishing, if the sentence ends in “, name”, replace it by

“and name”.

Although this will work for a cooperative reader, there are several things wrong
with it. Clause 3 is especially wrought with trouble. For instance, the sentence does not
really end in “, name”, it ends in “, Dick” or such, and “name” is just a symbol that
stands for a real name; such symbols cannot occur in a real sentence and must in the
end be replaced by a real name as given in clause 0. Likewise, the word “sentence” in
the recipe is a symbol that stands for all the actual sentences. So there are two kinds of
symbols involved here: real symbols, which occur in finished sentences, like “Tom”,
“Dick”, a comma and the word “and”; and there are intermediate symbols, like “sen-
tence” and “name” that cannot occur in a finished sentence. The first kind corresponds
to the words or tokens explained above and the technical term for them is terminal sym-
bols (or terminals for short) while the latter are called non-terminals (a singularly unin-
spired term). To distinguish them, we write terminals in small letters and start non-
terminals with a capital.

To stress the generative character of the recipe, we shall replace “X is a Y” by “Y
may be replaced by X”: if “tom” is an instance of a Name, then everywhere we have a
Name we may narrow it down to “tom”. This gives us:

0. Name may be replaced by “tom”
Name may be replaced by “dick”
Name may be replaced by “harry”

1. Sentence may be replaced by Name
2. Sentence may be replaced by Sentence, Name
3. “, Name” at the end of a Sentence must be replaced by “and Name”

before Name is replaced by any of its replacements
4. a sentence is finished only when it no longer contains non-terminals
5. we start our replacement procedure with Sentence

Clause 0 through 3 describe replacements, but 4 and 5 are different. Clause 4 is not
specific to this grammar. It is valid generally and is one of the rules of the game.
Clause 5 tells us where to start generating. This name is quite naturally called the start
symbol, and it is required for every grammar.

Still clause 3 looks worrisome; most rules have “may be replaced”, but this one
has “must be replaced”, and it refers to the “end of a Sentence”. The rest of the rules
work through replacement, but the problem remains how we can use replacement to
test for the end of a Sentence. This can be solved by adding an end-marker after it. And
if we make the end-marker a non-terminal which cannot be used anywhere except in
the required replacement from “, Name” to “and Name”, we automatically enforce the
restriction that no sentence is finished unless the replacement test has taken place. For
brevity we write -->> instead of “may be replaced by”; since terminal and non-terminal
symbols are now identified as technical objects we shall write them in a typewriter-like
typeface. The part before the -->> is called the left-hand side, the part after it the right-
hand side. This results in the recipe in Figure 2.2.

This is a simple and relatively precise form for a recipe, and the rules are equally
straightforward: start with the start symbol, and keep replacing until there are no non-
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0. NNaammee -->> ttoomm
NNaammee -->> ddiicckk
NNaammee -->> hhaarrrryy

1. SSeenntteennccee -->> NNaammee
SSeenntteennccee -->> LLiisstt EEnndd

2. LLiisstt -->> NNaammee
LLiisstt -->> LLiisstt ,, NNaammee

3. ,, NNaammee EEnndd -->> aanndd NNaammee
4. the start symbol is SSeenntteennccee

Figure 2.2 A finite recipe for generating strings in the t, d & h language

terminals left.

2.2 FORMAL GRAMMARS

The above recipe form, based on replacement according to rules, is strong enough to
serve as a basis for formal grammars. Similar forms, often called “rewriting systems”,
have a long history among mathematicians, but the specific form of Figure 2.2 was first
studied extensively by Chomsky [Misc 1959]. His analysis has been the foundation for
almost all research and progress in formal languages, parsers and a considerable part of
compiler construction and linguistics.

Since formal languages are a branch of mathematics, work in this field is done in
a special notation which can be a hurdle to the uninitiated. To allow a small peep into
the formal linguist’s kitchen, we shall give the formal definition of a grammar and then
explain why it describes a grammar like the one in Figure 2.2. The formalism used is
indispensable for correctness proofs, etc., but not for understanding the principles; it is
shown here only to give an impression and, perhaps, to bridge a gap.

Definition 2.1: A generative grammar is a 4-tuple (VN ,VT ,R,S) such that (1) VN
and VT are finite sets of symbols, (2) VN∩VT = ∅, (3) R is a set of pairs (P,Q) such
that (3a) P∈(VN∪VT)+ and (3b) Q∈(VN∪VT)* , and (4) S∈VN .

A 4-tuple is just an object consisting of 4 identifiable parts; they are the non-
terminals, the terminals, the rules and the start symbol, in that order; the above defini-
tion does not tell this, so this is for the teacher to explain. The set of non-terminals is
named VN and the set of terminals VT . For our grammar we have:

VN = {NNaammee, SSeenntteennccee, LLiisstt, EEnndd}
VT = {ttoomm, ddiicckk, hhaarrrryy, ,,, aanndd}

(note the ,, in the set of terminal symbols).
The intersection of VN and VT (2) must be empty, that is, the non-terminals and

the terminals may not have a symbol in common, which is understandable.
R is the set of all rules (3), and P and Q are the left-hand sides and right-hand

sides, respectively. Each P must consist of sequences of one or more non-terminals
and terminals and each Q must consist of sequences of zero or more non-terminals and
terminals. For our grammar we have:

R = {(NNaammee, ttoomm), (NNaammee, ddiicckk), (NNaammee, hhaarrrryy),
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(SSeenntteennccee, NNaammee), (SSeenntteennccee, LLiisstt EEnndd),
(LLiisstt, NNaammee), (LLiisstt, LLiisstt ,, NNaammee), (,, NNaammee EEnndd, aanndd NNaammee)}

Note again the two different commas.
The start symbol S must be an element of VN , that is, it must be a non-terminal:

S = SSeenntteennccee

This concludes our field trip into formal linguistics; the reader can be assured that
there is lots and lots more. A good simple introduction is written by Révész [Books
1985].

2.2.1 Generating sentences from a formal grammar
The grammar in Figure 2.2 is what is known as a phrase structure grammar for our
t,d&h language (often abbreviated to PS grammar). There is a more compact notation,
in which several right-hand sides for one and the same left-hand side are grouped
together and then separated by vertical bars, ||. This bar belongs to the formalism, just
as the arrow -->> and can be read “or else”. The right-hand sides separated by vertical
bars are also called alternatives. In this more concise form our grammar becomes:

0. NNaammee -->> ttoomm || ddiicckk || hhaarrrryy
1. SSeenntteenncceeSS -->> NNaammee || LLiisstt EEnndd
2. LLiisstt -->> NNaammee || NNaammee ,, LLiisstt
3. ,, NNaammee EEnndd -->> aanndd NNaammee

where the non-terminal with the subscript S is the start symbol. (The subscript S identi-
fies the symbol, not the rule.)

Now let’s generate our initial example from this grammar, using replacement
according to the above rules only. We obtain the following successive forms for SSeenn--
tteennccee:

Intermediate form Rule used Explanation
SSeenntteennccee the start symbol
LLiisstt EEnndd SSeenntteennccee -->> LLiisstt EEnndd rule 1
NNaammee ,, LLiisstt EEnndd LLiisstt -->> NNaammee ,, LLiisstt rule 2
NNaammee ,, NNaammee ,, LLiisstt EEnndd LLiisstt -->> NNaammee ,, LLiisstt rule 2
NNaammee ,, NNaammee ,, NNaammee EEnndd LLiisstt -->> NNaammee rule 2
NNaammee ,, NNaammee aanndd NNaammee ,, NNaammee EEnndd -->> aanndd NNaammee rule 3
ttoomm ,, ddiicckk aanndd hhaarrrryy rule 0, three times

The intermediate forms are called sentential forms; if a sentential form contains no
non-terminals it is called a sentence and belongs to the generated language. The transi-
tions from one line to the next are called production steps and the rules are often called
production rules, for obvious reasons.

The production process can be made more visual by drawing connective lines
between corresponding symbols, as shown in Figure 2.3. Such a picture is called a pro-
duction graph or syntactic graph, because it depicts the syntactic structure (with regard
to the given grammar) of the final sentence. We see that the production graph normally
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SSeenntteennccee

LLiisstt EEnndd

NNaammee ,, LLiisstt

NNaammee ,, LLiisstt

,, NNaammee EEnndd

aanndd NNaammee

ttoomm ,, ddiicckk aanndd hhaarrrryy

Figure 2.3 Production graph for a sentence

fans out downwards, but occasionally we may see starlike constructions, which result
from rewriting a group of symbols.

It is patently impossible to have the grammar generate ttoomm,, ddiicckk,, hhaarrrryy,
since any attempt to produce more than one name will drag in an EEnndd and the only way
to get rid of it again (and get rid of it we must, since it is a non-terminal) is to have it
absorbed by rule 3, which will produce the aanndd. We see, to our amazement, that we
have succeeded in implementing the notion “must replace” in a system that only uses
“may replace”; looking more closely, we see that we have split “must replace” into
“may replace” and “must not be a non-terminal”.

Apart from our standard example, the grammar will of course also produce many
other sentences; examples are:

hhaarrrryy aanndd ttoomm
hhaarrrryy
ttoomm,, ttoomm,, ttoomm,, aanndd ttoomm

and an infinity of others. A determined and foolhardy attempt to generate the incorrect
form without the aanndd will lead us to sentential forms like:

ttoomm,, ddiicckk,, hhaarrrryy EEnndd

which are not sentences and to which no production rule applies. Such forms are called
blind alleys. Note that production rules may not be applied in the reverse direction.
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2.2.2 The expressive power of formal grammars
The main property of a formal grammar is that it has production rules, which may be
used for rewriting part of the sentential form (= sentence under construction) and a
starting symbol which is the mother of all sentential forms. In the production rules we
find non-terminals and terminals; finished sentences contain terminals only. That is
about it: the rest is up to the creativity of the grammar writer and the sentence pro-
ducer.

This is a framework of impressive frugality and the question immediately rises: Is
it sufficient? Well, if it isn’t, we don’t have anything more expressive. Strange as it
may sound, all other methods known to mankind for generating sets have been proved
to be equivalent to or less powerful than a phrase structure grammar. One obvious
method for generating a set is, of course, to write a program generating it, but it has
been proved that any set that can be generated by a program can be generated by a
phrase structure grammar. There are even more arcane methods, but all of them have
been proved not to be more expressive. On the other hand there is no proof that no such
stronger method can exist. But in view of the fact that many quite different methods all
turn out to halt at the same barrier, it is highly unlikely† that a stronger method will
ever be found. See, e.g. Révész [Books 1985, pp 100-102].

As a further example of the expressive power we shall give a grammar for the
movements of a Manhattan turtle. A Manhattan turtle moves in a plane and can only
move north, east, south or west in distances of one block. The grammar of Figure 2.4
produces all paths that return to their own starting point.

1. MMoovveeSS -->> nnoorrtthh MMoovvee ssoouutthh || eeaasstt MMoovvee wweesstt || εε
2. nnoorrtthh eeaasstt -->> eeaasstt nnoorrtthh

nnoorrtthh ssoouutthh -->> ssoouutthh nnoorrtthh
nnoorrtthh wweesstt -->> wweesstt nnoorrtthh
eeaasstt nnoorrtthh -->> nnoorrtthh eeaasstt
eeaasstt ssoouutthh -->> ssoouutthh eeaasstt
eeaasstt wweesstt -->> wweesstt eeaasstt

ssoouutthh nnoorrtthh -->> nnoorrtthh ssoouutthh
ssoouutthh eeaasstt -->> eeaasstt ssoouutthh
ssoouutthh wweesstt -->> wweesstt ssoouutthh
wweesstt nnoorrtthh -->> nnoorrtthh wweesstt
wweesstt eeaasstt -->> eeaasstt wweesstt
wweesstt ssoouutthh -->> ssoouutthh wweesstt

Figure 2.4 Grammar for the movements of a Manhattan turtle

As to rule 2, it should be noted that some authors require at least one of the symbols in
the left-hand side to be a non-terminal. This restriction can always be enforced by
adding new non-terminals.

The simple round trip nnoorrtthh eeaasstt ssoouutthh wweesstt is produced as shown in Fig-
ure 2.5 (names abbreviated to their first letter). Note the empty alternative in rule 1
� ���������������������������

† Paul Vitány has pointed out that if scientists call something “highly unlikely” they are still
generally not willing to bet a year’s salary on it, double or quit.
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(the ε), which results in the dying out of the third MM in the above production graph.

MM

nn MM ss

ee MM ww ss

nn ee ss ww

Figure 2.5 How the grammar of Figure 2.4 produces a round trip

2.3 THE CHOMSKY HIERARCHY OF GRAMMARS AND LANGUAGES

The grammars from Figures 2.2 and 2.4 are easy to understand and indeed some simple
phrase structure grammars generate very complicated sets. The grammar for any given
set is, however, usually far from simple. (We say “The grammar for a given set”
although there can be, of course, infinitely many grammars for a set. By the grammar
for a set, we mean any grammar that does the job and is not obviously overly compli-
cated.) Theory says that if a set can be generated at all (for instance, by a program) it
can be generated by a phrase structure grammar, but theory does not say that it will be
easy to do so, or that the grammar will be understandable. In this context it is illustra-
tive to try to write a grammar for those Manhattan turtle paths in which the turtle is
never allowed to the west of its starting point. (Hint: use a special (non-terminal)
marker for each block the turtle is located to the east of its starting point).

Apart from the intellectual problems phrase structure grammars pose, they also
exhibit fundamental and practical problems. We shall see that no general parsing algo-
rithm for them can exist, and all known special parsing algorithms are either very inef-
ficient or very complex; see Section 3.5.2.

The desire to restrict the unmanageability of phrase structure grammars, while
keeping as much of their generative powers as possible, has led to the Chomsky hierar-
chy of grammars. This hierarchy distinguishes four types of grammars, numbered from
0 to 3; it is useful to include a fifth type, called Type 4 here. Type 0 grammars are the
(unrestricted) phrase structure grammars of which we have already seen examples. The
other types originate from applying more and more restrictions to the allowed form of
the rules in the grammar. Each of these restrictions has far-reaching consequences; the
resulting grammars are gradually easier to understand and to manipulate, but are also
gradually less powerful. Fortunately, these less powerful types are still very useful,
actually more useful even than Type 0. We shall now consider each of the three
remaining types in turn, followed by a trivial but useful fourth type.

2.3.1 Type 1 grammars
The characteristic property of a Type 0 grammar is that it may contain rules that
transform an arbitrary (non-zero) number of symbols into an arbitrary (possibly zero)
number of symbols. Example:

,, NN EE -->> aanndd NN
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in which three symbols are replaced by two. By restricting this freedom, we obtain
Type 1 grammars. Strangely enough there are two, intuitively completely different
definitions of Type 1 grammars, which can be proved to be equivalent.

A grammar is Type 1 monotonic if it contains no rules in which the left-hand side
consists of more symbols than the right-hand side. This forbids, for instance, the rule ,,
NN EE -->> aanndd NN.

A grammar is Type 1 context-sensitive if all of its rules are context-sensitive. A
rule is context-sensitive if actually only one (non-terminal) symbol in its left-hand side
gets replaced by other symbols, while we find the others back undamaged and in the
same order in the right-hand side. Example:

NNaammee CCoommmmaa NNaammee EEnndd -->> NNaammee aanndd NNaammee EEnndd

which tells that the rule

CCoommmmaa -->> aanndd

may be applied if the left context is NNaammee and the right context is NNaammee EEnndd. The con-
texts themselves are not affected. The replacement must be at least one symbol long;
this means that context-sensitive grammars are always monotonic; see Section 2.6.

Here is a monotonic grammar for our t,d&h example. In writing monotonic gram-
mars one has to be careful never to produce more symbols than will be produced even-
tually. We avoid the need to delete the end-marker by incorporating it into the right-
most name.

NNaammee -->> ttoomm || ddiicckk || hhaarrrryy
SSeenntteenncceeSS -->> NNaammee || LLiisstt

LLiisstt -->> EEnnddNNaammee || NNaammee ,, LLiisstt
,, EEnnddNNaammee -->> aanndd NNaammee

where EEnnddNNaammee is a single symbol.
And here is a context-sensitive grammar for it.

NNaammee -->> ttoomm || ddiicckk || hhaarrrryy
SSeenntteenncceeSS -->> NNaammee || LLiisstt

LLiisstt -->> EEnnddNNaammee
|| NNaammee CCoommmmaa LLiisstt

CCoommmmaa EEnnddNNaammee -->> aanndd EEnnddNNaammee context is ...... EEnnddNNaammee
aanndd EEnnddNNaammee -->> aanndd NNaammee context is aanndd ......

CCoommmmaa -->> ,,

Note that we need an extra non-terminal CCoommmmaa to be able to produce the terminal aanndd
in the correct context.

Monotonic and context-sensitive grammars are equally powerful: for each
language that can be generated by a monotonic grammar a context-sensitive grammar
exists that generates the same language, and vice versa. They are less powerful than
the Type 0 grammars, that is, there are languages that can be generated by a Type 0
grammar but not by any Type 1. Strangely enough no simple examples of such
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languages are known. Although the difference between Type 0 and Type 1 is funda-
mental and is not just a whim of Mr. Chomsky, grammars for which the difference
matters are too complicated to write down; only their existence can be proved (see e.g.,
Hopcroft and Ullman [Books 1979, pp. 183-184] or Révész [Books 1985, p. 98]).

Of course any Type 1 grammar is also a Type 0 grammar, since the class of Type
1 grammars is obtained from the class of Type 0 grammars by applying restrictions.
But it would be confusing to call a Type 1 grammar a Type 0 grammar; it would be like
calling a cat a mammal: correct but not informative enough. A grammar is named after
the smallest class (that is, the highest type number) in which it will still fit.

We saw that our t,d&h language, which was first generated by a Type 0 grammar,
could also be generated by a Type 1 grammar. We shall see that there is also a Type 2
and a Type 3 grammar for it, but no Type 4 grammar. We therefore say that the t,d&h
language is Type 3 language, after the most restricted (and simple and amenable) gram-
mar for it. Some corollaries of this are: A Type n language can be generated by a Type
n grammar or anything stronger, but not by a weaker Type n +1 grammar; and: If a
language is generated by a Type n grammar, that does not necessarily mean that there is
no (weaker) Type n +1 grammar for it. The use of a Type 0 grammar for our t,d&h
language was a serious case of overkill, just for demonstration purposes.

The standard example of a Type 1 language is the set of words that consist of
equal numbers of aa’s, bb’s and cc’s, in that order:

a a . . . . a

n of them

b b . . . . b

n of them

c c . . . . c

n of them

2.3.1.1 Constructing a Type 1 grammar
For the sake of completeness and to show how one writes a Type 1 grammar if one is
clever enough, we shall now derive a grammar for this toy language. Starting with the
simplest case, we have the rule

0. SS -->> aabbcc

Having got one instance of SS, we may want to prepend more aa’s to the beginning; if we
want to remember how many there were, we shall have to append something to the end
as well at the same time, and that cannot be a bb or a cc. We shall use a yet unknown
symbol QQ. The following rule pre- and postpends:

1. SS -->> aabbcc || aaSSQQ

If we apply this rule, for instance, three times, we get the sentential form

aaaaaabbccQQQQ

Now, to get aaaaaabbbbbbcccccc from this, each QQ must be worth one bb and one cc, as was to be
expected, but we cannot just write

QQ -->> bbcc
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because that would allow bb’s after the first cc. The above rule would, however, be all
right if it were allowed to do replacement only between a bb and a cc; there, the newly
inserted bbcc will do no harm:

2. bbQQcc -->> bbbbcccc

Still, we cannot apply this rule since normally the QQ’s are to the right of the cc; this can
be remedied by allowing a QQ to hop left over a cc:

3. ccQQ -->> QQcc

We can now finish our derivation:

aaaaaabbccQQQQ (3 times rule 1)
aaaaaabbQQccQQ (rule 3)
aaaaaabbbbccccQQ (rule 2)
aaaaaabbbbccQQcc (rule 3)
aaaaaabbbbQQcccc (rule 3)
aaaaaabbbbbbcccccc (rule 2)

It should be noted that the above derivation only shows that the grammar will produce
the right strings, and the reader will still have to convince himself that it will not gen-
erate other and incorrect strings.

SSSS -->> aabbcc || aaSSQQ
bbQQcc -->> bbbbcccc
ccQQ -->> QQcc

Figure 2.6 Monotonic grammar for a nb nc n

The grammar is summarized in Figure 2.6; since a derivation tree of a 3b 3c 3 is
already rather unwieldy, a derivation tree for a 2b 2c 2 is given in Figure 2.7. The gram-
mar is monotonic and therefore of Type 1; it can be proved that there is no Type 2
grammar for the language.

SS

aa SS QQ

aa bb cc QQ

bb QQ cc

aa aa bb bb cc cc

Figure 2.7 Derivation of a 2b 2c 2



32 Grammars as a generating device [Ch. 2

Type 1 grammars are also called context-sensitive grammars (CS grammars); the
latter name is often used even if the grammar is actually monotonic. There are no stan-
dard initials for monotonic, but MT may do.

2.3.2 Type 2 grammars
Type 2 grammars are called context-free grammars (CF grammars) and their relation to
context-sensitive grammars is as direct as the name suggests. A context-free grammar
is like a context-sensitive grammar, except that both the left and the right contexts are
required to be absent (empty). As a result, the grammar may contain only rules that
have a single non-terminal on their left-hand side. Sample grammar:

0. NNaammee -->> ttoomm || ddiicckk || hhaarrrryy
1. SSeenntteenncceeSS -->> NNaammee || LLiisstt aanndd NNaammee
2. LLiisstt -->> NNaammee ,, LLiisstt || NNaammee

Since there is always only one symbol on the left-hand side, each node in a pro-
duction graph has the property that whatever it produces is independent of what its
neighbours produce: the productive life of a non-terminal is independent of its context.
Starlike forms as we saw in Figures 2.3, 2.5 or 2.7 cannot occur in a context-free pro-
duction graph, which consequently has a pure tree-form and is called a production tree.
An example is shown in Figure 2.8.

SSeenntteennccee

LLiisstt aanndd NNaammee

NNaammee ,, LLiisstt

NNaammee

ttoomm ,, ddiicckk aanndd hhaarrrryy

Figure 2.8 Production tree for a context-free grammar

Also, since there is only one symbol on the left-hand side, all right-hand sides for a
given non-terminal can always be collected in one grammar rule (we have already done
that in the above grammar) and then each grammar rule reads like a definition of the
left-hand side:
� A SSeenntteennccee is either a NNaammee or a LLiisstt followed by aanndd followed by a NNaammee.
� A LLiisstt is either a NNaammee followed by a ,, followed by a LLiisstt, or it is a NNaammee.

In the actual world, many things are defined in terms of other things. Context-free
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grammars are a very concise way to formulate such interrelationships. An almost trivial
example is the composition of a book, as given in Figure 2.9.

BBooookkSS -->> PPrreeffaaccee CChhaapptteerrSSeeqquueennccee CCoonncclluussiioonn
PPrreeffaaccee -->> ""PPRREEFFAACCEE"" PPaarraaggrraapphhSSeeqquueennccee

CChhaapptteerrSSeeqquueennccee -->> CChhaapptteerr || CChhaapptteerr CChhaapptteerrSSeeqquueennccee
CChhaapptteerr -->> ""CCHHAAPPTTEERR"" NNuummbbeerr PPaarraaggrraapphhSSeeqquueennccee

PPaarraaggrraapphhSSeeqquueennccee -->> PPaarraaggrraapphh || PPaarraaggrraapphh PPaarraaggrraapphhSSeeqquueennccee
PPaarraaggrraapphh -->> SSeenntteenncceeSSeeqquueennccee

SSeenntteenncceeSSeeqquueennccee -->> ......
......

CCoonncclluussiioonn -->> ""CCOONNCCLLUUSSIIOONN"" PPaarraaggrraapphhSSeeqquueennccee

Figure 2.9 A simple (and incomplete!) grammar of a book

Of course, this is a context-free description of a book, so one can expect it to also gen-
erate a lot of good-looking nonsense like

PPRREEFFAACCEE
qqwweerrttyyuuiioopp
CCHHAAPPTTEERR VV
aassddffgghhjjkkll
zzxxccvvbbnnmm,,..
CCHHAAPPTTEERR IIII
qqaazzwwssxxeeddccrrffvvttggbb
yyhhnnuujjmmiikkoollpp
CCOONNCCLLUUSSIIOONN
AAllll ccaattss ssaayy bblleerrtt wwhheenn wwaallkkiinngg tthhrroouugghh wwaallllss..

but at least the result has the right structure. The document preparation and text mark-
up language SGML† uses this approach to control the basic structure of documents.

A shorter but less trivial example is the language of all elevator motions that
return to the same point (a Manhattan turtle restricted to 5th Avenue would make the
same movements)

ZZeerrooMMoottiioonnSS -->> uupp ZZeerrooMMoottiioonn ddoowwnn ZZeerrooMMoottiioonn
|| ddoowwnn ZZeerrooMMoottiioonn uupp ZZeerrooMMoottiioonn
|| εε

(in which we assume that the elevator shaft is infinitely long; they are, in Manhattan).
If we ignore enough detail we can also recognize an underlying context-free struc-

ture in the sentences of a natural language, for instance, English:

� ���������������������������

† David Barron, “Why use SGML?”, Electronic Publishing, vol. 2, no. 1, p. 3-24, April 1989.
Short introduction to SGML (Standard Generalized Markup Language) and comparison to other
systems. Provides further references.



34 Grammars as a generating device [Ch. 2

SSeenntteenncceeSS -->> SSuubbjjeecctt VVeerrbb OObbjjeecctt
SSuubbjjeecctt -->> NNoouunnPPhhrraassee
OObbjjeecctt -->> NNoouunnPPhhrraassee

NNoouunnPPhhrraassee -->> tthhee QQuuaalliiffiieeddNNoouunn
QQuuaalliiffiieeddNNoouunn -->> NNoouunn || AAddjjeeccttiivvee QQuuaalliiffiieeddNNoouunn

NNoouunn -->> ccaassttllee || ccaatteerrppiillllaarr || ccaattss
AAddjjeeccttiivvee -->> wweellll--rreeaadd || wwhhiittee || wwiissttffuull || ......

VVeerrbb -->> aaddmmiirreess || bbaarrkk || ccrriittiicciizzee || ......

which produces sentences like:

tthhee wweellll--rreeaadd ccaattss ccrriittiicciizzee tthhee wwiissttffuull ccaatteerrppiillllaarr

Since, however, no context is incorporated, it will equally well produce the incorrect

tthhee ccaattss aaddmmiirreess tthhee wwhhiittee wweellll--rreeaadd ccaassttllee

For keeping context we could use a phrase structure grammar (for a simpler
language):

SSeenntteenncceeSS -->> NNoouunn NNuummbbeerr VVeerrbb
NNuummbbeerr -->> SSiinngguullaarr || PPlluurraall

NNoouunn SSiinngguullaarr -->> ccaassttllee SSiinngguullaarr || ccaatteerrppiillllaarr SSiinngguullaarr || ......
SSiinngguullaarr VVeerrbb -->> SSiinngguullaarr aaddmmiirreess || ......

SSiinngguullaarr -->> εε
NNoouunn PPlluurraall -->> ccaattss PPlluurraall || ......
PPlluurraall VVeerrbb -->> PPlluurraall bbaarrkk || PPlluurraall ccrriittiicciizzee || ......

PPlluurraall -->> εε

where the markers SSiinngguullaarr and PPlluurraall control the production of actual English
words. Still this grammar allows the cats to bark.... For a better way to handle context,
see the section on van Wijngaarden grammars (2.4.1).

The bulk of examples of CF grammars originate from programming languages.
Sentences in these languages (that is, programs) have to be processed automatically
(that is, by a compiler) and it was soon recognized (around 1958) that this is a lot easier
if the language has a well-defined formal grammar. The syntaxes of almost all pro-
gramming languages in use today are defined through a formal grammar.†

Some authors (for instance, Chomsky) and some parsing algorithms, require a CF
grammar to be monotonic. The only way a CF rule can be non-monotonic is by having
an empty right-hand side; such a rule is called an ε-rule and a grammar that contains no
such rules is called ε-free. The requirement of being ε-free is not a real restriction, just
a nuisance. Any CF grammar can be made ε-free be systematic substitution of the ε-
rules (this process will be explained in detail in 4.2.3.1), but this in general does not
improve the appearance of the grammar. The issue will be discussed further in Section
� ���������������������������

† COBOL and FORTRAN also have grammars but theirs are informal and descriptive, and were
never intended to be generative.
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2.6.

2.3.2.1 Backus-Naur Form
There are several different styles of notation for CF grammars for programming
languages, each with endless variants; they are all functionally equivalent. We shall
show two main styles here. The first is Backus-Naur Form (BNF) which was first used
for defining ALGOL 60. Here is a sample:

<<nnaammee>>::::== ttoomm || ddiicckk || hhaarrrryy
<<sseenntteennccee>>SS::::== <<nnaammee>> || <<lliisstt>> aanndd <<nnaammee>>
<<lliisstt>>::::== <<nnaammee>>,, <<lliisstt>> || <<nnaammee>>

This form’s main properties are the use of angle brackets to enclose non-terminals and
of ::::== for “may produce”. In some variants, the rules are terminated by a semicolon.

2.3.2.2 van Wijngaarden form
The second style is that of the CF van Wijngaarden grammars. Again a sample:

nnaammee:: ttoomm ssyymmbbooll;; ddiicckk ssyymmbbooll;; hhaarrrryy ssyymmbbooll..
sseenntteenncceeSS:: nnaammee;; lliisstt,, aanndd ssyymmbbooll,, nnaammee..
lliisstt:: nnaammee,, ccoommmmaa ssyymmbbooll,, lliisstt;; nnaammee..

The names of terminal symbols end in ...ssyymmbbooll; their representations are hardware-
dependent and are not defined in the grammar. Rules are properly terminated (with a
period). Punctuation is used more or less in the traditional way; for instance, the
comma binds tighter than the semicolon. The punctuation can be read as follows:

:: “is defined as a(n)”
;; “, or as a (n)”
,, “followed by a(n)”
.. “, and as nothing else.”

The second rule in the above grammar would be read as: “a sentence is defined as a
name, or as a list followed by an and-symbol followed by a name, and as nothing else.”
Although this notation achieves its full power only when applied in the two-level van
Wijngaarden grammars, it also has its merits on its own: it is formal and still quite
readable.

2.3.2.3 Extended CF grammars
CF grammars are often made both more compact and more readable by introducing
special short-hands for frequently used constructions. If we return to the Book grammar
of Figure 2.9, we see that rules like:

SSoommeetthhiinnggSSeeqquueennccee -->> SSoommeetthhiinngg || SSoommeetthhiinngg SSoommeetthhiinnggSSeeqquueennccee

occur repeatedly. In an extended context-free grammar (ECF grammar), we can write
SSoommeetthhiinngg++ meaning “one or more SSoommeetthhiinnggs” and we do not need to give a rule
for SSoommeetthhiinngg++; the rule
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SSoommeetthhiinngg++ -->> SSoommeetthhiinngg || SSoommeetthhiinngg SSoommeetthhiinngg++

is implicit. Likewise we can use SSoommeetthhiinngg** for “zero or more SSoommeetthhiinnggs” and
SSoommeetthhiinngg?? for “zero or one SSoommeetthhiinngg” (that is, “optionally a SSoommeetthhiinngg”). In
these examples, the operators +, * and ? work on the preceding symbol; their range can
be extended by using parentheses: ((SSoommeetthhiinngg ;;))?? means “optionally a
SSoommeetthhiinngg-followed-by-a-;;”. These facilities are very useful and allow the Book
grammar to be written more efficiently (Figure 2.10). Some styles even allow construc-
tions like SSoommeetthhiinngg++44 meaning “one or more SSoommeetthhiinnggs with a maximum of 4” or
SSoommeetthhiinngg++,, meaning “one or more SSoommeetthhiinnggs separated by commas”; this seems
to be a case of overdoing a good thing.

BBooookkSS -->> PPrreeffaaccee CChhaapptteerr++ CCoonncclluussiioonn
PPrreeffaaccee -->> ""PPRREEFFAACCEE"" PPaarraaggrraapphh++

CChhaapptteerr -->> ""CCHHAAPPTTEERR"" NNuummbbeerr PPaarraaggrraapphh++

PPaarraaggrraapphh -->> SSeenntteennccee++

SSeenntteennccee -->> ......
......

CCoonncclluussiioonn -->> ""CCOONNCCLLUUSSIIOONN"" PPaarraaggrraapphh++

Figure 2.10 An extended CF grammar of a book

The extensions of an ECF grammar do not increase its expressive powers: all
implicit rules can be made explicit and then a normal CF grammar results. Their
strength lies in their user-friendliness. The star in the notation X * with the meaning “a
sequence of zero or more X’s” is called the Kleene star. If X is a set, X * should be read
as “a sequence of zero or more elements of X”; it is the same star that we saw in Σ* in
Section 2.1.3.3. Forms involving the repetition operators **, ++ or ?? and possibly the
separators (( and )) are called regular expressions. ECF’s, which have regular expres-
sions for their right-hand sides, are for that reason sometimes called regular right part
grammars (RRP grammars) which is more descriptive than “extended context free”,
but which is perceived to be a tongue twister by some.

There are two different schools of thought about the structural meaning of a regu-
lar right-hand side. One school maintains that a rule like:

BBooookk -->> PPrreeffaaccee CChhaapptteerr++ CCoonncclluussiioonn

is an abbreviation of

BBooookk -->> PPrreeffaaccee αα CCoonncclluussiioonn
αα -->> CChhaapptteerr || CChhaapptteerr αα

as shown above. This is the “(right)recursive” interpretation; it has the advantage that it
is easy to explain and that the transformation to “normal” CF is simple. Disadvantages
are that the transformation entails anonymous rules (identified by α here) and that the
lopsided parse tree for, for instance, a book of four chapters does not correspond to our
idea of the structure of the book; see Figure 2.11.

The seconds school claims that
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BBooookk

PPrreeffaaccee αα CCoonn--
cclluussiioonn

CChhaapptteerr αα

CChhaapptteerr αα

CChhaapptteerr CChhaapptteerr

Figure 2.11 Parse tree for the (right)recursive interpretation

BBooookk -->> PPrreeffaaccee CChhaapptteerr++ CCoonncclluussiioonn

is an abbreviation of

BBooookk -->> PPrreeffaaccee CChhaapptteerr CCoonncclluussiioonn
|| PPrreeffaaccee CChhaapptteerr CChhaapptteerr CCoonncclluussiioonn
|| PPrreeffaaccee CChhaapptteerr CChhaapptteerr CChhaapptteerr CCoonncclluussiioonn
|| ......
......

This is the “iterative” interpretation; it has the advantage that it yields a beautiful parse
tree (Figure 2.12), but the disadvantages that it involves an infinite number of produc-
tion rules and that the nodes in the parse tree have a varying fan-out.

BBooookk

PPrreeffaaccee CChhaapptteerr CChhaapptteerr CChhaapptteerr CChhaapptteerr CCoonn--
cclluussiioonn

Figure 2.12 Parse tree for the iterative interpretation

Since the implementation of the iterative interpretation is far from trivial, most
practical parser generators use the recursive interpretation in some form or another,
whereas most research has been done on the iterative interpretation.

2.3.3 Type 3 grammars
The basic property of CF grammars is that they describe things that nest: an object may
contain other objects in various places, which in turn may contain ... etc. When during
the production process we have produced one of the objects, the right-hand side still
“remembers” what has to come after it: in the English grammar, after having descended
into the depth of the non-terminal SSuubbjjeecctt to produce something like tthhee wwiissttffuull
ccaatt, the right-hand side SSuubbjjeecctt VVeerrbb OObbjjeecctt still remembers that a VVeerrbb must
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follow. While we are working on the SSuubbjjeecctt, the VVeerrbb and OObbjjeecctt remain queued
at the right in the sentential form, for instance,

tthhee wwiissttffuull QQuuaalliiffiieeddNNoouunn VVeerrbb OObbjjeecctt

In the right-hand side

uupp ZZeerrooMMoottiioonn ddoowwnn ZZeerrooMMoottiioonn

after having performed the uupp and an arbitrarily complicated ZZeerrooMMoottiioonn, the right-
hand side still remembers that a ddoowwnn must follow.

The restriction to Type 3 disallows this recollection of things that came before: a
right-hand side may only contain one non-terminal and it must come at the end. This
means that there are only two kinds of rules:†

A non-terminal produces zero or more terminals
A non-terminal produces zero or more terminals followed by one non-terminal

The original Chomsky definition of Type 3 restricts the kinds of rules to

A non-terminal produces one terminal
A non-terminal produces one terminal followed by one non-terminal

Our definition is equivalent and more convenient, although the conversion to Chomsky
Type 3 is not completely trivial.

Type 3 grammars are also called regular grammars (RE grammars) or finite-state
grammars (FS grammars). Since regular grammars are used very often to describe the
structure of text on the character level, it is customary for the terminal symbols of a
regular grammar to be single characters. We shall therefore write tt for TToomm, dd for
DDiicckk, hh for HHaarrrryy and && for aanndd. Figure 2.13 shows a Type 3 grammar for our t,d&h
language in this style.

SSeenntteenncceeSS -->> tt || dd || hh || LLiisstt
LLiisstt -->> tt LLiissttTTaaiill || dd LLiissttTTaaiill || hh LLiissttTTaaiill

LLiissttTTaaiill -->> ,, LLiisstt || &&tt || &&dd || &&hh

Figure 2.13 A Type 3 grammar for the t, d & h language

The production tree for a sentence from a Type 3 grammar degenerates into a
chain of non-terminals that drop a sequence of terminals on their left. Figure 2.14
shows an example.

The deadly repetition exhibited by the above grammar is typical of regular gram-
mars; a number of notational devices have been invented to abate this nuisance. The
� ���������������������������

† There is a natural in-between class, Type 2.5 so to say, in which only a single non-terminal is
allowed in a right-hand side, but where it need not be at the end. This gives us the so-called
linear grammars.
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SSeenntteennccee

LLiisstt

tt LLiissttTTaaiill

,, LLiisstt

dd LLiissttTTaaiill

&& hh

Figure 2.14 Production chain for a regular (Type 3) grammar

most common one is the use of square brackets to indicate “one out of a set of charac-
ters”: [[ttddhh]] is an abbreviation for tt||dd||hh:

SSSS -->> [[ttddhh]] || LL
LL -->> [[ttddhh]] TT
TT -->> ,, LL || && [[ttddhh]]

which may look more cryptic at first but is actually much more convenient and in fact
allows simplification of the grammar to

SSSS -->> [[ttddhh]] || LL
LL -->> [[ttddhh]] ,, LL || [[ttddhh]] && [[ttddhh]]

A second way is to allow macros, names for pieces of the grammar that are substi-
tuted properly into the grammar before it is used:

NNaammee -->> tt || dd || hh
SSSS -->> $NNaammee || LL
LL -->> $NNaammee ,, LL || $NNaammee && $NNaammee

The popular parser generator for regular grammars lex (designed and written by Lesk
and Schmidt [FS 1975]) features both facilities.

Note that if we adhere to the Chomsky definition of Type 3, our grammar will not
get smaller than:

SSSS -->> tt || dd || hh || ttMM || ddMM || hhMM
MM -->> ,,NN || &&PP
NN -->> ttMM || ddMM || hhMM
PP -->> tt || dd || hh

This form is evidently easier to process but less user-friendly than the lex version. We
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observe here that while the formal-linguist is interested in and helped by minimally
sufficient means, the computer scientist values a form in which the concepts underlying
the grammar ($NNaammee, etc.) are easily expressed, at the expense of additional processing.

There are two interesting observations about regular grammars which we want to
make here. First, when we use a RE grammar for generating a sentence, the sentential
forms will only contain one non-terminal and this will always be at the end; that’s
where it all happens (using the grammar of Figure 2.13):

SSeenntteenncceeSS
LLiisstt
tt LLiissttTTaaiill
tt ,, LLiisstt
tt ,, dd LLiissttTTaaiill
tt ,, dd && hh

The second observation is that all regular grammars can be reduced considerably
in size by using the regular expression operators **, ++ and ?? introduced in Section 2.3.2
for “zero or more”, “one or more” and “optionally one”, respectively. Using these
operators and (( and )) for grouping, we can simplify our grammar to:

SSSS -->> (((( [[ttddhh]],, ))** [[ttddhh]]&& ))?? [[ttddhh]]

Here the parentheses serve to demarcate the operands of the ** and ?? operators. Regular
expressions exist for all Type 3 grammars. Note that the ** and the ++ work on what pre-
cedes them; to distinguish them from the normal multiplication and addition operators,
they are often printed higher than the level text in print, but in computer input they are
in line with the rest.

2.3.4 Type 4 grammars
The last restriction we shall apply to what is allowed in a production rule is a pretty
final one: no non-terminal is allowed in the right-hand side. This removes all the gen-
erative power from the mechanism, except for the choosing of alternatives. The start
symbol has a (finite) list of alternatives from which we are allowed to choose; this is
reflected in the name finite-choice grammar (FC grammar).

There is no FC grammar for our t,d&h language; if, however, we are willing to
restrict ourselves to lists of names of a finite length (say, no more than a hundred), then
there is one, since one could enumerate all combinations. For the obvious limit of three
names, we get:

SSSS -->> [[ttddhh]] || [[ttddhh]] && [[ttddhh]] || [[ttddhh]] ,, [[ttddhh]] && [[ttddhh]]

for a total of 3+3* 3+3* 3* 3=39 production rules.
FC grammars are not part of the official Chomsky hierarchy, that is, they are not

identified by Chomsky. They are nevertheless very useful and are often required as a
tail-piece in some process or reasoning. The set of reserved words (keywords) in a pro-
gramming language can be described by a FC grammar. Although not many grammars
are FC in their entirety, some of the rules in many grammars are finite-choice. E.g., the
first rule of our first grammar (Figure 2.2) was FC. Another example of a FC rule was
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the macro introduced in Section 2.3.3; we do not need the macro mechanism if we
change

zero or more terminals

in the definition of a regular grammar to

zero or more terminals or FC non-terminals

In the end, the FC non-terminals will only introduce a finite number of terminals.

2.4 VW GRAMMARS

2.4.1 The human inadequacy of CS and PS grammars
In the preceding paragraphs we have witnessed the introduction of a hierarchy of gram-
mar types:
− phrase structure,
− context-sensitive,
− context-free,
− regular and
− finite-choice.
Although each of the boundaries between the types is clear-cut, some boundaries are
more important than others. Two boundaries specifically stand out: that between
context-sensitive and context-free and that between regular (finite-state) and finite-
choice; the significance of the latter is trivial, being the difference between productive
and non-productive, but the former is profound.

The border between CS and CF is that between global correlation and local
independence. Once a non-terminal has been produced in a sentential form in a CF
grammar, its further development is independent of the rest of the sentential form; a
non-terminal in a sentential form of a CS grammar has to look at its neighbours on the
left and on the right, to see what production rules are allowed for it. The local produc-
tion independence in CF grammars means that certain long-range correlations cannot
be expressed by them. Such correlations are, however, often very interesting, since they
embody fundamental properties of the input text, like the consistent use of variables in
a program or the recurrence of a theme in a musical composition. When we describe
such input through a CF grammar we cannot enforce the proper correlations; one
(often-used) way out is to settle for the CF grammar, accept the parsing it produces and
then check the proper correlations with a separate program. This is, however, quite
unsatisfactory since it defeats the purpose of having a grammar, that is, having a con-
cise and formal description of all the properties of the input.

The obvious solution would seem to be the use of a CS grammar to express the
correlations (= the context-sensitivity) but here we run into another, non-fundamental
but very practical problem: CS grammars can express the proper correlations but not in
a way a human can understand. It is in this respect instructive to compare the CF gram-
mars in Section 2.3.2 to the one CS grammar we have seen that really expresses a
context-dependency, the grammar for a nb nc n in Figure 2.6. The grammar for the con-
tents of a book (Figure 2.9) immediately suggests the form of the book, but the
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grammar of Figure 2.6 hardly suggests anything, even if we can still remember how it
was constructed and how it works. This is not caused by the use of short names like QQ:
a version with more informative names (Figure 2.15) is still puzzling. Also, one would
expect that, having constructed a grammar for a nb nc n , making one for a nb nc nd n

would be straightforward. Such is not the case; a grammar for a nb nc nd n is substan-
tially more complicated (and even more opaque) than one for a nb nc n and requires
rethinking of the problem.

SSSS -->> aa bb cc || aa SS bbcc__ppaacckk
bb bbcc__ppaacckk cc -->> bb bb cc cc
cc bbcc__ppaacckk -->> bbcc__ppaacckk cc

Figure 2.15 Monotonic grammar for a nb nc n with more informative names

The cause of all this misery is that CS and PS grammars derive their power to
enforce global relationships from “just slightly more than local dependency”. Theoreti-
cally, just looking at the neighbours can be proved to be enough to express any global
relation, but the enforcement of a long-range relation through this mechanism causes
information to flow through the sentential form over long distances. In the production
process of, for instance, a 4b 4c 4 , we see several bbcc__ppaacckks wind their way through the
sentential form, and in any serious CS grammar, many messengers run up and down the
sentential form to convey information about developments in far-away places. How-
ever interesting this imagery may seem, it requires almost all rules to know something
about almost all other rules; this makes the grammar absurdly complex.

Several grammar forms have been put forward to remedy this situation and make
long-range relationships more easily expressible; among them are indexed grammars
(Aho [PSCS 1968]), recording grammars (Barth [PSCS 1979]), affix grammars
(Koster [VW 1971]) and VW grammars (van Wijngaarden [VW 1969]). The last are
the most elegant and effective, and are explained below. Affix grammars are discussed
briefly in 2.4.5.

2.4.2 VW grammars
It is not quite true that CF grammars cannot express long-range relations; they can only
express a finite number of them. If we have a language the strings of which consist of a
bbeeggiinn, a mmiiddddllee and an eenndd and suppose there are three types of bbeeggiinns and eenndds,
then the CF grammar of Figure 2.16 will enforce that the type of the eenndd will properly
match that of the bbeeggiinn.

tteexxttSS -->> bbeeggiinn11 mmiiddddllee eenndd11
|| bbeeggiinn22 mmiiddddllee eenndd22
|| bbeeggiinn33 mmiiddddllee eenndd33

Figure 2.16 A long-range relation-enforcing CF grammar

We can think of (( and )) for bbeeggiinn11 and eenndd11, [[ and ]] for bbeeggiinn22 and eenndd22 and {{
and }} for bbeeggiinn33 and eenndd33; the CF grammar will then ensure that closing parentheses
will match the corresponding open parentheses.

By making the CF grammar larger and larger, we can express more and more
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long-range relations; if we make it infinitely large, we can express any number of
long-range relations and have achieved full context-sensitivity. Now we come to the
fundamental idea behind VW grammars. The rules of the infinite-size CF grammar
form an infinite set of strings, i.e., a language, which can in turn be described by a
grammar. This explains the name “two-level grammar”.

To introduce the concepts and techniques we shall give here an informal construc-
tion of a VW grammar for the above language L = a nb nc n for n≥1. We shall use the
VW notation as explained in 2.3.2.2: the names of terminal symbols end in ssyymmbbooll and
their representations are given separately; alternatives are separated by semicolons (;;),
members inside alternatives are separated by commas (which allows us to have spaces
in the names of non-terminals) and a colon (::) is used instead of an arrow.

We could describe the language L through a context-free grammar if grammars of
infinite size were allowed:

tteexxttSS:: aa ssyymmbbooll,, bb ssyymmbbooll,, cc ssyymmbbooll;;
aa ssyymmbbooll,, aa ssyymmbbooll,,

bb ssyymmbbooll,, bb ssyymmbbooll,,
cc ssyymmbbooll,, cc ssyymmbbooll;;

aa ssyymmbbooll,, aa ssyymmbbooll,, aa ssyymmbbooll,,
bb ssyymmbbooll,, bb ssyymmbbooll,, bb ssyymmbbooll,,
cc ssyymmbbooll,, cc ssyymmbbooll,, cc ssyymmbbooll;;

...... ......

We shall now try to master this infinity by constructing a grammar which allows
us to produce the above grammar for as far as needed. We first introduce an infinite
number of names of non-terminals:

tteexxttSS:: aaii,, bbii,, ccii;;
aaiiii,, bbiiii,, cciiii;;
aaiiiiii,, bbiiiiii,, cciiiiii;;
...... ......

together with three infinite groups of rules for these non-terminals:

aaii:: aa ssyymmbbooll..
aaiiii:: aa ssyymmbbooll,, aaii..
aaiiiiii:: aa ssyymmbbooll,, aaiiii..
...... ......

bbii:: bb ssyymmbbooll..
bbiiii:: bb ssyymmbbooll,, bbii..
bbiiiiii:: bb ssyymmbbooll,, bbiiii..
...... ......
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ccii:: cc ssyymmbbooll..
cciiii:: cc ssyymmbbooll,, ccii..
cciiiiii:: cc ssyymmbbooll,, cciiii..
...... ......

Here the ii’s count the number of aa’s, bb’s and cc’s. Next we introduce a special
kind of name called a metanotion. Rather than being capable of producing (part of) a
sentence in the language, it is capable of producing (part of) a name in a grammar rule.
In our example we want to catch the repetitions of ii’s in a metanotion NN, for which we
give a context-free production rule (a metarule):

NN :::: ii ;; ii NN ..

Note that we use a slightly different notation for metarules: left-hand side and right-
hand side are separated by a double colon (::::) rather than by a single colon and
members are separated by a blank ( ) rather than by a comma. The metanotion NN pro-
duces ii, iiii, iiiiii, etc., which are exactly the parts of the non-terminal names we need.

We can use the production rules of NN to collapse the four infinite groups of rules
into four finite rule templates called hyper-rules.

tteexxttSS:: aa NN,, bb NN,, cc NN..

aa ii:: aa ssyymmbbooll..
aa ii NN:: aa ssyymmbbooll,, aa NN..

bb ii:: bb ssyymmbbooll..
bb ii NN:: bb ssyymmbbooll,, bb NN..

cc ii:: cc ssyymmbbooll..
cc ii NN:: cc ssyymmbbooll,, cc NN..

Each original rule can be obtained from one of the hyper-rules by substituting a
production of NN from the metarules for each occurrence of NN in that hyper-rule, pro-
vided that the same production of NN is used consistently throughout. To distinguish
them from normal names, these half-finished combinations of small letters and metano-
tions (like aa NN or bb ii NN) are called hypernotions. Substituting, for instance, NN=iiiiii in
the hyperrule

bb ii NN:: bb ssyymmbbooll,, bb NN..

yields the CF rule for the CF non-terminal bbiiiiiiii

bbiiiiiiii:: bb ssyymmbbooll,, bbiiiiii..

We can also use this technique to condense the finite parts of a grammar by hav-
ing a metarule AA for the symbols aa, bb and cc. Again the rules of the game require that
the metanotion AA be replaced consistently. The final result is shown in Figure 2.17.

This grammar gives a clear indication of the language it describes: once the
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NN :::: ii ;; ii NN ..
AA :::: aa ;; bb ;; cc ..

tteexxttSS:: aa NN,, bb NN,, cc NN..
AA ii:: AA ssyymmbbooll..
AA ii NN:: AA ssyymmbbooll,, AA NN..

Figure 2.17 A VW grammar for the language a nb nc n

“value” of the metanotion NN is chosen, production is straightforward. It is now trivial to
extend the grammar to a nb nc nd n . It is also clear how long-range relations are esta-
blished without having confusing messengers in the sentential form: they are esta-
blished before they become long-range, through consistent substitution of metanotions
in simple right-hand sides. The “consistent substitution rule” for metanotions is essen-
tial to the two-level mechanism; without it, VW grammars would be equivalent to CF
grammars (Meersman and Rozenberg [VW 1978]).

A very good and detailed explanation of VW grammars has been written by Craig
Cleaveland and Uzgalis [VW 1977], who also show many applications. Sintzoff [VW
1967] has proved that VW grammars are as powerful as PS grammars, which also
shows that adding a third level to the building cannot increase its powers. Van
Wijngaarden [VW 1974] has shown that the metagrammar need only be regular
(although simpler grammars may be possible if it is allowed to be CF).

2.4.3 Infinite symbol sets
In a sense, VW grammars are even more powerful than PS grammars: since the name
of a symbol can be generated by the grammar, they can easily handle infinite symbol
sets. Of course this just shifts the problem: there must be a (finite) mapping from sym-
bol names to symbols somewhere. The VW grammar of Figure 2.18 generates sen-
tences consisting of arbitrary numbers of equal-length stretches of equal symbols, for
instance, s 1s 1s 1s 2s 2s 2 or s 1s 1s 2s 2s 3s 3s 4s 4s 5s 5 , where sn is the representation of
iinn ssyymmbbooll. The minimum stretch length has been set to 2, to prevent the grammar
from producing Σ* .

NN :::: nn NN;; εε ..
CC :::: ii;; ii CC..

tteexxttSS:: NN ii ttaaiill..
NN CC ttaaiill:: εε;; NN CC,, NN CC ii ttaaiill..
NN nn CC :: CC ssyymmbbooll,, NN CC..
CC :: εε..

Figure 2.18 A grammar handling an infinite alphabet

2.4.4 BNF notation for VW grammars
There is a different notation for VW grammars, sometimes used in formal language
theory (for instance, Greibach [VW 1974]), which derives from the BNF notation (see
Section 2.3.2.1). A BNF form of our grammar from Figure 2.17 is given in Figure 2.19;
hypernotions are demarcated by angle brackets and terminal symbols are represented
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by themselves.

NN -->> ii || ii NN
AA -->> aa || bb || cc

<<tteexxtt>>SS -->> <<aaNN>> <<bbNN>> <<ccNN>>
<<AAii>> -->> AA
<<AAiiNN>> -->> AA <<AANN>>

Figure 2.19 The VW grammar of Figure 2.17 in BNF notation

2.4.5 Affix grammars
Like VW grammars, affix grammars establish long-range relations by duplicating
information in an early stage; this information is, however, not part of the non-terminal
name, but is passed as an independent parameter, an affix, which can, for instance, be
an integer value. Normally these affixes are passed on to the members of a rule, until
they are passed to a special kind of non-terminal, a primitive predicate. Rather than
producing text, a primitive predicate contains a legality test. For a sentential form to be
legal, all the legality tests in it have to succeed. The affix mechanism is equivalent to
the VW metanotion mechanism, is slightly easier to handle while parsing and slightly
more difficult to use when writing a grammar.

An affix grammar for a nb nc n is given in Figure 2.20. The first two lines are affix
definitions for NN, MM, AA and BB. Affixes in grammar rules are traditionally preceded by a
++. The names of the primitive predicates start with wwhheerree. To produce aabbcc, start with
tteexxtt ++ 11; this produces

lliisstt ++ 11 ++ aa,, lliisstt ++ 11 ++ bb,, lliisstt ++ 11 ++ cc

The second member of this, for instance, produces

lleetttteerr ++ bb,, wwhheerree iiss ddeeccrreeaasseedd ++ 00 ++ 11,, lliisstt ++ 00 ++ bb

the first member of which produces

wwhheerree iiss ++ bb ++ bb,, bb ssyymmbbooll..

All the primitive predicates in the above are fulfilled, which makes the final sentence
legal. An attempt to let lleetttteerr ++ bb produce aa ssyymmbbooll introduces the primitive
predicate wwhheerree iiss ++ aa ++ bb which fails, invalidating the sentential form.

Affix grammars have largely been replaced by attribute grammars, which achieve
roughly the same effect through similar but conceptually different means (see Section
2.9.1).
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NN,, MM:::: iinntteeggeerr..
AA,, BB:::: aa;; bb;; cc..

tteexxttSS ++ NN:: lliisstt ++ NN ++ aa,, lliisstt ++ NN ++ bb,, lliisstt ++ NN ++ cc..

lliisstt ++ NN ++ AA:: wwhheerree iiss zzeerroo ++ NN;;
lleetttteerr ++ AA,, wwhheerree iiss ddeeccrreeaasseedd ++ MM ++ NN,,

lliisstt ++ MM ++ AA..

lleetttteerr ++ AA:: wwhheerree iiss ++ AA ++ aa,, aa ssyymmbbooll;;
wwhheerree iiss ++ AA ++ bb,, bb ssyymmbbooll;;
wwhheerree iiss ++ AA ++ cc,, cc ssyymmbbooll..

wwhheerree iiss zzeerroo ++ NN:: {{NN == 00}}..

wwhheerree iiss ddeeccrreeaasseedd
++ MM ++ NN:: {{MM == NN -- 11}}..

wwhheerree iiss ++ AA ++ BB:: {{AA == BB}}..

Figure 2.20 Affix grammar for a nb nc n

2.5 ACTUALLY GENERATING SENTENCES FROM A GRAMMAR

2.5.1 The general case
Until now we have only produced single sentences from our grammars, in an ad hoc
fashion, but the purpose of a grammar is to generate all its sentences. Fortunately there
is a systematic way to do so. We shall use the a nb nc n grammar as an example. We
start from the start symbol and systematically make all possible substitutions to gen-
erate all sentential forms; we just wait and see which ones evolve into sentences and
when. Try this by hand for, say, 10 sentential forms. If we are not careful, we are apt to
generate forms like aSQ, aaSQQ, aaaSQQQ,... only and we will never see a finished
sentence. The reason is that we focus too much on a single sentential form; we have to
give equal time to all of them. This can be done through the following algorithm, which
keeps a queue (that is, a list to which we add at the end and remove from the begin-
ning), of sentential forms.

Start with the start symbol as the only sentential form in the queue. Now continue
doing the following:
� Consider the first sentential form in the queue.
� Scan it from left to right, looking for strings of symbols that match the left-hand

side of a production rule.
� For each such string found, make enough copies of the sentential form, replace in

each one the string that matched a left-hand side of a rule by a different alternative
of that rule, and add them all to the end of the queue.

� If the original sentential form did not contain any non-terminals, write it down as
a sentence in the language.
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� Throw away the sentential form; it has been fully processed.
If no rule matched, and the sentential form was not a finished sentence, it was a

blind alley; they are removed automatically by the above process and leave no trace.
The first couple of steps of this process for our a nb nc n grammar from Figure 2.6

are depicted in Figure 2.21. The queue runs to the right, with the first item on the left.

Step Queue Result
1 SS
2 aabbcc aaSSQQ aabbcc
3 aaSSQQ
4 aaaabbccQQ aaaaSSQQQQ
5 aaaaSSQQQQ aaaabbQQcc
6 aaaabbQQcc aaaaaabbccQQQQ aaaaaaSSQQQQQQ
7 aaaaaabbccQQQQ aaaaaaSSQQQQQQ aaaabbbbcccc
8 aaaaaaSSQQQQQQ aaaabbbbcccc aaaaaabbQQccQQ
9 aaaabbbbcccc aaaaaabbQQccQQ aaaaaaaabbccQQQQQQ aaaaaaaaSSQQQQQQQQ aaaabbbbcccc
10 aaaaaabbQQccQQ aaaaaaaabbccQQQQQQ aaaaaaaaSSQQQQQQQQ
11 aaaaaaaabbccQQQQQQ aaaaaaaaSSQQQQQQQQ aaaaaabbbbccccQQ aaaaaabbQQQQcc
...... ......

Figure 2.21 The first couple of steps in producing for a nb nc n

We see that we do not get a sentence for each time we turn the crank; in fact, in this
case real sentences will get scarcer and scarcer. The reason is of course that as the pro-
cess progresses, more and more side lines develop, which all require equal attention.
Still, we can be certain that every sentence that can be produced, will in the end be pro-
duced: we leave no stone unturned. This way of doing things is called breadth-first pro-
duction; computers are better at it than people.

It is tempting to think that it is unnecessary to replace all left-hand sides that we
found in the top-most sentential form. Why not just replace the first one and wait for
the resulting sentential form to come up again and then do the next one? This is wrong,
however, since doing the first one may ruin the context for doing the second one. A
simple example is the grammar

SSSS -->> AACC
AA -->> bb
AACC -->> aacc

First doing AA-->>bb will lead to a blind alley and the grammar will produce nothing.
Doing both possible substitutions will lead to the same blind alley, but then there will
also be a second sentential form, aacc. This is also an example of a grammar for which
the queue will get empty after a (short) while.

If the grammar is context-free there is no context to ruin and it is quite safe to just
replace the first match.

There are two remarks to be made here. First, it is not at all certain that we will
indeed obtain a sentence for all our effort: it is quite possible that every new sentential
form again contains non-terminals. We should like to know this in advance by examin-
ing the grammar, but it can be proven that it is in general impossible to do so. The
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formal-linguist says “It is undecidable whether a PS grammar produces the empty set”,
which means that there cannot be an algorithm that will for every PS grammar
correctly tell if the grammar produces at least one sentence. This does not mean that we
cannot prove for some given grammar that it generates nothing, if that is the case, only
that the proof method used will not work for all grammars: we could have a program
that correctly says Yes in finite time if the answer is Yes but that takes infinite time if
the answer is No; in fact, our generating procedure above is such an algorithm that
gives the correct Yes/No answer in infinite time (although we can have an algorithm
that gives a Yes/Don’t know answer in finite time). Although it is true that because of
some deep theorem in formal linguistics we cannot always get exactly the answer we
want, this does not prevent us from obtaining all kinds of useful information that gets
close. We shall see that this is a recurring phenomenon. The computer scientist is
aware of but not daunted by the impossibilities from formal linguistics.

The second remark is that when we do get sentences from the above production
process, they may be produced in an unpredictable order. For non-monotonic grammars
the sentential forms may grow for a while and then suddenly shrink again, perhaps to
the empty string. Formal linguistics says that there cannot be an algorithm that for all
PS grammars will produce their sentences in increasing (actually “non-decreasing”)
length.

The production of all sentences from a van Wijngaarden grammar poses a special
problem in that there are effectively infinitely many left-hand sides to match with. For
a technique to solve this problem, see Grune [VW 1984].

2.5.2 The CF case
When we generate sentences from a CF grammar, many things are a lot simpler. It can
still happen that our grammar will never produce a sentence, but now we can test for
that beforehand, as follows. First scan the grammar to find all non-terminals that have a
right-hand side that contains terminals only or is empty. These non-terminals are
guaranteed to produce something. Now scan again to find non-terminals that have a
right-hand side that consists of only terminals and non-terminals that are guaranteed to
produce something. This will give us new non-terminals that are guaranteed to produce
something. Repeat this until we find no more new such non-terminals. If we have not
met the start symbol this way, it will not produce anything.

Furthermore we have seen that if the grammar is CF, we can afford to just rewrite
the left-most non-terminal every time (provided we rewrite it into all its alternatives).
Of course we can also consistently rewrite the right-most non-terminal; both
approaches are similar but different. Using the grammar

0. NN -->> tt || dd || hh
1. SSSS -->> NN || LL && NN
2. LL -->> NN ,, LL || NN

let us follow the adventures of the sentential form that will eventually result in d,h&h.
Although it will go several times up and down the production queue, we only depict
here what changes are made to it. We show the sentential forms for left-most and
right-most substitution, with the rules and alternatives involved; for instance, (1b)
means rule 1 alternative b.
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SS SS
1b 1b

LL&&NN LL&&NN
2a 0c

NN,,LL&&NN LL&&hh
0b 2a

dd,,LL&&NN NN,,LL&&hh
2b 2b

dd,,NN&&NN NN,,NN&&hh
0c 0c

dd,,hh&&NN NN,,hh&&hh
0c 0b

dd,,hh&&hh dd,,hh&&hh

The sequences of production rules used are not as similar as we would expect; of
course, in grand total the same rules and alternatives are applied but the sequences are
neither equal nor each other’s mirror image, nor is there any other obvious relationship.
Still both define the same production tree:

SS

LL NN

NN LL

NN

dd ,, hh && hh

but if we number the non-terminals in it in the order they were rewritten, we would get
different numberings:

SS

LL NN

NN LL

NN

dd ,, hh && hh

1

2 6

3 4

5

Left-most derivation order

SS

LL NN

NN LL

NN

dd ,, hh && hh

1

3 2

6 4

5

Right-most derivation order

The sequence of production rules used in left-most rewriting is called the left-most
derivation of a sentence. We do not have to indicate where each rule must be applied



Sec. 2.5] Actually generating sentences from a grammar 51

and need not even give its rule number; both are implicit in the left-most substitution.
A right-most derivation is defined in the obvious way.

The production sequence SS → LL&&NN → NN,,LL&&NN → dd,,LL&&NN → dd,,NN&&NN → dd,,hh&&NN →
dd,,hh&&hh can be abbreviated to SS →*l dd,,hh&&hh. Likewise, the sequence SS → LL&&NN → LL&&hh →
NN,,LL&&hh → NN,,NN&&hh → NN,,hh&&hh → dd,,hh&&hh can be abbreviated to SS →*r dd,,hh&&hh. The fact that
SS produces dd,,hh&&hh in any way is written as SS →* dd,,hh&&hh.

The task of parsing is to reconstruct the parse tree (or graph) for a given input
string, but some of the most efficient parsing techniques can be understood more easily
if viewed as attempts to reconstruct a left- or right-most derivation of the input string;
the parse tree then follows automatically. This is why the notion “[left|right]-most
derivation” will occur frequently in this book (note the FC grammar used here).

2.6 TO SHRINK OR NOT TO SHRINK

In the previous paragraphs, we have sometimes been explicit as to the question if a
right-hand side of a rule may be shorter than its left-hand side and sometimes we have
been vague. Type 0 rules may definitely be of the shrinking variety, monotonic rules
definitely may not, and Type 2 and 3 rules can shrink only by producing empty (ε), that
much is sure.

The original Chomsky hierarchy [Misc 1959] was very firm on the subject: only
Type 0 rules are allowed to make a sentential form shrink. Type 1 to 3 rules are all
monotonic. Moreover, Type 1 rules have to be of the context-sensitive variety, which
means that only one of the non-terminals in the left-hand side is actually allowed to be
replaced (and then not by ε). This makes for a proper hierarchy in which each next
class is a proper subset of its parent and in which all derivation graphs except for those
of Type 0 grammars are actually derivation trees.

As an example consider the grammar for the language a nb nc n given in Figure
2.6:

1. SSSS -->> aabbcc || aaSSQQ
2. bbQQcc -->> bbbbcccc
3. ccQQ -->> QQcc

which is monotonic but not context-sensitive in the strict sense. It can be made CS by
expanding the offending rule 3 and introducing a non-terminal for cc:

1. SSSS -->> aabbCC || aaSSQQ
2. bbQQCC -->> bbbbCCCC

3a. CCQQ -->> CCXX
3b. CCXX -->> QQXX
3c. QQXX -->> QQCC
4. CC -->> cc

Now the production graph of Figure 2.7 turns into a production tree:
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SS

aa SS QQ

aa bb CC QQ

CC XX

QQ XX

bb QQ CC

bb bb CC CC

aa aa bb bb cc cc

. . . . . . . . . . . .

There is an additional reason for shunning ε-rules: they make both proofs and
parsers more complicated. So the question arises why we should bother with ε-rules at
all; the answer is that they are very convenient for the grammar writer and user.

If we have a language that is described by a CF grammar with ε-rules and we
want to describe it by a grammar without ε-rules, then that grammar will almost always
be more complicated. Suppose we have a system that can be fed bits of information,
like: “Amsterdam is the capital of the Netherlands”, “Truffles are expensive”, and can
then be asked a question. On a very superficial level we can define its input as:

iinnppuuttSS:: zzeerroo--oorr--mmoorree--bbiittss--ooff--iinnffoo qquueessttiioonn

or, in an extended notation

iinnppuuttSS:: bbiitt--ooff--iinnffoo** qquueessttiioonn

Since zzeerroo--oorr--mmoorree--bbiittss--ooff--iinnffoo will, among other strings, produce the empty
string, at least one of the rules used in its grammar will be an ε-rule; the ** in the
extended notation already implies an ε-rule somewhere. Still, from the user’s point of
view, the above definition of input neatly fits the problem and is exactly what we want.

Any attempt to write an ε-free grammar for this input will end up defining a
notion that comprises some of the later bbiittss--ooff--iinnffoo together with the qquueessttiioonn
(since the qquueessttiioonn is the only non-empty part, it must occur in all rules involved!);
but such a notion does not fit our problem at all and is an artifact:

iinnppuuttSS:: qquueessttiioonn--pprreecceeddeedd--bbyy--iinnffoo
qquueessttiioonn--pprreecceeddeedd--bbyy--iinnffoo:: qquueessttiioonn

|| bbiitt--ooff--iinnffoo qquueessttiioonn--pprreecceeddeedd--bbyy--iinnffoo

As a grammar becomes more and more complicated, the requirement that it be ε-free
becomes more and more a nuisance: the grammar is working against us, not for us.

This presents no problem from a theoretical point of view: any CF language can
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be described by an ε-free CF grammar and ε-rules are never needed. Better still, any
grammar with ε-rules can be mechanically transformed into an ε-free grammar for the
same language; we saw an example of such a transformation above and details of the
algorithm are given in Section 4.2.3.1. But the price we pay is that of any grammar
transformation: it is no longer our grammar and it reflects the original structure less
well.

The bottom line is that the practitioner finds the ε-rule to be a useful tool, and it
would be interesting to see if there exists a hierarchy of non-monotonic grammars
alongside the usual Chomsky hierarchy. To a large extend there is: Type 2 and Type 3
grammars need not be monotonic (since they can always be made so if the need arises);
it turns out that context-sensitive grammars with shrinking rules are equivalent to
unrestricted Type 0 grammars; and monotonic grammars with ε-rules are also
equivalent to Type 0 grammars. We can now draw the two hierarchies in one picture;
see Figure 2.22.
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Figure 2.22 Summary of grammar hierarchies

Drawn lines separate grammar types with different power, broken lines separate con-
ceptually different grammar types with the same power. We see that if we insist on
non-monotonicity, the distinction between Type 0 and Type 1 disappears.

A special case arises if the language of a Type 1 to Type 3 grammar itself contains
the empty string. This cannot be incorporated into the grammar in the monotonic
hierarchy since the start symbol has already length 1 and no monotonic rule can make it
shrink; the empty string has to be attached as a special property to the grammar. No
such problem occurs in the non-monotonic hierarchy.

Many parsing methods will in principle work for ε-free grammars only: if some-
thing does not produce anything, you can’t very well see if it’s there. Often, however,
the parsing method can be doctored so that it will be able to handle ε-rules.
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2.7 A CHARACTERIZATION OF THE LIMITATIONS OF CF AND FS
GRAMMARS

When one has been working for a while with CF grammars, one gradually gets the feel-
ing that almost anything could be expressed in a CF grammar. That there are, however,
serious limitations to what can be said by a CF grammar is shown by the famous uvwxy
theorem, which is explained below.

2.7.1 The uvwxy theorem
When we have obtained a sentence from a CF grammar, we may look at each (termi-
nal) symbol in it, and ask: How did it get here? Then, looking at the production tree, we
see that it was produced as, say, the n-th member of the right-hand side of rule number
m. The left-hand side of this rule, the parent of our symbol, was again produced as the
p-th member of rule q, and so on, until we reach the start symbol. We can, in a sense,
trace the lineage of the symbol in this way. If all rule/member pairs in the lineage of a
symbol are different, we call the symbol original, and if all the symbols in a sentence
are original, we call the sentence “original”.

Now there is only a finite number of ways for a given symbol to be original. This
is easy to see as follows. All rule/member pairs in the lineage of an original symbol
must be different, so the length of its lineage can never be more than the total number
of different rule/member pairs in the grammar. There are only so many of these, which
yields only a finite number of combinations of rule/member pairs of this length or
shorter. In theory the number of original lineages of a symbol can be very large, but in
practice it is very small: if there are more than, say, ten ways to produce a given sym-
bol from a grammar by original lineage, your grammar will be very convoluted!

This puts severe restrictions on original sentences. If a symbol occurs twice in an
original sentence, both its lineages must be different: if they were the same, they would
describe the same symbol in the same place. This means that there is a maximum
length to original sentences: the sum of the numbers of original lineages of all symbols.
For the average grammar of a programming language this length is in the order of some
thousands of symbols, i.e., roughly the size of the grammar. So, since there is a longest
original sentence, there can only be a finite number of original sentences, and we arrive
at the surprising conclusion that any CF grammar produces a finite-size kernel of origi-
nal sentences and (probably) an infinite number of unoriginal sentences!
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Figure 2.23 An unoriginal sentence: uvwxy

What do “unoriginal” sentences look like? This is where we come to the uvwxy
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theorem. An unoriginal sentence has the property that it contains at least one symbol in
the lineage of which a repetition occurs. Suppose that symbol is a q and the repeated
rule is A. We can then draw a picture similar to Figure 2.23, where w is the part pro-
duced by the most recent application of A, vwx the part produced by the other applica-
tion of A and uvwxy is the entire unoriginal sentence. Now we can immediately find
another unoriginal sentence, by removing the smaller triangle headed by A and replac-
ing it by a copy of the larger triangle headed by A; see Figure 2.24.
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Figure 2.24 Another unoriginal sentence, uv 2wx 2y

This new tree produces the sentence uvvwxxy and it is easy to see that we can, in this
way, construct a complete family of sentences uv nwx ny for all n≥0; the w is nested in a
number of v and x brackets, in an indifferent context of u and y.

The bottom line is that when we examine longer and longer sentences in a
context-free language, the original sentences become exhausted and we meet only fam-
ilies of closely related sentences telescoping off into infinity. This is summarized in
the uvwxy theorem: any sentence generated by a CF grammar, that is longer than the
longest original sentence from that grammar, can be cut into five pieces u, v, w, x and y
in such a way that uv nwx ny is a sentence from that grammar for all n≥0. The uvwxy
theorem has several variants; it is also called the pumping lemma for context-free
languages.

Two remarks must be made here. The first is that if a language keeps on being ori-
ginal in longer and longer sentences without reducing to families of nested sentences,
there cannot be a CF grammar for it. We have already encountered the context-
sensitive language a nb nc n and it is easy to see (but not quite so easy to prove!) that it
does not decay into such nested sentences, as sentences get longer and longer. Conse-
quently, there is no CF grammar for it.

The second is that the longest original sentence is a property of the grammar, not
of the language. By making a more complicated grammar for a language we can
increase the set of original sentences and push away the border beyond which we are
forced to resort to nesting. If we make the grammar infinitely complicated, we can push
the border to infinity and obtain a phrase structure language from it. How we can make
a CF grammar infinitely complicated, is described in the Section on two-level gram-
mars, 2.4.



56 Grammars as a generating device [Ch. 2

2.7.2 The uvw theorem
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u
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u v
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u v
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u v
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u v w

Figure 2.25 Repeated occurrence of A may result in repeated occurrence of v

A simpler form of the uvwxy theorem applies to regular (Type 3) languages. We have
seen that the sentential forms occurring in the production process for a FS grammar all
contain only one non-terminal, which occurs at the end. During the production of a
very long sentence, one or more non-terminals must occur two or more times, since
there are only a finite number of non-terminals. Figure 2.25 shows what we see, when
we list the sentential forms one by one; the substring v has been produced from one
occurrence of A to the next, u is a sequence that allows us to reach A, and w is a
sequence that allows us to terminate the production process. It will be clear that, start-
ing from the second A, we could have followed the same path as from the first A, and
thus have produced uvvw. This leads us to the uvw theorem, or the pumping lemma for
regular languages: any sufficiently long string from a regular language can be cut into
three pieces u, v and w, so that uv nw is a string in the language for all n≥0.

2.8 HYGIENE IN GRAMMARS

Although the only requirement for a CF grammar is that there is exactly one non-
terminal in the left-hand sides of all its rules, such a general grammar can suffer from a
(small) number of ailments.

2.8.1 Undefined non-terminals
The right-hand sides of some rules may contain non-terminals for which no production
rule is given. Remarkably, this does not seriously affect the sentence generation pro-
cess described in 2.5.2: if a sentential form containing an undefined non-terminal turns
up for processing in a left-most production process, there will be no match, and the sen-
tential form is a blind alley and will be discarded. The rule with the right-hand side
containing the undefined non-terminal will never have issue and can indeed be
removed from the grammar. (If we do this, we may of course remove the last defini-
tion of another non-terminal, which will then in turn become undefined, etc.)

From a theoretical point of view there is nothing wrong with an undefined non-
terminal, but if a user-specified grammar contains one, there is almost certainly an
error, and any grammar-processing program should mark such an occurrence as an
error.
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2.8.2 Unused non-terminals
If a non-terminal never occurs in the right-hand side of any rule, its defining rules will
never be used. Again this is no problem, but almost certainly implies an error some-
where.

This error is actually harder to detect than it looks. Just searching all right-hand
sides is not good enough: imagine a rule X→aX where X does not occur elsewhere in
the grammar. Then X occurs in a right-hand side, yet it will never be used. An algo-
rithm to determine the set of unused non-terminals is given in Section 4.2.3.4.

2.8.3 Non-productive non-terminals
Suppose X has as its only rule X→aX and suppose X can be reached from the start sym-
bol. Now X will still not contribute anything to the sentences of the language of the
grammar, since once X is introduced, there is no way to get rid of X: any non-terminals
that does not in itself produce a sublanguage is non-productive and its rules can be
removed. Note that such removal will make the non-terminal undefined. An algorithm
to determine if a non-terminal generates anything at all is given in 4.2.3.3.

To clean up a grammar, it is necessary to first remove the non-productive non-
terminals, then the undefined ones and then the unused ones. These three groups
together are called useless non-terminals.

2.8.4 Loops
The above definition makes “non-useless” all rules that can be involved in the produc-
tion of a sentence, but there still is a class of rules that are not really useful: rules of the
form A→A. Such rules are called loops: loops can also be indirect: A→B, B→C, C→A.
A loop can legitimately occur in the production of a sentence, but if it does there is also
a production of that sentence without the loop. Loops don’t contribute to the language
and any sentence the production of which involves a loop is infinitely ambiguous,
meaning that there are infinitely many production trees for it. Algorithms for loop
detection are given in Section 4.1.2.

Different parsers react differently to grammars with loops. Some (most of the gen-
eral parsers) faithfully attempt to construct an infinite number of parse trees, some (for
instance, the CYK parser) collapse the loop as described above and some (most deter-
ministic parsers) reject the grammar. The problem is aggravated by the fact that loops
can be concealed by ε-rules: a loop may only become visible when certain non-
terminals produce ε.

2.9 THE SEMANTIC CONNECTION

Sometimes parsing serves only to check the correctness of a string; that the string con-
forms to a given grammar may be all we want to know, for instance because it confirms
our hypothesis that certain observed patterns are indeed correctly described by the
grammar we have designed for it. Often, however, we want to go further: we know that
the string conveys a meaning, its semantics, and this semantics is directly related to the
structure of the production tree of the string. (If it is not, we have the wrong grammar!)

Attaching semantics to a grammar is done in a very simple and effective way: to
each rule in the grammar, a semantic clause is attached that relates the semantics of the
members of the right-hand side of the rule to the semantics of the entire rule (in which
case the semantic information flows from the leaves of the tree upwards to the start
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symbol) or the other way around (in which case the semantic information flows down-
wards from the start symbol to the leaves) or both ways (in which case the semantic
information may have to flow up and down for a while until a stable situation is
reached). Semantic information flowing down is called inherited: each rule inherits it
from its parent in the tree; semantic information flowing up is called derived: each rule
derives it from its children.

There are many ways to express semantic clauses; since our subject is parsing and
syntax rather than semantics, we will briefly describe only two often-used and well-
studied techniques: attribute grammars and transduction grammars. We shall explain
both using the same simple example, the language of sums of one-digit numbers; the
semantics of a sentence in this language is the value of the sum. The language is gen-
erated by the grammar of Figure 2.26.

SSuummSS -->> DDiiggiitt
SSuumm -->> SSuumm ++ DDiiggiitt

DDiiggiitt -->> 00 || 11 || ...... || 99

Figure 2.26 A grammar for sums of one-digit numbers

One of its sentences is, for instance, 33++55++11; its semantics is 9.

2.9.1 Attribute grammars
The semantic clauses in an attribute grammar assume that each node in the production
tree has room for one or more attributes, which are just values (numbers, strings or
anything else) sitting in nodes in production trees. For simplicity we restrict ourselves
to attribute grammars with only one attribute per node. The semantic clause of a rule in
such a grammar contains some formulas which calculate the attributes of some of the
non-terminals in that rule (=nodes in the production tree) from other non-terminals in
that rule.

If the semantic clause of a rule R calculates the attribute of the left-hand side of R,
that attribute is derived; if it calculates an attribute of one of the non-terminals in the
right-hand side of R, say T, then that attribute is inherited by T. Derived attributes are
also called “synthesized attributes”. The attribute grammar for our example is:

1. SSuummSS -->> DDiiggiitt {{A 0:=A 1}}
2. SSuumm -->> SSuumm ++ DDiiggiitt {{A 0:=A 1+A 3}}
3a. DDiiggiitt -->> 00 {{A 0:=0}}

...... ......
3j. DDiiggiitt -->> 99 {{A 0:=9}}

The semantic clauses are given between curly brackets. A 0 is the (derived) attribute of
the left-hand side, A 1

. . . An are the attributes of the members of the right-hand side.
Traditionally, terminal symbols in a right-hand side are also counted in determining the
index of A, although they do not (normally) carry attributes; the Digit in rule 2 is in
position 3 and its attribute is A 3 . Most systems for handling attribute grammars have
less repetitive ways to express rule 3a through 3j.

The initial parse tree for 33++55++11 is given in Figure 2.27. First only the attributes
for the leaves are known, but as soon as all attributes in a right-hand side of a
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++

++ 11

33 55

A 0=1

A 0=3 A 0=5

Figure 2.27 Initial stage of the attributed parse tree

production rule are known, we can use its semantic clause to calculate the attribute of
its left-hand side. This way the attribute values (semantics) percolate up the tree, finally
reach the start symbol and provide as with the semantics of the whole sentence, as
shown in Figure 2.28. Attribute grammars are a very powerful method of handling the
semantics of a language.

++

++ 11

33 55

A 0=9

A 0=8 A 0=1

A 0=3 A 0=5

Figure 2.28 Fully attributed parse tree

2.9.2 Transduction grammars
Transduction grammars define the semantics of a string (the “input string”) as another
string, the “output string” or “translation”, rather than as the final attribute of the start
symbol. This method is less powerful but much simpler than using attributes and often
sufficient. The semantic clause in a rule just contains the string that should be output
for the corresponding node. We assume that the string for a node is output just after the
strings for all its children. Other variants are possible and in fact usual. We can now
write a transduction grammar which translates a sum of digits into instructions to cal-
culate the value of the sum.

1. SSuummSS -->> DDiiggiitt {{""mmaakkee iitt tthhee rreessuulltt""}}
2. SSuumm -->> SSuumm ++ DDiiggiitt {{""aadddd iitt ttoo tthhee pprreevviioouuss rreessuulltt""}}
3a. DDiiggiitt -->> 00 {{""ttaakkee aa 00""}}

...... ......
3j. DDiiggiitt -->> 99 {{""ttaakkee aa 99""}}

This transduction grammar translates 33++55++11 into:

take a 3
make it the result
take a 5
add it to the previous result
take a 1
add it to the previous result
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which is indeed what 33++55++11 “means”.

2.10 A METAPHORICAL COMPARISON OF GRAMMAR TYPES

Text books claim that “Type n grammars are more powerful than Type n +1 grammars,
for n=0,1,2”, and one often reads statements like “A regular (Type 3) grammar is not
powerful enough to match parentheses”. It is interesting to see what kind of power is
meant. Naively, one might think that it is the power to generate larger and larger sets,
but this is clearly incorrect: the largest possible set of strings, Σ* , is easily generated by
the straightforward Type 3 grammar:

SSSS -->> [[ΣΣ]] SS || εε

where [Σ] is an abbreviation for the symbols in the language. It is just when we want to
restrict this set, that we need more powerful grammars. More powerful grammars can
define more complicated boundaries between correct and incorrect sentences. Some
boundaries are so fine that they cannot be described by any grammar (that is, by any
generative process).

This idea has been depicted metaphorically in Figure 2.29, in which a rose is
approximated by increasingly finer outlines. In this metaphor, the rose corresponds to
the language (imagine the sentences of the language as molecules in the rose); the
grammar serves to delineate its silhouette. A regular grammar only allows us straight
horizontal and vertical line segments to describe the flower; ruler and T-square suffice,
but the result is a coarse and mechanical-looking picture. A CF grammar would
approximate the outline by straight lines at any angle and by circle segments; the draw-
ing could still be made using the classical tools of compasses and ruler. The result is
stilted but recognizable. A CS grammar would present us with a smooth curve tightly
enveloping the flower, but the curve is too smooth: it cannot follow all the sharp turns
and it deviates slightly at complicated points; still, a very realistic picture results. An
unrestricted phrase structure grammar can represent the outline perfectly. The rose
itself cannot be caught in a finite description; its essence remains forever out of our
reach.

A more prosaic and practical example can be found in the successive sets of Pas-
cal† programs that can be generated by the various grammar types.
� The set of all lexically correct Pascal programs can be generated by a regular

grammar. A Pascal program is lexically correct if there are no newlines inside
strings, comment is terminated before end-of-file, all numerical constants have the
right form, etc.

� The set of all syntactically correct Pascal programs can be generated by a
context-free grammar. These programs conform to the (CF) grammar in the
manual.

� The set of all semantically correct Pascal programs can be generated by a CS
grammar (although a VW grammar would be more practical). These are the

� ���������������������������

† We use the programming language Pascal here because we expect that most of our readers will
be more or less familiar with it. Any programming language for which the manual gives a CF
grammar will do.
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Figure 2.29 The silhouette of a rose, approximated by Type 3 to Type 0 grammars

programs that pass through a Pascal compiler without drawing error messages.
� The set of all Pascal programs that would terminate in finite time when run with a

given input can be generated by an unrestricted phrase structure grammar. Such a
grammar would, however, be very complicated, even in van Wijngaarden form,
since it would incorporate detailed descriptions of the Pascal library routines and
the Pascal run-time system.

� The set of all Pascal programs that solve a given problem (for instance, play
chess) cannot be generated by a grammar (although the description of the set is
finite).

Note that each of the above sets is a subset of the previous set.



3
Introduction to parsing

To parse a string according to a grammar means to reconstruct the production tree (or
trees) that indicate how the given string can be produced from the given grammar.
There are two important points here; one is that we do require the entire production tree
and the other is that there may be more than one such tree.

The requirement to recover the production tree is not natural. After all, a grammar
is a condensed description of a set of strings, i.e., a language, and our input string either
belongs or does not belong to that language; no internal structure or production path is
involved. If we adhere to this formal view, the only meaningful question we can ask is
if a given string can be recognized according to a grammar; any question as to how,
would be a sign of senseless, even morbid curiosity. In practice, however, grammars
have semantics attached to them; specific semantics is attached to specific rules, and in
order to find out which rules were involved in the production of a string and how, we
need the production tree. Recognition is (often) not enough, we need parsing to get the
full benefit of the syntactic approach.

3.1 VARIOUS KINDS OF AMBIGUITY

A sentence from a grammar can easily have more than one production tree, i.e., there
can easily be more than one way to produce the sentence. From a formal point of view
this is again a non-issue (a set does not count how many times it contains an element),
but as soon as we are interested in the semantics, the difference becomes significant.
Not surprisingly, a sentence with more than one production tree is called ambiguous,
but we must immediately distinguish between essential ambiguity and spurious ambi-
guity. The difference comes from the fact that we are not interested in the production
trees per se, but rather in the semantics they describe. An ambiguous sentence is spuri-
ously ambiguous if all its production trees describe the same semantics; if some of
them differ in their semantics, the ambiguity is essential. The notion “ambiguity” can
also be defined for grammars: a grammar is essentially ambiguous if it can produce an
essentially ambiguous sentence, spuriously ambiguous if it can produce a spuriously
ambiguous sentence (but not an essentially ambiguous one) and unambiguous if it can-
not do either. Strangely enough, languages also can be ambiguous: there are (context-
free) languages for which there is no unambiguous grammar; such languages belong in
a research lab, in a cage. For testing the possible ambiguity of a grammar, see Section
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9.10.

1. SSuummSS -->> DDiiggiitt {{ A 0:=A 1 }}
2. SSuumm -->> SSuumm ++ SSuumm {{ A 0:=A 1+A 3 }}
3a. DDiiggiitt -->> 00 {{ A 0:=0 }}

..............
3j. DDiiggiitt -->> 99 {{ A 0:=9 }}

Figure 3.1 A simple ambiguous grammar

A simple ambiguous grammar is given in Figure 3.1. Note that rule 2 differs from
that in Figure 2.26. Now 33++55++11 has two production trees (Figure 3.2) but the semantics
is the same in both cases: 9. The ambiguity is spurious. If we change the ++ into a --,
however, the ambiguity becomes essential, Figure 3.3. The unambiguous grammar in
Figure 2.26 remains unambiguous and retains the correct semantics if ++ is changed into
--.

22

11 22

11 11

33cc 33ee 33aa

33 ++ 55 ++ 11

9

3 6

5 1

22

22 11

11 11

33cc 33ee 33aa

33 ++ 55 ++ 11

9

8 1

3 5

Figure 3.2 Spurious ambiguity: no change in semantics
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33 -- 55 -- 11
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Figure 3.3 Essential ambiguity: the semantics differ
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3.2 LINEARIZATION OF THE PARSE TREE

Often it is inconvenient and unnecessary to construct the actual production tree: many
parsers produce a list of rule numbers instead, which means that they linearize the
parse tree. There are three main ways to linearize a tree, prefix, postfix and infix. In
prefix notation, each node is listed by listing its number followed by prefix listings of
the subnodes in left-to-right order; this gives us the left-most derivation (for the right
tree in Figure 3.2):

left-most: 2 2 1 3c 1 3e 1 3a

In postfix notation, each node is listed by listing in postfix notation all the subnodes in
left-to-right order, followed by the number of the rule in the node itself; this gives us
the right-most derivation (for the same tree):

right-most: 3c 1 3e 1 2 3a 1 2

In infix notation, each node is listed by first giving an infix listing between parentheses
of the first n subnodes, followed by the rule number in the node, followed by an infix
listing between parentheses of the remainder of the subnodes; n can be chosen freely
and can even differ from rule to rule, but n =1 is normal. Infix notation is not common
for derivations, but is occasionally useful. The case with n =1 is called the left-corner
derivation; in our example we get:

left-corner: (((3c)1) 2 ((3e)1)) 2 ((3a)1)

The infix notation requires parentheses to enable us to reconstruct the production tree
from it. The left-most and right-most derivations can do without, provided we have the
grammar ready to find the number of subnodes for each node. Note that it is easy to tell
if a derivation is left-most or right-most: a left-most derivation starts with a rule for the
start symbol, a right-most derivation starts with a rule that produces terminal symbols
only (if both conditions hold, there is only one rule, which is both left-most and right-
most derivation).

The existence of several different derivations should not be confused with ambi-
guity. The different derivations are just notational variants for one and the same pro-
duction tree. No semantic significance can be attached to their differences.

3.3 TWO WAYS TO PARSE A SENTENCE

The basic connection between a sentence and the grammar it derives from is the parse
tree, which describes how the grammar was used to produce the sentence. For the
reconstruction of this connection we need a parsing technique. When we consult the
extensive literature on parsing techniques, we seem to find dozens of them, yet there
are only two techniques to do parsing; all the rest is technical detail and embellishment.

The first method tries to imitate the original production process by rederiving the
sentence from the start symbol. This method is called top-down, because the production
tree is reconstructed from the top downwards.†
� ���������������������������

† Trees grow from their roots downwards in computer science; this is comparable to electrons
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The second methods tries to roll back the production process and to reduce the
sentence back to the start symbol. Quite naturally this technique is called bottom-up.

3.3.1 Top-down parsing
Suppose we have the monotonic grammar for the language a nb nc n from Figure 2.6,
which we repeat here:

SSSS -->> aaSSQQ
SS -->> aabbcc

bbQQcc -->> bbbbcccc
ccQQ -->> QQcc

and suppose the (input) sentence is aaaabbbbcccc. First we try the top-down parsing method.
We know that the production tree must start with the start symbol:

SS

Now what could the second step be? We have two rules for SS: SS-->>aaSSQQ and SS-->>aabbcc.
The second rule would require the sentence to start with aabb, which it does not; this
leaves us SS-->>aaSSQQ:

SS

aa SS QQ

This gives us a good explanation of the first aa in our sentence. Again two rules apply:
SS-->>aaSSQQ and SS-->>aabbcc. Some reflection will reveal that the first rule would be a bad
choice here: all production rules of SS start with an aa, and if we would advance to the
stage aaaaSSQQQQ, the next step would inevitably lead to aaaaaa........, which contradicts the
input string. The second rule, however, is not without problems either:

SS

aa SS QQ

aa aa bb cc QQ

since now the sentence starts with aaaabbcc......, which also contradicts the input sentence.
Here, however, there is a way out: ccQQ-->>QQcc:

� ���������������������������

having a negative charge in physics.
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SS

aa SS QQ

aa bb cc QQ

aa aa bb QQ cc

Now only one rule applies: bbQQcc-->>bbbbcccc, and we obtain our input sentence (together
with the production tree):

SS

aa SS QQ

aa bb cc QQ

bb QQ cc

aa aa bb bb cc cc

Top-down parsing tends to identify the production rules (and thus to characterize
the parse tree) in prefix order.

3.3.2 Bottom-up parsing
Using the bottom-up technique, we proceed as follows. One production step must have
been the last and its result must still be visible in the string. We recognize the right-
hand side of bbQQcc-->>bbbbcccc in aaaabbbbcccc. This gives us the final step in the production (and
the first in the reduction):

aa aa bb QQ cc

aa aa bb bb cc cc

Now we recognize the QQcc as derived by ccQQ-->>QQcc:

aa aa bb cc QQ

bb QQ cc

aa aa bb bb cc cc

Again we find only one recognizable substring: aabbcc:
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aa SS QQ

aa bb cc QQ

bb QQ cc

aa aa bb bb cc cc

and also our last reduction step leaves us no choice:

SS

aa SS QQ

aa bb cc QQ

bb QQ cc

aa aa bb bb cc cc

Bottom-up parsing tends to identify the production rules in postfix order. It is
interesting to note that bottom-up parsing turns the parsing process into a production
process. The above reduction can be viewed as a production with the reversed gram-
mar:

aaSSQQ -->> SS
aabbcc -->> SS
bbbbcccc -->> bbQQcc
QQcc -->> ccQQ

augmented with a rule that turns the start symbol into a new terminal symbol:

SS -->> !!

and a rule which introduces a new start symbol, the original sentence:

IISS -->> aaaabbbbcccc

If, starting from II, we can produce !! we have recognized the input string, and if we
have kept records of what we did, we also have obtained the parse tree.

3.3.3 Applicability
The above examples show that both the top-down and the bottom-up method will work
under certain circumstances, but also that sometimes quite subtle considerations are
involved, of which it is not at all clear how we can teach them to a computer. Almost
the entire body of parser literature is concerned with formalizing these subtle
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considerations, and with considerable success.
Note: It is also possible to reconstruct some parts of the production tree top-down

and other parts bottom-up. Such methods identify the production rules in some infix
order and are called left-corner.

3.4 NON-DETERMINISTIC AUTOMATA

Both examples above feature two components: a machine that can make substitutions
and record a parse tree, and a control mechanism that decides which moves the
machine should make. The machine is relatively simple since its substitutions are res-
tricted to those allowed by the grammar, but the control mechanism can be made arbi-
trarily complex and may incorporate extensive knowledge of the grammar.

This structure can be discerned in all parsing methods; there always is a substitut-
ing and record-keeping machine and a guiding control mechanism (Figure 3.4).

control
mechanism

substituting and
record-keeping

mechanism

Figure 3.4 Global structure of a parser

The substituting machine is called a non-deterministic automaton or NDA; it is called
“non-deterministic” since it often has several possible moves and the particular choice
is not predetermined, and an “automaton” since it fits the Webster† definition “an
apparatus that automatically performs certain actions by responding to preset controls
or encoded instructions”. It manages three items: the input string (actually a copy of
it), the partial parse tree and some internal administration. Every move of the NDA
transfers some information from the input string through the administration to the par-
tial parse tree; each of the three items may be modified in the process:

partial
parse
trees

control input

internal
administration

The great strength of a NDA, and the main source of its usefulness, is that it can
easily be constructed so that it can only make “correct” moves, that is, moves that keep
� ���������������������������

† Webster’s New Twentieth Century Dictionary, The World Publ. Comp., Cleveland, 1970.
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the system of partially processed input, internal administration and partial parse tree
consistent. This has the consequence that we may move the NDA any way we choose:
it may move in circles, it may even get stuck, but if it ever gives us an answer, i.e., a
finished parse tree, that answer will be correct. It is also essential that the NDA can
make all correct moves, so that it can produce all parsings if the control mechanism is
clever enough to guide the NDA there. This property of the NDA is also easily
arranged.

The inherent correctness of the NDA allows great freedom to the control mechan-
ism, the “control” for short. It may be naive or sophisticated, it may be cumbersome or
it may be efficient, it may even be wrong, but it can never cause the NDA to produce
an incorrect parsing; and that is a comforting thought. (If it is wrong it may, however,
cause the NDA to miss a correct parsing, to loop infinitely or to get stuck in a place
where it should not).

3.4.1 Constructing the NDA
The NDA derives directly from the grammar. For a top-down parser its moves consist
essentially of the production rules of the grammar and the internal administration is ini-
tially the start symbol. The control moves the machine until the internal administration
is equal to the input string; then a parsing has been found. For a bottom-up parser the
moves consist essentially of the reverse of the production rules of the grammar (see
3.3.2) and the internal administration is initially the input string. The control moves the
machine until the internal administration is equal to the start symbol; then a parsing has
been found. A left-corner parser works like a top-down parser in which a carefully
chosen set of production rules has been reversed and which has special moves to undo
this reversion when needed.

3.4.2 Constructing the control mechanism
Constructing the control of a parser is quite a different affair. Some controls are
independent of the grammar, some consult the grammar regularly, some use large
tables precalculated from the grammar and some even use tables calculated from the
input string. We shall see examples of each of these: the “hand control” that was
demonstrated at the beginning of this section comes in the category “consults the gram-
mar regularly”, backtracking parsers often use a grammar-independent control, LL and
LR parsers use precalculated grammar-derived tables, the CYK parser uses a table
derived from the input string and Earley’s and Tomita’s parsers use several tables
derived from the grammar and the input string.

Constructing the control mechanism, including the tables, from the grammar is
almost always done by a program. Such a program is called a parser generator; it is fed
the grammar and perhaps a description of the terminal symbols and produces a program
which is a parser. The parser often consists of a driver and one or more tables, in which
case it is called table-driven. The tables can be of considerable size and of extreme
complexity.

The tables that derive from the input string must of course be calculated by a rou-
tine that is part of the parser. It should be noted that this reflects the traditional setting
in which a large number of different input strings is parsed according to a relatively
static and unchanging grammar. The inverse situation is not at all unthinkable: many
grammars are tried to explain a given input string (for instance, an observed sequence
of events).
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3.5 RECOGNITION AND PARSING FOR TYPE 0 TO TYPE 4 GRAMMARS

Parsing a sentence according to a grammar if we know in advance that the string indeed
derives from the grammar, is in principle always possible. If we cannot think of any-
thing better, we can just run the general production process of 2.5.1 on the grammar
and sit back and wait until the sentence turns up (and we know it will); this by itself is
not exactly enough, we must extend the production process a little, so that each senten-
tial form carries its own partial production tree, which must be updated at the appropri-
ate moments, but it is clear that this can be done with some programming effort. We
may have to wait a little while (say a couple of million years) for the sentence to show
up, but in the end we will surely obtain the parse tree. All this is of course totally
impractical, but it still shows us that at least theoretically any string can be parsed if we
know it is parsable, regardless of the grammar type.

3.5.1 Time requirements
When parsing strings consisting of more than a few symbols, it is important to have
some idea of the time requirements of the parser, i.e., the dependency of the time
required to finish the parsing on the number of symbols in the input string. Expected
lengths of input range from some tens (sentences in natural languages) to some tens of
thousands (large computer programs); the length of some input strings may even be vir-
tually infinite (the sequence of buttons pushed on a coffee vending machine over its
life-time). The dependency of the time requirements on the input length is also called
time complexity.

Several characteristic time dependencies can be recognized. A time dependency
is exponential if each following input symbol multiplies the required time by a constant
factor, say 2: each additional input symbol doubles the parsing time. Exponential time
dependency is written O(C n) where C is the constant multiplication factor. Exponential
dependency occurs in the number of grains doubled on each field of the famous chess
board; this way lies bankrupcy.

A time dependency is linear if each following input symbol takes a constant
amount of time to process; doubling the input length doubles the processing time. This
is the kind of behaviour we like to see in a parser; the time needed for parsing is pro-
portional to the time spent on reading the input. So-called real-time parsers behave
even better: they can produce the parse tree within a constant time after the last input
symbol was read; given a fast enough computer they can keep up indefinitely with an
input stream of constant speed. (Note that the latter is not necessarily true of linear-
time parsers: they can in principle read the entire input of n symbols and then take a
time proportional to n to produce the parse tree.)

Linear time dependency is written O(n). A time dependency is called quadratic if
the processing time is proportional to the square of the input length (written O(n 2)) and
cubic if it is proportional to the to the third power (written O(n 3)). In general, a depen-
dency that is proportional to any power of n is called polynomial (written O(n p)).

3.5.2 Type 0 and Type 1 grammars
It is a remarkable result in formal linguistics that the recognition problem for a arbi-
trary Type 0 grammar cannot be solved. This means that there cannot be an algorithm
that accepts an arbitrary Type 0 grammar and an arbitrary string and tells us in finite
time if the grammar can produce the string or not. This statement can be proven, but the
proof is very intimidating and, what is worse, does not provide any insight into the
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cause of the phenomenon. It is a proof by contradiction: we can prove that, if such an
algorithm existed, we could construct a second algorithm of which we can prove that it
only terminates if it never terminates. Since the latter is a logical impossibility and
since all other premisses that went into the intermediate proof are logically sound we
are forced to conclude that our initial premiss, the existence of a recognizer for Type 0
grammars, is a logical impossibility. Convincing, but not food for the soul. For the full
proof see Hopcroft and Ullman [Books 1979, pp. 182-183] or Révész [Books 1985, p.
98].

It is quite possible to construct a recognizer that works for a certain number of
Type 0 grammars, using a certain technique. This technique, however, will not work
for all Type 0 grammars. In fact, however many techniques we collect, there will
always be grammars for which they do not work. In a sense we just cannot make our
recognizer complicated enough.

For Type 1 grammars, the situation is completely different. The seemingly incon-
sequential property that Type 1 production rules cannot make a sentential form shrink
allows us to construct a control mechanism for a bottom-up NDA that will at least
work in principle, regardless of the grammar. The internal administration of this control
consists of a set of sentential forms that could have played a role in the production of
the input sentence; it starts off containing only the input sentence. Each move of the
NDA is a reduction according to the grammar. Now the control applies all possible
moves of the NDA to all sentential forms in the internal administration in an arbitrary
order, and adds each result to the internal administration if it is not already there. It
continues doing so until each move on each sentential form results in a sentential form
that has already been found. Since no move of the NDA can make a sentential form
longer (because all right-hand sides are at least as long as their left-hand sides) and
since there are only a finite number of sentential forms as long as or shorter than the
input string, this must eventually happen. Now we search the sentential forms in the
internal administration for one that consists solely of the start symbol; if it is there, we
have recognized the input string, if it is not, the input string does not belong to the
language of the grammar. And if we still remember, in some additional administration,
how we got this start symbol sentential form, we have obtained the parsing. All this
requires a lot of book-keeping, which we are not going to discuss, since nobody does it
this way anyway.

To summarize the above, we cannot always construct a parser for a Type 0 gram-
mar, but for a Type 1 grammar we always can. The construction of a practical and rea-
sonably efficient parser for such grammars is a very difficult subject on which slow but
steady progress has been made during the last 20 years (see the bibliography on
“Unrestricted PS and CS Grammars”). It is not a hot research topic, mainly because
Type 0 and Type 1 grammars are well-known to be human-unfriendly and will never
see wide application. Yet it is not completely devoid of usefulness, since a good parser
for Type 0 grammars would probably make a good starting point for a theorem prover.†

The human-unfriendliness consideration does not apply to two-level grammars.
Having a practical parser for two-level grammars would be marvellous, since it would
allow parsing techniques (with all their built-in automation) to be applied in many more
� ���������������������������

† A theorem prover is a program that, given a set of axioms and a theorem, proves or disproves
the theorem without or with minimal human intervention.
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areas than today, especially there where context conditions are important. The prob-
lems in constructing such a parser are at least as great as those seen above, but Fisher
[VW 1985] has obtained some encouraging results.

All known parsing algorithms for Type 0, Type 1 and unrestricted VW grammars
have exponential time dependency.

3.5.3 Type 2 grammars
Fortunately, much better parsing algorithms are known for CF (Type 2) grammars than
for Type 0 and Type 1. Almost all practical parsing is done using CF and FS grammars,
and almost all problems in context-free parsing have been solved. The cause of this
large difference can be found in the locality of the CF production process: the evolution
of one non-terminal in the sentential form is totally independent of the evolution of any
other non-terminal, and, conversely, during parsing we can combine partial parse trees
regardless of their histories. Neither is true in a context-sensitive grammar.

Both the top-down and the bottom-up parsing processes are readily applicable to
CF grammars. In the examples below we shall use the simple grammar

SSeenntteenncceeSS -->> SSuubbjjeecctt VVeerrbb OObbjjeecctt
SSuubbjjeecctt -->> tthhee NNoouunn || aa NNoouunn || PPrrooppeerrNNaammee
OObbjjeecctt -->> tthhee NNoouunn || aa NNoouunn || PPrrooppeerrNNaammee
VVeerrbb -->> bbiitt || cchhaasseedd
NNoouunn -->> ccaatt || ddoogg
PPrrooppeerrNNaammee -->> ......

3.5.3.1 Top-down parsing
In top-down parsing we start with the start symbol and try to produce the input. The
keywords here are predict and match. At any time there is a left-most non-terminal A
in the sentential form and the parser tries systematically to predict a fitting alternative
for A, as far as compatible with the symbols found in the input at the position where the
result of A could start. Consider the example of Figure 3.5, where OObbjjeecctt is the left-
most non-terminal.

Input: tthhee ccaatt bbiitt aa ddoogg
Sentential form: tthhee ccaatt bbiitt OObbjjeecctt
(the internal administration)

Figure 3.5 Top-down parsing as the imitation of the production process

In this situation, the parser will first predict tthhee NNoouunn for OObbjjeecctt, but will immedi-
ately reject this alternative since it requires tthhee where the input has aa. Next, it will try
aa NNoouunn, which is temporarily accepted. The aa is matched and the new left-most non-
terminal is NNoouunn. This parse will succeed when NNoouunn eventually produces ddoogg. The
parser will then attempt a third prediction for OObbjjeecctt, PPrrooppeerrNNaammee; this alternative is
not immediately rejected as the parser cannot see that PPrrooppeerrNNaammee cannot start with aa.
It will fail at a later stage.

There are two serious problems with this approach. Although it can, in principle,
handle arbitrary CF grammars, it will loop on some grammars if implemented naively.
This can be avoided by using some special techniques, which result in general top-
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down parsers; these are treated in detail in Chapter 6. The second problem is that the
algorithm requires exponential time since any of the predictions may turn out wrong
and may have to be corrected by trial and error. The above example shows that some
efficiency can be gained by preprocessing the grammar: it is advantageous to know in
advance what tokens can start PPrrooppeerrNNaammee, to avoid predicting an alternative that is
doomed in advance. This is true for most non-terminals in the grammar and this kind of
information can be easily calculated from the grammar and stored in a table for use
during parsing. For a reasonable set of grammars, linear time dependency can be
achieved, as explained in Chapter 8.

3.5.3.2 Bottom-up parsing
In bottom-up parsing we start with the input and try to reduce it to the start symbol.
Here the keywords are shift and reduce. When we are in the middle of the process, we
have in our hands a sentential form reduced from the input. Somewhere in this senten-
tial form there must be a segment (a substring) that was the result of the last production
step that produced this sentential form; this segment is the right-hand side of a non-
terminal to which it must now be reduced. This segment is called the handle of the sen-
tential form, a quite adequate expression. See Figure 3.6. The trick is to find the handle.
It must be the right-hand side of a rule, so we start looking for such a right-hand side by
shifting symbols from the sentential form into the internal administration. When we
find a right-hand side we reduce it to its left-hand side and repeat the process, until only
the start symbol is left. We will not always find the correct handle this way; if we err,
we will get stuck further on, will have to undo some steps, shift in more symbols and
try again. In the above example we could have reduced the aa NNoouunn to OObbjjeecctt, thereby
boldly heading for a dead end.

SSuubbjjeecctt cchhaasseedd aa ddoogg
aa NNoouunn cchhaasseedd aa ddoogg

production reduction

handle

Figure 3.6 Bottom-up parsing as the inversion of the production process

There are essentially the same two problems with this approach as with the top-
down technique. It may loop, and will do so on grammars with ε-rules: it will continue
to find empty productions all over the place. This can be remedied by touching up the
grammar. And it can take exponential time, since the correct identification of the han-
dle may have to be done by trial and error. Again, doing preprocessing on the grammar
often helps: it is easy to see from the grammar that SSuubbjjeecctt can be followed by
cchhaasseedd, but OObbjjeecctt cannot; so it is unprofitable to reduce a handle to OObbjjeecctt if the
next symbol is cchhaasseedd.

3.5.4 Type 3 grammars
A right-hand side in a regular grammar contains at most one non-terminal, so there is
no difference between left-most and right-most production. Top-down methods are
much more efficient for regular grammars than bottom-up methods.† When we take the
� ���������������������������

† Some regular grammars have, however, rules of the form A →a and A →Ba (and no others); in
that case bottom-up methods work better.
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production tree of Figure 2.14 and if we turn it 45° counterclockwise, we get the pro-
duction line of Figure 3.7. The sequence of non-terminals roll on to the right, producing
terminals symbols as they go. In parsing, we are given the terminals symbols and are
supposed to construct the sequence of non-terminals. The first one is given, the start
symbol (hence the preference for top-down). If only one rule for the start symbol starts
with the first symbol of the input we are lucky and know which way to go. Very often,
however, there are many rules starting with the same symbol and then we are in need of
more wisdom. As with Type 2 grammars, we can of course find the correct continua-
tion by trial and error, but far more efficient methods exist that can handle any regular
grammar. Since they form the basis of some advanced parsing techniques, they are
treated separately, in Chapter 5.

SSeenntteennccee LLiisstt LLiissttTTaaiill LLiisstt LLiissttTTaaiill

tt ,, dd && hh

Figure 3.7 The production tree of Figure 2.14 as a production line

3.5.5 Type 4 grammars
Finite-choice (FC) grammars do not involve production trees, and membership of a
given input string to the language of the FC grammar can be determined by simple
look-up. This look-up is generally not considered to be “parsing”, but is still mentioned
here for two reasons. First it can benefit from parsing techniques and second it is often
required in a parsing environment. Natural languages have some categories of words
that have only a very limited number of members; examples are the pronouns, the
prepositions and the conjunctions. It is often important to decide quickly if a given
word belongs to one of these finite-choice categories or will have to be analysed
further. The same applies to reserved words in a programming language.

One approach is to consider the FC grammar as a regular grammar and apply the
techniques of Chapter 5. This is often amazingly efficient.

A second often-used approach is that using a hash table. See any book on algo-
rithms, for instance, Smith [CSBooks 1989].

3.6 AN OVERVIEW OF PARSING METHODS

The reader of literature about parsing is confronted with a large number of techniques
with often unclear interrelationships. Yet (almost) all techniques can be placed in a sin-
gle framework, according to some simple criteria; see Figure 3.10. We have already
seen that a parsing technique is either top-down or bottom-up. The next division is that
between non-directional and directional.

3.6.1 Directionality
A non-directional method constructs the parse tree while accessing the input in any
order it sees fit; this of course requires the entire input to be in memory before parsing
can start. There is a top-down and a bottom-up version.
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3.6.1.1 Non-directional methods
The non-directional top-down method is simple and straightforward and has probably
been invented independently by many people. It was first described by Unger [CF
1968] but in his article he gives the impression that the method already existed. The
method has not received much attention in the literature but is more important than one
might think, since it is used anonymously in a number of other parsers. We shall call it
Unger’s method; it is treated in Section 4.1.

The non-directional bottom-up method has also been discovered independently by
a number of people, among whom Cocke, Younger [CF 1967] and Kasami [CF 1969];
an earlier description is by Sakai [CF 1962]. It is named CYK (or sometimes CKY)
after the three best-known inventors. It has received considerable attention since its
naive implementation is much more efficient than that of Unger’s method. The effi-
ciency of both methods can be improved, however, arriving at roughly the same perfor-
mance (see Sheil [CF 1976]). The CYK method is treated in Section 4.2.

3.6.1.2 Directional methods
The directional methods process the input symbol by symbol, from left to right. (It is
also possible to parse from right to left, using a mirror image of the grammar; this is
occasionally useful.) This has the advantage that parsing can start, and indeed progress,
considerably before the last symbol of the input is seen. The directional methods are all
based explicitly or implicitly on the parsing automaton described in Section 3.5.3,
where the top-down method performs predictions and matches and the bottom-up
method performs shifts and reduces.

3.6.2 Search techniques
The next subdivision concerns the search technique used to guide the (non-
deterministic!) parsing automaton through all its possibilities to find one or all parsings.

There are in general two methods for solving problems in which there are several
alternatives in well-determined points: depth-first search, and breadth-first search. In
depth-first search we concentrate on one half-solved problem; if the problem bifurcates
at a given point P, we store one alternative for later processing and keep concentrating
on the other alternative. If this alternative turns out to be a failure (or even a success,
but we want all solutions), we roll back our actions until point P and continue with the
stored alternative. This is called backtracking. In breadth-first search we keep a set of
half-solved problems. From this set we calculate a new set of (better) half-solved prob-
lems by examining each old half-solved problem; for each alternative, we create a copy
in the new set. Eventually, the set will come to contain all solutions.

Depth-first search has the advantage that it requires an amount of memory that is
proportional to the size of the problem, unlike breadth-first search, which may require
exponential memory. Breadth-first search has the advantage that it will find the sim-
plest solution first. Both methods require in principle exponential time; if we want
more efficiency (and exponential requirements are virtually unacceptable), we need
some means to restrict the search. See any book on algorithms, for instance,
Sedgewick [CSBooks 1988], for more information on search techniques.

These search techniques are not at all restricted to parsing and can be used in a
wide array of contexts. A traditional one is that of finding an exit from a maze. Figure
3.8(a) shows a simple maze with one entrance and two exits. Figure 3.8(b) depicts the
path a depth-first search will take; this is the only option for the human maze-walker:
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he cannot duplicate himself and the maze. Dead ends make the depth-first search back-
track to the most recent untried alternative. If the searcher will also backtrack at each
exit, he will find all exits. Figure 3.8(c) shows which rooms are examined in each
stage of the breadth-first search. Dead ends (in stage 3) cause the search branches in
question to be discarded. Breadth-first search will find the shortest way to an exit (the
shortest solution) first; if it continues until all there are no branches left, it will find all
exits (all solutions).

(a) (b)
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Figure 3.8 A simple maze with depth-first and breadth-first visits

3.6.3 General directional methods
Combining depth-first or breadth-first with top-down or bottom-up gives four classes
of parsing techniques. The top-down techniques are treated in Chapter 6. The depth-
first top-down technique allows a very simple implementation called recursive descent;
this technique, which is explained in Section 6.6, is very suitable for writing parsers by
hand. The bottom-up techniques are treated in Chapter 7. The combination of breadth-
first and bottom-up leads to the class of Earley parsers, which have among them some
very effective and popular parsers for general CF grammars. See Section 7.2.

3.6.4 Linear methods
Most of the general search methods indicated in the previous paragraph have exponen-
tial time dependency in the worst case: each symbol more in the input multiplies the
parsing time by a constant factor. Such methods are unusable except for very small
input length, where 20 symbols is about the maximum. Even the best of the above
methods require cubic time in the worst case: for 10 tokens they do 1000 actions, for
100 tokens 1000 000 actions and for 1000 tokens 1 000 000 000 actions, which, at 10
microseconds per action will already take almost 3 hours. It is clear that for real speed
we should like to have a linear-time general parsing method. Unfortunately no such
method has been discovered to date. On the other hand, there is no proof and not even
an indication that such a method could not exist. (Compare this to the situation around
unrestricted phrase structure parsing, where it has been proved that no algorithm for it
can exist; see Section 3.5.2.) Worse even, nobody has ever come up with a specific CF
grammar for which no ad hoc linear-time parser could be designed. The only thing is
that we have at present no way to construct such a parser in the general case. This is a
theoretically and practically unsatisfactory state of affairs that awaits further clarifica-
tion.†
� ���������������������������

† There is a theoretically interesting but impractical method by Valiant [CF 1975] which does
general CF parsing in O(n 2.81). Since this is only very slightly better than O(n 3.00) and since
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In the meantime (and perhaps forever), we shall have to drop one of the two
adjectives from our goal, a linear-time general parser. We can have a general parser,
which will need cubic time at best, or we can have a linear-time parser, which will not
be able to handle all CF grammars, but not both. Fortunately there are parsing methods
(in particular LR parsing) that can handle very large classes of grammars but still, a
grammar that is designed without regard for a parsing method and just describes the
intended language in the most natural way has a small chance of allowing linear pars-
ing automatically. In practice, grammars are often first designed for naturalness and
then adjusted by hand to conform to the requirements of an existing parsing method.
Such an adjustment is usually relatively simple, depending on the parsing method
chosen. In short, making a linear-time parser for an arbitrary given grammar is 10%
hard work; the other 90% can be done by computer.

We can achieve linear parsing time by restricting the number of possible moves of
our non-deterministic parsing automaton to one in each situation. Since the moves of
such an automaton involve no choice, it is called a deterministic automaton.

The moves of a deterministic automaton are determined unambiguously by the
input stream (we can speak of a stream now, since the automaton operates from left to
right); as a result it can give only one parsing for a sentence. This is all right if the
grammar is unambiguous, but if it is not, the act of making the automaton deterministic
has pinned us down to one specific parsing; we shall say more about this in Section
9.6.5.

All that remains is to explain how a deterministic control mechanism for a parsing
automaton can be derived from a grammar. Since there is no single good solution to the
problem, it is not surprising that quite a number of sub-optimal solutions have been
found. From a very global point of view they all use the same technique: they analyse
the grammar in depth to bring to the surface information that can be used to identify
dead ends. These are then closed. If the method, applied to a grammar, closes enough
dead ends so that no choices remain, the method succeeds for that grammar and gives
us a linear-time parser. Otherwise it fails and we either have to look for a different
method or adapt our grammar to the method.

A (limited) analogy with the maze problem can perhaps make this clearer. If we
are allowed to do preprocessing on the maze (unlikely but instructive) the following
method will often make our search through it deterministic. We assume that the maze
consists of a grid of square rooms; see Figure 3.9(a). Now, if there is a room with three
walls, add the fourth wall. Continue with this process until no rooms with three walls
are left. If all rooms now have either two or four walls, there are no choices left and our
method has succeeded; see Figure 3.9(b, c). We see how this method brings informa-
tion about dead ends to the surface, to help restricting the choice.

It should be pointed out that the above analogy is a limited one. It is concerned
with only one object, the maze, which is preprocessed. In parsing we are concerned
with two objects, the grammar, which is static and can be preprocessed, and the input,
which varies.

Returning to the parsing automaton, we can state the fact that it is deterministic
� ���������������������������

the actions required are very complicated and time-consuming, Valiant’s algorithm is better
only for inputs of millions of symbols. Also, as it is a non-directional method, it would require
all these symbols to be in memory.
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Figure 3.9 A single-exit maze made deterministic by preprocessing

more precisely: a parsing automaton is deterministic with look-ahead k if its control
can, given the internal administration and the next k symbols of the input, decide unam-
biguously what to do next (to either match or predict and what to predict in the top-
down case, and to either shift or reduce and how to reduce in the bottom-up case). Like
grammar types, linear parsing methods are indicated by initials, like LL, LALR etc. If a
method X uses a look-ahead of k symbols it is called X (k).

3.6.5 Linear top-down and bottom-up methods
There is only one linear top-down method, called LL; the first L stands for Left-to-
right, the second for “identifying the Left-most production”, as directional top-down
parsers do. LL parsing is treated in Chapter 8. LL parsing, especially LL(1) is very
popular. LL(1) parsers are often generated by a parser generator but a simple variant
can, with some effort, be written by hand, using recursive-descent techniques; see Sec-
tion 8.2.6. Occasionally, the LL(1) method is used starting from the last token of the
input backwards; it is then called RR(1).

There are quite a variety of linear bottom-up methods, the most powerful being
called LR, where again the L stand for Left-to-right and the R stand for “identifying the
Right-most production”. Linear bottom-up methods are treated in Chapter 9. Their
parsers are invariably generated by a parser generator: the control mechanism of such a
parser is so complicated that it is not humanly possible to construct it by hand. Some of
the linear bottom-up methods are very popular and are perhaps used even more widely
than the LL(1) method. LR(1) parsing is more powerful than LL(1) parsing, but also
more difficult to understand and less convenient. The other methods cannot be com-
pared easily to the LL(1) method. See Chapter 12 for a comparison of practical parsing
methods. The LR(1) method can also be applied backwards and is then called RL(1).

The great difference in variety between top-down and bottom-up methods is easily
understood when we look more closely at the choices the corresponding parsers face. A
top-down parser has by nature little choice: if a terminal symbol is predicted, it has no
choice and can only ascertain that a match is present; only if a non-terminal is predicted
it has a choice in the production of that non-terminal. A bottom-up parser can always
shift the next input symbol, even if a reduction is also possible (and it often has to do
so). If, in addition, a reduction is possible, it may have a choice between a number of
right-hand sides. In general it has more choice than a top-down parser and more power-
ful methods are needed to make it deterministic.
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3.6.6 Almost deterministic methods
When our attempt to construct a deterministic control for a parser fails and leaves us
with an almost deterministic one, we need not despair yet. We can fall back on
breadth-first search to solve the remnants of non-determinism at run-time. The better
our original method was, the less non-determinism will be left, the less often breadth-
first search will be needed and the more efficient our parser will be. This avenue of
thought has been explored for bottom-up parsers by Tomita [CF 1986], who achieves
with it what is probably the best general CF parser available today.

Of course, by reintroducing breadth-first search we are taking chances. The gram-
mar and the input could conspire so that the non-determinism gets hit by each input
symbol and our parser will again have exponential time dependency. In practice, how-
ever, they never do so and such parsers are very useful.

Tomita’s parser is treated in Section 9.8. No corresponding research on top-down
parsers has been reported in the literature. This is perhaps due to the fact that no
amount of breadth-first searching can handle left-recursion in a grammar (left-
recursion is explained in Section 6.3.2).

3.6.7 Left-corner parsing
In Section 3.6 we wrote that “almost” all parsing methods could be assigned a place in
Figure 3.10. The principal class of methods that has been left out concerns “left-corner
parsing”. It is a third division alongside top-down and bottom-up, and since it is a
hybrid between the two it should be assigned a separate column between these.

In left-corner parsing, the right-hand side of each production rule is divided into
two parts: the left part is called the left corner and is identified by bottom-up methods.
The division of the right-hand side is done so that once its left corner has been identi-
fied, parsing of the right part can proceed by a top-down method.

Although left-corner parsing has advantages of its own, it tends to combine the
disadvantages or at least the problems of top-down and bottom-up parsing, and is
hardly used in practice. For this reason it has not been included in Figure 3.10. From a
certain point of view, top-down and bottom-up can each be considered special cases of
left-corner, which gives it some theoretical significance. See Section 13.7 for literature
references.

3.6.8 Conclusion
Figure 3.10 summarizes parsing techniques as they are treated in this book. Nijholt
[Misc 1981] paints a more abstract view of the parsing landscape, based on left-corner
parsing. See Deussen [Misc 1979] for an even more abstracted overview. An early sys-
tematic survey was given by Griffiths and Petrick [CF 1965].
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Top-down Bottom-up

� �������������������������������������������������������������������������������������������������������������������������������������������������������
Non-directional
methods

Unger parser CYK parser
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Directional methods

The predict/match automaton
Depth-first search (backtrack)
Breadth-first search

(Greibach)
Recursive descent
Definite Clause grammars

The shift/reduce automaton
Depth-first search (backtrack)
Breadth-first search
Breadth-first search, restricted

(Earley)
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Linear directional
methods:
breadth-first, with
breadth restricted to 1

There is only one top-down
method:

LL(k)

There is a whole gamut of
methods:

precedence
bounded-context
LR(k)
LALR(1)
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Efficient general
directional methods:
maximally restricted
breadth-first search

(no research reported) Tomita
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Figure 3.10 An overview of parsing techniques



4
General non-directional methods

In this chapter we will present two general parsing methods, both non-directional:
Unger’s method and the CYK method. These methods are called non-directional
because they access the input in an seemingly arbitrary order. They require the entire
input to be in memory before parsing can start.

Unger’s method is top-down; if the input belongs to the language at hand, it must
be derivable from the start symbol of the grammar. Therefore, it must be derivable
from a right-hand side of the start symbol, say A 1A 2

. . . Am . This, in turn, means that
A 1 must derive a first part of the input, A 2 a second part, etc. If the input sentence is
z 1z 2

. . . zn , this demand can be depicted as follows:

A 1
. . . Ai

. . . Am

z 1
. . . zk

. . . zn

Unger’s method tries to find a partition of the input that fits this demand. This is a
recursive problem: if a non-terminal Ai is to derive a certain part of the input, there
must be a partition of this part that fits a right-hand side of Ai . Ultimately, such a
right-hand side must consist of terminal symbols only, and these can easily be matched
with the current part of the input.

The CYK method approaches the problem the other way around: it tries to find
occurrences of right-hand sides in the input; whenever it finds one, it makes a note that
the corresponding left-hand side derives this part of the input. Replacing the
occurrence of the right-hand side with the corresponding left-hand side results in some
sentential forms that derive the input. These sentential forms are again the subject of a
search for right-hand sides, etc. Ultimately, we may find a sentential form that both
derives the input sentence and is a right-hand side of the start symbol.

In the next two sections, these methods are investigated in detail.
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4.1 UNGER’S PARSING METHOD

The input to Unger’s parsing method [CF 1968] consists of a CF grammar and an input
sentence. We will first discuss Unger’s parsing method for grammars without ε-rules
and without loops (see Section 2.8.4). Then, the problems introduced by ε-rules will be
discussed, and the parsing method will be modified to allow for all CF grammars.

4.1.1 Unger’s method without ε-rules or loops
To see how Unger’s method solves the parsing problem, let us consider a small exam-
ple. Suppose we have a grammar rule

S → ABC | DE | F

and we want to find out whether S derives the input sentence pqrs. The initial parsing
problem can then be schematically represented as:

� ���������
S� ���������� ���������

pqrs� ���������
�
�
�

�
�
�

For each right-hand side we must first generate all possible partitions of the input sen-
tence. Generating partitions is not difficult: if we have m cups, numbered from 1 to m,
and n marbles, numbered from 1 to n, we have to find all possible partitions such that
each cup contains at least one marble, the numbers of the marbles in any cup are con-
secutive, and any cup does not contain lower-numbered marbles than any marble in a
lower-numbered cup. We proceed as follows: first, we put marble 1 in cup 1, and then
generate all partitions of the other n −1 marbles over the other m −1 cups. This gives us
all partitions that have marble 1 in the first cup. Next, we put marbles 1 and 2 in the
first cup, and then generate all partitions of the other n −2 marbles over the other m −1
cups, etc. If n is less than m, no partition is possible.

Partitioning the input corresponds to partitioning the marbles (the input symbols)
over the cups (the right-hand side symbols). If a right-hand side has more symbols than
the sentence, no partition can be found (there being no ε-rules). For the first right-hand
side the following partitions must be tried:

� �������������������������
S� �������������������������

A B C� �������������������������� �������������������������
p q rs
p qr s
pq r s� �������������������������

��
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

��
�
�
�
�
�

The first partition results in the following sub-problems: does A derive p, does B derive
q, and does C derive rs? These sub-problems must all be answered in the affirmative,
or the partition is not the right one.

For the second right-hand side, we obtain the following partitions:
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� �������������������
S� �������������������

D E� �������������������� �������������������
p qrs
pq rs
pqr s� �������������������

��
�
�
�
�
�

�
�
�
�
�

��
�
�
�
�
�

The last right-hand side results in the following partition:

� ���������
S� ���������
F� ���������� ���������

pqrs� ���������
�
�
�
�

�
�
�
�

All these sub-problems deal with shorter sentences, except the last one. They will
all lead to similar split-ups, and in the end many will fail because a terminal symbol in
a right-hand side does not match the corresponding part of the partition. The only par-
tition that causes some concern is the last one. It is as complicated as the one we started
with. This is the reason that we have disallowed loops in the grammar. If the grammar
has loops, we may get the original problem back again and again. For instance, if there
is a rule F→S in the example above, this will certainly happen.

The above demonstrates that we have a search problem here, and we can attack it
with either the depth-first or the breadth-first search technique (see Section 3.6.2).
Unger uses depth-first search.

In the following discussion, the grammar of Figure 4.1 will serve as an example.

EExxpprrSS -->> EExxpprr ++ TTeerrmm || TTeerrmm
TTeerrmm -->> TTeerrmm ×× FFaaccttoorr || FFaaccttoorr

FFaaccttoorr -->> (( EExxpprr )) || ii

Figure 4.1 A grammar describing simple arithmetic expressions

This grammar represents the language of simple arithmetic expressions, with operators
++ and ××, and operand ii. We will use the sentence ((ii++ii))××ii as input example. So, the
initial problem can be represented as:

� �����������������
EExxpprr� ������������������ �����������������
((ii++ii))××ii� �����������������

�
�
�

�
�
�

Fitting the first right-hand side of EExxpprr with the input results in the following parti-
tions:
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� �����������������������������������������������
EExxpprr� �����������������������������������������������

EExxpprr ++ TTeerrmm� ������������������������������������������������ �����������������������������������������������
(( ii ++ii))××ii
(( ii++ ii))××ii
(( ii++ii ))××ii
(( ii++ii)) ××ii
(( ii++ii))×× ii
((ii ++ ii))××ii
((ii ++ii ))××ii
((ii ++ii)) ××ii
((ii ++ii))×× ii
((ii++ ii ))××ii
((ii++ ii)) ××ii
((ii++ ii))×× ii
((ii++ii )) ××ii
((ii++ii ))×× ii
((ii++ii)) ×× ii� �����������������������������������������������
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Even a small example like this already results in 15 partitions, and we will not examine
them all here, although the unoptimized version of the algorithm requires this. We will
only examine the partitions that have at least some chance of succeeding: we can elim-
inate all partitions that do not match the terminal symbol of the right-hand side. So, the
only partition worth investigating further is:

� ���������������������������������
EExxpprr� ���������������������������������

EExxpprr ++ TTeerrmm� ���������������������������������� ���������������������������������
((ii ++ ii))××ii� ���������������������������������
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The first sub-problem here is to find out whether and, if so, how EExxpprr derives ((ii. We
cannot partition ((ii into three non-empty parts because it only consists of 2 symbols.
Therefore, the only rule that we can apply is the rule EExxpprr -->> TTeerrmm. Similarly, the
only rule that we can apply next is the rule TTeerrmm -->> FFaaccttoorr. So, we now have

� ���������������
EExxpprr� ���������������
TTeerrmm� ���������������
FFaaccttoorr� ���������������� ���������������
((ii� ���������������
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�
�
�
�

��
�
�
�
�

However, this is impossible, because the first right-hand side of FFaaccttoorr has too many
symbols, and the second one consists of one terminal symbol only. Therefore, the par-
tition we started with does not fit, and it must be rejected. The other partitions were
already rejected, so we can conclude that the rule EExxpprr -->> EExxpprr ++ TTeerrmm does not
derive the input.

The second right-hand side of EExxpprr consists of only one symbol, so we only have
one partition here, consisting of one part. Partitioning this part for the first right-hand
side of TTeerrmm again results in 15 possibilities, of which again only one has a chance of
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succeeding:

� �����������������������������������������
EExxpprr� �����������������������������������������
TTeerrmm� �����������������������������������������

TTeerrmm ×× FFaaccttoorr� ������������������������������������������ �����������������������������������������
((ii++ii)) ×× ii� �����������������������������������������
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Continuing our search, we will find the following derivation:

EExxpprr -->>
TTeerrmm -->>
TTeerrmm ×× FFaaccttoorr -->>
FFaaccttoorr ×× FFaaccttoorr -->>
(( EExxpprr )) ×× FFaaccttoorr -->>
(( EExxpprr ++ TTeerrmm )) ×× FFaaccttoorr -->>
(( TTeerrmm ++ TTeerrmm )) ×× FFaaccttoorr -->>
(( FFaaccttoorr ++ TTeerrmm )) ×× FFaaccttoorr -->>
(( ii ++ TTeerrmm )) ×× FFaaccttoorr -->>
(( ii ++ FFaaccttoorr )) ×× FFaaccttoorr -->>
(( ii ++ ii )) ×× FFaaccttoorr -->>
(( ii ++ ii )) ×× ii

and this is the only derivation to be found.
This example demonstrates several aspects of the method: even small examples

require a considerable amount of work, but even some simple checks can result in huge
savings. For instance, matching the terminal symbols in a right-hand side with the par-
tition at hand often leads to the rejection of the partition without investigating it any
further. Unger [CF 1968] presents several more of these checks. For instance, one can
compute the minimum length of strings of terminal symbols derivable from each non-
terminal. Once it is known that a certain non-terminal only derives terminal strings of
length at least n, all partitions that fit this non-terminal with a substring of length less
than n can be immediately rejected.

4.1.2 Unger’s method with ε-rules
So far, we only have dealt with grammars without ε-rules, and not without reason.
Complications arise when the grammar contains ε-rules, as is demonstrated by the fol-
lowing example: consider the grammar rule S→ABC and input sentence pqr. If we
want to examine whether this rule derives the input sentence, and we allow for ε-rules,
many more partitions will have to be investigated, because each of the non-terminals A,
B, and C may derive the empty string. In this case, generating all partitions proceeds
just as above, except that we first generate the partitions that have no marble at all in
the first cup, then the partitions that have marble 1 in the first cup, etc.:
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Now suppose that we are investigating whether B derives pqr, and suppose there is a
rule B→SD. Then, we will have to investigate the following partitions:

� �������������������
B� �������������������
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pqr

p qr
pq r
pqr� �������������������

��
�
�
�
�
�
�

��
�
�
�
�
�

��
�
�
�
�
�
�

It is the last of these partitions that will cause trouble: in the process of finding out
whether S derives pqr, we end up asking the same question again, in a different context.
If we are not careful and do not detect this, our parser will loop forever, or run out of
memory.

When searching along this path, we are looking for a derivation that is using a
loop in the grammar. This may even happen if the grammar does not contain loops. If
this loop actually exists in the grammar, there are infinitely many derivations to be
found along this path, provided that there is one, so we will never be able to present
them all. The only interesting derivations are the ones without the loop. Therefore, we
will cut off the search process in these cases. On the other hand, if the grammar does
not contain such a loop, a cut-off will not do any harm either, because the search is
doomed to fail anyway. So, we can avoid the problem altogether by cutting off the
search process in these cases. Fortunately, this is not a difficult task. All we have to do
is to maintain a list of questions that we are currently investigating. Before starting to
investigate a new question (for instance “does S derive pqr?”) we first check that the
question does not already appear in the list. If it does, we do not investigate this ques-
tion. Instead, we proceed as if the question were answered negatively.

Consider for instance the following grammar:

SS -->> LLSSDD || εε
LL -->> εε
DD -->> dd

This grammar generates sequences of dd’s in an awkward way. The complete search for
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the questions SS →→** dd? and SS →→** dddd? is depicted in Figure 4.2.

SS →→** dd??

LL SS DD

-- -- dd

-- dd --

dd -- --

εε →→** dd?? no

LL →→** εε?? εε →→** εε?? yes

SS →→** εε??
LL SS DD

-- -- --
LL →→** εε?? εε →→** εε?? yes

SS →→** εε?? cut-off: no
εε →→** εε?? yes

DD →→** dd?? dd →→** dd?? yes

LL →→** εε?? εε →→** εε?? yes

SS →→** dd?? cut-off: no

LL →→** dd?? εε →→** dd?? no

SS →→** dddd??

LL SS DD

-- -- dddd

-- dd dd

-- dddd --

dd -- dd

dd dd --

dddd -- --

LL →→** εε?? εε →→** εε?? yes

SS →→** εε??
LL SS DD

-- -- --
LL →→** εε?? εε →→** εε?? yes

SS →→** εε?? cut-off: no
εε →→** εε?? yes

DD →→** dddd?? dd →→** dddd?? no

LL →→** εε?? εε →→** εε?? yes

SS →→** dd?? see above, yes

DD →→** dd?? dd →→** dd?? yes

LL →→** εε?? εε →→** εε?? yes

SS →→** dddd?? cut-off: no

LL →→** dd?? εε →→** dd?? no

LL →→** dd?? εε →→** dd?? no

LL →→** dddd?? εε →→** dddd?? no
εε →→** dddd?? no

Figure 4.2 Unger’s parser at work for the sentences dd and dddd

Figure 4.2 must be read from left to right, and from top to bottom. The questions are
drawn in an ellipse, with the split-ups over the right-hand sides in boxes. A question is
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answered affirmatively if at least one of the boxes results in a “yes”. In contrast, a par-
tition only results in an affirmative answer if all questions arising from it result in a
“yes”.

Checking for cut-offs is easy: if a new question is asked, we follow the arrows in
the reversed direction (to the left). This way, we traverse the list of currently investi-
gated questions. If we meet the question again, we have to cut off the search.

To find the parsings, every question that is answered affirmatively has to pass
back a list of rules that start the derivation asked for in the question. This list can be
placed into the ellipse, together with the question. We have not done so in Figure 4.2,
because it is complicated enough as it is. However, if we strip Figure 4.2 of its dead
ends, and leave out the boxes, we get Figure 4.3.

SS →→** dddd?? yes
SS →→ LLSSDD

LL →→** εε?? yes
LL →→ ε

SS →→** dd?? yes
SS →→ LLSSDD

LL →→** εε?? yes
LL →→ ε

SS →→** εε?? yes
SS →→ ε

DD →→** dd?? yes
DD →→ dd

DD →→** dd?? yes
DD →→ dd

Figure 4.3 The result of Unger’s parser for the sentence dddd

In this case, every ellipse only has one possible grammar rule. Therefore, there is only
one parsing, and we obtain it by reading Figure 4.3 from left to right, top to bottom:

SS -->> LLSSDD -->> SSDD -->> LLSSDDDD -->> SSDDDD -->> DDDD -->> ddDD -->> dddd.

In general, the total number of parsings is equal to the product of the number of gram-
mar rules in each ellipse.

This example shows that we can save much time by remembering answers to
questions. For instance, the question whether LL derives ε is asked many times. Sheil
[CF 1976] has shown that the efficiency improves dramatically when this is done: it
goes from exponential to polynomial. Another possible optimization is achieved by
computing in advance which non-terminals can derive ε. In fact, this is a special case of
computing the minimum length of a terminal string that each non-terminal derives. If a
non-terminal derives ε, this minimum length is 0.

4.2 THE CYK PARSING METHOD

The parsing method described in this section is attributed to J. Cocke, D.H. Younger,
and T. Kasami, who, independently, discovered variations of the method; it is now
known as the Cocke-Younger-Kasami method, or the CYK method. The most accessi-
ble original description is that of Younger [CF 1967]. A much earlier description is by
Sakai [CF 1962].

As with Unger’s parsing method, the input to the CYK algorithm consists of a CF
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grammar and an input sentence. The first phase of the algorithm constructs a table tel-
ling us which non-terminal(s) derive which substrings of the sentence. This is the
recognition phase. It ultimately also tells us whether the input sentence can be derived
from the grammar. The second phase uses this table and the grammar to construct all
possible derivations of the sentence.

We will first concentrate on the recognition phase, which really is the distinctive
feature of the algorithm.

4.2.1 CYK recognition with general CF grammars
To see how the CYK algorithm solves the recognition and parsing problem, let us con-
sider the grammar of Figure 4.4. This grammar describes the syntax of numbers in
scientific notation. An example sentence produced by this grammar is 3322..55ee++11. We
will now use this grammar and sentence as an example.

NNuummbbeerrSS -->> IInntteeggeerr || RReeaall
IInntteeggeerr -->> DDiiggiitt || IInntteeggeerr DDiiggiitt

RReeaall -->> IInntteeggeerr FFrraaccttiioonn SSccaallee
FFrraaccttiioonn -->> .. IInntteeggeerr

SSccaallee -->> ee SSiiggnn IInntteeggeerr || EEmmppttyy
DDiiggiitt -->> 00 || 11 || 22 || 33 || 44 || 55 || 66 || 77 || 88 || 99
EEmmppttyy -->> εε
SSiiggnn -->> ++ || --

Figure 4.4 A grammar describing numbers in scientific notation

The CYK algorithm first concentrates on substrings of the input sentence, shortest
substrings first, and then works its way up. The following derivations of substrings of
length 1 can be read directly from the grammar:

DDiiggiitt DDiiggiitt DDiiggiitt SSiiggnn DDiiggiitt

33 22 .. 55 ee ++ 11

This means that DDiiggiitt derives 33, DDiiggiitt derives 22, etc. Note however, that this pic-
ture is not yet complete. For one thing, there are several other non-terminals deriving
33. This complication arises because the grammar contains so-called unit rules, rules of
the form A→B, where A and B are non-terminals. Such rules are also called single
rules or chain rules. We can have chains of them in a derivation. So, the next step
consists of applying the unit rules, repetitively, for instance to find out which other
non-terminals derive 33. This gives us the following result:

NNuummbbeerr,
IInntteeggeerr,
DDiiggiitt

NNuummbbeerr,
IInntteeggeerr,
DDiiggiitt

NNuummbbeerr,
IInntteeggeerr,
DDiiggiitt

SSiiggnn
NNuummbbeerr,
IInntteeggeerr,
DDiiggiitt

33 22 .. 55 ee ++ 11
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Now, we already see some combinations that we recognize from the grammar: For
instance, an IInntteeggeerr followed by a DDiiggiitt is again an IInntteeggeerr, and a .. (dot) fol-
lowed by an IInntteeggeerr is a FFrraaccttiioonn. We get (again also using unit rules):

NNuummbbeerr, IInntteeggeerr FFrraaccttiioonn SSccaallee

NNuummbbeerr,
IInntteeggeerr,
DDiiggiitt

NNuummbbeerr,
IInntteeggeerr,
DDiiggiitt

NNuummbbeerr,
IInntteeggeerr,
DDiiggiitt

SSiiggnn
NNuummbbeerr,
IInntteeggeerr,
DDiiggiitt

33 22 .. 55 ee ++ 11

At this point, we see that the RReeaall-rule is applicable in several ways, and then the
NNuummbbeerr-rule, so we get:

NNuummbbeerr, RReeaall

NNuummbbeerr, RReeaall

NNuummbbeerr, IInntteeggeerr FFrraaccttiioonn SSccaallee

NNuummbbeerr,
IInntteeggeerr,
DDiiggiitt

NNuummbbeerr,
IInntteeggeerr,
DDiiggiitt

NNuummbbeerr,
IInntteeggeerr,
DDiiggiitt

SSiiggnn
NNuummbbeerr,
IInntteeggeerr,
DDiiggiitt

33 22 .. 55 ee ++ 11

We find that NNuummbbeerr does indeed derive 3322..55ee++11.
In the example above, we have seen that unit rules complicate things a bit.

Another complication, one that we have avoided until now, is formed by ε-rules. For
instance, if we want to recognize the input 4433..11 according to the example grammar,
we have to realize that SSccaallee derives ε here, so we get the following picture:

NNuummbbeerr, RReeaall

NNuummbbeerr, RReeaall

NNuummbbeerr, IInntteeggeerr FFrraaccttiioonn SSccaallee

NNuummbbeerr,
IInntteeggeerr,
DDiiggiitt

NNuummbbeerr,
IInntteeggeerr,
DDiiggiitt

NNuummbbeerr
IInntteeggeerr
DDiiggiitt

44 33 .. 11

In general this is even more complicated. We must take into account the fact that
several non-terminals can derive ε between any two adjacent terminal symbols in the
input sentence, and also in front of the input sentence or at the back. However, as we
shall see, the problems caused by these kinds of rules can be solved, albeit at a certain
cost.

In the meantime, we will not let these problems discourage us. In the example,
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we have seen that the CYK algorithm works by determining which non-terminals
derive which substrings, shortest substrings first. Although we skipped them in the
example, the shortest substrings of any input sentence are, of course, the ε-substrings.
We shall have to be able to recognize them in arbitrary position, so let us first see if we
can compute R ε , the set of non-terminals that derive ε.

Initially, this set R ε consists of the set of non-terminals A for which A→ε is a
grammar rule. For the example grammar, R ε is initially the set { EEmmppttyy }. Next, we
check each grammar rule: If a right-hand side consists only of symbols that are a
member of R ε , we add the left-hand side to R ε (it derives ε, because all symbols in the
right-hand side do). In the example, SSccaallee would be added. This process is repeated
until no new non-terminals can be added to the set. For the example, this results in

R ε = { EEmmppttyy, SSccaallee }.

Now, we direct our attention to the non-empty substrings of the input sentence. Sup-
pose we have an input sentence z = z 1z 2

. . . zn and we want to compute the set of
non-terminals that derive the substring of z starting at position i, of length l. We will
use the notation si,l for this substring, so,

si,l = zizi +1
. . . zi +l −1.

Figure 4.5 presents this notation graphically, using a sentence of 4 symbols.

s 1,4

s 2,3

s 1,3

s 3,2

s 2,2

s 1,2

s 1,1 s 2,1 s 3,1 s 4,1

z 1 z 2 z 3 z 4

Figure 4.5 A graphical presentation of substrings

We will use the notation Rsi,l
for the set of non-terminals deriving the substring si,l .

This notation can be extended to deal with substrings of length 0: si, 0 = ε, and
Rsi, 0

= R ε .
Because shorter substrings are dealt with first, we can assume that we are at a

stage in the algorithm where all information on substrings with length smaller than a
certain l is available. Using this information, we check each right-hand side in the
grammar, to see if it derives si,l , as follows: suppose we have a right-hand side
A 1

. . . Am . Then we divide si,l into m (possibly empty) segments, such that A 1 derives
the first segment, A 2 the second, etc. We start with A 1 . If A 1

. . . Am is to derive si,l ,
A 1 has to derive a first part of it, say of length k. That is, A 1 must derive si,k (be a
member of Rsi,k

), and A 2
. . . Am must derive the rest:
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A 1 A 2
. . . Am

zi
. . . zi +k −1 zi +k zi +k +1

. . . zi +l −1

This is attempted for every k for which A 1 is a member of Rsi,k
, including 0. Naturally,

if A 1 is a terminal, then A 1 must be equal to zi , and k is 1. Checking if A 2
. . . Am

derives zi +k
. . . zi +l −1 is done in the same way. Unlike Unger’s method, we do not

have to try all partitions, because we already know which non-terminals derive which
substrings.

Nevertheless, there are several problems with all this: in the first place, m could
be 1 and A 1 a non-terminal, so we are dealing with a unit rule. In this case, A 1 must
derive the whole substring si,l , and thus be a member of Rsi,l

, which is the set that we
are computing now, so we do not know yet if this is the case. This problem can be
solved by observing that if A 1 is to derive si,l , somewhere along the derivation there
must be a first step not using a unit rule. So we have:

A 1 → B → . . . → C →* si,l

where C is the first non-terminal using a non-unit rule in the derivation. Disregarding
ε-rules (the second problem) for a moment, this means that at a certain stage, C will be
added to the set Rsi,l

. Now, if we repeat the process again and again, at some point, B
will be added, and during the next repetition, A 1 will be added. So, we have to repeat
the process until no new non-terminals are added to Rsi,l

. The second problem is
caused by the ε-rules. If all but one of the At derive ε, we have a problem that is basi-
cally equivalent to the problem of unit rules. It can be solved in the same way.

In the end, when we have computed all the Rsi,l
, the recognition problem is solved:

the start symbol S derives z (= s 1,n) if and only if S is a member of Rs 1,n
.

This is a complicated process, but part of this complexity stems from the ε-rules
and the unit rules. Their presence forces us to do the Rsi,l

computation repetitively.
Another, less serious source of the complexity is that a right-hand side may consist of
arbitrary many non-terminals, so trying all possibilities can be a lot of work. So, impos-
ing certain restrictions on the rules may simplify this process a great deal. However,
these restrictions should not limit the generative power of the grammar significantly.

4.2.2 CYK recognition with a grammar in Chomsky Normal Form
Two of the restrictions that we want to impose on the grammar are obvious by now: no
unit rules and no ε-rules. We would also like to limit the maximum length of a right-
hand side to 2; this would simplify checking that a right-hand side derives a certain
substring. It turns out that there is a form for CF grammars that exactly fits these res-
trictions: the Chomsky Normal Form. It is as if this normal form was invented for this
algorithm. A grammar is in Chomsky Normal Form (CNF), when all rules either have
the form A→a, or A→BC, where a is a terminal and A, B, and C are non-terminals.
Fortunately, as we shall see later, almost all CF grammars can be mechanically
transformed into a CNF grammar.

We will first discuss how the CYK-algorithm works for a grammar in CNF.
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There are no ε-rules in a CNF grammar, so R ε is empty. The sets Rsi, 1
can be read

directly from the rules: they are determined by the rules of the form A→a. A rule
A→BC can never derive a single terminal, because there are no ε-rules.

Next, we proceed iteratively as before, first processing all substrings of length 2,
then all substrings of length 3, etc. When a right-hand side BC is to derive a substring
of length l, B has to derive the first part (which is non-empty), and C the rest (also
non-empty).

B C

zi
. . . zi +k −1 zi +k

. . . zi +l −1

So, B must derive si,k , that is, B must be a member of Rsi,k
, and, likewise, C must

derive si +k,l −k , that is, C must be a member of Rsi +k,l −k
. Determining if such a k exists is

easy: just try all possibilities; they range from 1 to l −1. All sets Rsi,k
and Rsi +k,l −k

have
already been computed at this point.

This process is much less complicated than the one we saw before, with a general
CF grammar, for two reasons: the most important one is that we do not have to repeat
the process again and again until no new non-terminals are added to Rsi,l

. Here, the sub-
strings we are dealing with are really substrings. They cannot be equal to the string we
started out with. The second reason is that we only have to find one place where the
substring must be split in two, because the right-hand side only consists of two non-
terminals. In ambiguous grammars, there can be several different splittings, but at this
point, that does not worry us. Ambiguity is a parsing issue, not a recognition issue.

The algorithm results in a complete collection of sets Rsi,l
. The sentence z con-

sists of only n symbols, so a substring starting at position i can never have more than
n +1−i symbols. This means that there are no substrings si,l with i +l>n +1. Therefore,
the Rsi,l

sets can be organized in a triangular table, as depicted in Figure 4.6.

Rs 1,n

Rs 1,n −1
Rs 2,n −1

.. .. ..

.. .. .. ..

Rs 1, l
.. Rsi, l

.. ..

.. .. .. .. .. ..

.. .. .. .. .. .. ..

Rs 1,1
.. Rsi, 1

.. .. Rsi +l −1,1
.. Rsn, 1

V W

Figure 4.6 Form of the recognition table

This table is called the recognition table, or the well-formed substring table. Rsi,l
is

computed following the arrows V and W simultaneously, looking for rules A→BC with
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B a member of a set on the V arrow, and C a member of the corresponding set on the W
arrow. For B, substrings are taken starting at position i, with increasing length k. So the
V arrow is vertical and rising, visiting Rsi, 1

, Rsi, 2
, . . . , Rsi,k

, . . . , Rsi,l −1
; for C, sub-

strings are taken starting at position i +k, with length l −k, with end-position i +l −1, so
the W arrow is diagonally descending, visiting Rsi +1,l −1

, Rsi +2,l −2
, . . . , Rsi +k,l −k

, . . . ,
Rsi +l −1,1

.
As described above, the recognition table is computed in the order depicted in

Figure 4.7(a). We could also compute the recognition table in the order depicted in Fig-
ure 4.7(b). In this last order, Rsi,l

is computed as soon as all sets and input symbols
needed for its computation are available. For instance, when computing Rs 3,3

, Rs 5,1
is

relevant, but Rs 6,1
is not, because the substring at position 3 with length 3 does not con-

tain the substring at position 6 with length 1. This order makes the algorithm particu-
larly suitable for on-line parsing, where the number of symbols in the input is not
known in advance, and additional information is computed each time a symbol is
entered.

(a) off-line order (b) on-line order

Figure 4.7 Different orders in which the recognition table can be computed

Now, let us examine the cost of this algorithm. Figure 4.6 shows that there are
(n*(n +1))/2 substrings to be examined. For each substring, at most n −1 different k-
positions have to be examined. All other operations are independent of n, so the algo-
rithm operates in a time at most proportional to the cube of the length of the input sen-
tence. As such, it is far more efficient than exhaustive search, which needs a time that
is exponential in the length of the input sentence.

4.2.3 Transforming a CF grammar into Chomsky Normal Form
The previous section has demonstrated that it is certainly worth while to try to
transform a general CF grammar into CNF. In this section, we will discuss this
transformation, using our number grammar as an example. The transformation is split
up into several stages:
� first, ε-rules are eliminated.
� then, unit rules are eliminated.
� then, non-productive non-terminals are removed.
� then, non-reachable non-terminals are removed.
� then, finally, the remaining grammar rules are modified, and rules are added, until

they all have the desired form, that is, either A→a or A→BC.
All these transformations will not change the language defined by the grammar. This is
not proven here. Most books on formal language theory discuss these transformations
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more formally and provide proofs, see for example Hopcroft and Ullman [Books 1979].

4.2.3.1 Eliminating ε-rules
Suppose we have a grammar G, with an ε-rule A→ε, and we want to eliminate this
rule. We cannot just remove the rule, as this would change the language defined by the
non-terminal A, and also probably the language defined by the grammar G. So, some-
thing has to be done about the occurrences of A in the right-hand sides of the grammar
rules. Whenever A occurs in a grammar rule B→αAβ, we replace this rule with two
others: B→αA ′β, where A ′ is a new non-terminal, for which we shall add rules later
(these rules will be the non-empty grammar rules of A), and B→αβ, which handles the
case where A derives ε in a derivation using the B→αAβ rule. Notice that the α and β
in the rules above could also contain A; in this case, each of the new rules must be
replaced in the same way, and this process must be repeated until all occurrences of A
are removed. When we are through, there will be no occurrence of A left in the gram-
mar.

Every ε-rule must be handled in this way. Of course, during this process new ε-
rules may originate. This is only to be expected: the process makes all ε-derivations
explicit. The newly created ε-rules must be dealt with in exactly the same way. Ulti-
mately, this process will stop, because the number of non-terminals deriving ε is lim-
ited and, in the end, none of these non-terminals occur in any right-hand side.

The next step in eliminating the ε-rules is the addition of grammar rules for the
new non-terminals. If A is a non-terminal for which an A ′ was introduced, we add a
rule A ′→α for all non-ε-rules A→α. Since all ε-rules have been made explicit, we can
be sure that if a rule does not derive ε directly, it cannot do so indirectly. A problem
that may arise here is that there may not be a non-ε-rule for A. In this case, A only
derives ε, so we remove all rules using A ′.

All this leaves us with a grammar that still contains ε-rules. However, none of the
non-terminals having an ε-rule occurs in any right-hand side. These occurrences have
just been carefully removed. So, these non-terminals can never play a role in any
derivation from the start symbol S, with one important exception: S itself. In particular,
we now have a rule S→ε if and only if ε is a member of the language defined by the
grammar G. All other non-terminals with ε-rules can be removed safely. Cleaning up
the grammar is left to later transformations.

SS -->> LL aa MM
LL -->> LL MM
LL -->> εε
MM -->> MM MM
MM -->> εε

Figure 4.8 An example grammar to test ε-rule elimination schemes

The grammar of Figure 4.8 is a nasty grammar to test your ε-rule elimination
scheme. Our scheme transforms this grammar into the grammar of Figure 4.9. This
grammar still has ε-rules, but these will be eliminated by the removal of non-
productive and/or non-reachable non-terminals. Cleaning up this mess will leave only
one rule: S→a. Removing the ε-rules in our number grammar results in the grammar
of Figure 4.10. Note that the two rules to produce ε, EEmmppttyy and SSccaallee, are still
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SS -->> LL’’ aa MM’’ || aa MM’’ || LL’’ aa || aa
LL -->> LL’’ MM’’ || LL’’ || MM’’ || εε
MM -->> MM’’ MM’’ || MM’’ || εε
LL’’ -->> LL’’ MM’’ || LL’’ || MM’’
MM’’ -->> MM’’ MM’’ || MM’’

Figure 4.9 Result after our ε-rule elimination scheme

NNuummbbeerrSS -->> IInntteeggeerr || RReeaall
IInntteeggeerr -->> DDiiggiitt || IInntteeggeerr DDiiggiitt

RReeaall -->> IInntteeggeerr FFrraaccttiioonn SSccaallee’’ || IInntteeggeerr FFrraaccttiioonn
FFrraaccttiioonn -->> .. IInntteeggeerr
SSccaallee’’ -->> ee SSiiggnn IInntteeggeerr
SSccaallee -->> ee SSiiggnn IInntteeggeerr || εε
EEmmppttyy -->> εε
DDiiggiitt -->> 00 || 11 || 22 || 33 || 44 || 55 || 66 || 77 || 88 || 99
SSiiggnn -->> ++ || --

Figure 4.10 Our number grammar after elimination of ε-rules

present but are not used any more.

4.2.3.2 Eliminating unit rules
The next trouble-makers to be eliminated are the unit rules, that is, rules of the form
A→B. It is important to realize that, if such a rule A→B is used in a derivation, it must
be followed at some point by the use of a rule B→α. Therefore, if we have a rule
A→B, and the rules for B are

B → α1 | α2 | . . . | αn ,

we can replace the rule A→B with

A → α1 | α2 | . . . | αn .

In doing this, we can of course introduce new unit rules. In particular, when repeating
this process, we could at some point again get the rule A→B. In this case, we have an
infinitely ambiguous grammar, because B derives B. Now this may seem to pose a
problem, but we can just leave such a unit rule out; the effect is that we short-cut
derivations like

A → B → . . . → B → . . .

Also rules of the form A→A are left out. In fact, a pleasant side-effect of removing ε-
rules and unit rules is that the resulting grammar is not infinitely ambiguous any more.

Removing the unit rules in our ε-free number grammar results in the grammar of
Figure 4.11.

4.2.3.3 Removing non-productive non-terminals
Non-productive non-terminals are non-terminals that have no terminal derivation.
Every sentential form that can be derived from it will contain non-terminals. These are
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NNuummbbeerrSS -->> 00 || 11 || 22 || 33 || 44 || 55 || 66 || 77 || 88 || 99
NNuummbbeerrSS -->> IInntteeggeerr DDiiggiitt
NNuummbbeerrSS -->> IInntteeggeerr FFrraaccttiioonn SSccaallee’’ || IInntteeggeerr FFrraaccttiioonn
IInntteeggeerr -->> 00 || 11 || 22 || 33 || 44 || 55 || 66 || 77 || 88 || 99
IInntteeggeerr -->> IInntteeggeerr DDiiggiitt

RReeaall -->> IInntteeggeerr FFrraaccttiioonn SSccaallee’’ || IInntteeggeerr FFrraaccttiioonn
FFrraaccttiioonn -->> .. IInntteeggeerr
SSccaallee’’ -->> ee SSiiggnn IInntteeggeerr
SSccaallee -->> ee SSiiggnn IInntteeggeerr || εε
EEmmppttyy -->> εε
DDiiggiitt -->> 00 || 11 || 22 || 33 || 44 || 55 || 66 || 77 || 88 || 99
SSiiggnn -->> ++ || --

Figure 4.11 Our number grammar after eliminating unit rules

not pleasant things to have in a grammar. Naturally, “proper” grammars do not have
them. Nevertheless, we must be able to determine which non-terminals do have a ter-
minal derivation, if only to check that a grammar is “proper”.

To find out which non-terminals have a terminal derivation we use a scheme that
hinges on the fact that a non-terminal has a terminal derivation if and only if it has a
right-hand side consisting of symbols that all have a terminal derivation. Of course, ter-
minals have themselves a terminal derivation. The scheme works as follows: First, we
mark the non-terminals that have a right-hand side containing only terminals: they
obviously have a terminal derivation. Next, we mark all non-terminals that have a
right-hand side consisting only of terminals and marked non-terminals: they too have a
terminal derivation. We keep on doing this until there are no more non-terminals to be
marked.

Now, the non-productive non-terminals are the ones that have not been marked in
the process. We remove all rules that contain a non-marked non-terminal in either the
left-hand side or the right-hand side. This process does not remove all rules of a
marked non-terminal, as there must be at least one rule for it with a right-hand side
consisting only of terminals and marked non-terminals, or it would not have been
marked in the first place. (This may remove all rules, including those for the start-
symbol, in which case the grammar describes the empty language).

Our number grammar does not contain non-productive non-terminals, so it will
not be changed by this phase.

4.2.3.4 Removing non-reachable non-terminals
A non-terminal is called reachable or accessible if there exists at least one sentential
form, derivable from the start symbol, in which it occurs. So, a non-terminal A is reach-
able if S→* αAβ for some α and β. A non-terminal is non-reachable if it is not reach-
able. For non-reachable non-terminals the same holds as for non-productive non-
terminals: they do not occur in “proper” grammars. However, they can be introduced
by some of the transformations that we have seen before, so we must be able to find
them to “clean up” a grammar again.

We found the non-productive non-terminals by finding the “useful” ones. Like-
wise, we find the non-reachable non-terminals by finding the reachable ones. For this,
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we can use the following scheme: First, the start symbol is marked: it is reachable.
Then, any time an as yet unmarked non-terminal is marked, all non-terminals occurring
in any of its right-hand sides are marked. In the end, the unmarked non-terminals are
not reachable and their rules can be removed. They do not occur in any right-hand side
of a reachable non-terminal, for otherwise it would have been marked in the process.

It is interesting to note that removing non-reachable non-terminals does not intro-
duce non-productive non-terminals. However, first removing non-reachable non-
terminals and then removing non-productive non-terminals may produce a grammar
which contains again non-reachable non-terminals. Finding an example demonstrating
this is left to the reader.

In our number grammar, the non-terminals RReeaall, SSccaallee, and EEmmppttyy are non-
reachable, which leaves us with the grammar of Figure 4.12.

NNuummbbeerrSS -->> 00 || 11 || 22 || 33 || 44 || 55 || 66 || 77 || 88 || 99
NNuummbbeerrSS -->> IInntteeggeerr DDiiggiitt
NNuummbbeerrSS -->> IInntteeggeerr FFrraaccttiioonn SSccaallee’’ || IInntteeggeerr FFrraaccttiioonn
IInntteeggeerr -->> 00 || 11 || 22 || 33 || 44 || 55 || 66 || 77 || 88 || 99
IInntteeggeerr -->> IInntteeggeerr DDiiggiitt
FFrraaccttiioonn -->> .. IInntteeggeerr
SSccaallee’’ -->> ee SSiiggnn IInntteeggeerr
DDiiggiitt -->> 00 || 11 || 22 || 33 || 44 || 55 || 66 || 77 || 88 || 99
SSiiggnn -->> ++ || --

Figure 4.12 Our number grammar after removal of non-reachable rules

4.2.3.5 Finally, to Chomsky Normal Form
After all these grammar transformations, we have a grammar without ε-rules or unit
rules, all non-terminal are reachable, and there are no non-productive non-terminals.
So, we are left with two types of rules: rules of the form A→a, which are already in the
proper form, and rules of the form A→X 1X 2

. . . Xm , with m≥2. For every terminal b
occurring in such a rule we create a new non-terminal Tb with as only rule Tb→b, and
we replace each occurrence of b in a rule A→X 1X 2

. . . Xm with Tb . Now, the only
rules not yet in CNF are of the form A→X 1X 2

. . . Xm , with m≥3, and all Xi a non-
terminal. These rules can now just be split up:

A → X 1X 2
. . . Xm

is replaced by the following two rules:

A → A 1X 3
. . . Xm

A 1 → X 1X 2

where A 1 is a new non-terminal. Now, we have replaced the original rule with one that
is one shorter, and one that is in CNF. This splitting can be repeated until all parts are
in CNF. Figure 4.13 represents our number grammar in CNF.
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NNuummbbeerrSS -->> 00 || 11 || 22 || 33 || 44 || 55 || 66 || 77 || 88 || 99
NNuummbbeerrSS -->> IInntteeggeerr DDiiggiitt
NNuummbbeerrSS -->> NN11 SSccaallee’’ || IInntteeggeerr FFrraaccttiioonn

NN11 -->> IInntteeggeerr FFrraaccttiioonn
IInntteeggeerr -->> 00 || 11 || 22 || 33 || 44 || 55 || 66 || 77 || 88 || 99
IInntteeggeerr -->> IInntteeggeerr DDiiggiitt
FFrraaccttiioonn -->> TT11 IInntteeggeerr

TT11 -->> ..
SSccaallee’’ -->> NN22 IInntteeggeerr

NN22 -->> TT22 SSiiggnn
TT22 -->> ee

DDiiggiitt -->> 00 || 11 || 22 || 33 || 44 || 55 || 66 || 77 || 88 || 99
SSiiggnn -->> ++ || --

Figure 4.13 Our number grammar in CNF

4.2.4 The example revisited
Now, let us see how the CYK algorithm works with our example grammar, which we
have just transformed into CNF. Again, our input sentence is 3322..55ee++11. The recogni-
tion table is given in Figure 4.14. The bottom row is read directly from the grammar;
for instance, the only non-terminals having a production rule with right-hand side 33 are
NNuummbbeerr, IInntteeggeerr, and DDiiggiitt. Notice that for each symbol a in the sentence there
must be at least one non-terminal A with a production rule A→a, or else the sentence
cannot be derived from the grammar.

The other rows are computed as described before. Actually, there are two ways to
compute a certain Rsi,l

. The first method is to check each right-hand side in the gram-
mar; for instance, to check whether the right-hand side NN11 SSccaallee’’ derives the sub-
string 22..55ee (= s 2,4). The recognition table derived so far tells us that
� NN11 is not a member of Rs 2,1

or Rs 2,2
,

� NN11 is a member of Rs 2,3
, but SSccaallee’’ is not a member of Rs 5,1

so the answer is no. Using this method, we have to check each right-hand side in this
way, adding the left-hand side to Rs 2,4

if we find that the right-hand side derives s 2,4 .
The second method is to compute possible right-hand sides from the recognition

table computed so far; for instance, Rs 2,4
is the set of non-terminals that have a right-

hand side AB where either
� A is a member of Rs 2,1

and B is a member of Rs 3,3
, or

� A is a member of Rs 2,2
and B is a member of Rs 4,2

, or
� A is a member of Rs 2,3

and B is a member of Rs 5,1
.

This gives as possible combinations for AB: NN11 TT22 and NNuummbbeerr TT22. Now we check
all rules in the grammar to see if they have a right-hand side that is a member of this
set. If so, the left-hand side is added to Rs 2,4

.

4.2.5 CYK parsing with Chomsky Normal Form
We now have an algorithm that determines whether a sentence belongs to a language or
not, and it is much faster than exhaustive search. Most of us, however, not only want to
know whether a sentence belongs to a language, but also, if so, how it can be derived
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Figure 4.14 The recognition table for the input sentence 3322..55ee++11

from the grammar. If it can be derived in more than one way, we probably want to
know all possible derivations. As the recognition table contains the information on all
derivations of substrings of the input sentence that we could possible make, it also con-
tains the information we want. Unfortunately, this table contains too much informa-
tion, so much that it hides what we want to know. The table may contain information
about non-terminals deriving substrings, where these derivations cannot be used in the
derivation of the input sentence from the start symbol S. For instance, in the example
above, Rs 2,3

contains NN11, but the fact that NN11 derives 22..55 cannot be used in the deriva-
tion of 3322..55ee++11 from NNuummbbeerr.

The key to the solution of this problem lies in the simple observation that the
derivation must start with the start-symbol S. The first step of the derivation of the
input sentence z, with length n, can be read from the grammar, together with the recog-
nition table. If n =1, there must be a rule S→z; if n ≥2, we have to examine all rules
S→AB, where A derives the first k symbols of z, and B the rest, that is, A is a member
of Rs 1,k

and B is a member of Rsk +1,n −k
, for some k. There must be at least one such a

rule, or else S would not derive z.
Now, for each of these combinations AB we have the same problem: how does A

derive s 1,k and B derive sk +1,n −k? These problems are solved in exactly the same way.
It does not matter which non-terminal is examined first. Consistently taking the left-
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most one results in a left-most derivation, consistently taking the right-most one results
in a right-most derivation.

Notice that we can use an Unger-style parser for this. However, it would not have
to generate all partitions any more, because we already know which partitions will
work.

Let us try to find a left-most derivation for the example sentence and grammar,
using the recognition table of Figure 4.14. We begin with the start symbol, NNuummbbeerr.
Our sentence contains seven symbols, which is certainly more than one, so we have to
use one of the rules with a right-hand side of the form AB. The IInntteeggeerr DDiiggiitt rule is
not applicable here, because the only instance of DDiiggiitt that could lead to a derivation
of the sentence is the one in Rs 7,1

, but IInntteeggeerr is not a member of Rs 1,6
. The

IInntteeggeerr FFrraaccttiioonn rule is not applicable either, because there is no FFrraaccttiioonn
deriving the last part of the sentence. This leaves us with the production rule NNuummbbeerr
-->> NN11 SSccaallee’’, which is indeed applicable, because NN11 is a member of Rs 1,4

, and
SSccaallee’’ is a member of Rs 5,3

, so NN11 derives 3322..55 and SSccaallee’’ derives ee++11.
Next, we have to find out how NN11 derives 3322..55. There is only one applicable

rule: NN11 -->> IInntteeggeerr FFrraaccttiioonn, and it is indeed applicable, because IInntteeggeerr is a
member of Rs 1,2

, and FFrraaccttiioonn is a member of Rs 3,2
, so IInntteeggeerr derives 3322, and

FFrraaccttiioonn derives ..55. In the end, we find the following derivation:

NNuummbbeerr -->>
NN11 SSccaallee’’ -->>
IInntteeggeerr FFrraaccttiioonn SSccaallee’’ -->>
IInntteeggeerr DDiiggiitt FFrraaccttiioonn SSccaallee’’ -->>
33 DDiiggiitt FFrraaccttiioonn SSccaallee’’ -->>
33 22 FFrraaccttiioonn SSccaallee’’ -->>
33 22 TT11 IInntteeggeerr SSccaallee’’ -->>
33 22 .. IInntteeggeerr SSccaallee’’ -->>
33 22 .. 55 SSccaallee’’ -->>
33 22 .. 55 NN22 IInntteeggeerr -->>
33 22 .. 55 TT22 SSiiggnn IInntteeggeerr -->>
33 22 .. 55 ee SSiiggnn IInntteeggeerr -->>
33 22 .. 55 ee ++ IInntteeggeerr -->>
33 22 .. 55 ee ++ 11

Unfortunately, this is not exactly what we want, because this is a derivation that uses
the rules of the grammar of Figure 4.13, not the rules of the grammar of Figure 4.4, the
one that we started with.

4.2.6 Undoing the effect of the CNF transformation
When we examine the grammar of Figure 4.4 and the recognition table of Figure 4.14,
we see that the recognition table contains the information we need on most of the non-
terminals of the original grammar. However, there are a few non-terminals missing in
the recognition table: SSccaallee, RReeaall, and EEmmppttyy. SSccaallee and EEmmppttyy were removed
because they became non-reachable, after the elimination of ε-rules. EEmmppttyy was
removed altogether, because it only derived the empty string, and SSccaallee was replaced
by SSccaallee’’, where SSccaallee’’ derives exactly the same as SSccaallee, except for the empty
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string. We can use this to add some more information to the recognition table: at every
occurrence of SSccaallee’’, we add SSccaallee.

The non-terminal RReeaall was removed because it became non-reachable after elim-
inating the unit rules. Now, the CYK algorithm does not require that all non-terminals
in the grammar be reachable. We could just as well have left the non-terminal RReeaall in
the grammar, and have transformed its rules to CNF. The CYK algorithm would then
have added RReeaall to the recognition table, wherever that would be appropriate. The
rules for RReeaall that would be added to the grammar of Figure 4.13 are:

RReeaall -->> NN11 SSccaallee’’ || IInntteeggeerr FFrraaccttiioonn

The resulting recognition table is presented in Figure 4.15. In this figure, we have
also added an extra row at the bottom of the triangle. This extra row represents the
non-terminals that derive the empty string. These non-terminals can be considered as
possibly occurring between any two adjacent symbols in the sentence, and also in front
of or at the end of the sentence. The set Rsi, 0

represents the non-terminals that can be
considered as possibly occurring just in front of symbol zi and the set Rsn +1,0

represents
the ones that can occur at the end of the sentence.
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Figure 4.15 The recognition table with SSccaallee, RReeaall, and EEmmppttyy added

Now, we have a recognition table which contains all the information we need to parse a
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sentence with the original grammar. Again, a derivation starts with the start-symbol S.
If A 1A 2

. . . Am is a right-hand side of S, we want to know if this rule can be applied,
that is, if A 1A 2

. . . Am derives s 1,n . This is checked, starting with A 1 . There are two
cases:
� A 1 is a terminal symbol. In this case, it must be the first symbol of s 1,n , or this

rule is not applicable. Then, we must check if A 2
. . . Am derives s 2,n −1 , in the

same way that we are now checking if A 1A 2
. . . Am derives s 1,n .

� A 1 is a non-terminal. In this case, it must be a member of a Rs 1,k
, for some k, or

this rule is not applicable. Then, we must check if A 2
. . . Am derives sk +1,n −k , in

the same way that we are now checking if A 1A 2
. . . Am derives s 1,n . If we want

all parsings, we must do this for every k for which A 1 is a member of Rs 1,k
.

Notice that non-terminals deriving the empty string pose no problem at all,
because they appear as a member of Rsi, 0

for all i.
We have now determined whether the rule is applicable, and if it is, which parts of the
rule derive which substrings. The next step now is to determine how the substrings can
be derived. These tasks are similar to the task we started with, and are solved in the
same way. This process will terminate at some time, provided the grammar does not
contain loops. This is simply an Unger parser that knows in advance which partitions
will lead to a successful parse.

Let us go back to the grammar of Figure 4.4 and the recognition table of Figure
4.15, and see how this works for our example input sentence. We now know that
NNuummbbeerr does derive 3322..55ee++11, and want to know how. We first ask ourselves: can we
use the NNuummbbeerr -->> IInntteeggeerr rule? IInntteeggeerr is a member of Rs 1,1

and Rs 1,2
, but there

is nothing behind the IInntteeggeerr in the rule to derive the rest of the sentence, so we can-
not use this rule. Can we use the NNuummbbeerr -->> RReeaall rule? Yes we can, because RReeaall
is a member of Rs 1,7

, and the length of the sentence is 7. So, we start our derivation
with

NNuummbbeerr -->> RReeaall -->> ......

Now, we get similar questions for the RReeaall non-terminal: can we use the RReeaall -->>
IInntteeggeerr FFrraaccttiioonn SSccaallee rule? Well, IInntteeggeerr is a member of Rs 1,1

, but we can-
not find a FFrraaccttiioonn in any of the Rs 2,k

sets. However, IInntteeggeerr is also a member of
Rs 1,2

, and FFrraaccttiioonn is a member of Rs 3,2
. Now, SSccaallee is a member of Rs 5,0

; this does
not help because it would leave nothing in the rule to derive the rest. Fortunately,
SSccaallee is also a member of Rs 5,3

, and that matches exactly to the end of the string. So,
this rule is indeed applicable, and we continue our derivation:

NNuummbbeerr -->> RReeaall -->> IInntteeggeerr FFrraaccttiioonn SSccaallee -->> ......

The sentence is now split up into three parts:
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It is left to the reader to verify that we will find only one derivation, and that this is it:

NNuummbbeerr -->>
RReeaall -->>
IInntteeggeerr FFrraaccttiioonn SSccaallee -->>
IInntteeggeerr DDiiggiitt FFrraaccttiioonn SSccaallee -->>
DDiiggiitt DDiiggiitt FFrraaccttiioonn SSccaallee -->>
33 DDiiggiitt FFrraaccttiioonn SSccaallee -->>
33 22 FFrraaccttiioonn SSccaallee -->>
33 22 .. IInntteeggeerr SSccaallee -->>
33 22 .. DDiiggiitt SSccaallee -->>
33 22 .. 55 SSccaallee -->>
33 22 .. 55 ee SSiiggnn IInntteeggeerr -->>
33 22 .. 55 ee ++ IInntteeggeerr -->>
33 22 .. 55 ee ++ DDiiggiitt -->>
33 22 .. 55 ee ++ 11

4.2.7 A short retrospective of CYK
We have come a long way. We started with building a recognition table using the ori-
ginal grammar. Then we found that using the original grammar with its unit rules and
ε-rules is somewhat complicated, although it can certainly be done. We proceeded by
transforming the grammar to CNF. CNF does not contain unit rules or ε-rules; our gain
in this respect was that the algorithm for constructing the recognition table became
much simpler. The limitation of the maximum length of a right-hand side to 2 was a
gain in efficiency, and also a little in simplicity. However, Sheil [CF 1976] has demon-
strated that the efficiency only depends on the maximum number of non-terminals
occurring in a right-hand side of the grammar, not on the length of the right-hand sides.
This can easily be understood, once one realizes that the efficiency depends (among
others) on the number of cuts in a substring that are “difficult” to find, when checking
whether a right-hand side derives this substring. This number of “difficult” cuts only
depends on the number of non-terminals in the right-hand side. So, for efficiency, CNF
is a bit too restrictive.

A disadvantage of this transformation to CNF is that the resulting recognition
table lacks some information that we need to construct a derivation using the original
grammar. In the transformation process, some non-terminals were thrown away,
because they became non-productive. Fortunately, the missing information could
easily be added. Ultimately, this process resulted in almost the same recognition table
that we would get with our first attempt using the original grammar. It only contains
some extra information on non-terminals that were added during the transformation of
the grammar to CNF. More importantly, however, it was obtained in a simpler and
much more efficient way.
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4.2.8 Chart parsing
The CYK algorithm is also known under the name of chart parsing. More precisely,
both techniques have a number of variants and some variants of the CYK algorithm are
identical to some variants of chart parsing. The most striking difference between them
lies in the implementation; conceptually both algorithms do the same thing: they collect
possible parsings for larger and larger chunks of the input.

Although often presented in a different format, a chart is just a recognition table.
Figure 4.16 shows the recognition table of Figure 4.14 in a chart format: each arc
represents a non-terminal deriving the part of the sentence spanned by the arc.

33 22 .. 55 ee ++ 11
� � � � � � � �

DDiiggiitt

IInntteeggeerr

NNuummbbeerr

DDiiggiitt

IInntteeggeerr

NNuummbbeerr

TT11 DDiiggiitt

IInntteeggeerr

NNuummbbeerr

TT22 SSiiggnn DDiiggiitt

IInntteeggeerr

NNuummbbeerr

IInntteeggeerr
NNuummbbeerr

FFrraaccttiioonn NN22

NN11
NNuummbbeerr

SSccaallee’’

NN11

NNuummbbeerr

NNuummbbeerr

NNuummbbeerr

Figure 4.16 The recognition table of Figure 4.14 in chart format

Several variants of chart parsing are discussed and compared in Bolc [NatLang
1987].



5
Regular grammars and finite-state automata

Regular grammars are the simplest form of grammars that still have generative power.
They can describe concatenation (joining two texts together) and repetition and can
specify alternatives, but they cannot express nesting. Regular grammars are probably
the best-understood part of formal linguistics and almost all questions about them can
be answered.

5.1 APPLICATIONS OF REGULAR GRAMMARS

In spite of their simplicity there are many applications of regular grammars, of which
we will briefly mention the most important ones.

5.1.1 CF parsing
In some parsers for CF grammars, a subparser can be discerned that handles a regular
grammar; such a subparser is based implicitly or explicitly on the following surprising
phenomenon. Consider the sentential forms in left-most or right-most derivations.
Such a sentential form consists of a closed (finished) part, which contains terminal
symbols only and an open (unfinished) part which contains non-terminals as well. In
left-most derivations, the open part starts at the left-most non-terminal and extends to
the right, in right-most derivations, the open part starts at the right-most non-terminal
and extends to the left; see Figure 5.1 which uses sentential forms from Section 2.5.2.

dd ,, NN && NN NN ,, NN && hh

Figure 5.1 Open parts in left-most and right-most productions

Now it can be proved (and it is not difficult to show) that these open parts can be
described by a regular grammar (which follows from the CF grammar). Furthermore,
these open parts of the sentential form play an important role in some CF parsing
methods which explains the significance of regular grammars for CF parsing.
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5.1.2 Systems with finite memory
Since CF (or stronger) grammars allow nesting and since nesting can, in principle, be
arbitrarily deep, the generation of correct CF (or stronger) sentences may, in principle,
require an arbitrary amount of memory to temporarily hold the unprocessed nesting
information. Mechanical systems do not possess an arbitrary amount of memory and
consequently cannot exhibit CF behaviour and are restricted to regular behaviour. This
is immediately clear for simple mechanical systems like vending machines, traffic
lights and video-recorders: they all behave according to a regular grammar. It is also in
principle true for more complicated mechanical systems, like a country’s train system
or a computer. Here, the argument gets, however, rather vacuous since nesting infor-
mation can be represented very efficiently and a little memory can take care of a lot of
nesting. Consequently, although these systems in principle exhibit regular behaviour, it
is often easier to describe them with CF or stronger means, even though that would
incorrectly ascribe infinite memory to them.

Conversely, the global behaviour of many systems that do have much memory can
still be described by a regular grammar, and many CF grammars are already for a large
part regular. This is because regular grammars already take adequate care of concatena-
tion, repetition and choice; context-freeness is only required for nesting. If we apply a
rule that produces a regular (sub)language (and which consequently could be replaced
by a regular rule) “quasi-regular”, we can observe the following. If all alternatives of a
rule contain terminals only, that rule is quasi-regular (choice). If all alternatives of a
rule contain only terminals and non-terminals the rules of which are quasi-regular and
non-recursive, then that rule is quasi-regular (concatenation). And if a rule is recursive
but recursion occurs only at the end of an alternative and involves only quasi-regular
rules, then that rule is again quasi-regular (repetition). This often covers large parts of a
CF grammar. See Krzemień and Łukasiewicz [FS 1976] for an algorithm to identify all
quasi-regular rules in a grammar.

Natural languages are a case in point. Although CF or stronger grammars seem
necessary to delineate the set of correct sentences (and they may very well be, to catch
many subtleties), quite a good rough description can be obtained through regular
languages. Consider the stylized grammar for the main clause in an Subject-Verb-
Object (SVO) language in Figure 5.2.

MMaaiinnCCllaauussee -->> SSuubbjjeecctt VVeerrbb OObbjjeecctt
SSuubbjjeecctt -->> [[ aa || tthhee ]] AAddjjeeccttiivvee** NNoouunn
OObbjjeecctt -->> [[ aa || tthhee ]] AAddjjeeccttiivvee** NNoouunn
VVeerrbb -->> vveerrbb11 || vveerrbb22 || ......

AAddjjeeccttiivvee -->> aaddjj11 || aaddjj22 || ......
NNoouunn -->> nnoouunn11 || nnoouunn22 || ......

Figure 5.2 A not obviously quasi-regular grammar

This grammar is quasi-regular: VVeerrbb, AAddjjeeccttiivvee and NNoouunn are regular by themselves,
SSuubbjjeecctt and OObbjjeecctt are concatenations of repetitions of regular forms (regular non-
terminals and choices) and are therefore quasi-regular, and so is MMaaiinnCCllaauussee. It takes
some work to bring this grammar into standard regular form, but it can be done, as
shown in Figure 5.3, in which the lists for verbs, adjectives and nouns have been abbre-
viated to vveerrbb, aaddjjeeccttiivvee and nnoouunn, to save space. Even (finite) context-
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MMaaiinnCCllaauussee -->> aa SSuubbjjAAddjjNNoouunn__vveerrbb__OObbjjeecctt
MMaaiinnCCllaauussee -->> tthhee SSuubbjjAAddjjNNoouunn__vveerrbb__OObbjjeecctt

SSuubbjjAAddjjNNoouunn__vveerrbb__OObbjjeecctt -->> nnoouunn vveerrbb__OObbjjeecctt
SSuubbjjAAddjjNNoouunn__vveerrbb__OObbjjeecctt -->> aaddjjeeccttiivvee SSuubbjjAAddjjNNoouunn__vveerrbb__OObbjjeecctt

vveerrbb__OObbjjeecctt -->> vveerrbb OObbjjeecctt

OObbjjeecctt -->> aa OObbjjAAddjjNNoouunn
OObbjjeecctt -->> tthhee OObbjjAAddjjNNoouunn

OObbjjAAddjjNNoouunn -->> nnoouunn
OObbjjAAddjjNNoouunn -->> aaddjjeeccttiivvee OObbjjAAddjjNNoouunn

vveerrbb -->> vveerrbb11 || vveerrbb22 || ......
aaddjjeeccttiivvee -->> aaddjj11 || aaddjj22 || ......

nnoouunn -->> nnoouunn11 || nnoouunn22 || ......

Figure 5.3 A regular grammar in standard form for that of Figure 5.2

dependency can be incorporated: for languages that require the verb to agree in number
with the subject, we duplicate the first rule:

MMaaiinnCCllaauussee -->> SSuubbjjeeccttSSiinngguullaarr VVeerrbbSSiinngguullaarr OObbjjeecctt
|| SSuubbjjeeccttPPlluurraall VVeerrbbPPlluurraall OObbjjeecctt

and duplicate the rest of the grammar accordingly. The result is still regular. Nested
subordinate clauses may seem a problem, but in practical usage the depth of nesting is
severely limited. In English, a sentence containing a subclause containing a subclause
containing a subclause will baffle the reader, and even in German and Dutch nestings
over say five deep are frowned upon. We replicate the grammar the desired number of
times and remove the possibility of further recursion from the deepest level. Then the
deepest level is regular, which makes the other levels regular in turn. The resulting
grammar will be huge but regular and will be able to profit from all simple and effi-
cient techniques known for regular grammars. The required duplications and modifica-
tions are mechanical and can be done by a program. Dewar, Bratley and Thorne
[NatLang 1969] describe an early example of this approach, Blank [NatLang 1989] a
recent one.

5.1.3 Pattern searching
Many linear patterns, especially text patterns, have a structure that is easily expressed
by a (quasi-)regular grammar. Notations that indicate amounts of money in various
currencies, for instance, have the structure given by the grammar of Figure 5.4, where
� � has been used to indicate a space symbol. Examples are $$� � 1199..9955 and ¥¥� � 11660000. Such
notations, however, do not occur in isolation but are usually embedded in long stretches
of text that itself does not conform to the grammar of Figure 5.4. To isolate the nota-
tions, a recognizer (rather than a parser) is derived from the grammar that will accept
arbitrary text and will indicate where sequences of symbols are found that conform to
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AAmmoouunnttSS -->> CCuurrrreennccyySSyymmbbooll SSppaaccee** DDiiggiitt++ CCeennttss??

CCuurrrreennccyySSyymmbbooll -->> ƒƒ || $$ || ¥¥ || ££ || ......
SSppaaccee -->> � �
DDiiggiitt -->> [[00112233445566778899]]
CCeennttss -->> .. DDiiggiitt DDiiggiitt || ..----

Figure 5.4 A quasi-regular grammar for currency notations

the grammar. Parsing (or an other form of analysis) is deferred to a later stage. A tech-
nique for constructing such a recognizer is given in Section 5.3.4.

5.2 PRODUCING FROM A REGULAR GRAMMAR

When producing from a regular grammar, the producer needs to remember only one
thing: which non-terminal is next. We shall illustrate this and further concepts using the
simple regular grammar of Figure 5.5.

SSSS -->> aa AA
SS -->> aa BB
AA -->> bb BB
AA -->> bb CC
BB -->> cc AA
BB -->> cc CC
CC -->> aa

Figure 5.5 Sample regular grammar

This grammar produces sentences consisting of an aa followed by an alternating
sequence of bb’s and cc’s followed by a terminating aa. For the moment we shall restrict
ourselves to regular grammars in standard notation; further on we shall extend our
methods to more convenient forms.

The one non-terminal the producer remembers is called its state and the producer
is said to be in that state. When a producer is in a given state, for instance, AA, it chooses
one of the rules belonging to that state, for instance, AA-->>bbCC, produces the bb and moves
to state CC. Such a move is called a state transition. It is customary to represent the
states and the possible transitions of a producer in a transition diagram, Figure 5.6,
where the above state transition is represented by the arc marked bb from AA to CC.

SS

AA

BB

CCCC ◊◊

aa

aa

bb

cc

aa
bbcc

Figure 5.6 Transition diagram for the regular grammar of Figure 5.5
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SS is the initial state and the accepting state is marked ◊; another convention (not used
here) is to draw an accepting state as a double circle. The symbols on the arcs are those
produced by the corresponding move. The producer stops when it is in an accepting
state. Like the non-deterministic automaton we saw in Section 3.4, the producer is an
automaton, a finite non-deterministic automaton, or finite-state automaton, to be exact.
“Finite” because it can only be in a finite number of states (5 in this case; 3 bits of
internal memory would suffice) and “non-deterministic” because, for instance, in state
SS it has more than one way to produce an aa.

5.3 PARSING WITH A REGULAR GRAMMAR

The above automaton for producing a sentence can in principle also be used for pars-
ing. If we have a sentence, for instance, aabbccbbaa, and want to check and parse it, we can
view the above transition diagram as a maze and the (tokens in the) sentence as a guide.
If we manage to follow a path through the maze, matching symbols from our sentence
to those on the walls of the corridors as we go and end up in ◊ exactly at the end of the
sentence, we have checked the sentence and the names of the rooms we have visited
form the backbone of the parse tree. See Figure 5.7, where the path is shown as a dotted
line.

SS

AA

BB

CCCC ◊◊

aa

aa

bb

cc

aa
bbcc. . . . . . . . . . . . .. . . . . . . . . . . . . . .. . . . . . . . . . . . . . .. . . . . . . . . . . . .

..............................

...
....

....
....
....
....
....
...

SS

aa

AA

bb

BB

cc

AA

bb

CC

aa

◊◊

Figure 5.7 Actual and linearized passage through the maze

Now this is easier said than done. How did we know, for instance, to turn left in room SS
rather than right? Of course we could employ general maze-solving techniques (and
they would give us our answer in exponential time) but a much simpler and much more
efficient answer is available here: we split ourselves in two and head both ways. After
the first aa of aabbccbbaa we are in the set of rooms {AA, BB}. Now we have a bb to follow;
from BB there are no exits marked bb but from AA there are two, which lead to BB and CC. So
we are now in rooms {BB, CC}. Our path is now more difficult to depict but still easy to
linearize, as shown in Figure 5.8. We can find the parsing by starting at the end and
following the pointers backwards: ◊◊ <<-- CC <<-- AA <<-- BB <<-- AA <<-- SS. If the grammar
is ambiguous the backward pointers may bring us to a fork in the road: an ambiguity
has been found and both paths have to be followed separately to find both parsings.
With regular grammars, however, one is often not interested in the parse, but only in
the recognition: the fact that the input is correct and it ends here suffices.
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SS

AA

BB

BB

CC

AA

CC

BB

CC ◊◊

aa bb cc bb aa

Figure 5.8 Linearized set-based passage through the maze

5.3.1 Replacing sets by states
Although the process described above is linear in the length of the input (each next
token takes an amount of work that is not dependent on the length of the input), still a
lot of work has to be done for each token. What is worse, the grammar has to be con-
sulted repeatedly and so we expect the speed of the process to depend adversely on the
size of the grammar. Fortunately there is a surprising and fundamental improvement
possible: from the NFA in Figure 5.6 we construct a new automaton with a new set of
states, where each new state is equivalent to a set of old states. Where the original
(non-deterministic) automaton was in doubt after the first aa, a situation we represented
as {AA, BB}, the new automaton firmly knows that after the first aa it is in state AABB.

The states of the new automaton can be constructed systematically as follows. We
start with the initial state of the old automaton, which is also the initial state of the new
one. For each new state we create, we examine its contents in terms of the old states,
and for each token in the language we determine to which set of old states the given set
leads. These sets of old states are then considered states of the new automaton. If we
create the same state a second time, we do not analyse it again. This process is called
the subset construction and results initially in a (deterministic) state tree. The state tree
for the grammar of Figure 5.5 is depicted in Figure 5.9. To stress that it systematically
checks all new states for all symbols, outgoing arcs leading nowhere are also shown.
Newly generated states that have already been generated before are marked with a ✔.

SS

AABB BBCC

AACC

◊◊

AACC

◊◊

BBCC

✔

✔

✔

aa

bb

cc

aa

bb

cc

aa

bb

ccaa

bb

cc

Figure 5.9 Deterministic state tree for the grammar of Figure 5.5

The state tree of Figure 5.9 is turned into a transition diagram by leading the
arrows to states marked ✔ to their first-time representatives and removing the dead
ends. The new automaton is shown in Figure 5.10. When we now use the sentence
aabbccbbaa as a guide for traversing this transition diagram, we find that we are never in
doubt and that we safely arrive at the accepting state. All outgoing arcs from a state
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SS AABB

BBCC

AACC

◊◊◊◊aa

bb

cc

aa

aa

ccbb

Figure 5.10 Deterministic automaton for the grammar of Figure 5.5

bear different symbols, so when following a list of symbols, we are always pointed to
at most one direction. If in a given state there is no outgoing arc for a given symbol,
then that symbol may not occur in that position. If it is, the input is in error.

There are two things to be noted here. The first is that we see that most of the pos-
sible states of the new automaton do not actually materialize: the old automaton had 5
states, so there were 25=32 possible states for the new automaton while in fact it has
only 5; states like SSBB or AABBCC do not occur. This is usual; although there are non-
deterministic finite-state automata with n states that turn into a DFA with 2n states,
these are rare and have to be constructed on purpose. The average garden variety NFA
with n states typically results in a DFA with less than or around 10*n states.

The second is that consulting the grammar is no longer required; the state of the
automaton together with the input token fully determine the next state. To allow effi-
cient look-up the next state can be stored in a table indexed by the old state and the
input token. The table for our DFA is given in Figure 5.11.

input symbol
aa bb cc� ���������������������������������������

SS AABB� ���������������������������������������
AABB BBCC AACC

old state � ���������������������������������������

AACC ◊ BBCC� ���������������������������������������
BBCC ◊ AACC� ���������������������������������������

��
�
�
�
�
�
�

��
�
�
�
�
�
�

��
�
�
�
�
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�

��
�
�
�
�
�
�

Figure 5.11 Transition table for the automaton of Figure 5.10

Using such a table, an input string can be checked at the expense of only a few machine
instructions per token. For the average DFA, most of the entries in the table are empty
(cannot be reached by correct input and refer to error states). Since the table can be of
considerable size (300 states times 100 tokens is normal), several techniques exist to
exploit the empty space by compressing the table. Dencker, Dürre and Heuft [Misc
1984] give a survey of some techniques.

The parse tree obtained looks as follows:

SS

aa

AABB

bb

BBCC

cc

AACC

bb

BBCC

aa

◊◊
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which is not the original parse tree. If the automaton is used only to recognize the input
string this is no drawback; if the parse tree is required, it can be reconstructed in the
following fairly obvious bottom-up way. Starting from the last state ◊ and the last token
aa, we conclude that the last right-hand side (the “handle” in bottom-up parsing) was aa.
Since the state was BBCC, a combination of BB and CC, we look through the rules for BB and CC.
We find that aa derived from CC-->>aa, which narrows down BBCC to CC. The right-most bb and
the CC combine into the handle bbCC which in the set {AA, CC} must derive from AA. Working
our way backwards we find the parsing:

SS

aa

AABB
AA

. . . . . . . .

bb

BBCC
BB

. . . . . . . .

cc

AACC
AA

. . . . . . . .

bb

BBCC
CC

. . . . . . . .

aa

◊◊

This method again requires the grammar to be consulted repeatedly; moreover, the way
back will not always be so straight as in the above example and we will have problems
with ambiguous grammars. Efficient full parsing of regular grammars has received
relatively little attention; substantial information can be found in Ostrand, Paull and
Weyuker [FS 1981].

5.3.2 Non-standard notation
A regular grammar in standard form can only have rules of the form A →a and A →aB.
We shall now first extend our notation with two other types of rules, A →B and A →ε,
and show how to construct NFA’s and DFA’s for them. We shall then turn to regular
expressions and rules that have regular expressions as right-hand sides (for instance,
P→a *bQ) and show how to convert them into rules in the extended notation.

The grammar in Figure 5.12 contains examples of both new types of rules; Figure
5.13 presents the usual trio of NFA, state tree and DFA for this grammar. First consider
the NFA. When we are in state SS we see the expected transition to state BB on the token
aa, resulting in the standard rule SS-->>aaBB. The non-standard rule SS-->>AA indicates that we
can get from state SS to state AA without reading (or producing) a symbol; we then say
that we read the zero-length string ε and that we make an ε-transition (or ε-move). The
rule AA-->>aaAA creates a transition from AA to AA marked aa and BB-->>bbBB does something simi-
lar. The standard rule BB-->>bb creates a transition marked bb to the accepting state, and the
non-standard rule AA-->>εε creates an ε-transition to the accepting state. ε-transitions
should not be confused with ε-rules: unit rules create ε-transitions to non-accepting
states and ε-rules create ε-transitions to accepting states.

SSSS -->> AA
SS -->> aa BB
AA -->> aa AA
AA -->> εε
BB -->> bb BB
BB -->> bb

Figure 5.12 Sample regular grammar with ε-rules
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SS

AA

BB

◊◊◊◊

εε

aa

εε

bb

aa

bb

(a)

SSAA◊◊

AABB◊◊

AA◊◊

BB◊◊

AA◊◊

BB◊◊

✔

✔

aa

bb

aa

bb

aa

bb
aa

bb

(b)

SSAA◊◊ AABB◊◊

AA◊◊

BB◊◊

aa

aa

bb

aa

bb(c)

Figure 5.13 NFA (a), state tree (b) and DFA (c) for the grammar of Figure 5.12

Now that we have constructed an NFA with ε-moves, the question arises how we
can process the ε-moves to obtain a DFA. To answer this question we use the same rea-
soning as before; in Figure 5.6, after having seen an aa we did not know if we were in
state AA or state BB and we represented that as {AA, BB}. Here, when we enter state SS, even
before having processed a single symbol, we already do not know if we are in states SS,
AA or ◊, since the latter two are reachable from SS through ε-moves. So the initial state of
the DFA is already compound: SSAA◊◊. We now have to consider where this state leads to
for the symbols aa and bb. If we are in SS then aa will bring us to BB and if we are in AA, aa
will bring us to AA. So the new state includes AA and BB, and since ◊◊ is reachable from AA
through ε-moves, it also includes ◊◊ and its name is AABB◊◊. Continuing in this vein we can
construct the complete state tree (Figure 5.13(b)) and collapse it into a DFA (c). Note
that all states of the DFA contain the NFA state ◊◊, so the input may end in all of them.

The set of NFA states reachable from a given state through ε-moves is called the
ε-closure of that state. The ε-closure of, for instance, SS is {SS, AA, ◊◊}.

5.3.3 DFA’s from regular expressions
As mentioned in Section 2.3.3, regular languages are often specified by regular expres-
sions rather than by regular grammars. Examples of regular expressions are [[00--
99]]++((..[[00--99]]++))?? which should be read as “one or more symbols from the set 0 through
9, possibly followed by a dot which must then be followed by one or more symbols
from 0 through 9” (and which represents numbers with possibly a dot in them) and
((aabb))**((pp||qq))++, which should be read as “zero or more strings aabb followed by one or
more pp’s or qq’s” (and which is not directly meaningful). The usual forms occurring in
regular expressions are recalled in the table in Figure 5.14; some systems provide more
possibilities, some provide fewer. In computer input, no difference is generally made
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Form Meaning Name

R 1R 2 R 1 followed by R 2 concatenation
R 1 | R 2 R 1 or R 2 alternative
R * zero or more R’s optional sequence (Kleene star)
R + one or more R’s (proper) sequence
R ? zero or one R optional
(R) R nesting
[abc . . . ] any symbol from the set abc . . .

a the symbol a itself

Figure 5.14 Some usual elements of regular expressions

between the metasymbol ** and the symbol **, etc. Special notations will be necessary if
the language to be described contains any of the symbols || ** ++ ?? (( )) [[ or ]].

Rule pattern replaced by:

P→a (standard)
P→aQ (standard)
P→Q (extended standard)
P→ε (extended standard)

P→a . . . P→aT
T→ . . .

P→(R 1 | R 2 | . . . ) . . . P→R 1
. . .

P→R 2
. . .

. . .

P→(R) . . . P→R . . .

P→R * . . . P→T
T→RT
T→ . . .

P→R + . . . P→RT
T→RT
T→ . . .

P→R ? . . . P→R . . .

P→ . . .

P→[abc . . . ] . . . P→(a | b | c | . . . ) . . .

Figure 5.15 Transformations on regular grammars

A regular expression can be converted into a regular grammar by using the
transformations given in Figure 5.15; this regular grammar can then be used to produce
a DFA as described above. There is also a method to create an NFA directly from the
regular expression, which requires, however, some preprocessing on the regular expres-
sion; see Thompson [FS 1968].

We shall illustrate the method using the expression ((aabb))**((pp||qq))++. Our method
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will also work for regular grammars that contain regular expressions (like A→ab *cB)
and we shall in fact immediately turn our regular expression into such a grammar:

SSSS -->> ((aabb))**((pp||qq))++

The T in the transformations stands for an intermediate non-terminal, to be chosen
fresh for each application of a transformation; we use AA, BB, CC . . . in the example since
that is less confusing than T 1 , T 2 , T 3 , . . . . The transformations are to be applied until
all rules are in (extended) standard form.

The first transformation that applies is P→R * . . . , which replaces
SSSS-->>((aabb))

**((pp||qq))++ by

SSSS -->> AA ✔
AA -->> ((aabb)) AA
AA -->> ((pp||qq))++

The first rule is already in the desired form and has been marked ✔. The transforma-
tions P→(R) . . . and P→a . . . work on AA-->>((aabb))AA and result in

AA -->> aa BB ✔
BB -->> bb AA ✔

Now the transformation P →R + . . . must be applied to AA-->>((pp||qq))++, yielding

AA -->> ((pp||qq)) CC
CC -->> ((pp||qq)) CC
CC -->> εε ✔

The ε originated from the fact that ((pp||qq))++ in AA-->>((pp||qq))++ is not followed by anything
(of which ε is a faithful representation). Now AA-->>((pp||qq))CC and CC-->>((pp||qq))CC are easily
decomposed into

AA -->> pp CC ✔
AA -->> qq CC ✔
CC -->> pp CC ✔
CC -->> qq CC ✔

The complete extended-standard version can be found in Figure 5.16; an NFA and
DFA can now be derived using the methods of Section 5.3.1 (not shown).

5.3.4 Fast text search using finite-state automata
Suppose we are looking for the occurrence of a short piece of text, for instance, a word
or a name (the “search string”) in a large piece of text, for instance, a dictionary or an
encyclopedia. One naive way of finding a search string of length n in a text would be to
try to match it to the characters 1 to n; if that fails, shift the pattern one position and try
to match against characters 2 to n +1, etc., until we find the search string or reach the
end of the text. (Dictionaries and encyclopedias may be organized better, but a file con-
taining a million business letters almost certainly would not.)
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SSSS -->> AA
AA -->> aa BB
BB -->> bb AA
AA -->> pp CC
AA -->> qq CC
CC -->> pp CC
CC -->> qq CC
CC -->> εε

Figure 5.16 Extended-standard regular grammar for ((aabb))**((pp||qq))++

Finite automata offer a much more efficient way to do text search. We derive a
DFA from the string, let it run down the text and when it reaches an accepting state, it
has found the string. Assume for example that the search string is aabbaabbcc and that the
text will contain only aa’s, bb’s and cc’s. The NFA that searches for this string is shown
in Figure 5.17(a); it was derived as follows. At each character in the text there are two
possibilities: either the search string starts there, which is represented by the chain of
states going to the right, or it does not start there, in which case we have to skip the
present character and return to the initial state. The automaton is non-deterministic,
since when we see an aa in state A, we have two options: to believe that it is the start of
an occurrence of aabbaabbcc or not to believe it.

AA BB CC DD EE ◊◊aa bb aa bb cc

aabbcc

(a)

AA

AABB

AA

AA

aa
bb

cc

✔

✔

AABB

AACC

AA

aa
bb

cc

✔

✔

AABBDD

AA

AA

aa
bb

cc

✔

✔

AABB

AACCEE

AA

aa
bb

cc

✔

✔

AABBDD

AA

AA◊◊

aa
bb

cc

✔

✔
AABB

AA

AA

aa
bb

cc

✔

✔

✔

(b)

AA AABB AACC AABBDD AACCEE AA◊◊aa bb aa bb cc

bbcc

cc bbcc cc bb bbcc

aa
aa aa aa

(c)

Figure 5.17 NFA (a), state tree (b) and DFA (c) to search for aabbaabbcc
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Using the traditional techniques, this NFA can be used to produce a state tree (b)
and then a DFA (c). Figure 5.18 shows the states the DFA goes through when fed the
text aaaabbaabbaabbccaa.

AA AABB AABB AACC AABBDD AACCEE AABBDD AACCEE AA◊◊ AABB
aa aa bb aa bb aa bb cc aa

Figure 5.18 State transitions of the DFA of Figure 5.17(c) on aaaabbaabbaabbccaa

This application of finite-state automata is known as the Aho and Corasick biblio-
graphic search algorithm [FS 1975]. Like any DFA, it requires only a few machine
instructions per character. As an additional bonus it will search for several strings for
the price of one. The DFA corresponding to the NFA of Figure 5.19 will search simul-
taneously for KKaawwaabbaattaa, MMiisshhiimmaa and TTaanniizzaakkii; note that three different accepting
states result, ◊◊KK, ◊◊MM and ◊◊TT.

AAKK BBKK CCKK DDKK EEKK FFKK GGKK HHKK ◊◊KK
kk aa ww aa bb aa tt aa

Σ AAMM BBMM CCMM DDMM EEMM FFMM GGMM ◊◊MM
mm ii ss hh ii mm aa

AATT BBTT CCTT DDTT EETT FFTT GGTT HHTT ◊◊TT
tt aa nn ii zz aa kk ii

εε

εε

εε

Figure 5.19 Example of an NDA for searching multiple strings

The Aho and Corasick algorithm is not the last word in string search; it faces stiff
competition from the Rabin-Karp algorithm† and the Boyer-Moore algorithm‡ neither
of which will be treated here, since they are based on different principles.

� ���������������������������

† R.M. Karp, M.O. Rabin, “Efficient randomized pattern matching algorithms”, Technical Re-
port TR-31-81, Harvard Univ., Cambridge, Mass., 1981. We want to find a string S of length l
in a text T. First we choose a hash function H that assigns a large integer to any string of length l
and calculate H (S) and H (T [1..l ]). If they are equal, we compare S and T [1..l ]. If either fails
we calculate H (T [2..l +1]) and repeat the process. The trick is to choose H so that
H (T [p +1..p +l ]) can be calculated cheaply from H (T [p..p +l −1]). See also Sedgewick
[CSBooks 1988], page 289.
‡ Robert S. Boyer, J. Strother Moore, “A fast string searching algorithm”, Commun. ACM, vol.
20, no. 10, p. 762-772, Oct 1977. We want to find a string S of length l in a text T and start by
positioning S [1] at T [1]. Now suppose that T [l ] does not occur in S; then we can shift S to
T [l +1] without missing a match, and thus increase the speed of the search process. This princi-
ple can be extended to blocks of more characters. See also Sedgewick [CSBooks 1988], page
286.



6
General directional top-down methods

In this chapter, we will discuss top-down parsing methods that try to rederive the input
sentence by prediction. As explained in Section 3.3.1, we start with the start symbol
and try to produce the input from it. At any point in time, we have a sentential form
that represents our prediction of the rest of the input sentence:

rest of input

prediction

This sentential form consists of both terminals and non-terminals. If a terminal symbol
is in front, we match it with the current input symbol. If a non-terminal is in front, we
pick one of its right-hand sides and replace the non-terminal with this right-hand side.
This way, we all the time replace the left-most non-terminal, and in the end, if we
succeed, we have imitated a left-most production.

6.1 IMITATING LEFT-MOST PRODUCTIONS

Let us see how such a rederiving process could proceed with an example. Consider the
example grammar of Figure 6.1. This grammar produces all sentences with equal
numbers of aa’s and bb’s.

SS -->> aaBB || bbAA
AA -->> aa || aaSS || bbAAAA
BB -->> bb || bbSS || aaBBBB

Figure 6.1 A grammar producing all sentences with equal numbers of aa’s and bb’s

Let us try to parse the sentence aaaabbbb, by trying to rederive it from the start-symbol, SS.
SS is our first prediction. The first symbol of our prediction is a non-terminal, so we
have to replace it by one of its right-hand sides. In this grammar, there are two choices
for SS: either we use the rule SS-->>aaBB, or we use the rule SS-->>bbAA. The sentence starts with
an aa and not with a bb, so we cannot use the second rule here. Applying the first rule
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leaves us with the prediction aaBB. Now, the first symbol of the prediction is a terminal
symbol. Here, we have no choice:

aa aabbbb

aa BB

We have to match this symbol with the current symbol of the sentence, which is also an
aa. So, we have a match, and accept the aa. This leaves us with the prediction BB for the
rest of the sentence: aabbbb. The first symbol of the prediction is again a non-terminal, so
it has to be replaced by one of its right-hand sides. Now, we have three choices. How-
ever, the first and the second are not applicable here, because they start with a bb, and
we need another aa. Therefore, we take the third choice, so now we have prediction
aaBBBB:

aa aa bbbb

aa BBBBaa

Again, we have a match with the current input symbol, so we accept it and continue
with the prediction BBBB for bbbb. Again, we have to replace the left-most BB by one of its
choices. The next terminal in the sentence is a bb, so the third choice is not applicable
here. This still leaves us with two choices, bb and bbSS. So, we can either try them both,
or be a bit more intelligent about it. If we would take bbSS, then we would get at least
another aa (because of the SS), so this cannot be the right choice. So, we take the bb
choice, and get the prediction bbBB for bbbb. Again, we have a match, and this leaves us
with prediction BB for bb. For the same reason, we take the bb choice again. After match-
ing, this leaves us with an empty prediction. Luckily, we are also at the end of the input
sentence, so we accept it. If we had made notes of the production rules used, we would
have found the following derivation:

SS -->> aaBB -->> aaaaBBBB -->> aaaabbBB -->> aaaabbbb.

Figure 6.2 presents the steps of the parse in a tree-form. The dashed line separates the
already processed part from the prediction. All the time, the left-most symbol of the
prediction is processed.

This example demonstrates several aspects that the parsers discussed in this
chapter have in common:
� we always process the left-most symbol of the prediction;
� if this symbol is a terminal, we have no choice: we have to match it with the

current input symbol or reject the parse;
� if this symbol is a non-terminal, we have to make a prediction: it has to be

replaced by one of its right-hand sides. Thus, we always process the left-most
non-terminal first, so we get a left-most derivation.
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SS SS

aa BB

SS

aa BB

SS

aa BB

aa BB BB

SS

aa BB

aa BB BB

SS

aa BB

aa BB BB

bb

SS

aa BB

aa BB BB

bb

SS

aa BB

aa BB BB

bb bb

SS

aa BB

aa BB BB

bb bb

Figure 6.2 Production trees for the sentence aaaabbbb

6.2 THE PUSHDOWN AUTOMATON

The steps we have taken in the example above resemble very much the steps of a so-
called pushdown automaton. A pushdown automaton (PDA) is an imaginary
mathematical device that reads input and has control over a stack. The stack can con-
tain symbols that belong to a so-called stack alphabet. A stack is a list that can only be
accessed at one end: the last symbol entered on the list (“pushed”) is the first symbol to
be taken from it (“popped”). This is also sometimes called a “first-in, last-out” list, or
a FILO list: the first symbol that goes in is the last symbol to come out. In the example
above, the prediction works like a stack, and this is what the pushdown automaton uses
the stack for too. We therefore often call this stack the prediction stack. The stack also
explains the name “pushdown” automaton: the automaton “pushes” symbols on the
stack for later processing.

The pushdown automaton operates by popping a stack symbol and reading an
input symbol. These two symbols then in general give us a choice of several lists of
stack symbols to be pushed on the stack. So, there is a mapping of (input symbol, stack
symbol) pairs to lists of stack symbols. The automaton accepts the input sentence
when the stack is empty at the end of the input. If there are choices (so an (input sym-
bol, stack symbol) pair maps to more than one list), the automaton accepts a sentence
when there are choices that lead to an empty stack at the end of the sentence.

This automaton is modeled after context-free grammars with rules in the so-called
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Greibach Normal Form (GNF). In this normal form, all grammar rules have either the
form A→a or A→aB 1B 2

. . . Bn , with a a terminal and A, B 1 , ... , Bn non-terminals.
The stack symbols are, of course, the non-terminals. A rule of the form
A→aB 1B 2

. . . Bn leads to a mapping of the (a, A) pair to the list B 1B 2
. . . Bn . This

means that if the input symbol is an a, and the prediction stack starts with an A, we
could accept the a, and replace the A part of the prediction stack with B 1B 2

. . . Bn . A
rule of the form A→a leads to a mapping of the (a, A) pair to an empty list. The auto-
maton starts with the start symbol of the grammar on the stack. Any context-free
grammar that does not produce the empty string can be put into Greibach Normal
Form. Most books on formal language theory discuss how to do this (see for instance
Hopcroft and Ullman [Books 1979]).

The example grammar of Figure 6.1 already is in Greibach Normal Form, so we
can easily build a pushdown automaton for it. The automaton is characterized by the
mapping shown in Figure 6.3.

((aa,, SS)) -->> BB
((bb,, SS)) -->> AA
((aa,, AA)) -->>
((aa,, AA)) -->> SS
((bb,, AA)) -->> AAAA
((bb,, BB)) -->>
((bb,, BB)) -->> SS
((aa,, BB)) -->> BBBB

Figure 6.3 Mapping of the PDA for the grammar of Figure 6.1

An important remark to be made here is that many pushdown automata are non-
deterministic. For instance, the pushdown automaton of Figure 6.3 can choose between
an empty list and an SS for the pair (aa, AA). In fact, there are context-free languages for
which we cannot build a deterministic pushdown automaton, although we can build a
non-deterministic one. We should also mention that the pushdown automata as dis-
cussed here are a simplification of the ones we find in automata theory. In automata
theory, pushdown automata have so-called states, and the mapping is from (state, input
symbol, stack symbol) triplets to (state, list of stack symbols) pairs. Seen in this way,
they are like finite-state automata (discussed in Chapter 5), extended with a stack.
Also, pushdown automata come in two different kinds: some accept a sentence by
empty stack, others accept by ending up in a state that is marked as an accepting state.
Perhaps surprisingly, having states does not make the pushdown automaton concept
more powerful. Pushdown automata with states still only accept languages that can be
described with a context-free grammar. In our discussion, the pushdown automaton
only has one state, so we have taken the liberty of leaving it out.

Pushdown automata as described above have several shortcomings that must be
resolved if we want to convert them into parsing automata. Firstly, pushdown auto-
mata require us to put our grammar into Greibach Normal Form. While grammar
transformations are no problem for the formal linguist, we would like to avoid them as
much as possible, and use the original grammar if we can. Now we could relax the
Greibach Normal Form requirement a little by also allowing terminals as stack sym-
bols, and adding
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(a, a) →

to the mapping for all terminals a. We could then use any grammar all of whose right-
hand sides start with a terminal. We could also split the steps of the pushdown automa-
ton into separate “match” and “predict” steps, as we did in the example of Section 6.1.
The “match” steps then correspond to usage of the

(a, a) →

mappings, and the “predict” step then corresponds to a

(, A) → . . .

mapping, that is, a non-terminal on the top of the stack is replaced by one of its right-
hand sides, without consuming a symbol from the input. For the grammar of Figure
6.1, this would result in the mapping shown in Figure 6.4, which is in fact just a rewrite
of the grammar of Figure 6.1.

((,, SS)) -->> aaBB
((,, SS)) -->> bbAA
((,, AA)) -->> aa
((,, AA)) -->> aaSS
((,, AA)) -->> bbAAAA
((,, BB)) -->> bb
((,, BB)) -->> bbSS
((,, BB)) -->> aaBBBB
((aa,, aa)) -->>
((bb,, bb)) -->>

Figure 6.4 Match and predict mappings of the PDA for the grammar of Figure 6.1

We will see later that, even using this approach, we may have to modify the grammar
anyway, but in the meantime, this looks very promising so we adopt this strategy. This
strategy also solves another problem: ε-rules do not need special treatment any more.
To get Greibach Normal Form, we would have to eliminate them. This is not necessary
any more, because they now just correspond to a

(, A) →

mapping.
The second shortcoming is that the pushdown automaton does not keep a record of

the rules (mappings) it uses. Therefore, we introduce an analysis stack into the auto-
maton. For every prediction step, we push the non-terminal being replaced onto the
analysis stack, suffixed with the number of the right-hand side taken (numbering the
right-hand sides of a non-terminal from 1 to n). For every match, we push the matched
terminal onto the analysis stack. Thus, the analysis stack corresponds exactly to the
parts to the left of the dashed line in Figure 6.2, and the dashed line represents the
separation between the analysis stack and the prediction stack. This results in an
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automaton that at any point in time has a configuration as depicted in Figure 6.5. In the
literature, such a configuration, together with its current state, stacks, etc. is sometimes
called an instantaneous description. In Figure 6.5, matching can be seen as pushing the
vertical line to the right.

matched input rest of input

analysis prediction

Figure 6.5 An instantaneous description

The third and most important shortcoming, however, is the non-determinism.
Formally, it may be satisfactory that the automaton accepts a sentence if and only if
there is a sequence of choices that leads to an empty stack at the end of the sentence,
but for our purpose it is not, because it does not tell us how to obtain this sequence. We
have to guide the automaton to the correct choices. Looking back to the example of
Section 6.1, we had to make a choice at several points in the derivation, and we did so
based on some ad hoc considerations that were specific for the grammar at hand: some-
times we looked at the next symbol in the sentence, and there were also some points
where we had to look further ahead, to make sure that there were no more aa’s coming.
In the example, the choices were easy, because all the right-hand sides start with a ter-
minal symbol. In general, however, finding the correct choice is much more difficult.
The right-hand sides could for instance equally well have started with a non-terminal
symbol that again has right-hand sides starting with a non-terminal, etc.

In Chapter 8 we will see that many grammars still allow us to decide which right-
hand side to choose, given the next symbol in the sentence. In this chapter, however,
we will focus on top-down parsing methods that work for a larger class of grammars.
Rather than trying to pick a choice based on ad hoc considerations, we would like to
guide the automaton through all the possibilities. In Chapter 3 we saw that there are in
general two methods for solving problems in which there are several alternatives in
well-determined points: depth-first search and breadth-first search. We shall now see
how we can make the machinery operate for both search methods. Since the effects
can be exponential in size, even a small example can get quite big. We will use the
grammar of Figure 6.6, with test input aaaabbcc. This grammar generates a rather complex
language: sentences consist either of a number of aa’s followed by a number of bb’s fol-
lowed by an equal number of cc’s, or of a number of aa’s followed by an equal number
of bb’s followed by a number of cc’s. Example sentences are for instance: aabbcc, aaaabbbbcc.

SS -->> AABB || DDCC
AA -->> aa || aaAA
BB -->> bbcc || bbBBcc
DD -->> aabb || aaDDbb
CC -->> cc || ccCC

Figure 6.6 A more complicated example grammar
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6.3 BREADTH-FIRST TOP-DOWN PARSING

The breadth-first solution to the top-down parsing problem is to maintain a list of all
possible predictions. Each of these predictions is then processed as described in Sec-
tion 6.2 above, that is, if there is a non-terminal in front, the prediction stack is replaced
by several new prediction stacks, as many as there are choices for this non-terminal. In
each of these new prediction stacks, the non-terminal is replaced by the corresponding
choice. This prediction step is repeated for all prediction stacks it applies to (including
the new ones), until all prediction stacks have a terminal in front. Then, for each of the
prediction stacks we match the terminal in front with the current input symbol, and
strike out all prediction stacks that do not match. If there are no prediction stacks left,
the sentence does not belong to the language. So, instead of one prediction
stack/analysis stack pair, our automaton now maintains a list of prediction
stack/analysis stack pairs, one for each possible choice, as depicted in Figure 6.7.

matched input rest of input

analysis1 prediction1

analysis2 prediction2

... ...

Figure 6.7 An instantaneous description of our extended automaton

The method is suitable for on-line parsing, because it processes the input from left
to right. Any parsing method that processes its input from left to right and results in a
left-most derivation is called an LL parsing method. The first L stands for Left to right,
and the second L for Left-most derivation.

Now, we almost know how to write a parser along these lines, but there is one
detail that we have not properly dealt with yet: termination. Does the input sentence
belong to the language defined by the grammar when, ultimately, we have an empty
prediction stack? Only when the input is exhausted! To avoid this extra check, and to
avoid problems about what to do when we arrive at the end of sentence but haven’t fin-
ished parsing yet, we introduce a special so-called end-marker ##, that is appended at
the end of the sentence. Also, a new grammar rule SS’’-->>SS## is added to the grammar,
where SS’’ is a new non-terminal that serves as a new start symbol. The end-marker
behaves like an ordinary terminal symbol; when we have an empty prediction, we
know that the last step taken was a match with the end-marker, and that this match suc-
ceeded. This also means that the input is exhausted, so it must be accepted.

6.3.1 An example
Figure 6.8 presents a complete breadth-first parsing of the sentence aaaabbcc##. At first
there is only one prediction stack: it contains the start-symbol; no symbols have been
accepted yet (a). The step leading to (b) is a simple predict step; there is no other
right-hand side for SS’’. Another predict step leads us to (c), but this time there are two
possible right-hand sides, so we obtain two prediction stacks; note that the difference of
the prediction stacks is also reflected in the analysis stacks, where the different suffixes
of SS represent the different right-hand sides predicted. Another predict step with
several right-hand sides leads to (d). Now, all prediction stacks have a terminal on top;
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Figure 6.8 The breadth-first parsing of the sentence aaaabbcc##

all happen to match, resulting in (e). Next, we again have some predictions with a
non-terminal in front, so another predict step leads us to (f). The next step is a match
step, and fortunately, some matches fail; these are just dropped as they can never lead
to a successful parse. From (g) to (h) is again a predict step. Another match where,
again, some matches fail, leads us to (i). A further prediction results in (j) and then two
matches result in (k) and (l), leading to a successful parse (the predict stack is empty).
The analysis is
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SS’’11SS22AA22aaAA11aaBB11bbcc##.

For now, we do not need the terminals in the analysis; discarding them gives

SS’’11SS22AA22AA11BB11.

This means that we get a left-most derivation by first applying rule SS’’11, then rule SS22,
then rule AA22, etc., all the time replacing the left-most non-terminal. Check:

SS’’ -->> SS## -->> AABB## -->> aaAABB## -->> aaaaBB## -->> aaaabbcc##.

The breadth-first method described here was first presented by Greibach [CF
1964]. However, in that presentation, grammars are first transformed into Greibach
Normal Form, and the steps taken are like the ones our initial pushdown automaton
makes. The predict and match steps are combined.

6.3.2 A counterexample: left-recursion
The method discussed above clearly works for this grammar, and the question arises
whether it works for all context-free grammars. One would think it does, because all
possibilities are systematically tried, for all non-terminals, in any occurring prediction.
Unfortunately, this reasoning has a serious flaw that is demonstrated by the following
example: let us see if the sentence aabb belongs to the language defined by the simple
grammar

SS -->> SSbb || aa

Our automaton starts off in the following state:
� �����������������������������������������������
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SS’’
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��
�
�

As we have a non-terminal at the beginning of the prediction, we use a predict step,
resulting in:

� �����������������������������������������������
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SS’’11 SS##
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Now, another predict step results in:
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As one prediction again starts with a non-terminal, we predict again:
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By now, it is clear what is happening: we seem to have ended up in an infinite
process leading us nowhere. The reason for this is that we keep trying the SS-->>SSbb rule
without ever coming to a state where a match can be attempted. This problem can
occur whenever there is a non-terminal that derives an infinite sequence of sentential
forms, all starting with a non-terminal, so no matches can take place. As all these sen-
tential forms in this infinite sequence start with a non-terminal, and the number of
non-terminals is finite, there is at least one non-terminal A occurring more than once at
the start of those sentential forms. So, we have: A → . . . → Aα. A non-terminal that
derives a sentential form starting with itself is called left-recursive. Left recursion
comes in two kinds: we speak of immediate left-recursion when there is a grammar rule
A→Aα, like in the rule SS-->>SSbb; we speak of indirect left-recursion when the recursion
goes through other rules, for instance A→Bα, B→Aβ. Both forms of left-recursion
can be concealed by ε-producing non-terminals. For instance in the grammar

SS -->> AABBcc
BB -->> CCdd
BB -->> AABBff
CC -->> SSee
AA -->> εε

the non-terminals SS, BB, and CC are all left-recursive. Grammars with left-recursive non-
terminals are called left-recursive as well.

If a grammar has no ε-rules and no loops, we could still use our parsing scheme if
we use one extra step: if a prediction stack has more symbols than the unmatched part
of the input sentence, it can never derive the sentence (no ε-rules), so it can be dropped.
However, this little trick has one big disadvantage: it requires us to know the length of
the input sentence in advance, so the method no longer is suitable for on-line parsing.
Fortunately, left-recursion can be eliminated: given a left-recursive grammar, we can
transform it into a grammar without left-recursive non-terminals that defines the same
language. As left-recursion poses a major problem for any top-down parsing method,
we will now discuss this grammar transformation.

6.4 ELIMINATING LEFT-RECURSION

We will first discuss the elimination of immediate left-recursion. We will assume that
ε-rules and unit rules already have been eliminated (see Section 4.2.3.1 and 4.2.3.2).
Now, let A be a left-recursive rule, and

A → Aα1 | . . . | Aαn | β1 | . . . | βm

be all the rules for A. None of the αi are equal to ε, or we would have a rule A→A, a
unit rule. None of the βj are equal to ε either, or we would have an ε-rule. The senten-
tial forms generated by A using only the A→Aαk rules all have the form
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Aαk 1
αk 2

. . . αk j

and as soon as one of the A→βi rules is used, the sentential form has no longer an A in
front; it has the following form:

βiαk 1
αk 2

. . . αk j

for some i, and some k 1,
. . . , k j , where j could be 0. These same sentential forms are

generated by the following set of rules:

A_head → β1 | . . . | βm
A_tail → α1 | . . . | αn

A_tails → A_tail A_tails | ε
A → A_head A_tails

or, without re-introducing ε-rules,

A_head → β1 | . . . | βm
A_tail → α1 | . . . | αn

A_tails → A_tail A_tails | A_tail
A → A_head A_tails | A_head

where A_head, A_tail, and A_tails are newly introduced non-terminals. None of the αi
is ε, so A_tail does not derive ε, so A_tails is not left-recursive. A could still be left-
recursive, but it is not immediately left-recursive, because none of the βj start with an
A. They could, however, derive a sentential form starting with an A.

In general, eliminating the indirect left-recursion is more complicated. The idea is
that first the non-terminals are numbered, say A 1 , A 2 , . . . , An . Now, for a left-
recursive non-terminal A there is a derivation

A → Bα → . . . → Cγ → Aδ

with all the time a non-terminal at the left of the sentential form, and repeatedly replac-
ing this non-terminal using one of its right-hand sides. All these non-terminals have a
number associated with them, say i 1 , i 2 , . . . , im , and in the derivation we get the fol-
lowing sequence of numbers: i 1 , i 2 , . . . , im , i 1 . Now, if we did not have any rules
Ai→A jα with j≤i, this would be impossible, because i 1 < i 2 < . . . < im < i 1 is
impossible.

The idea now is to eliminate all rules of this form. We start with A 1 . For A 1 , the
only rules to eliminate are the immediately left-recursive ones, and we already have
seen how to do just that. Next, it is A 2’s turn. Each production rule of the form
A 2→A 1α is replaced by the production rules

A 2 → α1α | . . . | αmα

where

A 1 → α1 | . . . | αm
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are the A 1-rules. This cannot introduce new rules of the form A 2→A 1γ because we
have just eliminated A 1’s left-recursive rules, and the αi’s are not equal to ε. Next, we
eliminate the immediate left-recursive rules of A 2 . This finishes the work we have to
do for A 2 . Likewise, we deal with A 3 through An , in this order, always first replacing
rules Ai→A 1γ, then rules Ai→A 2δ, etc. We have to obey this ordering, however,
because for instance replacing a Ai→A 2δ rule could introduce a Ai→A 3γ rule, but not a
Ai→A 1α rule.

6.5 DEPTH-FIRST (BACKTRACKING) PARSERS

The breadth-first method presented in the previous section has the disadvantage that it
uses a lot of memory. The depth-first method also has a disadvantage: in its general
form it is not suitable for on-line parsing. However, there are many applications where
parsing does not have to be done on-line, and then the depth-first method is advanta-
geous since it does not need much memory.

In the depth-first method, when we are faced with a number of possibilities, we
choose one and leave the other possibilities for later. First, we fully examine the conse-
quences of the choice we just made. If this choice turns out to be a failure (or even a
success, but we want all solutions), we roll back our actions until the present point and
continue with the other possibilities.

Let us see how this search technique applies to top-down parsing. Our depth-first
parser follows the same steps as our breadth-first parser, until it encounters a choice: a
non-terminal that has more than one right-hand side lies on top of the prediction stack.
Now, instead of creating a new analysis stack/prediction stack pair, it chooses the first
right-hand side. This is reflected on the analysis stack by the appearance of the non-
terminal involved, with suffix 1, exactly as it was in our breadth-first parser. This time
however, the analysis stack is not only used for remembering the parse, but also for
backtracking.

The parser continues in this way, until a match fails, or the prediction stack is
empty. If the prediction stack is empty, we have found a parse, which is represented by
the analysis stack (we know that the input is also exhausted, because of the end-marker
##). If a match fails, the parser will backtrack. This backtracking consists of the fol-
lowing steps: first, any terminal symbols at the end of the analysis stack are popped
from this stack, and pushed back on top of the prediction stack. Also, these symbols
are removed from the matched input and added to the beginning of the rest of the input
(this is the reversal of the “match” steps), that is, backtracking over a terminal is done
by moving the vertical line backwards, as is demonstrated in Figure 6.9.

a 1a 2
. . . ai ai +1

. . . an##

αai β

a 1a 2
. . . ai −1 aiai +1

. . . an##

α aiβ

Figure 6.9 Backtracking over a terminal

Then, there are two possibilities: if the analysis stack is empty, there are no other possi-
bilities to try, and the parsing stops; otherwise, there is a non-terminal on top of the
analysis stack, and the top of the prediction stack corresponds to a right-hand side of
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this non-terminal. The choice of this right-hand side just resulted in a failed match. In
the latter case, we pop the non-terminal from the analysis stack and replace the right-
hand side part in the prediction stack with this non-terminal (this is the reversal of a
prediction step). This is demonstrated in Figure 6.10.

a 1a 2
. . . ai ai +1

. . . an##

αA γβ

a 1a 2
. . . ai ai +1

. . . an##

α Aβ

Figure 6.10 Backtracking over a A→γ choice

Next, there are again two possibilities: if this was the last right-hand side of this non-
terminal, we have already tried its right-hand sides and have to backtrack further; if
not, we start parsing again, first using a predict step that replaces the non-terminal with
its next right-hand side.

Now, let us try to parse the sentence aaaabbcc, this time using the backtracking
parser. Figure 6.11 presents the parsing process step by step; the backtracking steps are
marked with a B. The example demonstrates another disadvantage of the backtracking
method: it can make wrong choices and find out about this only much later. Of course,
it could also start with the right choices and be finished rapidly.

As presented here, the parsing stops when a parsing is found. If we want to find
all parsings, we should not stop when the prediction stack is empty. We can continue
by backtracking just as if we had not found a successful parse, and write down the
analysis stack (that represents the parse) every time that the prediction stack is empty.
Ultimately, we will end with an empty analysis part, indicating that we have exhausted
all analysis possibilities, and the parsing stops.

6.6 RECURSIVE DESCENT

In the previous sections, we have seen several automata at work, using a grammar to
decide the parsing steps while processing the input sentence. Now this is just another
way of stating that these automata use a grammar as a program. Looking at a grammar
as a program for a parsing machine is not as far-fetched as it may seem at first. After
all, a grammar is a prescription for deriving sentences of the language that the grammar
describes, and what we are doing in top-down parsing is rederiving a sentence from the
grammar. This only differs from the classic view of a grammar as a generating device
in that we are now trying to rederive a particular sentence, not just any sentence. Seen
in this way, grammars are programs, written in a programming language with a
declarative style (that is, it specifies what to do, but not the steps that need to be done
to achieve the result).

If we want to write a top-down parser for a certain context-free grammar in one of
the more common programming languages, like Pascal, C, or Modula-2, there are
several options. The first option is to write a program that emulates one of the auto-
mata described in the previous sections. This program can then be fed a grammar and
an input sentence. This is a perfectly sound approach and is easy to program. The dif-
ficulty comes when the parser must perform some other actions as parts of the input are
recognized. For instance, a compiler must build a symbol table when it processes a
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aaaabbcc##
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aaaabbcc##

SS’’11 SS##

aaaabbcc##

SS’’11SS11 DDCC##

aaaabbcc##

SS’’11SS11DD11 aabbCC##

aa aabbcc##

SS’’11SS11DD11aa bbCC##

B aaaabbcc##

SS’’11SS11DD11 aabbCC##

B

aaaabbcc##

SS’’11SS11 DD11CC##

aaaabbcc##

SS’’11SS11DD22 aaDDbbCC##

aa aabbcc##

SS’’11SS11DD22aa DDbbCC##
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SS’’11SS11DD22aaDD11 aabbbbCC##
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aa aabbcc##

SS’’11SS11DD22aaDD22 aaDDbbbbCC##

aaaa bbcc##

SS’’11SS11DD22aaDD22aa DDbbbbCC##
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aaaabbcc##
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aa aabbcc##
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SS’’11SS22AA22aaAA11 aaBB##

aaaa bbcc##
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aaaabbcc ##

SS’’11SS22AA22aaAA11aaBB11bbcc ##

aaaabbcc##

SS’’11SS22AA22aaAA11aaBB11bbcc##

Figure 6.11 Parsing the sentence aaaabbcc



Sec. 6.6] Recursive descent 133

declaration sequence. This, and efficiency considerations lead to a second option: to
write a special purpose parser for the grammar at hand. Many of these special purpose
parsers have been written, and most of them use an implementation technique called
recursive descent. We will assume that the reader has some programming experience,
and knows about procedures and recursion. If not, this section can be skipped. It does
not describe a different parsing method, but merely an implementation technique that is
often used in hand-written parsers and also in some machine-generated parsers.

6.6.1 A naive approach
As a first approach, we regard a grammar rule as a procedure for recognizing its left-
hand side. The rule

SS -->> aaBB || bbAA

is regarded as a procedure to recognize an SS. This procedure then states something like
the following:

SS succeeds if
aa succeeds and then BB succeeds

or else
bb succeeds and then AA succeeds

This does not differ much from the grammar rule, but it does not look like a piece of
Pascal or C either. Like a cookbook recipe that usually does not tell us that we must
peel the potatoes, let alone how to do that, the procedure is incomplete.

There are several bits of information that we must maintain when carrying out
such a procedure. First, there is the notion of a “current position” in the rule. This
current position indicates what must be tried next. When we implement rules as pro-
cedures, this current position is maintained automatically, by the program counter,
which tells us where we are within a procedure. Next, there is the input sentence itself.
When implementing a backtracking parser, we usually keep the input sentence in a glo-
bal array, with one element for each symbol in the sentence. The array must be global,
because it contains information that must be accessible equally easily from all pro-
cedures. Then, there is the notion of a current position in the input sentence. When the
current position in the rule indicates a terminal symbol, and this symbol corresponds to
the symbol at the current position in the input sentence, both current positions will be
advanced one position. The current position in the input sentence is also global infor-
mation. We will therefore maintain this position in a global variable, of a type that is
suitable for indexing the array containing the input sentence. Also, when starting a rule
we must remember the current position in the input sentence, because we need it for the
“or else” clauses. These must all be started at the same position in the input sentence.
For instance, starting with the rule for SS of grammar 6.1, suppose that the aa matches the
symbol at the current position of the input sentence. The current position is advanced
and then BB is tried. For BB, we have a rule similar to that of SS. Now suppose that BB fails.
We then have to try the next choice for SS, and backup the position in the input sentence
to what it was when we started the rule for SS. This is backtracking, just as we have
seen it earlier.

All this tells us how to deal with one rule. However, usually we are dealing with
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a grammar that has more than one non-terminal, so there will be more than one rule.
When we arrive at a non-terminal in a rule, we have to execute the rule for that non-
terminal, and, if it succeeds, return to the current invocation and continue there. We
achieve this automatically by using the procedure-call mechanism of the implementa-
tion language.

Another detail that we have not covered yet is that we have to remember the
grammar rules that we use. If we do not remember them, we will not know afterwards
how the sentence was derived. Therefore we note them in a separate list, striking them
out when they fail. Each procedure must keep its own copy of the index in this list,
again because we need it for the “or else ” clauses: if a choice fails, all choices that
have been made after the choice now failing must be discarded. In the end, when the
rule for SS’’ succeeds, the grammar rules left in this list represent a left-most derivation
of the sentence.

Now, let us see how a parser, as described above, works for an example. Let us
consider again grammar of Figure 6.6, and input sentence aabbbbcccc. As before, we add a
rule SS’’-->>SS## to the grammar and a ## to the end of the sentence, so our parser starts in
the following state:

� �������������������������������������������������������������������������������
Active rules Sentence Parse� �������������������������������������������������������������������������������� �������������������������������������������������������������������������������

1: SS’’ -->> � � SS## � � aabbcc## 1: SS’’ -->> SS##� �������������������������������������������������������������������������������
�
�
�
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�
�

�
�
�

�
�
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�
�

Our administration is divided into three parts; the “Active rules” part indicates the
active rules, with a dot ( � � ) indicating the current position within that rule. The bottom
rule in this part is the rule that we are currently working on. The “Sentence” part indi-
cates the sentence, including a position marker indicating the current position in the
sentence. The “Parse” part will be used to remember the rules that we use (not only the
currently active ones). The entries in this part are numbered, and each entry in the
“Active rules” part also contains its index in the “Parse” part. As we shall see later, this
is needed to backup after having taken a wrong choice.

There is only one possibility here: the current position in the procedure indicates
that we must invoke the procedure for SS, so let us do so:

� ���������������������������������������������������������������������������������������
Active rules Sentence Parse� ���������������������������������������������������������������������������������������� ���������������������������������������������������������������������������������������

1: SS’’ -->> SS � � ## � � aabbcc## 1: SS’’ -->> SS##
2: SS -->> � � DDCC || AABB � � aabbcc## 2: SS -->> DDCC� ���������������������������������������������������������������������������������������
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Notice that we have advanced the position in the SS’’ rule. It now indicates where we
have to continue when we are finished with SS (the return address). Now we try the first
alternative for SS. There is a choice here, so the current position in the input sentence is
saved. We have not made this explicit in the pictures, because this position is already
present in the “Sentence”-part of the entry that invoked SS.

� �����������������������������������������������������������������������������������������
Active rules Sentence Parse� ������������������������������������������������������������������������������������������ �����������������������������������������������������������������������������������������

1: SS’’ -->> SS � � ## � � aabbcc## 1: SS’’ -->> SS##
2: SS -->> DD � � CC || AABB � � aabbcc## 2: SS -->> DDCC
3: DD -->> � � aabb || aaDDbb � � aabbcc## 3: DD -->> aabb� �����������������������������������������������������������������������������������������
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Now, the first choice for DD is tried. The aa succeeds, and next the bb also succeeds, so
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we get:
� �����������������������������������������������������������������������������������������

Active rules Sentence Parse� ������������������������������������������������������������������������������������������ �����������������������������������������������������������������������������������������
1: SS’’ -->> SS � � ## � � aabbcc## 1: SS’’ -->> SS##
2: SS -->> DD � � CC || AABB � � aabbcc## 2: SS -->> DDCC
3: DD -->> aabb � � || aaDDbb aabb � � cc## 3: DD -->> aabb� �����������������������������������������������������������������������������������������
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Now, we are at the end of a choice for DD. This means that it succeeds, and we remove
this entry from the list of active rules, after updating the current positions in the entry
above. Next, it is CC’s turn:

� ���������������������������������������������������������������������������������������
Active rules Sentence Parse� ���������������������������������������������������������������������������������������� ���������������������������������������������������������������������������������������

1: SS’’ -->> SS � � ## � � aabbcc## 1: SS’’ -->> SS##
2: SS -->> DDCC � � || AABB aabb � � cc## 2: SS -->> DDCC
4: CC -->> � � cc || ccCC aabb � � cc## 3: DD -->> aabb

4: CC -->> cc� ���������������������������������������������������������������������������������������
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Now, the cc succeeds, so the CC succeeds, and then the SS also succeeds.
� �������������������������������������������������������������������������������

Active rules Sentence Parse� �������������������������������������������������������������������������������� �������������������������������������������������������������������������������
1: SS’’ -->> SS � � ## aabbcc � � ## 1: SS’’ -->> SS##
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Now, the ## also succeeds, and thus SS’’ succeeds, resulting in:
� �������������������������������������������������������������������������������

Active rules Sentence Parse� �������������������������������������������������������������������������������� �������������������������������������������������������������������������������
1: SS’’ -->> SS## � � aabbcc## � � 1: SS’’ -->> SS##

2: SS -->> DDCC
3: DD -->> aabb
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The “Parse” part now represents a left-most derivation of the sentence:

SS’’ -->> SS## -->> DDCC## -->> aabbCC## -->> aabbcc##.

This method is called recursive descent. Descent, because it operates top-down,
and recursive, because each non-terminal is implemented as a procedure that can
directly or indirectly (through other procedures) invoke itself. It should be stressed that
“recursive descent” is merely an implementation issue, albeit an important one. It
should also be stressed that the parser described above is a backtracking parser,
independent of the implementation method used. Backtracking is a property of the
parser, not of the implementation.

The backtracking method developed above is aesthetically pleasing, because we in
fact use the grammar itself as a program (or we transform the grammar rules into pro-
cedures, which can be done mechanically). There is only one problem: the recursive
descent method, as described above, does not always work! We already know that it
does not work for left-recursive grammars, but the problem is worse than that. For
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instance, aaaabbcc and aabbcccc are sentences that are not recognized, but should be. Parsing
of the aaaabbcc sentence gets stuck after the first aa, and parsing of the aabbcccc sentence gets
stuck after the first cc. Yet, aaaabbcc can be derived as follows:

SS -->> AABB -->> aaAABB -->> aaaaBB -->> aaaabbcc,

and aabbcccc can be derived with

SS -->> DDCC -->> aabbCC -->> aabbccCC -->> aabbcccc.

So, let us examine why our method fails. A little investigation shows that we
never try the AA-->>aaAA choice when parsing aaaabbcc, because the AA-->>aa choice succeeds.
Such a problem arises whenever more than one right-hand side can succeed, and this is
the case whenever a right-hand side can derive a prefix of a string derivable from
another right-hand side of the same non-terminal. The method developed so far is too
optimistic, in that it assumes that if a choice succeeds, it must be the right choice. It
does not allow us to backtrack over such a choice, when it was the wrong one. This is a
particularly serious problem if the grammar has ε-rules, because ε-rules always
succeed. Another consequence of being unable to backup over a succeeding choice is
that it does not allow us to get all parses when there is more than one (this is possible
for ambiguous grammars). Improvement is certainly needed here. Our criterion for
determining whether a choice is the right one clearly is wrong. Looking back at the
backtracking parser of the beginning of this section, we see that that parser does not
have this problem, because it does not consider choices independently of their context.
One can only decide that a choice is the right one if taking it results in a successful
parse; even if the choice ultimately succeeds, we have to try the other choices as well if
we want all parses. In the next section, we will develop a recursive-descent parser that
solves all the problems mentioned above. Meanwhile, the method above only works
for grammars that are prefix-free. A non-terminal A is prefix-free if A→* x and A→* xy,
where x and y are strings of terminal symbols, implies that y = ε. A grammar is called
prefix-free if all its non-terminals are prefix-free.

6.6.2 Exhaustive backtracking recursive descent
In the previous section we saw that we have to be careful not to accept a choice too
early; it can only be accepted when it leads to a successful parse. Now this demand is
difficult to express in a recursive-descent parser; how do we obtain a procedure that
tells us whether a choice leads to a successful parse? In principle, there are infinitely
many of these procedures, depending on the sentential form (the prediction) that must
derive the rest of the input. We cannot just write them all. However, at any point dur-
ing the parsing process we are dealing with only one such sentential form: the current
prediction, so we could try to build a parsing procedure for this sentential form dynami-
cally, during parsing. Many programming languages offer a useful facility for this pur-
pose: procedure parameters. One procedure can accept a procedure as parameter, and
call it, or pass it on to another procedure, or whatever other things one does with pro-
cedures. Some languages (for instance Pascal) require these procedures to be named,
that is, the actual parameter must be declared as a procedure; other languages, like
Algol 68, allow a procedure body for an actual parameter.

Let us see how we can write a parsing procedure for a symbol X, given that it is
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passed a procedure, which we will call tail, that parses the rest of the sentence (the part
that follows the X). This is the approach taken for all non-terminals, and, for the time
being, for terminals as well.

The parsing procedure for a terminal symbol a is easy: it matches the current input
symbol with a; if it succeeds, it advances the input position, and calls the tail parame-
ter; then, when tail returns, it restores the input position and returns.

Obviously, the parsing procedure for a non-terminal A is more complicated. It
depends on the type of grammar rule we have for A. The simplest case is A→ε. This is
implemented as a call to tail. The next simple case is A→X, where X is either a termi-
nal or a non-terminal symbol. To deal with this case, we must remember that we
assume that we have a parsing procedure for X, so the implementation of this case con-
sists of a call to X, with the tail parameter. The next case is A→XY, with X and Y sym-
bols. The procedure for X expects a procedure for “what comes after the X” as parame-
ter. Here, this parameter procedure is built using the Y and the tail procedures: we
create a new procedure out of these two. This, by itself, is a simple procedure: it calls
Y, with tail as parameter. If we call this procedure Y_tail, we can implement A by cal-
ling X with Y_tail as parameter.† And finally, if the right-hand side contains more than
two symbols, this technique has to be repeated: for a rule A→X 1X 2

. . . Xn we create a
procedure for X 2

. . . Xn and tail using a procedure for X 3
. . . Xn and tail, and so on.

Finally, if we have a choice, that is, we have A→α | β, the parsing procedure for A has
two parts: one part for α, followed by a call to tail, and another part for β, followed by
a call to tail. We have already seen how to implement these parts. If we only want one
parsing, all parsing procedures may be implemented as functions that return either false
or true, reflecting whether they result in a successful parse; the part for β is then only
started if the part for α, followed by tail, fails. If we want all parses, we have to try
both choices.

Applying this technique to all grammar rules almost results in a parser. Only, we
don’t have a starting point yet; this is easily obtained: we just call the procedure for the
start-symbol, with the procedure for recognizing the end-marker as parameter. This
end-marker procedure is probably a bit different from the others, because this is the
procedure where we finally find out whether a parsing attempt succeeds.

Figure 6.12 presents a fully backtracking recursive-descent parser for the gram-
mar of Figure 6.6, written in Pascal. The program has a mechanism to remember the
rules used, so these can be printed for each successful parse. Figure 6.13 presents a
sample session with this program.

{{$$CC++:: ddiissttiinngguuiisshh bbeettwweeeenn uuppppeerr aanndd lloowweerr ccaassee }}
pprrooggrraamm ppaarrssee((iinnppuutt,, oouuttppuutt));;
{{ TThhiiss iiss aann eexxhhaauussttiivvee bbaacckkttrraacckkiinngg rreeccuurrssiivvee--ddeesscceenntt ppaarrsseerr tthhaatt wwiillll

ccoorrrreeccttllyy ppaarrssee aaccccoorrddiinngg ttoo tthhee ggrraammmmaarr
SS -->> DD CC || AA BB
AA -->> aa || aa AA
BB -->> bb cc || bb BB cc

� ���������������������������

† For some programming languages this is difficult. The problem is that tail must be accessible
from Y_tail. Therefore, Y_tail should be a local procedure within the procedure for A. But,
some languages do not allow for local procedures (for instance C), and others do not allow local
procedures to be passed as parameters (like Modula-2). Some extensive trickery is required for
these languages, but this is beyond the scope of this book.
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DD -->> aa bb || aa DD bb
CC -->> cc || cc CC

IItt iimmpplleemmeennttss pprrooppeerr bbaacckkttrraacckkiinngg bbyy oonnllyy cchheecckkiinngg oonnee ssyymmbbooll aatt aa
ttiimmee aanndd ppaassssiinngg tthhee rreesstt ooff tthhee aalltteerrnnaattiivvee aass aa ppaarraammeetteerr ffoorr
eevvaalluuaattiioonn oonn aa lloowweerr lleevveell.. AA mmoorree nnaaiivvee bbaacckkttrraacckkiinngg ppaarrsseerr wwiillll nnoott
aacccceepptt ee..gg.. aaaabbcc..

}}

ccoonnsstt iinnffiinniittyy == 110000;; {{ llaarrggee eennoouugghh }}

ttyyppee ssttrr == ppaacckkeedd aarrrraayy[[11....1100]] ooff cchhaarr;;

vvaarr ttpp:: iinntteeggeerr;; {{ iinnddeexx iinn tteexxtt }}
lleennggtthh:: iinntteeggeerr;; {{ nnuummbbeerr ooff ssyymmbboollss iinn tteexxtt }}
rrpp:: iinntteeggeerr;; {{ iinnddeexx iinn rruulleess }}
tteexxtt:: aarrrraayy [[11....iinnffiinniittyy]] ooff cchhaarr;; {{ iinnppuutt tteexxtt }}
rruulleess:: aarrrraayy [[11....iinnffiinniittyy]] ooff ssttrr;; {{ ssttoorree rruulleess uusseedd }}

{{ aaddmmiinniissttrraattiioonn ooff rruulleess uusseedd }}
pprroocceedduurree ppuusshhrruullee ((ss:: ssttrr));; bbeeggiinn rrpp ::== rrpp ++ 11;; rruulleess[[rrpp]] ::== ss eenndd;;
pprroocceedduurree ppoopprruullee;; bbeeggiinn rrpp ::== rrpp -- 11 eenndd;;

pprroocceedduurree eennddmmaarrkk;; {{ rreeccooggnniizzee eenndd aanndd rreeppoorrtt ssuucccceessss }}
vvaarr ii:: iinntteeggeerr;;

bbeeggiinn iiff tteexxtt[[ttpp]] == ’’##’’ tthheenn bbeeggiinn
wwrriitteellnn((’’DDeerriivvaattiioonn::’’));;
ffoorr ii ::== 11 ttoo rrpp ddoo wwrriitteellnn((’’ ’’,, rruulleess[[ii]]));;

eenndd
eenndd;;

pprroocceedduurree aa((pprroocceedduurree ttaaiill));; {{ rreeccooggnniizzee aann ’’aa’’ aanndd ccaallll ttaaiill }}
bbeeggiinn iiff tteexxtt[[ttpp]] == ’’aa’’ tthheenn bbeeggiinn ttpp ::== ttpp ++ 11;; ttaaiill;; ttpp ::== ttpp -- 11 eenndd eenndd;;

pprroocceedduurree bb((pprroocceedduurree ttaaiill));; {{ rreeccooggnniizzee aa ’’bb’’ aanndd ccaallll ttaaiill }}
bbeeggiinn iiff tteexxtt[[ttpp]] == ’’bb’’ tthheenn bbeeggiinn ttpp ::== ttpp ++ 11;; ttaaiill;; ttpp ::== ttpp -- 11 eenndd eenndd;;

pprroocceedduurree cc((pprroocceedduurree ttaaiill));; {{ rreeccooggnniizzee aa ’’cc’’ aanndd ccaallll ttaaiill }}
bbeeggiinn iiff tteexxtt[[ttpp]] == ’’cc’’ tthheenn bbeeggiinn ttpp ::== ttpp ++ 11;; ttaaiill;; ttpp ::== ttpp -- 11 eenndd eenndd;;

pprroocceedduurree AA((pprroocceedduurree ttaaiill));; {{ rreeccooggnniizzee aann ’’AA’’ aanndd ccaallll ttaaiill }}
{{ pprroocceedduurreess ffoorr tthhee aalltteerrnnaattiivvee ttaaiillss }}
pprroocceedduurree tt;; bbeeggiinn ttaaiill eenndd;;
pprroocceedduurree AAtt;; bbeeggiinn AA((ttaaiill)) eenndd;;

bbeeggiinn
ppuusshhrruullee((’’AA -->> aa ’’));; aa((tt));; ppoopprruullee;;
ppuusshhrruullee((’’AA -->> aaAA ’’));; aa((AAtt));; ppoopprruullee

eenndd;;

pprroocceedduurree BB((pprroocceedduurree ttaaiill));; {{ rreeccooggnniizzee aa ’’BB’’ aanndd ccaallll ttaaiill }}
pprroocceedduurree cctt;; bbeeggiinn cc((ttaaiill)) eenndd;;
pprroocceedduurree BBcctt;;

pprroocceedduurree cctt;; bbeeggiinn cc((ttaaiill)) eenndd;;
bbeeggiinn BB((cctt)) eenndd;;

bbeeggiinn
ppuusshhrruullee((’’BB -->> bbcc ’’));; bb((cctt));; ppoopprruullee;;
ppuusshhrruullee((’’BB -->> bbBBcc ’’));; bb((BBcctt));; ppoopprruullee
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eenndd;;

pprroocceedduurree DD((pprroocceedduurree ttaaiill));; {{ rreeccooggnniizzee aa ’’DD’’ aanndd ccaallll ttaaiill }}
pprroocceedduurree bbtt;; bbeeggiinn bb((ttaaiill)) eenndd;;
pprroocceedduurree DDbbtt;;

pprroocceedduurree bbtt;; bbeeggiinn bb((ttaaiill)) eenndd;;
bbeeggiinn DD((bbtt)) eenndd;;

bbeeggiinn
ppuusshhrruullee((’’DD -->> aabb ’’));; aa((bbtt));; ppoopprruullee;;
ppuusshhrruullee((’’DD -->> aaDDbb ’’));; aa((DDbbtt));; ppoopprruullee

eenndd;;

pprroocceedduurree CC((pprroocceedduurree ttaaiill));; {{ rreeccooggnniizzee aa ’’CC’’ aanndd ccaallll ttaaiill }}
pprroocceedduurree tt;; bbeeggiinn ttaaiill eenndd;;
pprroocceedduurree CCtt;; bbeeggiinn CC((ttaaiill)) eenndd;;

bbeeggiinn
ppuusshhrruullee((’’CC -->> cc ’’));; cc((tt));; ppoopprruullee;;
ppuusshhrruullee((’’CC -->> ccCC ’’));; cc((CCtt));; ppoopprruullee

eenndd;;

pprroocceedduurree SS((pprroocceedduurree ttaaiill));; {{ rreeccooggnniizzee aa ’’SS’’ aanndd ccaallll ttaaiill }}
pprroocceedduurree CCtt;; bbeeggiinn CC((ttaaiill)) eenndd;;
pprroocceedduurree BBtt;; bbeeggiinn BB((ttaaiill)) eenndd;;

bbeeggiinn
ppuusshhrruullee((’’SS -->> DDCC ’’));; DD((CCtt));; ppoopprruullee;;
ppuusshhrruullee((’’SS -->> AABB ’’));; AA((BBtt));; ppoopprruullee

eenndd;;

ffuunnccttiioonn rreeaaddlliinnee:: bboooolleeaann;;
bbeeggiinn

wwrriittee((’’>> ’’));; lleennggtthh ::== 11;;
iiff nnoott eeooff tthheenn
bbeeggiinn wwhhiillee nnoott eeoollnn ddoo bbeeggiinn

rreeaadd((tteexxtt[[lleennggtthh]]));; lleennggtthh ::== lleennggtthh ++ 11;;
eenndd;;
rreeaaddllnn;; rreeaaddlliinnee ::== ttrruuee

eenndd
eellssee rreeaaddlliinnee ::== ffaallssee;;

eenndd;;

pprroocceedduurree ppaarrsseerr;;
bbeeggiinn tteexxtt[[lleennggtthh]] ::== ’’##’’;; ttpp ::== 11;; rrpp ::== 00;; SS((eennddmmaarrkk)) eenndd;;

bbeeggiinn wwhhiillee rreeaaddlliinnee ddoo ppaarrsseerr eenndd..

Figure 6.12 A parser for the grammar of Figure 6.6

6.7 DEFINITE CLAUSE GRAMMARS

In the previous sections, we have seen how to create parsers that retain much of the ori-
ginal structure of the grammar. The programming language Prolog allows us to take
this even one step further. Prolog has its foundations in logic. The programmer
declares some facts about objects and their relationships, and asks questions about
these. The Prolog system uses a built-in search and backtrack mechanism to answer
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>> aaaabbcc
DDeerriivvaattiioonn::

SS -->> AABB
AA -->> aaAA
AA -->> aa
BB -->> bbcc

>> aabbcccc
DDeerriivvaattiioonn::

SS -->> DDCC
DD -->> aabb
CC -->> ccCC
CC -->> cc

>> aabbcc
DDeerriivvaattiioonn::

SS -->> DDCC
DD -->> aabb
CC -->> cc

DDeerriivvaattiioonn::
SS -->> AABB
AA -->> aa
BB -->> bbcc

Figure 6.13 A session with the program of Figure 6.12

the questions with “yes” or “no”. For instance, if we have told the Prolog system about
the fact that a table and a chair are pieces of furniture, as follows:

ffuurrnniittuurree((ttaabbllee))..
ffuurrnniittuurree((cchhaaiirr))..

and we then ask if a bread is a piece of furniture:

|| ??-- ffuurrnniittuurree((bbrreeaadd))..

the answer will be “no”, but the answer to the question

|| ??-- ffuurrnniittuurree((ttaabbllee))..

will, of course, be “yes”. We can also use variables, which can be either instantiated
(have a value), or not. Variables start with a capital letter or an underscore (__). We
can use them for instance as follows:

|| ??-- ffuurrnniittuurree((XX))..

This is asking for an instantiation of the variable XX. The Prolog system will search for
a possible instantiation and respond:

XX == ttaabbllee

We can then either stop by typing a RETURN, or continue searching by typing a
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semicolon (and then a RETURN). In the last case, the Prolog system will search for
another instantiation of XX.

Not every fact is as simple as the one in the example above. For instance, a Pro-
log clause that could tell us something about antique furniture is the following:

aannttiiqquuee__ffuurrnniittuurree((OObbjj,, AAggee)) ::-- ffuurrnniittuurree((OObbjj)),, AAggee>>110000..

Here we see a conjunction of two goals: an object OObbjj with age AAggee is an antique piece
of furniture if it is a piece of furniture AND its age is more than a 100 years.

An important data structure in Prolog is the list. The empty list is denoted by [[]],
[[aa]] is a list with head aa and tail [[]], [[aa,,bb,,cc]] is a list with head aa and tail [[bb,,cc]].

Many Prolog systems allow us to specify grammars. For instance, the grammar of
Figure 6.6, looks like the one in Figure 6.14, when written in Prolog. The terminal
symbols appear as lists of one element.

%% OOuurr eexxaammppllee ggrraammmmaarr iinn DDeeffiinniittee CCllaauussee GGrraammmmaarr ffoorrmmaatt..

ssnn ---->> ddnn,, ccnn..
ssnn ---->> aann,, bbnn..
aann ---->> [[aa]]..
aann ---->> [[aa]],, aann..
bbnn ---->> [[bb]],, [[cc]]..
bbnn ---->> [[bb]],, bbnn,, [[cc]]..
ccnn ---->> [[cc]]..
ccnn ---->> [[cc]],, ccnn..
ddnn ---->> [[aa]],, [[bb]]..
ddnn ---->> [[aa]],, ddnn,, [[bb]]..

Figure 6.14 An example grammar in Prolog

The Prolog system translates these rules into Prolog clauses, also sometimes called
definite clauses, which we can investigate with the lliissttiinngg question:

|| ??-- lliissttiinngg((ddnn))..

ddnn((__33,,__44)) ::--
cc((__33,,aa,,__1133)),,
cc((__1133,,bb,,__44))..

ddnn((__33,,__44)) ::--
cc((__33,,aa,,__1133)),,
ddnn((__1133,,__1144)),,
cc((__1144,,bb,,__44))..

yyeess

|| ??-- lliissttiinngg((ssnn))..

ssnn((__33,,__44)) ::--
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ddnn((__33,,__1133)),,
ccnn((__1133,,__44))..

ssnn((__33,,__44)) ::--
aann((__33,,__1133)),,
bbnn((__1133,,__44))..

yyeess

We see that the clauses for the non-terminals have two parameter variables. The first
one represents the part of the sentence that has yet to be parsed, and the second one
represents the tail end of the first one, being the part that is not covered by the current
invocation of this non-terminal.

The built-in cc-clause matches the head of its first parameter with the second
parameter, and the tail of this parameter with the third parameter. A sample Prolog
session with this grammar is presented below:

&& pprroolloogg
CC--PPrroolloogg vveerrssiioonn 11..55
|| ??-- [[ggrraamm11]]..
ggrraamm11 ccoonnssuulltteedd 996688 bbyytteess ..113333333333 sseecc..

yyeess

We have now started the Prolog system, and requested it to consult the file containing
the grammar. Here, the grammar resides in a file called ggrraamm11.

|| ??-- ssnn((AA,,[[]]))..

AA == [[aa,,bb,,cc]] ;;

AA == [[aa,,bb,,cc,,cc]] ;;

AA == [[aa,,bb,,cc,,cc,,cc]] ..

yyeess

We have now asked the system to generate some sentences, by passing an uninstan-
tiated variable to ssnn, and requesting the system to find other instantiations twice. The
Prolog system uses a depth-first searching mechanism, which is not suitable for sen-
tence generation. It will only generate sentences starting with an aa, followed by a bb,
and then followed by an ever increasing number of cc’s.

|| ??-- ssnn(([[aa,,bb,,cc]],,[[]]))..

yyeess
|| ??-- ssnn(([[aa,,aa,,bb,,cc]],,[[]]))..

yyeess
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|| ??-- ssnn(([[aa,,bb,,cc,,cc]],,[[]]))..

yyeess
|| ??-- ssnn(([[aa,,aa,,aa,,bb,,bb,,cc,,cc,,cc]],,[[]]))..

nnoo
|| ??-- hhaalltt..

[[ PPrroolloogg eexxeeccuuttiioonn hhaalltteedd ]]
&&

Here we have asked the system to recognize some sentences, including two on which
the naive backtracking parser of Section 6.6.1 failed: aaaabbcc and aabbcccc. This session
demonstrates that we can use Definite Clause Grammars for recognizing sentences, and
to a lesser extent also for generating sentences.

Cohen and Hickey [CF 1987] discuss this and other applications of Prolog in
parsers in more detail. For more information on Prolog, see Programming in Prolog by
William F. Clocksin and Christopher S. Mellish (Springer-Verlag, Berlin, 1981).



7
General bottom-up parsing

As explained in Section 3.3.2, bottom-up parsing is conceptually very simple. At all
times we are in the possession of a sentential form that derives from the input text
through a series of left-most reductions (which mirrored right-most productions).
There is a cut somewhere in this sentential form which separates the already reduced
part (on the left) from the yet unexamined part (on the right). See Figure 7.1. The part
on the left is called the “stack” and the part on the right “rest of input”. The latter con-
tains terminal symbols only, since it is an unprocessed part of the original sentence,
while the stack contains a mixture of terminals and non-terminals, resulting from
recognized right-hand sides. We can complete the picture by keeping the partial parse
trees created by the reductions attached to their non-terminals. Now all the terminal
symbols of the original input are still there; the terminals in the stack are one part of
them, another part is semi-hidden in the partial parse trees and the rest is untouched in
the rest of the input. No information is lost, but some structure has been added. When
the bottom-up parser has reached the situation where the rest of the input is empty and
the stack contains only the start symbol, we have achieved a parsing and the parse tree
will be dangling from the start symbol. This view clearly exposes the idea that parsing
is nothing but structuring the input.

ttgg NNff ttee ttdd NNcc NNbb ttaa tt11 tt22 tt33 .. ..

CUT

STACK REST OF INPUT

terminals
and

non-terminals

terminals
only

partial parse
trees

Figure 7.1 The structure of a bottom-up parse

The cut between stack and rest of input is often drawn as a gap, for clarity and
since in actual implementations the two are often represented quite differently in the
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parser.

ttgg NNff ttee ttdd NNcc NNbb ttaa tt11 tt22 tt33 .. ..
.......

ttgg NNff ttee ttdd NNcc NNbb ttaa tt11

.......
tt22 tt33 .. ..

shifting tt11

Figure 7.2 A shift move in a bottom-up automaton

ttgg NNff ttee ttdd NNcc NNbb ttaa

.......
tt11 tt22 tt33 .. ..

ttgg NNff ttee ttdd RR
.......

tt11 tt22 tt33 .. ..

NNccNNbbttaa
. . . . . . . . . . . . ...

..

..

.....................

reducing NNccNNbbttaa to RR

Figure 7.3 A reduce move in a bottom-up automaton

Our non-deterministic bottom-up automaton can make only two moves: shift and
reduce; see Figures 7.2 and 7.3. During a shift, a (terminal) symbol is shifted from the
rest of input to the stack; tt11 is shifted in Figure 7.2. During a reduce move, a number
of symbols from the right end of the stack, which form the right-hand side of a rule for
a non-terminal, are replaced by that non-terminal and are attached to that non-terminal
as the partial parse tree. NNccNNbbttaa is reduced to RR in Figure 7.3; note that the original
NNccNNbbttaa are still present inside the partial parse tree. There would, in principle, be no
harm in performing the instructions backwards, an unshift and unreduce, although they
would seem to move us away from our goal, which is to obtain a parse tree. We shall
see that we need them to do backtracking.

At any point in time the machine can either shift (if there is an input symbol left)
or not, or it can do one or more reductions, depending on how many right-hand sides
can be recognized. If it cannot do either, it will have to resort to the backtrack moves,
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to find other possibilities. And if it cannot even do that, it is finished, and has found all
(zero or more) parsings.

7.1 PARSING BY SEARCHING

The only problem left is how to guide the automaton through all of the possibilities.
This is easily recognized as a search problem, which can be handled by a depth-first or
a breadth-first method. We shall now see how the machinery operates for both search
methods. Since the effects are exponential in size, even the smallest example gets quite
big and we shall use the unrealistic grammar of Figure 7.4. The test input is aaaaaaaabb.

1. SSSS -->> aa SS bb
2. SS -->> SS aa bb
3. SS -->> aa aa aa

Figure 7.4 A simple grammar for demonstration purposes

(a) aaaaaaaabb

(b) aa aaaaaabb

(c) aaaa aaaabb

(d) aaaaaa33 aabb

(e) aaaaaa33aa33 bb

(f) aaaaaa33aa33bb

(g) aaaaaa33aa33 bb

(h) aaSS bb

aaaa33aa

(i) aaSSbb11

aaaa33aa

(j) �SS

aaSSbb

aaaa33aa

(k) aaSSbb

aaaa33aa

(l) aaSS bb

aaaa33aa

(m) aaaaaa33aa bb

(n) aaaaaa33 aabb

(o) SS aabb

aaaaaa

(p) SSaa bb

aaaaaa

(q) SSaabb22

aaaaaa

(r) �SS

SSaabb

aaaaaa

(s) SSaabb

aaaaaa

(t) SSaa bb

aaaaaa

(u) SS aabb

aaaaaa

(v) aaaaaa aabb

(w) aaaa aaaabb

(x) aa aaaaaabb

(y)  aaaaaaaabb

Figure 7.5 Stages for the depth-first parsing of aaaaaaaabb

7.1.1 Depth-first (backtracking) parsing
Refer to Figure 7.5, where the gap for a shift is shown as  and that for an unshift as  .
At first the gap is to the left of the entire input (a) and shifting is the only alternative;
likewise with (b) and (c). In (d) we have a choice, either to shift, or to reduce using rule
3; we shift, but remember the possible reduction(s); the rule numbers of these are
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shown as subscripts to the symbols in the stack. Idem in (e). In (f) we have reached a
position in which shift fails, reduce fails (there are no right-hand sides aaaaaaaabb, aaaaaabb,
aaaabb, aabb or bb) and there are no stored alternatives. So we start backtracking by unshift-
ing (g). Here we find a stored alternative, “reduce by 3”, which we apply (h), deleting
the index for the stored alternative in the process; now we can shift again (i). No more
shifts are possible, but a reduce by 1 gives us a parsing (j). After having enjoyed our
success we unreduce (k); note that (k) only differs from (i) in that the stored alternative
1 has been consumed. Unshifting, unreducing and again unshifting brings us to (n)
where we find a stored alternative, “reduce by 3”. After reducing (o) we can shift
again, twice (p, q). A “reduce by 2” produces the second parsing (r). The rest of the
road is barren: unreduce, unshift, unshift, unreduce (v) and three unshifts bring the
automaton to a halt, with the input reconstructed (y).

(a1) initial

(b1) shifted from a1aa

(c1) shifted from b1aaaa

(d1) shifted from c1aaaaaa

(d2) reduced from d1SS

aaaaaa

(e1) shifted from d1aaaaaaaa

(e2) shifted from d2SSaa

aaaaaa

(e3) reduced from e1aaSS

aaaaaa

(f1) shifted from e1aaaaaaaabb

(f2) shifted from e2SSaabb

aaaaaa

(f3) shifted from e3aaSSbb

aaaaaa

(f4) reduced from f2 �SS

SSaabb

aaaaaa

(f5) reduced from f3 �SS

aaSSbb

aaaaaa

Figure 7.6 Stages for the breadth-first parsing of aaaaaaaabb

7.1.2 Breadth-first (on-line) parsing
Breadth-first bottom-up parsing is simpler than depth-first, at the expense of a far
larger memory requirement. Since the input symbols will be brought in one by one
(each causing a shift, possibly followed by some reduces), our representation of a par-
tial parse will consist of the stack only, together with its attached partial parse trees.
We shall never need to do an unshift or unreduce. Refer to Figure 7.6. We start our
solution set with only one empty stack (a1). Each parse step consist of two phases; in
phase one the next input symbol is appended to the right of all stacks in the solution set;
in phase two all stacks are examined and if they allow one or more reductions, one or
more copies are made of it, to which the reductions are applied. This way we will never
miss a solution. The first and second aa are just appended (b1, c1), but the third allows a
reduction (d2). The fourth causes one more reduction (e2) and the fifth gives rise to
two reductions, each of which produces a parsing (f4 and f5).
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7.1.3 A combined representation
The configurations of the depth-first parser can be combined into a single graph; see
Figure 7.7(a) where numbers indicate the order in which the various shifts and reduces
are performed. Shifts are represented by lines to the right and reduces by upward
arrows. Since a reduce often combines a number of symbols, the additional symbols are
brought in by arrows that start upwards from the symbols and then turn right to reach
the resulting non-terminal. These arrows constitute at the same time the partial parse
tree for that non-terminal. Start symbols in the right-most column with partial parse
trees that span the whole input head complete parse trees.

aa aa aa aa bb1 2 3 4

SS5 bb6

SS7 �

SS8 aa bb9 10

SS11 �

(a)

aa aa aa aa bb1 2 4 7

SS6 bb8

SS10 �

SS3 aa bb5 9

SS11 �

(b)

Figure 7.7 The configurations of the parsers combined

If we complete the stacks in the solution sets in our breadth-first parser by
appending the rest of the input to them, we can also combine them into a graph, and,
what is more, into the same graph; only the action order as indicated by the numbers is
different, as shown in Figure 7.7(b). This is not surprising, since both represent the
total set of possible shifts and reduces; depth-first and breadth-first are just two dif-
ferent ways to visit all nodes of this graph. Figure 7.7(b) was drawn in the same form
as Figure 7.7(a); if we had drawn the parts of the picture in the order in which they are
executed by the breadth-first search, many more lines would have crossed. The picture
would have been equivalent to (b) but much more complicated to look at.

7.1.4 A slightly more realistic example
The above algorithms are relatively easy to understand and implement† and although
they require exponential time in general, they behave reasonably well on a number of
grammars. Sometimes, however, they will burst out in a frenzy of senseless activity,
even with an innocuous-looking grammar (especially with an innocuous-looking gram-
mar!). The grammar of Figure 7.8 produces algebraic expressions in one variable, aa,
and two operators, ++ and --. QQ is used for the operators, since OO (oh) looks too much like
00 (zero). This grammar is unambiguous and for aa--aa++aa it has the correct production
tree
� ���������������������������

† See, for instance, Hext and Roberts [CF 1970] for Dömölki’s method to find all possible
reductions simultaneously.
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++

-- aa

aa aa

which restricts the minus to the following aa rather than to aa++aa. Figure 7.9 shows the
graph searched while parsing aa--aa++aa. It contains 108 shift lines and 265 reduce arrows
and would fit on the page only thanks to the exceedingly fine print the phototypesetter
is capable of. This is exponential explosion.

SSSS -->> EE
EE -->> EE QQ FF
EE -->> FF
FF -->> aa
QQ -->> ++
QQ -->> --

Figure 7.8 A grammar for expressions in one variable

7.2 TOP-DOWN RESTRICTED BREADTH-FIRST BOTTOM-UP PARSING

In spite of their occasionally vicious behaviour, breadth-first bottom-up parsers are
attractive since they work on-line, can handle left-recursion without any problem and
can generally be doctored to handle ε-rules. So the question remains how to curb their
needless activity. Many methods have been invented to restrict the search breadth to at
most 1, at the expense of the generality of the grammars these methods can handle; see
Chapter 9. A method that will restrict the fan-out to reasonable proportions while still
retaining full generality was developed by Earley [CF 1970].

7.2.1 The Earley parser without look-ahead
When we take a closer look at Figure 7.9, we see after some thought that many reduc-
tions are totally pointless. It is not meaningful to reduce the third aa to EE or SS since these
can only occur at the end if they represent the entire input; likewise the reduction of
aa--aa to SS is absurd, since SS can only occur at the end. Earley noticed that what was
wrong with these spurious reductions was that they were incompatible with a top-down
parsing, that is: they could never derive from the start symbol. He then gave a method
to restrict our reductions only to those that derive from the start symbol. We shall see
that the resulting parser takes at most n 3 units of time for input of length n rather than
C n .

Earley’s parser can also be described as a breadth-first top-down parser with
bottom-up recognition, which is how it is explained by the author [CF 1970]. Since it
can, however, handle left-recursion directly but needs special measures to handle ε-
rules, we prefer to treat it as a bottom-up method.

We shall again use the grammar from Figure 7.8 and parse the input aa--aa++aa. Just
as in the non-restricted algorithm, we have at all times a set of partial solutions which
is modified by each symbol we read. We shall write the sets between the input symbols
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Figure 7.9 The graph searched while parsing aa--aa++aa
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as we go; we have to keep earlier sets, since they will still be used by the algorithm.
Unlike the non-restricted algorithm, in which the sets contained stacks, the sets consist
of what is technically known as items, or Earley items to be more precise. An item is a
grammar rule with a gap in its right-hand side; the part of the right-hand side to the left
of the gap (which may be empty) has already been recognized, the part to the right of
the gap is predicted. The gap is traditionally shown as a fat dot: � . Items are for
instance: EE-->> � � EEQQFF, EE-->>EE � � QQFF, EE-->>EEQQ � � FF, EE-->>EEQQFF � � , FF-->>aa � � , etc. It is unfortunate when a
vague every-day term gets endowed with a very specific technical meaning, but the
expression has taken hold, so it will have to do. An Earley item is an item with an indi-
cation of the position of the symbol at which the recognition of the recognized part
started. Notations vary, but we shall write @@n after the item (read: “at n”). If the set at
the end of position 7 contains the item EE-->>EE � � QQFF@@33, we have recognized an EE in posi-
tions 3, 4, 5, 6, 7 and are looking forward to recognizing QQFF.

The sets of items contain exactly those items a) of which the part before the dot
has been recognized so far and b) of which we are certain that we shall be able to use
the result when they will happen to be recognized in full (but we cannot, of course, be
certain that that will happen). If a set contains the item EE-->>EE � � QQFF@@33, we can be sure that
when we will have recognized the whole right-hand side EEQQFF, we can go back to the set
at the beginning of symbol number 3 and find there an item that was looking forward to
recognizing an EE, i.e., that had an EE with a dot in front of it. Since that is true recur-
sively, no recognition will be in vain.

7.2.1.1 The Scanner, Completer and Predictor
The construction of an item set from the previous item set proceeds in three phases.
The first two correspond to those of the non-restricted algorithm, where they were
called “shift” and “reduce”; here they are called “Scanner” and “Completer”. The third
is new and is related to the top-down component; it is called “Predictor”.

items after
previous
symbol

itemsetp−1

σp

items
completed

by σp

completedp

active
items

after σp
predicted

items

. . . . . . . . . . . . . . . . . .

act/predp

= itemsetp

Figure 7.10 The Earley items sets for one input symbol

The Scanner, Completer and Predictor deal with four sets of items for each token
in the input. Refer to Figure 7.10, where the input symbol σp at position p is sur-
rounded by the four sets: itemsetp −1 , which contains the items available just before σp;
completedp , the set of items that have become completed due to σp; activep , which
contains the non-completed items that passed σp; and predictedp , the set of newly
predicted items. The sets activep and predictedp together form itemsetp; the internal
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division will be indicated in the drawings by a dotted line. Initially, itemsetp −1 is filled
(as a result of processing σp −1) and the other sets are empty; the construction of item-
set 0 is special.

The Scanner looks at σp , goes through itemsetp −1 and makes copies of all items
that contain � σ (all other items are ignored); in those, the part before the dot was
already recognized and now σ is recognized. Consequently, the Scanner changes � σ
into σ � . If the dot is now at the end, it stores the item in the set completedp; otherwise
it stores it in the set activep .

Next the Completer inspects completedp , which contains the items that have just
been recognized completely and can now be reduced. This reduction goes as follows.
For each item of the form R→ . . . � @@m the Completer goes to itemsetm −1 , and calls the
Scanner; the Scanner, which was used to work on the σp found in the input and
itemsetp −1 , is now directed to work on the R recognized by the Completer and
itemsetm −1 . It will make copies of all items in itemsetm −1 featuring a � R, replace the � R
by R � and store them in either completedp or activep , as appropriate. This can add
indirectly recognized items to the set completedp , which means more work for the
Completer. After a while, all completed items have been reduced, and the Predictor’s
turn has come.

The Predictor goes through the sets activep (which was filled by the Scanner) and
predictedp (which is empty initially), and considers all non-terminals which have a dot
in front of them; these we expect to see in the input. For each expected (predicted)
non-terminal N and for each rule for that non-terminal N→P . . . , the Predictor adds an
item N→ � P . . . @@p +1 to the set predictedp . This may introduce new predicted non-
terminals (for instance, P) in predictedp which cause more predicted items. After a
while, this too will stop.

The sets activep and predictedp together form the new itemsetp . If the completed
set for the last symbol in the input contains an item S→ . . . � @@1, i.e., an item spanning
the entire input and reducing to the start symbol, we have found at least one parsing.

Now refer to Figure 7.11, which shows the items sets of the Earley parser working
on aa--aa++aa. The initial active item set active 0 is {SS-->> � � EE@@11}, indicating that this is the
only item that can derive directly from the start symbol. The Predictor first predicts
EE-->> � � EEQQFF@@11, from this EE-->> � � EEQQFF@@11 and EE-->> � � FF@@11 (but the first one is in the set already)
and from the last one FF-->> � � aa@@11. This gives itemset 0 .

The Scanner working on itemset 0 and scanning for an aa, only catches FF-->> � � aa@@11,
which it turns into FF-->>aa � � @@11 and stores in completed 1 . This not only means that we
have recognized and reduced an FF, but also that we have a buyer for it. The Completer
goes to the set itemset 0 and copies all items that have � � FF. Result: one item, EE-->> � � FF@@11,
which turns into EE-->>FF � � @@11 and is again stored in completed 1 . More work for the Com-
pleter, which will now copy items containing � � EE; result: two items, SS-->> � � EE@@11 which
becomes SS-->>EE � � @@11 and goes to the completed set, and EE-->> � � EEQQFF@@11 which becomes
EE-->>EE � � QQFF@@11 and which becomes the first and only member of active 1 . The completion
of SS yields no new information.

The Predictor working on active 1 has an easy job: � � QQ causes two items for QQ, both
with @@22, since that is where recognition will have started, if it occurs at all. Nothing
spectacular happens until the Scanner processes the second aa; from itemset 2 it extracts
FF-->> � � aa@@33 which gives FF-->>aa � � @@33 which is passed to the Completer (through com-
pleted 3). The latter sees the reduction of aa to FF starting at position 3, goes to itemset 2
to see who ordered an FF, and finds EE-->>EEQQ � � FF@@11; given the FF, this turns into EE-->>EEQQFF � � @@11,
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FF-->> � � aa @@11

. . . . . . . . . . . . . . . . . .

act/pred0

= itemset0

aa1

FF-->>aa � � @@11
EE-->>FF � � @@11
SS-->>EE � � @@11

completed1

EE-->>EE � � QQFF@@11
QQ-->> � � ++ @@22
QQ-->> � � -- @@22

. . . . . . . . . . . . . . . . . .

act/pred1

= itemset1

--2

QQ-->>-- � � @@22

completed2

EE-->>EEQQ � � FF@@11
FF-->> � � aa @@33

. . . . . . . . . . . . . . . . . .

act/pred2

= itemset2

aa3

FF-->>aa � � @@33
EE-->>EEQQFF � � @@11
SS-->>EE � � @@11

completed3

EE-->>EE � � QQFF@@11
QQ-->> � � ++ @@44
QQ-->> � � -- @@44

. . . . . . . . . . . . . . . . . .

act/pred3

= itemset3

++4

QQ-->>++ � � @@44

completed4

EE-->>EEQQ � � FF@@11
FF-->> � � aa @@55

. . . . . . . . . . . . . . . . . .

act/pred4

= itemset4

aa5

FF-->>aa � � @@55
EE-->>EEQQFF � � @@11
SS-->>EE � � @@11

completed5

EE-->>EE � � QQFF@@11

active5

Figure 7.11 Items sets of the Earley parser working on aa--aa++aa

which in its turn signals the reduction to EE of the substring from 1 to 3 (again through
completed 3). The Completer checks itemset 0 and finds two clients there for the EE:
SS-->> � � EE@@11 and EE-->> � � EEQQFF@@11; the first ends up as SS-->>EE � � @@11 in completed 3 , the second as
EE-->>EE � � QQFF@@11 in active 3 .

After the last symbol has been processed by the Scanner, we still run the Com-
pleter to do the final reductions, but running the Predictor is useless, since there is noth-
ing to predict any more. Note that the parsing started by calling the Predictor on the ini-
tial active set and that there is one Predictor/Scanner/Completer action for each sym-
bol. Since the last completed set indeed contains an item SS-->>EE � � @@11, there is at least one
parsing.

7.2.1.2 Constructing a parse tree
All this does not directly give us a parse tree. As is more often the case in parser con-
struction (see, for instance, Section 4.1) we have set out to build a parser and have
ended up building a recognizer. The intermediate sets, however, contain enough infor-
mation about fragments and their relations to construct a parse tree easily. As with the
CYK parser, a simple top-down Unger-type parser can serve for this purpose, since the
Unger parser is very interested in the lengths of the various components of the parse
tree and that is exactly what the sets in the Earley parser provide. In his 1970 article,
Earley gives a method of constructing the parse tree(s) while parsing, by keeping with
each item a pointer back to the item that caused it to be present. Tomita [CF 1986, p.
74-77] has, however, shown that this method will produce incorrect parse trees on cer-
tain ambiguous grammars.

From the set completed 5 in Figure 7.11, which is the first we inspect after having
finished the set construction, we see that there is a parse possible with SS for a root and
extending over symbols 1 to 5; we designate the parse root as SS1−5 in Figure 7.12.
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Given the completed item SS-->>EE � � @@11 in completed 5 there must be a parse node EE1−5,
which is completed at 5. Since all items completed after 5 are contained in completed 5 ,
we scan the latter to find a completed EE starting at 1; we find EE-->>EEQQFF � � @@11. This gives
us parse tree (a), where the values at the question marks are still to be seen. Since items
are recognized at their right ends, we start by finding a parse for the FF?−5, to be found
in completed 5 . We find FF-->>aa � � @@55, giving us parse tree (b). It suggests that we find a
parse for QQ?−4 completed after 4; in completed 4 we find QQ-->>++ � � @@44. Consequently QQ?−4
is QQ4−4 and the EE1−? in (b) must be EE1−3. This makes us look in completed 3 for an
EE-->>......@@11, where we find EE-->>EEQQFF � � @@11. We now have parse tree (c), and, using the
same techniques, we easily complete it (d).

SS11--55

EE11--55

EE11--?? QQ??--?? FF??--55

(a)

SS11--55

EE11--55

EE11--?? QQ??--44 FF55--55

aa55(b)

SS11--55

EE11--55

EE11--33 QQ44--44 FF55--55

EE11--?? QQ??--?? FF??--33 ++44 aa55

(c)

SS11--55

EE11--55

EE11--33 QQ44--44 FF55--55

EE11--11 QQ22--22 FF33--33 ++44 aa55

FF11--11 --22 aa33

aa11 (d)

Figure 7.12 Construction of the parse trees
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7.2.1.3 Space and time requirements
It is interesting to have a look at the space and time needed for the construction of the
sets. First we calculate the maximum size of the sets just after symbol number p. There
is only a fixed number of different items, I, limited by the size of the grammar; for our
grammar it is I =14. However, each item can occur with any of the additions @@1 to
@@p +1, of which there are p +1. So the number of items in the set itemsetp is limited to
I×(p +1). The exact calculation of the maximum number of items in each of the sets is
complicated by the fact that different rules apply to the first, last and middle items.
Disregarding these complications, we find that the maximum number of items in all
itemsets up to p is roughly I×p 2 /2. The same applies to the completed sets. So, for an
input of length n, the memory requirement is O(n 2), as with the CYK algorithm. In
actual practice, the amount of memory used is often far less than this theoretical max-
imum. In our case all sets together could conceivably contain about 14×52=350 items,
with which the actual number of 4+3+3+1+2+3+3+1+2+3+1=26 items compares very
favourably.

Although a set at position p can contain a maximum of O(p) items, it may require
an amount of work proportional to p 2 to construct that set, since each item could, in
principle, be inserted by the Completer once from each preceding position. Under the
same simplifying assumptions as above, we find that the maximum number of actions
needed to construct all sets up to p is roughly I×p 3 /6. So the total amount of work
involved in parsing a sentence of length n with the Earley algorithm is O(n 3), as it is
with the CYK algorithm. Again, in practice it is much better: on many grammars,
including the one from Figure 7.8, it will work in linear time (O(n)) and on any unam-
biguous grammar it will work in O(n 2). In our example, a maximum of about
14×53 /6∼−300 actions might be required, compared to the actual number of 28 (both
items for EE in predicted 0 were inserted twice).

It should be noted that once the calculation of the sets is finished, only the com-
pleted sets are consulted. The active and predicted sets can be thrown away to make
room for the parse tree(s).

The practical efficiency of this and the CYK algorithms is not really surprising,
since in normal usage most arbitrary fragments of the input will not derive from any
non-terminal. The sentence fragment “letter into the upper left-most” does not
represent any part of speech, nor does any fragment of it of a size larger than one. The
O(n 2) and O(n 3) bounds only materialize for grammars in which almost all non-
terminals produce almost all substrings in almost all combinatorially possible ways, as
for instance in the grammar SS-->>SSSS, SS-->>xx.

7.2.2 The relation between the Earley and CYK algorithms
The similarity in the time and space requirement between the Earley and the CYK
algorithm suggest a deeper relation between the two and indeed there is one. The Ear-
ley sets can be accommodated in a CYK-like grid; see Figure 7.13. To stress the simi-
larity, the sets are distributed over diagonals of boxes slanting from north-west to
south-east. Since the columns indicate the beginnings of possibly recognized frag-
ments, all items with the same @@p come in the same column. This arrangement assigns
a natural position to each item. Completed items are drawn in the top left corner of a
box, active items in the bottom right corner. Predicted items have not yet recognized
anything and live in the bottom layer.

When we compare this picture to that produced by the CYK parser (Figure 7.14)
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Figure 7.13 The Earley sets represented in CYK fashion

we see correspondences and differences. Rather than having items, the boxes contain
non-terminals only. All active and predicted items are absent. The left-hand sides of the
completed items also occur in the CYK picture, but the latter features more recognized
non-terminals; from the Earley picture we know that these will never play a role in any
parse tree. The costs and the effects of the top-down restriction are clearly shown.

The correspondence between the Earley and the CYK algorithms has been
analysed by Graham and Harrison [CF 1976]. This has resulted in a combined algo-
rithm described by Graham, Harrison and Ruzzo [CF 1980].

7.2.3 Ambiguous sentences
Calculating the sets for a parsing of an ambiguous sentence does not differ from that
for an unambiguous one. Some items will be inserted more than once into the same set,
but that can happen even with unambiguous sentences. The parse trees will be faith-
fully produced by the Unger parser; when searching a completed set for items of the
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Figure 7.14 CYK sets for the parsing of Figure 7.11

form A→ . . . � @@p, it may find several. Each will produce a different parse tree (or set
of parse trees if further ambiguities are found). There may be exponentially many parse
trees (even though the work to produce the sets is limited to O(n 3)) or even infinitely
many of them. Infinite ambiguity is cut out automatically by the Unger parser, but
exponential numbers of parse trees will just have to be suffered. If they are essential to
the application, Tomita [CF 1986, p. 17-20] has given an efficient packing method for
them.

The enumeration of all possible parse trees is often important, since many
methods augment the CF grammar with more long-range restrictions formulated out-
side the CF framework, to thus approximate a context-sensitive analysis. To this end,
all parse trees are produced and checked; only those that meet the restrictions are
accepted.

Figure 7.15 shows the sets for the parsing of an ambiguous sentence xxxxxx accord-
ing to the grammar SS-->>SSSS, SS-->>xx; again an artificial example is the only one which can
be shown, for reasons of size. Figure 7.16 gives the parse trees. There is only one root
in completed 3: SS-->>SSSS � � @@11, leading to parse tree (a). Looking up a parsing for SS?−3 in
completed 3 , we come up with three possibilities: SS-->> � � xx@@33, SS-->>SSSS � � @@22 and SS-->>SSSS � � @@11.
The first and second lead to parse trees (b) and (c) but the third is suppressed by the
Unger parser (it would lead to infinite recursion). No further ambiguities occur and the
final parse trees are found in (d) and (e). All this is the same as in the CYK parser.

7.2.4 Handling ε-rules
Like most parsers, the above parser cannot handle ε-rules without special measures. ε-
rules show up first as an anomaly in the work of the Predictor. While predicting items
of the form A→ � . . . @@p +1 as a consequence of having a � A in an item in activep or
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Figure 7.15 Parsing of xxxxxx according to SS-->>SSSS, SS-->>xx
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Figure 7.16 Parse tree construction for the parsing of Figure 7.15

predictedp , it may stumble upon an empty prediction A→ � @@p +1; this means that the
non-terminal A has been completed just before symbol number p +1 and this completed
item should be added to the set completedp , which up to now only contained items with
@@p at most. So we find that there was more work for the Completer after all. But that is
not the end of the story. If we now run the Completer again, it will draw the conse-
quences of the newly completed item(s) which have @@p +1. So it will consult itemsetp ,
which is, however, incomplete since items are still being added to its constituents,
activep and predictedp . If it finds occurrences of � A there, it will add copies with A �

instead; part of these may require new predictions to be done (if the dot lands in front
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of another non-terminal), part may be completed items, which will have to go into
completedp and which mean more work for the Completer. The latter items can have a
starting point lower than p, which brings in items from further back, which may or may
not now be completed through this action or through empty completed items at p.

The easiest way to handle this mare’s nest is to stay calm and keep running the
Predictor and Completer in turn until neither has anything more to add. Since the
number of items is finite this will happen eventually, and in practice it happens rather
sooner than later.

The Completer and Predictor loop has to be viewed as a single operation called
“X” by Graham, Harrison and Ruzzo [CF 1980]. Just like the Predictor it has to be
applied to the initial state, to honour empty productions before the first symbol; just
like the Completer it has to be applied to the final state, to honour empty productions
after the last symbol.

Part of the effects are demonstrated by the grammar of Figure 7.17 which is based
on a grammar similar to that of Figure 7.8. Rather than addition and subtraction, this
one handles multiplication and division, with the possibility to omit the multiplication
sign: aaaa means aa××aa.

SSSS -->> EE
EE -->> EE QQ FF
EE -->> FF
FF -->> aa
QQ -->> ××
QQ -->> //
QQ -->> εε

Figure 7.17 A grammar with an ε-rule

The parsing is given in Figure 7.18. The items pointed at by a � have been added
by a second pass of the Completer/Predictor. The QQ-->> � � @@22, inserted by the Predictor
into completed 1 as a consequence of EE-->>EE � � QQFF@@11 in active 1 , is picked up by the second
pass of the Completer, and is used to clone EE-->>EE � � QQFF@@11 in active 1 into EE-->>EEQQ � � FF@@11.
This in turn is found by the Predictor which predicts the item FF-->> � � aa@@22 from it. Note
that we now do have to consider the full active/predicted set after the last symbol; its
processing by the Completer/Predictor may insert an item of the form SS-->>......@@11 in the
last completed set, indicating a parsing.

7.2.5 Prediction look-ahead
In the following we shall describe a series of increasingly complicated (and more effi-
cient) parsers of the Earley type; somewhere along the line we will also meet a parser
that is (almost) identical to the one described by Earley in his paper.

When we go back to Figure 7.11 and examine the actions of the Predictor, we see
that it sometimes predicts items that it could know were useless if it could look ahead
at the next symbol. When the next symbol is a --, it is kind of foolish to proudly predict
QQ-->> � � ++@@22. The Predictor can of course easily be modified to check such simple cases,
but it is possible to have a Predictor that will never predict anything obviously errone-
ous; all its predicted items will be either completed or active in the next set. (The pred-
ictions may, however, fail on the symbol after that; after all, it is a Predictor, not an
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SS-->> � � EE @@11
EE-->> � � EEQQFF@@11
EE-->> � � FF @@11
FF-->> � � aa @@11

. . . . . . . . . . . . . . . . . .

act/pred0

= itemset0

aa1

FF-->>aa � � @@11
EE-->>FF � � @@11
SS-->>EE � � @@11
QQ-->> � � @@22

completed1

EE-->>EE � � QQFF@@11
EE-->>EEQQ � � FF@@11
QQ-->> � � ×× @@22
QQ-->> � � // @@22
FF-->> � � aa @@22

�

. . . . . . . . . . . . . . . . . .

act/pred1

= itemset1

aa2

FF-->>aa � � @@22
EE-->>EEQQFF � � @@11
SS-->>EE � � @@11
QQ-->> � � @@33

completed2

EE-->>EE � � QQFF@@11
EE-->>EEQQ � � FF@@11
QQ-->> � � ×× @@33
QQ-->> � � // @@33
FF-->> � � aa @@33

�

. . . . . . . . . . . . . . . . . .

act/pred2

= itemset2

//3

QQ-->>// � � @@33

completed3

EE-->>EEQQ � � FF@@11
FF-->> � � aa @@44

. . . . . . . . . . . . . . . . . .

act/pred3

= itemset3

aa4

FF-->>aa � � @@44
EE-->>EEQQFF � � @@11
SS-->>EE � � @@11
QQ-->> � � @@55

completed4

EE-->>EE � � QQFF@@11
EE-->>EEQQ � � FF@@11
QQ-->> � � ×× @@55
QQ-->> � � // @@55
FF-->> � � aa @@55

�

. . . . . . . . . . . . . . . . . .

act/pred4

= itemset4

Figure 7.18 Recognition of empty productions in an Earley parser

Oracle.)
To see how we can obtain such a perfect Predictor we need a different example

(after removing QQ-->> � � ++@@22 and QQ-->> � � --@@44 from Figure 7.11 all predictions there come
true, so nothing can be gained any more).

SS’’SS -->> SS
SS -->> AA || AABB || BB FIRST(SS) = {pp, qq}
AA -->> CC FIRST(AA) = {pp}
BB -->> DD FIRST(BB) = {qq}
CC -->> pp FIRST(CC) = {pp}
DD -->> qq FIRST(DD) = {qq}

Figure 7.19 A grammar for demonstrating prediction look-ahead and its FIRST sets

The artificial grammar of Figure 7.19 produces nothing but the three sentences pp,
qq and ppqq, and does so in a straightforward way. The root is SS’’ rather than SS, which is a
convenient way to have a grammar with only one rule for the root. This is not neces-
sary but it simplifies the following somewhat, and it is usual in practice.

SS’’-->> � � SS @@11
SS-->> � � AA @@11
SS-->> � � AABB @@11
SS-->> � � BB @@11
AA-->> � � CC @@11
BB-->> � � DD @@11
CC-->> � � pp @@11
DD-->> � � qq @@11

. . . . . . . . . . . . . . . . . .

act/pred0

= itemset0

qq1

DD-->>qq � � @@11
BB-->>DD � � @@11
SS-->>BB � � @@11
SS’’-->>SS � � @@11

completed1

. . . . . . . . . . . . . . . . . .

act/pred1

= itemset1

(a)

SS’’-->> � � SS @@11
SS-->> � � BB @@11
BB-->> � � DD @@11
DD-->> � � qq @@11

. . . . . . . . . . . . . . . . . .

act/pred0

= itemset0

qq1

DD-->>qq � � @@11
BB-->>DD � � @@11
SS-->>BB � � @@11
SS’’-->>SS � � @@11

completed1

. . . . . . . . . . . . . . . . . .

act/pred1

= itemset1

(b)

Figure 7.20 Parsing the sentence qq without look-ahead (a) and with look-ahead (b)

The parsing of the sentence qq is given in Figure 7.20(a) and (b). Starting from the
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initial item, the Predictor predicts a list of 7 items (a). Looking at the next symbol, qq,
the Predictor could easily avoid the prediction CC-->> � � pp@@11, but several of the other pred-
ictions are also false, for instance, AA-->> � � CC@@11. The Predictor could avoid the first since it
sees that it cannot begin with qq; if it knew that CC cannot begin with a qq, it could also
avoid AA-->> � � CC@@11. (Note that itemset 1 is empty, indicating that there is no way for the
input to continue.)

The required knowledge can be obtained by calculating the FIRST sets of all
non-terminals in the grammar (FIRST sets and a method of calculating them are
explained in Sections 8.2.1.1 and 8.2.2.1). The use of the FIRST sets is very effective:
the Predictor again starts from the initial item, but since it knows that qq is not in
FIRST(AA), it will not predict SS-->> � � AA@@11. Items like AA-->> � � CC@@11 do not even have to be
avoided, since their generation will never be contemplated in the first place. Only the
BB-line will be predicted (b) and it will consist of three predictions, all of them to the
point.

SS’’SS -->> SS
SS -->> AA || AABB || BB FIRST(SS) = {εε, pp, qq}
AA -->> CC FIRST(AA) = {εε, pp}
BB -->> DD FIRST(BB) = {qq}
CC -->> pp || εε FIRST(CC) = {εε, pp}
DD -->> qq FIRST(DD) = {qq}

Figure 7.21 A grammar with an ε-rule and its FIRST sets

Handling ε-rules is easier now: we know for every non-terminal whether it can
produce ε (in which case ε is in the FIRST set of that non-terminal). If we add a rule
CC-->>εε to our grammar (Figure 7.21), the entire picture changes. Starting from the initial
item SS’’-->> � � SS@@11 (Figure 7.22), the Predictor will still not predict SS-->> � � AA@@11 since
FIRST(AA) does not contain qq, but it will predict SS-->> � � AABB@@11 since FIRST(AABB) does con-
tain a qq (BB combined with the transparency of AA). The line continues by predicting
AA-->> � � CC@@11, but CC-->> � � @@11 is a completed item and goes into completed 0 . When the Com-
pleter starts, it finds CC-->> � � @@11, applies it to AA-->> � � CC@@11 and produces AA-->>CC � � @@11, likewise
completed. The latter is then applied to SS-->> � � AABB@@11 to produce the active item
SS-->>AA � � BB@@11. This causes another run of the Predictor, to follow the new � � BB, but all those
items have already been added.

Bouckaert, Pirotte and Snelling, who have analysed variants of the Earley parsers
for two different look-ahead regimes [CF 1975], show that predictive look-ahead
reduces the number of items by 20 to 50% or even more on “practical” grammars.

7.2.6 Reduction look-ahead
Once we have gone through the trouble of calculating the FIRST sets, we can use them
for a second type of look-ahead: reduction look-ahead. Prediction look-ahead reduces
the number of predicted items, reduction look-ahead reduces the number of completed
items. Referring back to Figure 7.11, which depicted the actions of an Earley parser
without look-ahead, we see that it does two silly completions: SS-->>EE � � @@11 in completed 1 ,
and SS-->>EE � � @@11 in completed 3 . The redundancy of these completed items stems from the
fact that they are only meaningful at the end of the input. Now this may seem a very
special case, not worth testing for, but the phenomenon can be put in a more general
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CC-->> � � @@11
AA-->>CC � � @@11�

�

completed0

SS’’-->> � � SS @@11
SS-->>AA � � BB @@11
SS-->> � � AABB @@11
SS-->> � � BB @@11
AA-->> � � CC @@11
BB-->> � � DD @@11
DD-->> � � qq @@11

�

. . . . . . . . . . . . . . . . . .

act/pred0

= itemset0

qq1

DD-->>qq � � @@11
BB-->>DD � � @@11
SS-->>AABB � � @@11
SS-->>BB � � @@11
SS’’-->>SS � � @@11

completed1

. . . . . . . . . . . . . . . . . .

act/pred1

= itemset1

Figure 7.22 Parsing the sentence qq with the grammar of Figure 7.21

setting: if we introduce an explicit symbol for end-of-file (for instance, ##), we can say
that the above items are redundant because they are followed by a symbol (-- and ++,
respectively) which is not in the set of symbols the item should be followed by on com-
pletion.

The trick is now to keep, together with any item, a set of symbols which may
come after that item, the reduction look-ahead set; if the item seems completed but the
next symbol is not in this set, the item is discarded. The rules for constructing the
look-ahead set for an item are straightforward, but unlike the prediction look-ahead it
cannot be calculated in advance; it must be constructed as we go. (A limited and less
effective set could be calculated statically, using the FOLLOW sets explained in
8.2.2.2.)

The initial item starts with a look-ahead set of [[##]] (the look-ahead set will be
shown between square brackets at the end of the item). When the dot advances in an
item, its look-ahead set remains the same, since what happens inside an item does not
affect what may come after it. When a new item is created by the Predictor, a new
look-ahead set must be composed. Suppose the item is

P→A � BCD [abc ] @@n

and predicted items for B must be created. We now ask ourselves what symbols may
follow the occurrence of B in this item. It is easy to see that they are:
� any symbol C can start with,
� if C can produce the empty string, any symbol D can start with,
� if D can also produce the empty string, any of the symbols a, b and c.
Given the FIRST sets for all non-terminals, which can also tell us if a non-terminal can
produce empty, the resulting new reduction look-ahead set is easily calculated. It is also
written as FIRST(CD [abc ]), which is of course the set of first symbols of anything
produced by CDa | CDb | CDc.

The Earley sets with reduction look-ahead for our example aa--aa++aa are given in
Figure 7.23, where we have added a ## symbol in position 6. The calculation of the sets
follow the above rules. The look-ahead of the item EE-->> � � EEQQFF[[##++--]]@@11 in predicted 0
results from its being inserted twice: once predicted from SS-->> � � EE[[##]]@@11, which contri-
butes the ##, and once from EE-->> � � EEQQFF[[……]]@@11, which contributes the ++-- from FIRST(QQ).
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The look-ahead …… is used to indicate that the look-ahead is not yet known but does not
influence the look-ahead the item contributes.

Note that the item SS-->>EE � � [[##]]@@11 is not placed in completed 1 , since the actual sym-
bol ahead (--2) is not in the item’s look-ahead set; something similar occurs in com-
pleted 3 , but not in completed 5 .

SS-->> � � EE [[##]] @@11
EE-->> � � EEQQFF[[##++--]]@@11
EE-->> � � FF [[##++--]]@@11
FF-->> � � aa [[##++--]]@@11

. . . . . . . . . . . . . . . . . . . . . . . . . .

act/pred0

= itemset0

aa1

FF-->>aa � � @@11
EE-->>FF � � @@11

completed1

EE-->>EE � � QQFF[[##++--]]@@11
QQ-->> � � ++ [[aa]] @@22
QQ-->> � � -- [[aa]] @@22

. . . . . . . . . . . . . . . . . . . . . . . . . .

act/pred1

= itemset1

--2

QQ-->>-- � � @@22

completed2

EE-->>EEQQ � � FF[[##++--]]@@11
FF-->> � � aa [[##++--]]@@33

. . . . . . . . . . . . . . . . . . . . . . . . . .

act/pred2

= itemset2

aa3

FF-->>aa � � @@33
EE-->>EEQQFF � � @@11

completed3

EE-->>EE � � QQFF[[##++--]]@@11
QQ-->> � � ++ [[aa]] @@44
QQ-->> � � -- [[aa]] @@44

. . . . . . . . . . . . . . . . . . . . . . . . . .

act/pred3

= itemset3

++4

QQ-->>++ � � @@44

completed4

EE-->>EEQQ � � FF[[##++--]]@@11
FF-->> � � aa [[##++--]]@@55

. . . . . . . . . . . . . . . . . . . . . . . . . .

act/pred4

= itemset4

aa5

FF-->>aa � � @@55
EE-->>EEQQFF � � @@11
SS-->>EE � � @@11

completed5

EE-->>EE � � QQFF[[##++--]]@@11

active5

##6

Figure 7.23 Item sets with reduction look-ahead

As with prediction look-ahead, the gain in our example is meagre. The effective-
ness in the general case is not easily determined. Earley recommends the reduction
look-ahead, but does not take into account the effort required to calculate and maintain
the look-ahead sets. Bouckaert, Pirotte and Snelling definitely condemn the reduction
look-ahead, on the grounds that it may easily double the number of items to be carried
around, but they count, for instance, EE-->> � � FF[[++--]]@@11 as two items. All in all, since the
gain from reduction look-ahead cannot be large and its implementation cost and over-
head are probably considerable, it is likely that its use should not be recommended.
The well-tuned Earley/CYK parser by Graham, Harrison and Ruzzo [CF 1980] does
not feature reduction look-ahead.



8
Deterministic top-down methods

In Chapter 6 we discussed two general top-down methods: one using breadth-first
search and one using depth-first search. These methods have in common the need to
search to find derivations, and thus are not efficient. In this chapter and the next we
will concentrate on parsers that do not have to search: there will always be only one
possibility to choose from. Parsers with this property are called deterministic. Deter-
ministic parsers are much faster than non-deterministic ones, but there is a penalty: the
class of grammars that the parsing method is suitable for, while depending on the
method chosen, is more restricted than that of the grammars suitable for non-
deterministic parsing methods.

In this chapter, we will focus our attention on deterministic top-down methods.
As has been explained in Section 3.6.5, there is only one such method, this in contrast
with the deterministic bottom-up methods, which will be discussed in the next chapter.
From Chapters 3 and 6 we know that in a top-down parser we have a prediction for the
rest of the input, and that this prediction has either a terminal symbol in front, in which
case we “match”, or a non-terminal, in which case we “predict”.

It is the predict step that, until now, has caused us so much trouble. The predict
step consists of replacing a non-terminal by one of its right-hand sides, and if we have
no means to decide which right-hand side to select, we have to try them all. One res-
triction we could impose on the grammar, one that immediately comes to mind, is lim-
iting the number of right-hand sides of each non-terminal to one. Then we would need
no search, because no selection would be needed. However, such a restriction is far too
severe, as it would leave us with only finite languages. So, limiting the number of
right-hand sides per non-terminal to one is not a solution.

There are two sources of information that could help us in selecting the right
right-hand side. First of all, there is the partial derivation as it is constructed so far.
However, apart from the prediction this does not give us any information about the rest
of the input. The other source of information is the rest of the input. We will see that
looking at the next symbol or the next few symbols will, for certain grammars, tell us
which choice to take.
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8.1 REPLACING SEARCH BY TABLE LOOK-UP

Grammars that make it particularly easy to at least limit the search are ones in which
each right-hand side starts with a terminal symbol. In this case, a predict step is always
immediately followed by a match step, matching the next input symbol with the symbol
starting the right-hand side selected in the prediction. This match step can only succeed
for right-hand sides that start with this input symbol. The other right-hand sides will
immediately lead to a match step that will fail. We can use this fact to limit the number
of predictions as follows: only the right-hand sides that start with a terminal symbol
that is equal to the next input symbol will be considered. For instance, consider the
grammar of Figure 6.1, repeated in Figure 8.1, and the input sentence aaaabbbb.

SS -->> aaBB || bbAA
AA -->> aa || aaSS || bbAAAA
BB -->> bb || bbSS || aaBBBB

Figure 8.1 A grammar producing sentences with an equal number of aa’s and bb’s

Using the breadth-first top-down method of Chapter 6, extended with the observation
described above, results in the steps of Figure 8.2: (a) presents the start of the automa-
ton; we have added the ## end-marker; only one right-hand side of SS starts with an aa, so
this is the only applicable right-hand side; this leads to (b); next, a match step leads to
((cc)); the next input symbol is again an aa, so only one right-hand side of BB is applicable,
resulting in (d); (e) is the result of a match step; this time, the next input symbol is a bb,
so two right-hand sides of BB are applicable; this leads to (f); (g) is the result of a match
step; again, the next input symbol is a bb, so two right-hand sides of BB are applicable;
only one right-hand side of SS is applicable; this leads to (h), and this again calls for a
match step, leading to (i); now, there are no applicable right-hand sides for SS and AA,
because there are no right-hand sides starting with a ##; thus, these predictions are dead
ends; this leaves a match step for the only remaining prediction, leading to (j).

We could enhance the efficiency of this method even further by precomputing the
applicable right-hand sides for each non-terminal/terminal combination, and enter these
in a table. For the grammar of Figure 8.1, this would result in the table of Figure 8.3.
Such a table is called a parse table.

Despite its title, most of this chapter concerns the construction of these parse
tables. Once such a parse table is obtained, the actions of the parser are obvious. The
parser does not need the grammar any more. Instead, every time a predict step is called
for, the parser uses the next input symbol and the non-terminal at hand as indices in the
parse table. The corresponding table entry contains the right-hand sides that have to be
considered. For instance, in Figure 8.2(e), the parser would use input symbol bb and
non-terminal BB to determine that it has to consider the right-hand sides BB11 and BB22. If
the corresponding table entry is empty, we have found an error in the input and the
input sentence cannot be derived from the grammar. Using the parse table of Figure
8.3 instead of the grammar of Figure 8.1 for parsing the sentence aaaabbbb will again lead
to Figure 8.2. The advantage of using a parse table is that we do not have to check all
right-hand sides of a non-terminal any more, to see if they start with the right terminal
symbol.

Still, we have a search process, albeit a more limited one than we had before. The
search is now confined to the elements of the parse table entries. In fact, we now only
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(a) aaaabbbb##� ������������������������������������������������������������ �����������������������������������������������������������
SS##

�
�
�

(b) aaaabbbb##� ������������������������������������������������������������ �����������������������������������������������������������
SS11 aaBB##

�
�
�

(c) aa aabbbb##� ������������������������������������������������������������ �����������������������������������������������������������
SS11aa BB##

�
�
�

(d) aa aabbbb##� ������������������������������������������������������������ �����������������������������������������������������������
SS11aaBB33 aaBBBB##

�
�
�

(e) aaaa bbbb##� ������������������������������������������������������������ �����������������������������������������������������������
SS11aaBB33aa BBBB##

�
�
�

(f) aaaa bbbb##� ������������������������������������������������������������ �����������������������������������������������������������
SS11aaBB33aaBB11 bbBB##
SS11aaBB33aaBB22 bbSSBB##

�
�
�
�

(g) aaaabb bb##� ������������������������������������������������������������ �����������������������������������������������������������
SS11aaBB33aaBB11bb BB##
SS11aaBB33aaBB22bb SSBB##

�
�
�
�

(h) aaaabb bb##� ������������������������������������������������������������ �����������������������������������������������������������
SS11aaBB33aaBB11bbBB11 bb##
SS11aaBB33aaBB11bbBB22 bbSS##
SS11aaBB33aaBB22bbSS22 bbAABB##

�
�
�
�
�

(i) aaaabbbb ##� ������������������������������������������������������������ �����������������������������������������������������������
SS11aaBB33aaBB11bbBB11bb ##
SS11aaBB33aaBB11bbBB22bb SS##
SS11aaBB33aaBB22bbSS22bb AABB##

�
�
�
�
�

(j) aaaabbbb##� ������������������������������������������������������������ �����������������������������������������������������������
SS11aaBB33aaBB11bbBB11bb##

�
�
�

Figure 8.2 The limited breadth-first parsing of the sentence aaaabbbb##

a b #� ���������������������������������������������������� ���������������������������������������������������
SS SS11:: aaBB SS22:: bbAA
� ���������������������������������������������������
AA AA11:: aa AA33:: bbAAAA

AA22:: aaSS
� ���������������������������������������������������
BB BB33:: aaBBBB BB11:: bb

BB22:: bbSS
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

Figure 8.3 The parse table for the grammar of Figure 8.1

need a search because of the (AA,aa) and the (BB,bb) entry of the table. These entries have
more than one element, so we need the search to determine which one results in a
derivation of the input sentence.

This last observation is an important one: it immediately leads to a restriction that



Sec. 8.1] Replacing search by table look-up 167

we could impose on the grammar, to make the parsing deterministic: we could require
that each parse table entry contain at most one element. In terms of the grammar, this
means that all right-hand sides of a non-terminal start with a different terminal symbol.
A grammar that fulfills this requirement is called a simple LL(1) grammar (SLL(1)), or
an s-grammar. Here, LL(1) means that the grammar allows a deterministic parser that
operates from Left to right, produces a Left-most derivation, using a look-ahead of one
(1) symbol.

Consider for instance the grammar of Figure 8.4.

SS -->> aaBB
BB -->> bb || aaBBbb

Figure 8.4 An example SLL(1) grammar

This grammar generates all sentences starting with a number of aa’s, followed by an
equal number of bb’s. The grammar is clearly SLL(1). It leads to the parse table of Fig-
ure 8.5.

aa bb ##� ���������������������������������������������� ���������������������������������������������
SS SS11:: aaBB
� ���������������������������������������������
BB BB22:: aaBBbb BB11:: bb

��
�
�
�

��
�
�
�

��
�
�
�

Figure 8.5 The parse table for the grammar of Figure 8.4

The parsing of the sentence aaaabbbb is presented in Figure 8.6. Again we have added the
## end-marker.

aaaabbbb##

SS##

aaaabbbb##

SS11 aaBB##

aa aabbbb##

SS11aa BB##

aa aabbbb##

SS11aaBB22 aaBBbb##

aaaa bbbb##

SS11aaBB22aa BBbb##

aaaa bbbb##

SS11aaBB22aaBB11 bbbb##

aaaabb bb##

SS11aaBB22aaBB11bb bb##

aaaabbbb ##

SS11aaBB22aaBB11bbbb ##

aaaabbbb##

SS11aaBB22aaBB11bbbb##

Figure 8.6 The SLL(1) parsing of the sentence aaaabbbb##

As expected, there is always only one prediction, so no search is needed. Thus, the pro-
cess is deterministic, and therefore very efficient. The efficiency could be enhanced
even further by combining the predict step with the match step that always follows the
predict step.

So, SLL(1) grammars lead to simple and very efficient parsers. However, the res-
trictions that we have placed on the grammar are severe. Not many practical grammars
are SLL(1), although many can be transformed into SLL(1) form. In the next section,
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we will consider a more general class of grammars that still allows for the same kind of
parser.

8.2 LL(1) GRAMMARS

For the deterministic top-down parser described in the previous section, the crucial res-
triction placed on the grammar is that all right-hand sides of a non-terminal start with a
different terminal symbol. This ensures that each parse table entry contains at most one
element. In this section, we will drop the requirement that right-hand sides start with a
terminal symbol. We will see that we can still construct a parse table in that case. Later
on, we will see that we can even construct a parse table for grammars with ε-rules.

8.2.1 LL(1) grammars without ε-rules
If a grammar has no ε-rules, there are no non-terminals that derive the empty string. In
other words, each non-terminal ultimately derives strings of terminal symbols of length
at least one, and this also holds for each right-hand side. The terminal symbols that start
these strings are the ones that we are interested in. Once we know for each right-hand
side which terminal symbols can start a string derived from this right-hand side, we can
construct a parse table, just as we did in the previous section. So, we have to compute
this set of terminal symbols for each right-hand side.

8.2.1.1 FIRST1 sets
These sets of terminal symbols are called the FIRST 1 sets: if we have a non-empty sen-
tential form x, then FIRST1(x) is the set of terminal symbols that can start a sentential
form derived from x in zero or more production steps. The subscript 1 indicates that the
set contains single terminal symbols only. Later, we will see FIRSTk sets, consisting of
strings of terminal symbols of length at most k. For now, we will drop the subscript 1:
we will use FIRST instead of FIRST1. If x starts with a terminal symbol, then
FIRST(x) is a set that has this symbol as its only member. If x starts with a non-
terminal A, then FIRST(x) is equal to FIRST(A), because A cannot produce ε. So, if we
can compute the FIRST set for any non-terminal A, we can compute it for any senten-
tial form x. However, FIRST(A) depends on the right-hand sides of the A-rules: it is
the union of the FIRST sets of these right-hand sides. These FIRST sets may again
depend on the FIRST set of some non-terminal. This could even be A itself, if the rule
is directly or indirectly left-recursive. This observation suggests the iterative process
described below to compute the FIRST sets of all non-terminals:
� We first initialize the FIRST sets to the empty set.
� Then we process each grammar rule in the following way: if the right-hand side

starts with a terminal symbol, we add this symbol to the FIRST set of the left-
hand side, since it can be the first symbol of a sentential form derived from the
left-hand side. If the right-hand side starts with a non-terminal symbol, we add all
symbols of the present FIRST set of this non-terminal to the FIRST set of the
left-hand side. These are all symbols that can be the first terminal symbol of a
sentential form derived from the left-hand side.

� The previous step is repeated until no more new symbols are added to any of the
FIRST sets.

Eventually, no more new symbols can be added, because the maximum number of ele-
ments in a FIRST set is the number of symbols, and the number of FIRST sets is equal
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to the number of non-terminals. Therefore, the total number of times that a new sym-
bol can be added to any FIRST set is limited by the product of the number of symbols
and the number of non-terminals.

8.2.1.2 Producing the parse table
With the help of these FIRST sets, we can now construct a parse table for the grammar.
We process each grammar rule A→α in the following way: if α starts with a terminal
symbol a, we add α to the (A,a) entry of the parse table; if α starts with a non-terminal,
we add α to the (A,a) entry of the parse table for all symbols a in FIRST(α).

Now let us compute the parse table for the example grammar of Figure 8.7. This
grammar describes a simple language that could be used as the input language for a
rudimentary consulting system: the user enters some facts, and then asks a question.
There is also a facility for sub-sessions. The contents of the facts and questions are of
no concern here. They are represented by the word SSTTRRIINNGG, which is regarded as a ter-
minal symbol.

SSeessssiioonn -->> FFaacctt SSeessssiioonn
SSeessssiioonn -->> QQuueessttiioonn
SSeessssiioonn -->> (( SSeessssiioonn )) SSeessssiioonn

FFaacctt -->> !! SSTTRRIINNGG
QQuueessttiioonn -->> ?? SSTTRRIINNGG

Figure 8.7 An example grammar

We first compute the FIRST sets. Initially, the FIRST sets are all empty. Then,
we process all grammar rules in the order of Figure 8.7. The rule SSeessssiioonn -->> FFaacctt
SSeessssiioonn results in adding the symbols from FIRST(FFaacctt) to FIRST(SSeessssiioonn), but
FIRST(FFaacctt) is still empty. The rule SSeessssiioonn -->> QQuueessttiioonn results in adding the
symbols from FIRST(QQuueessttiioonn) to FIRST(SSeessssiioonn), but FIRST(QQuueessttiioonn) is still
empty too. The rule SSeessssiioonn -->> (( SSeessssiioonn )) SSeessssiioonn results in adding (( to
FIRST(SSeessssiioonn). The rule FFaacctt -->> !! SSTTRRIINNGG results in adding !! to FIRST(FFaacctt),
and the rule QQuueessttiioonn -->> ?? SSTTRRIINNGG results in adding ?? to FIRST(QQuueessttiioonn). So,
after processing all right-hand sides once, we have the following:

FIRST(SSeessssiioonn) FIRST(FFaacctt) FIRST(QQuueessttiioonn)� ���������������������������������������������������������������������������������������������� ���������������������������������������������������������������������������������������������
(( !! ??

�
�
�

�
�
�

Next, we process all grammar rules again. This time, the rule SSeessssiioonn -->> FFaacctt
SSeessssiioonn will result in adding !! (from FIRST(FFaacctt)) to FIRST(SSeessssiioonn), the rule
SSeessssiioonn -->> QQuueessttiioonn will result in adding ?? to FIRST(SSeessssiioonn), and no other
changes will take place. So now we get:

FIRST(SSeessssiioonn) FIRST(FFaacctt) FIRST(QQuueessttiioonn)� ���������������������������������������������������������������������������������������������� ���������������������������������������������������������������������������������������������
(( !! ?? !! ??

�
�
�

�
�
�

There were some changes, so we have to repeat this process again. This time, there are
no changes, so the table above presents the FIRST sets of the non-terminals. Now we
have all the information we need to create the parse table. We have to add FFaacctt
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SSeessssiioonn to the (SSeessssiioonn,a) entry for all terminal symbols a in FIRST(FFaacctt SSeess--
ssiioonn). The only terminal symbol in FIRST(FFaacctt SSeessssiioonn) is !!, so we add FFaacctt
SSeessssiioonn to the (SSeessssiioonn,!!) entry. Likewise, we add QQuueessttiioonn to the (SSeessssiioonn,??)
entry. Next we add (( SSeessssiioonn )) SSeessssiioonn to the (SSeessssiioonn,(() entry, !! SSTTRRIINNGG to
the (FFaacctt,!!) entry, and ?? SSTTRRIINNGG to the (QQuueessttiioonn,??) entry. This results in the parse
table of Figure 8.8.

!! ?? (( )) SSTTRRIINNGG ##� ������������������������������������������������������������������������������������������������������������������������������������������������������������ �����������������������������������������������������������������������������������������������������������������������������������������������������������
SSeessssiioonn FFaacctt SSeessssiioonn QQuueessttiioonn (( SSeessssiioonn )) SSeessssiioonn� �����������������������������������������������������������������������������������������������������������������������������������������������������������
QQuueessttiioonn ?? SSTTRRIINNGG� �����������������������������������������������������������������������������������������������������������������������������������������������������������
FFaacctt !! SSTTRRIINNGG
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Figure 8.8 The parse table for the grammar of Figure 8.7

All parse table entries have at most one element, so the parser will be deterministic. A
grammar without ε-rules is called LL(1) if all entries of the parse table, as constructed
above, have at most one element, or, in other words, if for every non-terminal A the
FIRST sets of A are pairwise disjoint (no symbol occurs in more than one). We have
lost the S (simplicity) of SLL(1), but the parser is still as simple as before. Producing
the parse table has become more difficult, but we have gained a lot: many practical
grammars are LL(1), or are easily transformed into an LL(1) grammar.

8.2.2 LL(1) grammars with ε-rules
Not allowing for ε-rules is, however, still a major drawback. Certain language con-
structs are difficult, if not impossible, to describe with an LL(1) grammar without ε-
rules. For instance, non-terminals that describe lists of terminals or non-terminals are
difficult to express without ε-rules. Of course, we could write

A → aA | a

for a list of a’s, but this is not LL(1). Compare also the grammar of Figure 8.7 with the
one of Figure 8.9. They describe the same language, but the one of Figure 8.9 is much
clearer.

SSeessssiioonn -->> FFaaccttss QQuueessttiioonn || (( SSeessssiioonn )) SSeessssiioonn
FFaaccttss -->> FFaacctt FFaaccttss || εε
FFaacctt -->> !! SSTTRRIINNGG

QQuueessttiioonn -->> ?? SSTTRRIINNGG

Figure 8.9 The grammar of Figure 8.7 rewritten

8.2.2.1 Extending the FIRST sets
The main problem with allowing ε-rules is that the FIRST sets, as we have discussed
them in the previous section, are not sufficient any more. For instance, the FFaaccttss
non-terminal in the grammar of Figure 8.9 has an ε-rule. The FIRST set for this right-
hand side is empty, so it does not tell us on which look-ahead symbols we should
choose this right-hand side. Also, in the presence of ε-rules, the computation of the
FIRST sets itself needs some revision. For instance, if we compute the FIRST set of
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the first right-hand side of SSeessssiioonn using the method of the previous section, ?? will
not be a member, but it should, because FFaaccttss can derive ε (it is transparent), and then
?? starts a sentential form that can be derived from SSeessssiioonn.

Let us first extend the FIRST definition to also deal with ε-rules. This time, in
addition to terminal symbols, ε will also be allowed as a member of a FIRST set. We
will now also have to deal with empty sentential forms, so we will sometimes need the
FIRST(ε) set. We will define it as the set containing only the empty string ε. We will
also add ε to the FIRST set of a sentential form if this sentential form derives ε.

These may seem minor changes, but the presence of ε-rules affects the computa-
tion of the FIRST sets. FIRST(u 1u 2

. . . un) is now equal to FIRST(u 1), ε excluded,
but extended with FIRST(u 2

. . . un) if u 1 derives ε. In particular, FIRST(uε) (=
FIRST(u)) is equal to FIRST(u), ε excluded, but extended with FIRST(ε) (= {ε}) if u
derives ε.

Apart from this, the computation of the revised FIRST sets proceeds in exactly the
same way as before. When we need to know whether a non-terminal A derives ε, we
have two options: we could compute this information separately, using the method
described in Section 4.2.1, or we could check if ε is a member of the FIRST(A) set as it
is computed so far. This last option uses the fact that if a non-terminal derives ε, ε will
ultimately be a member of its FIRST set.

Now let us compute the FIRST sets for the grammar of Figure 8.9. They are first
initialized to the empty set. Then, we process each grammar rule: the rule SSeessssiioonn -->>
FFaaccttss QQuueessttiioonn results in adding the terminal symbols from FIRST(FFaaccttss) to
FIRST(SSeessssiioonn). However, FIRST(FFaaccttss) is still empty. The rule SSeessssiioonn -->> ((
SSeessssiioonn )) SSeessssiioonn results in adding (( to FIRST(SSeessssiioonn). Then, the rule FFaaccttss
-->> FFaacctt FFaaccttss results in adding the symbols from FIRST(FFaacctt) to FIRST(FFaaccttss),
and the rule FFaaccttss -->> εε results in adding ε to FIRST(FFaaccttss). Then, the rule FFaacctt
-->> !! SSTTRRIINNGG results in adding !! to FIRST(FFaacctt), and the rule QQuueessttiioonn -->> ??
SSTTRRIINNGG results in adding ?? to FIRST(QQuueessttiioonn). This completes the first pass over
the grammar rules, resulting in:

FIRST(SSeessssiioonn) FIRST(FFaaccttss) FIRST(FFaacctt) FIRST(QQuueessttiioonn)� ���������������������������������������������������������������������������������������������������������������������������� ���������������������������������������������������������������������������������������������������������������������������
(( ε !! ??

�
�
�

�
�
�

�
�
�

The second pass is more interesting: this time, we know that FFaaccttss derives ε, and
therefore, the rule SSeessssiioonn -->> FFaaccttss QQuueessttiioonn results in adding the symbols from
FIRST(QQuueessttiioonn) to FIRST(SSeessssiioonn). The rule FFaaccttss -->> FFaacctt FFaaccttss results in
adding !! to FIRST(FFaaccttss). So we get:

FIRST(SSeessssiioonn) FIRST(FFaaccttss) FIRST(FFaacctt) FIRST(QQuueessttiioonn)� ���������������������������������������������������������������������������������������������������������������������������� ���������������������������������������������������������������������������������������������������������������������������
(( ?? ε !! !! ??

�
�
�

�
�
�

�
�
�

In the third pass, the only change is the addition of !! to FIRST(SSeessssiioonn), because it is
now a member of FIRST(FFaaccttss). So we have:

FIRST(SSeessssiioonn) FIRST(FFaaccttss) FIRST(FFaacctt) FIRST(QQuueessttiioonn)� ���������������������������������������������������������������������������������������������������������������������������� ���������������������������������������������������������������������������������������������������������������������������
(( ?? !! ε !! !! ??

�
�
�

�
�
�

�
�
�

The fourth pass does not result in any new additions.
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The question remains how to decide when an ε right-hand side or, for that matter,
a right-hand side that derives ε is to be predicted. Suppose that we have a grammar
rule

A → α1 | α2 | . . . | αn

and also suppose that αm is or derives ε. Now suppose we find A at the front of a pred-
iction, as in

. . . a . . . ##� �������������������������������������������� �������������������������������������������

. . . Ax##
��
�

where we again have added the ## end-marker. A breadth-first parser would have to
investigate the following predictions:

. . . a . . . ##� �������������������������������������������� �������������������������������������������

. . . α1x##

. . . .

. . . .

. . . αnx##
�
�
�
�
�
�

None of these predictions derive ε, because of the end-marker (##). We know how to
compute the FIRST sets of these predictions. If the next input symbol is not a member
of any of these FIRST sets, either the prediction we started with (Ax##) is wrong, or
there is an error in the input sentence. Otherwise, the next input symbol is a member of
one or more of these FIRST sets, and we can strike out the predictions that do not have
the symbol in their FIRST set. If none of these FIRST sets have a symbol in common
with any of the other FIRST sets, the next input symbol can only be a member of at
most one of these FIRST sets, so at most one prediction remains, and the parser is
deterministic at this point.

A context-free grammar is called LL(1) if this is always the case. In other words,
a grammar is LL(1) if for any prediction Ax##, with A a non-terminal with right-hand
sides α1 , ..., and αn , the sets FIRST(α1x##), ..., and FIRST(αnx##) are pairwise disjoint
(no symbol is a member of more than one set). This definition does not conflict with
the one that we gave in the previous section for grammars without ε-rules, because in
this case FIRST(αix##) is equal to FIRST(αi), so in this case the sets FIRST(α1), ..., and
FIRST(αn) are pairwise disjoint.

8.2.2.2 The need for FOLLOW sets
So, what do we have now? We can construct a deterministic parser for any LL(1)
grammar. This parser operates by starting with the prediction S##, and its prediction
steps consist of replacing the non-terminal at hand with each of its right-hand sides,
computing the FIRST sets of the resulting predictions, and checking whether the next
input symbol is a member of any of these sets. We then continue with the predictions
for which this is the case. If there is more than one, the parser announces that the gram-
mar is not LL(1) and stops. Although this is a deterministic parser, it is not very effi-
cient, because it has to compute several FIRST sets at each prediction step. We cannot
compute all these FIRST sets before starting the parser, because such a FIRST set
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depends on the whole prediction (of which there are infinitely many), not just on the
non-terminal. So, we still do not know if, and if so, how we can construct a parse table
for an LL(1) grammar with ε-rules, nor do we have a method to determine if a gram-
mar is LL(1).

Now suppose we have a prediction Ax## and a rule A→α, and α is or derives ε.
The input symbols that lead to the selection of A→α are the symbols in the set
FIRST(αx##), and this set of symbols is formed by the symbols in FIRST(α), extended
with the symbols in FIRST(x##) (because of the transparency of α). The selection of
A→α on an input symbol that is not a member of FIRST(α) is called an ε-move. The
set FIRST(x##) is the problem: we cannot compute it at parser generation time. What
we can calculate, though, is the union of all FIRST(x##) sets such that x## can follow A
in any prediction. This is just the set of all terminal symbols that can follow A in any
sentential form derivable from S## (not just the present prediction) and is called, quite
reasonably, the FOLLOW set of A, FOLLOW(A).

Now it would seem that such a gross approximation would seriously weaken the
parser or even make it incorrect. This is not so. Suppose that this set contains a symbol
a that is not a member of FIRST(x##), and a is the next input symbol. If a is not a
member of FIRST(A), we will predict A→α, and we will ultimately end up with a fail-
ing match, because αx## does not derive a string starting with an a. So, the input string
will (correctly) be rejected, although the error will be detected a bit later than before,
because the parser will make some ε-moves before finding out that something is wrong.
If a is a member of FIRST(A) then we may have a problem if a is a member of one of
the FIRST sets of the other right-hand sides of A. We will worry about this a bit later.

The good thing about the FOLLOW set is that we can compute it at parser genera-
tion time. Each non-terminal has a FOLLOW set, and they can be computed as follows:
� as with the computation of the FIRST sets, we start with the FOLLOW sets all

empty.
� Next we process all right-hand sides, including the S## one. Whenever a right-hand

side contains a non-terminal, as in A→ . . . By, we add all symbols from FIRST(y)
to FOLLOW(B); these symbols can follow a B. In addition, if y derives ε, we add
all symbols from FOLLOW(A) to FOLLOW(B).

� The previous step is repeated until no more new symbols can be added to any of
the FOLLOW sets.
Now let us go back to our example and compute the FOLLOW sets. Starting with

SSeessssiioonn ##, ## is added to FOLLOW(SSeessssiioonn). Next, the symbols of
FIRST(QQuueessttiioonn) are added to FOLLOW(FFaaccttss), because of the rule SSeessssiioonn -->>
FFaaccttss QQuueessttiioonn. This rule also results in adding all symbols of
FOLLOW(SSeessssiioonn) to FOLLOW(QQuueessttiioonn). The rule SSeessssiioonn -->> (( SSeessssiioonn
)) SSeessssiioonn results in adding the )) symbol to FOLLOW(SSeessssiioonn) and the addition of
all symbols of FOLLOW(SSeessssiioonn) to FOLLOW(SSeessssiioonn), which does not add
much. The next rule is the rule FFaaccttss -->> FFaacctt FFaaccttss. All symbols from
FIRST(FFaaccttss) are added to FOLLOW(FFaacctt), and all symbols from
FOLLOW(FFaaccttss) are added to FOLLOW(FFaaccttss). The other rules do not result in
any additions. So, after the first pass we have:

FOLLOW(SSeessssiioonn) FOLLOW(FFaaccttss) FOLLOW(FFaacctt) FOLLOW(QQuueessttiioonn)� ���������������������������������������������������������������������������������������������������������������������������������������������������� ���������������������������������������������������������������������������������������������������������������������������������������������������
)) ## ?? !! ##

�
�
�

�
�
�

�
�
�
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In the second pass, )) is added to FOLLOW(QQuueessttiioonn), because it is now a member of
FOLLOW(SSeessssiioonn), and all members of FOLLOW(SSeessssiioonn) become a member of
FOLLOW(QQuueessttiioonn) because of the rule SSeessssiioonn -->> FFaaccttss QQuueessttiioonn. No
other changes take place. The resulting FOLLOW sets are presented below:

FOLLOW(SSeessssiioonn) FOLLOW(FFaaccttss) FOLLOW(FFaacctt) FOLLOW(QQuueessttiioonn)� ���������������������������������������������������������������������������������������������������������������������������������������������������� ���������������������������������������������������������������������������������������������������������������������������������������������������
)) ## ?? !! ## ))

�
�
�

�
�
�

�
�
�

8.2.2.3 Using the FOLLOW sets to produce a parse table
Once we know the FOLLOW set for each non-terminal that derives ε, we can once
again construct a parse table: first, we compute the FIRST set of each non-terminal.
This also tells us which non-terminals derive ε. Next, we compute the FOLLOW set of
each non-terminal. Then, starting with an empty parse table, we process each grammar
rule A→α as follows: we add α to the (A,a) entry of the parse table for all terminal
symbols a in FIRST(α), as we did before. This time however, we also add α to the
(A,a) entry of the parse table for all terminal symbols a in FOLLOW(A) when α is or
derives ε (when FIRST(α) contains ε). A shorter way of saying this is that we add α to
the (A,a) entry of the parse table for all terminal symbols a in FIRST(α FOLLOW(A)).
This last set consists of the union of the FIRST sets of the sentential forms αb for all
symbols b in FOLLOW(A).

Now let us produce a parse table for our example. The SSeessssiioonn -->> FFaaccttss
QQuueessttiioonn rule does not derive ε, because QQuueessttiioonn does not. Therefore, only the ter-
minal symbols in FIRST(FFaaccttss QQuueessttiioonn) lead to addition of this rule to the table.
These symbols are !! and ?? (because FFaaccttss also derives ε). Similarly, all other rules
are added, resulting in the parse table presented in Figure 8.10.

(( )) ## !! ?? SSTTRRIINNGG��������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
SSeessssiioonn (( SSeessssiioonn )) SSeessssiioonn FFaaccttss QQuueessttiioonn FFaaccttss QQuueessttiioonn�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
FFaaccttss FFaacctt FFaaccttss εε�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
FFaacctt !! SSTTRRIINNGG�������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
QQuueessttiioonn ?? SSTTRRIINNGG
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Figure 8.10 The parse table for the grammar of Figure 8.9

8.2.3 LL(1) versus strong-LL(1)
If all entries of the resulting parse table have at most one element, the parser is again
deterministic. In this case, the grammar is called strong-LL(1) and the parser is called
a strong-LL(1) parser. In the literature, strong-LL(1) is referred to as “strong LL(1)”
(note that there is a space between the words “strong” and “LL”). However, we find
this term a bit misleading because it suggests that the class of strong-LL(1) grammars
is more powerful than the class of LL(1) grammars, but this is not the case. Every
strong-LL(1) grammar is LL(1).

It is perhaps more surprising that every LL(1) grammar is strong-LL(1). In other
words, every grammar that is not strong-LL(1) is not LL(1), and this is demonstrated
with the following argument: if a grammar is not strong-LL(1), there is a parse table
entry, say (A,a), with at least two elements, say α and β. This means that a is a
member of both FIRST(α FOLLOW(A)) and FIRST(β FOLLOW(A)). Now, there are
three possibilities:
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� a is a member of both FIRST(α) and FIRST(β). In this case, the grammar cannot
be LL(1), because for any prediction Ax##, a is a member of both FIRST(αx#) and
FIRST(βx#).

� a is a member of either FIRST(α) or FIRST(β), but not both. Let us say that a is a
member of FIRST(α). In this case, a still is a member of FIRST(β FOLLOW(A))
so there is a prediction Ax##, such that a is a member of FIRST(βx##). However, a
is also a member of FIRST(αx##), so the grammar is not LL(1). In other words, in
this case there is a prediction in which an LL(1) parser cannot decide which
right-hand side to choose either.

� a is neither a member of FIRST(α), nor a member of FIRST(β). In this case α
and β must derive ε and a must be a member of FOLLOW(A). This means that
there is a prediction Ax## such that a is a member of FIRST(x##) and thus a is a
member of both FIRST(αx##) and FIRST(βx##), so the grammar is not LL(1). This
means that in an LL(1) grammar at most one right-hand side of any non-terminal
derives ε.

8.2.4 Full LL(1) parsing
We already mentioned briefly that an important difference between LL(1) parsing and
strong-LL(1) parsing is that the strong-LL(1) parser sometimes makes ε-moves before
detecting an error. Consider for instance the following grammar:

SSSS -->> aa AA bb || bb AA aa
AA -->> cc SS || εε

The strong-LL(1) parse table of this grammar is:

aa bb cc ##� �������������������������������������������������������� �������������������������������������������������������
SS aa AA bb bb AA aa� �������������������������������������������������������
AA εε εε cc SS
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Now, on input sentence aaaaccaabbbb, the strong-LL(1) parser makes the following moves:

aaaaccaabbbb##

SS##

aaaaccaabbbb##

SS11 aaAAbb##

aa aaccaabbbb##

SS11aa AAbb##

aa aaccaabbbb##

SS11aaAA22 bb##

The problem here is that the prediction is destroyed by the time the error is detected. In
contrast, an LL(1) parser would not do the last step, because neither FIRST(bb##), nor
FIRST(ccSSbb##) contain aa, so the LL(1) parser would detect the error before choosing a
right-hand side for AA. A full LL(1) parser has the immediate error detection property,
which means that an error is detected as soon as the erroneous symbol is first exam-
ined, whereas a strong-LL(1) parser only has the correct-prefix property, which means
that the parser detects an error as soon as an attempt is made to match (or shift) the
erroneous symbol. In Chapter 10, we will see that the immediate error detection
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property will help improve error recovery.
Given a prediction A . . . ##, a full LL(1) parser bases its parsing decisions on

FIRST(A . . . ##) rather than on the approximation FIRST(A FOLLOW(A)); this avoids
any parsing decisions on erroneous input symbols (which can never occur in
FIRST(A . . . ##) but may occur in FIRST(A FOLLOW(A))). So, if we have prediction
A . . . ## and input symbol a, we first have to determine if a is a member of
FIRST(A . . . ##), before consulting the parse table to choose a right-hand side for A.
The penalty for this is in efficiency: every time that parse table has to be consulted, a
FIRST set has to be computed and a check made that the input symbol is a member.

Fortunately, we can do better than this. A first step to improvement is the follow-
ing: suppose that we maintain between all symbols in the prediction a set of terminal
symbols that are correct at this point, like this:

X Y Z ##

➀➁➂➃

Here, ➀ is the set of symbols that are legal at this point; this is just the FIRST set of the
remaining part of the prediction: FIRST(##); likewise, ➁ is FIRST(Z##), ➂ is
FIRST(YZ##), and ➃ is FIRST(XYZ##) (none of these sets contain ε). These sets can
easily be computed, from right to left. For instance, ➂ consists of the symbols in
FIRST(Y), with the symbols from ➁ added if Y derives ε (if ε is a member of
FIRST(Y)). When a non-terminal is replaced by one of its right-hand sides, the set
behind this right-hand side is available, and we can use this to compute the sets within
this right-hand side and in front of it.

Now let us see how this works for our example. As the reader can easily verify,

FIRST(SS) = { aa, bb}, and
FIRST(AA) = { cc, ε}.

The parser starts with the prediction SS##. We have to find a starting point for the sets: it
makes sense to start with an empty one to the right of the ##, because no symbols are
correct after the ##. So, the parser starts in the following state:

aaaaccaabbbb##

SS ##

aa,bb ##

The first input symbol is a member of the current FIRST set, so it is correct. The (SS, aa)
entry of the parse table contains aaAAbb so we get parser state

aaaaccaabbbb##

SS11 aa AA bb ##

? ? ? ##

Computing the sets marked with a question mark from right to left results in the
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following parser state:

aaaaccaabbbb##

SS11 aa AA bb ##

aa bb,cc bb ##

Note that bb now is a member of the set in front of AA, but aa is not, although it is a
member of FOLLOW(AA). After the match step, the parser is in the following state:

aa aaccaabbbb##

SS11aa AA bb ##

bb,cc bb ##

The next input symbol is not a member of the current FIRST set, so an error is
detected, and no right-hand side of AA is chosen. Instead, the prediction is left intact, so
error recovery can profit from it.

It is not clear that all this is more efficient than computing the FIRST set of a
prediction to determine the correctness of an input symbol before choosing a right-hand
side. However, it does suggest that we can do this at parser generation time, by com-
bining non-terminals with the FIRST sets that can follow it in a prediction. For our
example, we always start with non-terminal SS and the set {##}. We will indicate this
with the pair [SS,{##}]. Starting with this pair, we will try to make rules for the behaviour
of each pair that turns up, for each valid look-ahead. We know from the FIRST sets of
the alternatives for SS that on look-ahead symbol aa, [SS,{##}] results in right-hand side
aaAAbb. Now the only symbol that can follow AA here is a bb. So in fact, we have:

on look-ahead symbol aa, [SS,{##}] results in right-hand side aa [AA,{bb}] bb.

Similarly we find:

on look-ahead symbol bb, [SS,{##}] results in right-hand side bb [AA,{aa}] aa.

We have now obtained pairs for AA followed by a bb, and AA followed by an aa. So we have
to make rules for them: We know that on look-ahead symbol cc, [AA,{bb}] results in
right-hand side ccSS. Because AA can only be followed by a bb in this context, the same
holds for this SS. This gives:

on look-ahead symbol cc, [AA,{bb}] results in right-hand side cc [SS,{bb}].

Likewise, we get the following rules:

on look-ahead symbol bb, [AA,{bb}] results in right-hand side ε;
on look-ahead symbol cc, [AA,{aa}] results in right-hand side cc [SS,{aa}];
on look-ahead symbol aa, [AA,{aa}] results in right-hand side ε.

Now we have to make rules for the pairs SS followed by an aa, and SS followed by a bb:
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on look-ahead symbol aa, [SS,{aa}] results in right-hand side aa [AA,{bb}] bb;
on look-ahead symbol bb, [SS,{aa}] results in right-hand side bb [AA,{aa}] aa;
on look-ahead symbol aa, [SS,{bb}] results in right-hand side aa [AA,{bb}] bb;
on look-ahead symbol bb, [SS,{bb}] results in right-hand side bb [AA,{aa}] aa.

In fact, we find that we have rewritten the grammar, using the [non-terminal,
followed-by set] pairs as non-terminals, into the following form:

[SS,{##}] -->> aa [AA,{bb}] bb | bb [AA,{aa}] aa
[SS,{aa}] -->> aa [AA,{bb}] bb | bb [AA,{aa}] aa
[SS,{bb}] -->> aa [AA,{bb}] bb | bb [AA,{aa}] aa
[AA,{aa}] -->> cc [SS,{aa}] | ε
[AA,{bb}] -->> cc [SS,{bb}] | ε

For this grammar, the following parse table can be produced:

aa bb cc ##� �����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������
[SS,{##}] aa [AA,{bb}] bb bb [AA,{aa}] aa� �����������������������������������������������������������������������������������������
[SS,{aa}] aa [AA,{bb}] bb bb [AA,{aa}] aa� �����������������������������������������������������������������������������������������
[SS,{bb}] aa [AA,{bb}] bb bb [AA,{aa}] aa� �����������������������������������������������������������������������������������������
[AA,{aa}] ε cc [SS,{aa}]� �����������������������������������������������������������������������������������������
[AA,{bb}] ε cc [SS,{bb}]
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The entries for the different [SS,...] rules are identical so we can merge them. After
that, the only change with respect to the original parse table is the duplication of the AA-
rule: now there is one copy for each context in which AA has a different set behind it in a
prediction.

Now, after accepting the first aa of aaaaccaabbbb, the prediction is [AA,{bb}]bb##; since the
parse table entry ([AA,{bb}], aa) is empty, parsing will stop here and now.

The resulting parser is exactly the same as the strong-LL(1) one. Only the parse
table is different. Often, the LL(1) table is much larger than the strong-LL(1) one. As
the benefit of having an LL(1) parser only lies in that it detects some errors a bit earlier,
this usually is not considered worth the extra cost, and thus most parsers that are adver-
tised as LL(1) parsers are actually strong-LL(1) parsers.

8.2.5 Solving LL(1) conflicts
If a parse table entry has more than one element, we have what we call an LL(1) con-
flict. In this section, we will discuss how to deal with them. One way to deal with con-
flicts is one that we have seen before: use a depth-first or a breadth-first parser with a
one symbol look-ahead. This, however, has several disadvantages: the resulting parser
is not deterministic any more, it is less efficient (often to such an extent that it becomes
unacceptable), and it still does not work for left-recursive grammars. Therefore, we
have to try and eliminate these conflicts, so we can use an ordinary LL(1) parser.

8.2.5.1 Eliminating left-recursion
The first step to take is the elimination of left-recursion. Left-recursive grammars
always lead to LL(1) conflicts, because the right-hand side causing the left-recursion
has a FIRST set that contains all symbols from the FIRST set of the non-terminal.



Sec. 8.2] LL(1) grammars 179

Therefore, it also contains all terminal symbols of the FIRST sets of the other right-
hand sides of the non-terminal. Eliminating left-recursion has already been discussed
in Section 6.4.

8.2.5.2 Left-factoring
Another technique for removing LL(1) conflicts is left-factoring. Left-factoring of
grammar rules is like factoring arithmetic expressions:

a * b + a * c = a * (b + c).

The grammatical equivalent to this is a rule

A → xy | xz,

which clearly has an LL(1) conflict on the terminal symbols in FIRST(x). We replace
this grammar rule with the two rules

A → xN
N → y | z

where N is a new non-terminal. There have been some attempts to automate this pro-
cess; see Foster [Transform 1968] and Rosenkrantz and Hunt [Transform 1987].

8.2.5.3 Conflict resolvers
Sometimes, these techniques do not help much. We could for instance deal with a
language for which no LL(1) grammar exists. In fact, many languages can be described
by a context-free grammar, but not by an LL(1) grammar. Another method of handling
conflicts is to resolve them by so-called disambiguating rules. An example of such a
disambiguating rule is: “on a conflict, the textually first one of the conflicting right-
hand sides is chosen”. With this disambiguating rule, the order of the right-hand sides
within a grammar rule becomes crucial, and unexpected results may occur if the
grammar-processing program does not clearly indicate where conflicts occur and how
they are resolved.

A better method is to have the grammar writer specify explicitly how each con-
flict must be resolved, using so-called conflict resolvers. One option is to resolve con-
flicts at parser generation time. Parser generators that allow for this kind of conflict
resolver usually have a mechanism that enables the user to indicate (at parser genera-
tion time) which right-hand side must be chosen on a conflict. Another, much more
flexible method is to have conflicts resolved at parse time. When the parser meets a
conflict, it calls a user-specified conflict resolver. Such a user-specified conflict
resolver has the complete left-context at its disposal, so it could base its choice on this
left-context. It is also possible to have the parser look further ahead in the input, and
then resolve the conflict based on the symbols found. See Milton, Kirchhoff and Row-
land [LL 1979] and Grune and Jacobs [LL 1988], for similar approaches using attribute
grammars.
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8.2.6 LL(1) and recursive descent
Most hand-written parsers are LL(1) parsers. They usually are written in the form of a
non-backtracking recursive-descent parser (see Section 6.6). In fact, this is a very sim-
ple way to implement a strong-LL(1) parser. For a non-terminal A with grammar rule

A → α1 | . . . | αn

the parsing routine has the following structure:

procedure A;
if lookahead ∈ FIRST(α1 FOLLOW(A)) then

code for α1 ...
else if lookahead ∈ FIRST(α2 FOLLOW(A)) then

code for α2 ...
.
.

else if lookahead ∈ FIRST(αn FOLLOW(A)) then
code for αn ...

else ERROR;
end A;

The look-ahead symbol always resides in a variable called “lookahead”. The procedure
ERROR announces an error and stops the parser.

The code for a right-hand side consists of the code for the symbols of the right-
hand side. A non-terminal symbol results in a call to the parsing routine for this non-
terminal, and a terminal symbol results in a call to a MATCH routine with this symbol
as parameter. This MATCH routine has the following structure:

procedure MATCH(sym);
if lookahead = sym then

lookahead := NEXTSYM
else ERROR;

end MATCH;

The NEXTSYM procedure reads the next symbol from the input.
Several LL(1) parser generators produce a recursive descent parser instead of a

parse table that is to be interpreted by a grammar-independent parser. The advantages
of generating a recursive descent parser are numerous:
� Semantic actions are easily embedded in the parsing routines.
� A parameter mechanism or attribute mechanism comes virtually for free: the

parser generator can use the parameter mechanism of the implementation
language.

� Non-backtracking recursive descent parsers are quite efficient, often more effi-
cient than the table-driven ones.

� Dynamic conflict resolvers are implemented easily.
The most important disadvantage of generating a recursive descent parser is the

size of the parser. A recursive descent parser is usually larger than a table-driven one
(including the table). However, this becomes less of a problem as computer memories
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get bigger and bigger. See Waite and Carter [Misc 1985] for measurements of table-
driven parsers versus recursive descent parsers.

8.3 LL(k) GRAMMARS

Up until now, we have limited the look-ahead to just one symbol, and one might
wonder if having a look-ahead of k symbols instead of one makes the method more
powerful. It does, so let us define LL(k) grammars. For this, we need a definition of
FIRSTk sets: if x is a sentential form, then FIRSTk(x) is the set of terminal strings w
such that |w| (the length of w) is less than k and x→* w, or |w| is equal to k, and x→* wy,
for some sentential form y. For k = 1 this definition coincides with the definition of the
FIRST sets as we have seen it before.

We now have the instruments needed to define LL(k): a grammar is LL(k) if for
any prediction Ax##, with A a non-terminal with right-hand sides α1 , ..., and αn , the sets
FIRSTk(α1x##), are pairwise disjoint. Obviously, for any k, the set of LL(k) grammars
is a subset of the set of LL(k +1) grammars, and in fact, for any k there are LL(k +1)
grammars that are not LL(k). A trivial example of this is given in Figure 8.11.

SSss -->> aakbb || aakaa

Figure 8.11 An LL(k +1) grammar that is not LL(k)

Less obvious is that for any k there are languages that are LL(k +1), but not LL(k). An
example of such a language is given in Figure 8.12.

SSSS -->> aaSSAA || εε
AA -->> aakbbSS || cc

Figure 8.12 A grammar defining an LL(k +1) language that is not LL(k)

See Kurki-Suonio [LL 1969] for more details.
With LL(k) grammars we have the same problem as with the LL(1) grammars:

producing a parse table is difficult. In the LL(1) case, we solved this problem with the
aid of the FOLLOW sets, obtaining strong-LL(1) parsers. We can try the same with
LL(k) grammars using FOLLOWk sets. For any non-terminal A, FOLLOWk(A) is now
defined as the union of the sets FIRSTk(x#### . . . ####), for any prediction Ax#### . . . #### (in
LL(k) parsing, we add k end-markers instead of just one).

Once we have the FIRSTk sets and the FOLLOWk sets, we can produce a parse
table for the grammar. Like the LL(1) parse table, this parse table will be indexed with
pairs consisting of a non-terminal and a terminal string of length equal to k. Every
grammar rule A→α is processed as follows: α is added to the (A, w) entry of the table
for every w in FIRSTk(α FOLLOWk(A)) (as we have seen before, this last set denotes
the union of several FIRSTk sets: it is the union of all FIRSTk(αv) sets with v an ele-
ment of FOLLOWk(A)). All this is just an extension to k look-ahead symbols of what
we did earlier with one look-ahead symbol.

If this results in a parse table where all entries have at most one element, the
grammar is strong-LL(k). Unlike the LL(1) case however, for k > 1 there are grammars
that are LL(k), but not strong-LL(k). An example of such a grammar is given in Figure
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8.13.

SSSS -->> aaAAaaaa || bbAAbbaa
AA -->> bb || εε

Figure 8.13 An LL(2) grammar that is not strong-LL(2)

This raises an interesting question, one that has kept the authors busy for quite a
while: how come? Why is it different for k = 1? If we try to repeat our proof from Sec-
tion 8.2.3 for a look-ahead k > 1, we see that we fail at the very last step: let us examine
a strong-LL(k) conflict: suppose that the right-hand sides α and β both end up in the (A,
w) entry of the parse table. This means that w is a member of both FIRSTk(α
FOLLOWk(A)) and FIRSTk(β FOLLOWk(A)). Now, there are three cases:
� w is a member both FIRSTk(α) and FIRSTk(β). In this case, the grammar cannot

be LL(k), because for any prediction Ax#### . . . ####, w is a member of both
FIRSTk(αx#### . . . ####) and FIRSTk(βx#### . . . ####).

� w is a member of either FIRSTk(α) or FIRSTk(β), but not both. Let us say that w
is a member of FIRSTk(α). In this case, w still is a member of FIRSTk(β
FOLLOWk(A)) so there is a prediction Ax#### . . . ####, such that w is a member of
FIRSTk(βx#### . . . ####). However, w is also a member of FIRSTk(αx#### . . . ####), so
the grammar is not LL(k). In other words, in this case there is a prediction in
which an LL(k) parser cannot decide which right-hand side to choose either.

� w is neither a member of FIRSTk(α) nor a member of FIRSTk(β). Here, we have
to deviate from the reasoning we used in the LL(1) case. As w is an element of
FIRSTk(α FOLLOWk(A)), w can now be split into two parts w 1.1 and w 1.2 , such
that w 1.1 is an element of FIRSTk(α) and w 1.2 is a non-empty start of an element
of FOLLOWk(A). Likewise, w can be split into two parts w 2.1 and w 2.2 such that
w 2.1 is an element of FIRSTk(β) and w 2.2 is a non-empty start of an element of
FOLLOWk(A). So, we have the following situation:

w

w 1.1 w 1.2

w 2.1 w 2.2

Now, if w 1.1=w 2.1 , w 1.1 is a member of FIRSTk(α), as well as FIRSTk(β), and
there is a prediction Ax#### . . . #### such that x#### . . . #### →* w 1.2

. . . . So,
FIRSTk(αx#### . . . ####) contains w and so does FIRSTk(βx#### . . . ####), and there-
fore, the grammar is not LL(k). So the only case left is that w 1.1≠w 2.1 . Neither
w 1.2 nor w 2.2 are ε, and this is just impossible if | w | =1.
Strong-LL(k) parsers with k > 1 are seldom used in practice, because the parse

tables are huge, and there are not many languages that are LL(k) for some k > 1, but not
LL(1). Even the languages that are LL(k) for some k > 1, but not LL(1), are usually for
the most part LL(1), and can be parsed using an LL(1) parser with conflict resolvers at
the places where the grammar is not LL(1).

To obtain a full LL(k) parser, the method that we used to obtain a full LL(1)
parser can be extended to deal with pairs [A, L], where L is a FIRSTk set of
. . . #### . . . #### in some prediction A . . . #### . . . ####. This extension is straightforward
and will not be discussed further.
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8.4 EXTENDED LL(1) GRAMMARS

Several parser generators accept an extended context-free grammar instead of an ordi-
nary one. See for instance Lewi et al.[LL 1978], Heckmann [LL 1986], Grune and
Jacobs[LL 1988]. Extended context-free grammars have been discussed in Chapter 2.
To check that an extended context-free grammar is LL(1), we have to transform the
extended context-free grammar into an ordinary one, in a way that will avoid introduc-
ing LL(1) conflicts. For instance, the transformation for SSoommeetthhiinngg+ given in Chapter
2:

SSoommeetthhiinngg+ -->> SSoommeetthhiinngg | SSoommeetthhiinngg SSoommeetthhiinngg+

will not do, because it will result in an LL(1) conflict on the symbols in
FIRST(SSoommeetthhiinngg). Instead, we will use the following transformations:

SSoommeetthhiinngg* -->> ε | SSoommeetthhiinngg SSoommeetthhiinngg*

SSoommeetthhiinngg+ -->> SSoommeetthhiinngg SSoommeetthhiinngg*

SSoommeetthhiinngg? -->> ε | SSoommeetthhiinngg

If the resulting grammar is LL(1), the original extended context-free grammar was
ELL(1) (Extended LL(1)). This is the recursive interpretation of Chapter 2. Parser
generation usually proceeds as follows: first transform the grammar to an ordinary
context-free grammar, and then produce a parse table for it.

Extended LL(1) grammars allow for a more efficient implementation in recursive
descent parsers. In this case, SSoommeetthhiinngg? can be implemented as an if statement:

if lookahead ∈ FIRST(SSoommeetthhiinngg) then
code for SSoommeetthhiinngg ...

else if lookahead ∉ FOLLOW(SSoommeetthhiinngg?) then
ERROR;

SSoommeetthhiinngg* can be implemented as a while loop:

while lookahead ∈ FIRST(SSoommeetthhiinngg) do
code for SSoommeetthhiinngg ...

if lookahead ∉ FOLLOW(SSoommeetthhiinngg*) then
ERROR;

and SSoommeetthhiinngg+ can be implemented as a repeat loop:

repeat
if lookahead ∉ FIRST(SSoommeetthhiinngg) then

ERROR;
code for SSoommeetthhiinngg ...

until lookahead ∈ FOLLOW(SSoommeetthhiinngg+);

Here, procedure calls are replaced by much more efficient repetitive constructs.



9
Deterministic bottom-up parsing

There is a great variety of deterministic bottom-up parsing methods. The first deter-
ministic parsers (Wolpe [Precedence 1958], Wegstein [Precedence 1959]) were
bottom-up parsers and interest has only increased since. The annotated bibliography in
this book contains about 140 entries on deterministic bottom-up parsing against some
30 on deterministic top-down parsing. These figures may not reflect the relative
importance of the methods, they are certainly indicative of the fascination and com-
plexity of the subject of this chapter.

There are two families of deterministic bottom-up parsers, those that are purely
bottom-up and those that have an additional top-down component. The first family
comprises the precedence and bounded-context techniques, which are treated in Sec-
tions 9.1 to 9.3; the second family, which is both more powerful and more complicated,
contains the LR techniques and is treated in Sections 9.4 to 9.7. Tomita’s parser in
Section 9.8 is not purely deterministic but leans so heavily on the LR techniques that its
treatment in this chapter is warranted. The chapter closes with a short section on non-
canonical bottom-up parsing and one on the use of LR(k) as an ambiguity test.

The proper setting for the subject at hand can best be obtained by summarizing a
number of relevant facts from previous chapters.
� A right-most production expands the right-most non-terminal in a sentential form,

by replacing it by one of its right-hand sides. A sentence is produced by repeated
right-most production until no non-terminal remains. See Figure 9.1 (a), where the
sentential forms are right-aligned to show how the production process creeps to
the left, where it terminates. The grammar used is that of Figure 7.8.

� Each step of a bottom-up parser, working on a sentential form, identifies the latest
right-most production in it and undoes it by reducing a segment of the input to the
non-terminal it derived from. The identified segment is called the handle. Since
the parser starts with the final sentential form of the production process (that is,
the input) it finds its first reduction rather to the left end, which is convenient. A
bottom-up parser identifies right-most productions in reverse order. See Figure
9.1(b) where the handles are aligned.

� To obtain an efficient parser we have to have an efficient method to identify han-
dles, without elaborate searching. The identified handle has to be correct (or the
input is in error); we do not want to consider alternative choices for handles.
Although this chapter is called “Deterministic Bottom-Up Parsing”, it is almost
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SS
EE

EEQQFF
EEQQ aa
EE ++aa

EEQQFF ++aa
EEQQ aa++aa
EE --aa++aa
FF --aa++aa
aa--aa++aa

(a)

aa--aa++aa
FF --aa++aa
EE --aa++aa
EEQQ aa++aa
EEQQFF ++aa
EE ++aa
EEQQ aa
EEQQFF
EE
SS

(b)

Figure 9.1 Right-most production (a) and right-most reduction (b)

exclusively concerned with methods for finding handles. Once the handle is found,
parsing is (almost always) trivial. The exceptions will be treated separately.

Unlike top-down parsing, which identifies productions right at their beginning,
that is, before any of its constituents have been identified, bottom-up parsing identifies
a production only at its very end, when all its constituents have already been identified.
A top-down parser allows semantic actions to be performed at the beginning of a pro-
duction and these actions can help in determining the semantics of the constituents. In a
bottom-up parser, semantic actions are only performed during a reduction, which
occurs at the end of a production, and the semantics of the constituents have to be
determined without the benefit of knowing in which production they occur. We see that
the increased power of bottom-up parsing comes at a price: since the decision what
production applies is postponed to the latest possible moment, that decision can be
based upon the fullest possible information, but it also means that the actions that
depend on this decision come very late.

9.1 SIMPLE HANDLE-ISOLATING TECHNIQUES

There is a situation in (more or less) daily life in which the (more or less) average
citizen is called upon to identify a handle. If one sees a formula like

44 ++ 55 ×× 66 ++ 88

one immediately identifies the handle and evaluates it:

44 ++ 55 ×× 66 ++ 88
----------

44 ++ 3300 ++ 88

The next handle is

44 ++ 3300 ++ 88
----------------

3344 ++ 88
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and then

3344 ++ 88
--------------------

4422

If we look closely, we can discern in this process shifts and reduces. The person
doing the arithmetic shifts symbols until he reaches the situation

44 ++ 55 ×× 66 ++ 88

in which the control mechanism in his head tells him that this is the right moment to do
a reduce. If asked why, he might answer something like: “Ah, well, I was taught in
school that multiplication comes before addition”. Before we can formalize this notion
and turn it into a parsing method, we consider an even simpler case below (Section
9.1.1).

SSSS -->> ## EE ##
EE -->> EE ++ TT
EE -->> TT
TT -->> TT ×× FF
TT -->> FF
FF -->> nn
FF -->> (( EE ))

Figure 9.2 A grammar for simple arithmetic expressions

Meanwhile we note that formulas like the one above are called “arithmetic expres-
sions” and are produced by the grammar of Figure 9.2. SS is the start symbol, EE stands
for “expression”, TT for “term”, FF for “factor” and nn for any number. The last causes no
problems, since the exact value of the number is immaterial to the parsing process. We
have demarcated the beginning and the end of the expression with ## marks; the blank
space that normally surrounds a formula is not good enough for automatic processing.
This also simplifies the stop criterion: the parser accepts the input as correct and stops
when the terminating ## is shifted, or upon the subsequent reduce.

9.1.1 Fully parenthesized expressions

SSSS -->> ## EE ##
EE -->> (( EE ++ TT ))
EE -->> TT
TT -->> (( TT ×× FF ))
TT -->> FF
FF -->> nn
FF -->> (( EE ))

Figure 9.3 A grammar for fully parenthesized arithmetic expressions
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An arithmetic expression is fully parenthesized if each operator together with its
operands has parentheses around it. Such expressions are generated by the grammar of
Figure 9.3. Our example expression would have the form

## (( (( 44 ++ (( 55 ×× 66 )) )) ++ 88 )) ##

Now finding the handle is trivial: go to the first closing parenthesis and then back to the
nearest opening parenthesis. The segment between and including the parentheses is the
handle. Reduce it and repeat the process as often as required. Note that after the reduc-
tion there is no need to start all over again, looking for the first closing parenthesis:
there cannot be any closing parenthesis on the left of the reduction spot, so we can start
searching right where we are. In the above example we find the next right parenthesis
immediately and do the next reduction:

## (( (( 44 ++ 3300 )) ++ 88 )) ##

9.2 PRECEDENCE PARSING

Of course, grammars are not normally kind enough to have begin- and end-markers to
each compound right-hand side, and the above parsing method has little practical value
(as far as we know it does not even have a name). Yet, suppose we had a method for
inserting the proper parentheses into an expression that was lacking them. At a first
glance this seems trivial to do: when we see ++nn×× we know we can replace this by ++((nn××
and we can replace ××nn++ by ××nn))++. There is a slight problem with ++nn++, but since the first
++ has to be performed first, we replace this by ++nn))++. The ##’s are easy; we can replace
##nn by ##((nn and nn## by nn))##. For our example we get:

## (( 44 ++ (( 55 ×× 66 )) ++ 88 )) ##

This is, however, not completely correct − it should have been ##((((44++((55××66))))++88))## −
and for 44++55××66 we get the obviously incorrect form ##((44++((55××66))##.

The problem is that we do not know how many parentheses to insert in, for
instance, ++nn××; in 44++55××66××77 we should replace it by ++((((nn××: ##((44++((((55××66))××77))))##. We
solve this problem by inserting parentheses generators rather than parentheses. A gen-
erator for open parentheses is traditionally written as <·, one for closing parentheses as
>· ; we shall also use a “non-parenthesis”, =̇. These symbols look confusingly like <, >
and =, to which they are only remotely related. Now, our tentatively inserted
parentheses become firmly inserted parentheses generators; see Figure 9.4 in which we
have left out the nn since its position can be inferred from the pattern. Still, the table in
Figure 9.4 is incomplete: the pattern ×× ×× is missing and so are all patterns involving
parentheses. In principle there should be a pattern for each combination of two opera-
tors (where we count the genuine parentheses as operators too), and only the generator
to be inserted is relevant for each combination. This generator is called the precedence
relation between the two operators. It is convenient to collect all combinations of
operators in a table, the precedence table. The precedence table for the grammar of
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++ ×× → ++ <· ××
×× ++ → ×× >· ++
++ ++ → ++ >· ++

## ...... → ## <· ......
...... ## → ...... >· ##

Figure 9.4 Preliminary table of precedence relations

Figure 9.2 is given in Figure 9.5; the left-most column contains the left-hand symbols
and the top-most row the right-hand symbols.

## ++ ×× (( ))� ���������������������������������������������
## =̇ <· <· <·� ���������������������������������������������
++ >· >· <· <· >·� ���������������������������������������������
×× >· >· >· <· >·� ���������������������������������������������
(( <· <· <· =̇� ���������������������������������������������
)) >· >· >· >·� ���������������������������������������������
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Figure 9.5 Operator-precedence table to the grammar of Figure 9.2

There are three remarks to be made about this precedence table. First, we have
added a number of <· and >· tokens not covered above (for instance, ××>· ××). Second, there
is ##==̇̇## and ((==̇̇)) (but not ))==̇̇(( !); we shall shortly see what they mean. And third, there
are three empty entries, meaning that when we find these combinations in the input, it
contains an error (and is not produced by the grammar for which we made our pre-
cedence table).

Such a table is called a precedence table because for symbols that are normally
regarded as operators it gives their relative precedence. An entry like ++<·×× indicates that
in the combination ++××, the ×× has a higher precedence than the ++. We shall first show
how the precedence table is used in parsing and then how such a precedence table can
be constructed systematically for a given grammar, if the grammar allows it.

The stack in an operator-precedence parser differs from the normal bottom-up
parser stack in that it contains “important” symbols, the operators, between which rela-
tions are defined, and “unimportant” symbols, the numbers, which are only consulted to
determine the value of a handle and which do not influence the parsing. Moreover, we
need places on the stack to insert the parentheses generators (one can, in principle, do
without these, by reevaluating them whenever necessary). Since there is a parentheses
generator between each pair of operators and there is also (almost) always a value
between such a pair, we shall indicate both in the same position on the stack, with the
parentheses generator in line and the value below it; see Figure 9.6.

To show that, contrary to what is sometimes thought, operator-precedence can do
more than just calculate a value (and since we have seen too often now that
44++55××66++88==4422), we shall have the parser construct the parse tree rather than the value.
The stack starts with a ##. Values and operators are shifted onto it, interspersed with
parentheses generators, until a >· generator is met; the following operator is not shifted
and is left in the input (Figure 9.6(b)). It is now easy to identify the handle, which is
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Stack rest of input

## 44 ++ 55 ×× 66 ++ 88 ##(a)

## <· ++ <· ×× >· ++ 88 ##
44 55 66. . . . . . . . . . . . . . ...

..

..

.......................

(b)

## <· ++ >· ++ 88 ##
44 ××

55 66

. . . . . . . . . . . . . . ...
..
..
.......................

(c)

## <· ++ >· ##
++

44 ××

55 66

88. . . . . . . . . . . . . . ...
..
..
.......................

(d)

## ==̇̇ ##
++

++

44 ××

55 66

88

(e)

Figure 9.6 Operator-precedence parsing of 44++55××66++88

demarcated by a dotted rectangle in the figure and which is reduced to a tree; see (c), in
which also the next >· has already appeared between the ++ on the stack and the ++ in the
input. Note that the tree and the new generator have come in the position of the <· of the
handle. A further reduction brings us to (d) in which the ++ and the 88 have already been
shifted, and then to the final state of the operator-precedence parser, in which the stack
holds ##==̇̇## and the parse tree dangles from the value position.

We see that the stack only holds <· markers and values, plus a >· on the top each
time a handle is found. The meaning of the =̇ becomes clear when we parse an input
text which includes parentheses, like 44××((55++66)); see Figure 9.7, in which we have the
parser calculate the value rather than the parse tree. We see that the =̇ is used to allow
handles consisting of more than one operator and two operands; the handle in (c) has
two operators, the (( and the )) and one operand, the 1111. Note that as already indicated
in Section 5.1.1, the set of stack configurations can be described by a regular expres-
sion; for this type of parsers the expression is:

## || ##<·qq (([[<·==̇̇]]qq))** >· ?? || ##==̇̇##

where qq is any operator; the first alternative is the start situation and the third alterna-
tive is the end situation.
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Stack rest of input

## 44 ×× (( 55 ++ 66 )) ##(a)

## <· ×× <· (( <· ++ >· )) ##
44 55 66. . . . . . . . . . . . . . ...

..

..

.......................

(b)

## <· ×× <· (( ==̇̇ )) >· ##
44 1111. . . . . . . . . . . . . . . . . . . . . . . . ...

..

..

.................................

(c)

## <· ×× >· ##
44 1111. . . . . . . . . . . . . . ...

..

..

.......................

(d)

## ==̇̇ ##
4444

(e)

Figure 9.7 An operator-precedence parsing involving ==̇̇

9.2.1 Constructing the operator-precedence table
The above hinges on the difference between operators, which are terminal symbols and
between which precedence relations are defined, and operands, which are non-
terminals. This distinction is captured in the following definition of an operator gram-
mar:
� A CF grammar is an operator grammar if (and only if) each right-hand side con-

tains at least one terminal or non-terminal and no right-hand side contains two
consecutive non-terminals.

So each pair of non-terminals is separated by at least one terminal; all the terminals
except those carrying values (nn in our case) are called operators.

For such grammars, setting up the precedence table is relatively easy. First we cal-
culate for each non-terminal A the set FIRSTOP(A), which is the set of all operators that
can occur as the first operator in any sentential form deriving from A, and LASTOP(A),
which is defined similarly. Note that this first operator in a sentential form can be pre-
ceded by at most one non-terminal in an operator grammar. The FIRSTOP’s of all
non-terminals are constructed simultaneously as follows:
1. For each non-terminal A, find all right-hand sides of all rules for A; now for each

right-hand side R we insert the first terminal in R (if any) into FIRSTOP(A). This
gives us the initial values of all FIRSTOP’s.

2. For each non-terminal A, find all right-hand sides of all rules for A; now for each
right-hand side R that starts with a non-terminal, say B, we add the elements of
FIRSTOP(B) to FIRSTOP(A). This is reasonable, since a sentential form of A may
start with B, so all terminals in FIRSTOP(B) should also be in FIRSTOP(A).

3. Repeat step 2 above until no FIRSTOP changes any more.
We have now found the FIRSTOP of all non-terminals. A similar algorithm, using the
last terminal in R in step 1 and a B which ends A in step 2 provides the LASTOP’s. The
sets for the grammar of Figure 9.2 are shown in Figure 9.8.

Now we can fill the precedence table using the following rules, in which q, q 1 and
q 2 are operators and A is a non-terminal.
� For each occurrence in a right-hand side of the form q 1q 2 or q 1Aq 2 , set q 1=̇q 2 .
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FIRSTOP(SS) = {##} LASTOP(SS) = {##}
FIRSTOP(EE) = {++, ××, ((} LASTOP(EE) = {++, ××, ))}
FIRSTOP(TT) = {××, ((} LASTOP(TT) = {××, ))}
FIRSTOP(FF) = {((} LASTOP(FF) = {))}

Figure 9.8 FIRSTOP and LASTOP sets for the grammar of Figure 9.2

This keeps operators from the same handle together.
� For each occurrence q 1A, set q 1<·q 2 for each q 2 in FIRSTOP(A). This demarcates

the left end of a handle.
� For each occurrence Aq 1 , set q 2>· q 1 for each q 2 in LASTOP(A). This demarcates

the right end of a handle.
If we obtain a table without conflicts this way, that is, if we never find two dif-

ferent relations between two operators, then we call the grammar operator-precedence.
It will now be clear why ((==̇̇)) and not ))==̇̇((, and why ++>· ++ (because EE++ occurs in EE-->>EE++TT
and ++ is in LASTOP(EE)).

In this way, the table can be derived from the grammar by a program and be
passed on to the operator-precedence parser. A very efficient linear-time parser results.
There is, however, one small problem we have glossed over: Although the method
properly identifies the handle, it often does not identify the non-terminal to which to
reduce it. Also, it does not show any unit rule reductions; nowhere in the examples did
we see reductions of the form EE-->>FF or TT-->>FF. In short, operator-precedence parsing
generates only skeleton parse trees.

Operator-precedence parsers are very easy to construct (often even by hand) and
very efficient to use; operator-precedence is the method of choice for all parsing prob-
lems that are simple enough to allow it. That only a skeleton parse tree is obtained, is
often not an obstacle, since operator grammars often have the property that the seman-
tics is attached to the operators rather than to the right-hand sides; the operators are
identified correctly.

It is surprising how many grammars are (almost) operator-precedence. Almost all
formula-like computer input is operator-precedence. Also, large parts of the grammars
of many computer languages are operator-precedence. An example is a construction
like CCOONNSSTT ttoottaall == hheeaadd ++ ttaaiill;; from a Pascal-like language, which is easily
rendered as:

Stack rest of input

## <· CCOONNSSTT <· == <· ++ >·
ttoottaall hheeaadd ttaaiill

;; ##

Ignoring the non-terminals has other bad consequences besides producing a skele-
ton parse tree. Since non-terminals are ignored, a missing non-terminal is not noticed.
As a result, the parser will accept incorrect input without warning and will produce an
incomplete parse tree for it. A parser using the table of Figure 9.5 will blithely accept
the empty string, since it immediately leads to the stack configuration ##==̇̇##. It produces
a parse tree consisting of one empty node.

The theoretical analysis of this phenomenon turns out to be inordinately difficult;
see Levy [Precedence 1975], Williams [Precedence 1977, 1979, 1981] and many others
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in Section 13.8. In practice it is less of a problem than one would expect; it is easy to
check for the presence of required non-terminals, either while the parse tree is being
constructed or afterwards.

9.2.2 Precedence functions
Several objections can be raised against operator-precedence. First, it cannot handle all
grammars that can be handled by other more sophisticated methods. Second, its error
detection capabilities are weak. Third, it constructs skeleton parse trees only. And
fourth, the two-dimensional precedence table, which for say a 100 tokens has 10000
entries, may take too much room. The latter objection can be overcome for those pre-
cedence tables that can be represented by so-called precedence functions. The idea is
the following. Rather than having a table T such that for any two operators q 1 and q 2 ,
T[q 1 ,q 2] yields the relation between q 1 and q 2 , we have two integer functions f and g
such that fq 1

<gq 2
means that q 1<·q 2 , fq 1

=gq 2
means q 1=̇q 2 and fq 1

>gq 2
means

q 1>· q 2 . fq is called the left priority of q, gq the right priority; they would probably be
better indicated by l and r, but the use of f and g is traditional. Note that we write fq 1

rather than f(q 1); this allows us to write, for instance, f ( for the left priority of (( rather
than the confusing f(((). It will be clear that two functions are required: with just one
function one cannot express, for instance, ++>· ++. Precedence functions take much less
room than precedence tables. For our 100 tokens we need 200 function values rather
than 10000 tables entries. Not all tables allow a representation with precedence func-
tions, but many do.

Finding the proper f and g for a given table seems simple enough and can indeed
often be done by hand. The fact, however, that there are two functions rather than one,
the size of the tables and the occurrence of the =̇ complicate things. A well-known
algorithm to construct the functions was given by Bell [Precedence 1969] of which
several variants exist. The following technique is a straightforward and easily imple-
mented variant of Bell’s algorithm.
First we turn the precedence table into a list of numerical relations, as follows:
� for each q 1<·q 2 we have fq 1

<gq 2
,

� for each q 1=̇q 2 we have fq 1
=gq 2

,
� for each q 1>· q 2 we have fq 1

>gq 2
,

Here we no longer view forms like fq as function values but rather as variables; rein-
terpretation as function values will occur later. Making such a list is easier done by
computer than by hand; see Figure 9.9(a). Next we remove all equals-relations, as fol-
lows:
� for each relation fq 1

=gq 2
we create a new variable fq 1

gq 2
and replace all

occurrences of fq 1
and gq 2

by fq 1
gq 2

.
Note that fq 1

gq 2
is not the product of fq 1

and gq 2
but rather a new variable, i.e., the

name of a new priority value. Now a relation like fq 1
=gq 2

has turned into
fq 1

gq 2
= fq 1

gq 2
and can be deleted trivially. See (b).

Third we flip all > relations:
� we replace each relation p 1>p 2 by p 2<p 1 , where p 1 and p 2 are priority vari-

ables. See (c).
The list has now assumed a very uniform appearance and we can start to assign numeri-
cal values to the variables. We shall do this by handing out the numbers 0,1, . . . as fol-
lows:
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f # = g # f #g # < g + f #g # < g + f #g # = 0 f #g # = 0
f # < g + f #g # < g × f #g # < g × f (g ) = 0 f (g ) = 0
f # < g × f #g # < g ( f #g # < g ( g + = 1
f # < g ( f + > f #g # f #g # < f + g + < f + f + = 2
f + > g # f + > g + g + < f + f + < g ×
f + > g + f + < g × f + < g × f + < g ( g × < f ×
f + < g × f + < g ( f + < g ( g + < f × f × < g (
f + < g ( f + > f (g ) f (g ) < f + g × < f × g × < f )
f + > g ) f × > f #g # f #g # < f × f × < g (
f × > g # f × > g + g + < f × g + < f ) (f)
f × > g + f × > g × g × < f × g × < f )
f × > g × f × < g ( f × < g ( f #g # = 0
f × < g ( f × > f (g ) f (g ) < f × (d) f (g ) = 0
f × > g ) f (g ) < g + f (g ) < g + g + = 1
f ( < g + f (g ) < g × f (g ) < g × f #g # = 0 f + = 2
f ( < g × f (g ) < g ( f (g ) < g ( f (g ) = 0 g × = 3
f ( < g ( f ) > f #g # f #g # < f ) g + = 1
f ( = g ) f ) > g + g + < f ) f × < g (
f ) > g # f ) > g × g × < f ) f + < g ×
f ) > g + f ) > f (g ) f (g ) < f ) f + < g ( (g)
f ) > g × g × < f ×
f ) > g ) (b) (c) f × < g (

g × < f )
(a)

(e)
f #g # = 0 f # = 0 f # = 0
f (g ) = 0 g # = 0 f ( = 0
g + = 1 f ( = 0 f + = 2
f + = 2 g ) = 0 f × = 4
g × = 3 g + = 1 f ) = 5
f × = 4 f + = 2

g × = 3 g # = 0
(h) f × = 4 g ) = 0

g + = 1
(i) g × = 3

g ( = 5

(j)

Figure 9.9 Calculating precedence functions

� Find all variables that occur only on the left of a relation; since they are clearly
smaller than all the others, they can all be given the value 0.

In our example we find f#g# and f (g ) , which both get the value 0. Since the relations
that have these two variables on their left will be satisfied provided we hand out no
more 0’s, we can remove them (see (d)):
� Remove all relations that have the identified variables on their left sides.
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This removal causes another set of variables to occur on the left of a relation only, to
which we now hand out the value 1. We repeat this process with increasing values until
the list of relations has become empty; see (e) through (h).
� Decompose the compound variables and give each component the numerical value

of the compound variable. This decomposes, for instance, f (g )=0 into f (=0 and
g )=0; see (i).

This leaves without a value those variables that occurred on the right-hand side only in
the comparisons under (c):
� To all still unassigned priority values, assign the lowest value that has not yet been

handed out.
f ) and g ( both get the value 5 (see (j) where the values have also been reordered) and
indeed these occur at the high side of a comparison only. It is easily verified that the
priority values found satisfy the initial comparisons as derived from the precedence
table.

It is possible that we reach a stage in which there are still relations left but there
are no variables that occur on the left only. It is easy to see that in that case there must
be a circularity of the form p 1<p 2<p 3

. . . <p 1 and that no integer functions represent-
ing these relations can exist: the table does not allow precedence functions.
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×× >· >· >· >· <·� ���������������������������������������������
)) >· >· >· >·� ���������������������������������������������
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Figure 9.10 The precedence table of Figure 9.5 reordered

Note that finding precedence functions is equivalent to reordering the rows and
columns of the precedence table so that the latter can be divided into three regions: a >·
region on the lower left, a <· region on the upper right and a =̇ border between them.
See Figure 9.10.

There is always a way to represent a precedence table with more than two func-
tions; see Bertsch [Precedence 1977] on how to construct such functions.

9.2.3 Simple-precedence parsing
The fact that operator-precedence parsing produces skeleton parse trees only is a seri-
ous obstacle to its application outside formula handling. The defect seems easy to
remedy. When a handle is identified in an operator-precedence parser, it is reduced to a
node containing the value(s) and the operator(s), without reference to the grammar. For
serious parsing the matching right-hand side of the pertinent rule has to be found. Now
suppose we require all right-hand sides in the grammar to be different. Then, given a
handle, we can easily find the rule to be used in the reduction (or to find that there is no
matching right-hand side, in which case there was an error in the input).

This is, however, not quite good enough. To properly do the right reductions and
to find reductions of the form A→B (unit reductions), the non-terminals themselves
have to play a role in the identification of the right-hand side. They have to be on the
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stack like any other symbol and precedence relations have to be found for them. This
has the additional advantage that the grammar need no longer be an operator grammar
and that the stack entries have a normal appearance again.

A grammar is simple precedence if (and only if):
� it has a conflict-free precedence table over all its symbols, terminals and non-

terminals alike,
� none of its right-hand sides is ε,
� all of its right-hand sides are different.

The construction of the simple-precedence table is again based upon two sets,
FIRSTALL(A) and LASTALL(A). FIRSTALL(A) is similar to the set FIRST(A) intro-
duced in Section 8.2.2.1 and differs from it in that it also contains all non-terminals that
can start a sentential form derived from A (whereas FIRST(A) contains terminals only).
LASTALL(A) contains all terminals and non-terminals that can end a sentential form of
A. Their construction is similar to that given in Section 8.2.2.1 for the FIRST set. Fig-
ure 9.11 shows the pertinent sets for our grammar.

FIRSTALL(SS) = {##} LASTALL(SS) = {##}
FIRSTALL(EE) = {EE, TT, FF, nn, ((} LASTALL(EE) = {TT, FF, nn, ))}
FIRSTALL(TT) = {TT, FF, nn, ((} LASTALL(TT) = {FF, nn, ))}
FIRSTALL(FF) = {nn, ((} LASTALL(FF) = {nn, ))}

Figure 9.11 FIRSTALL and LASTALL for the grammar of Figure 9.2

A simple-precedence table is now constructed as follows: For each two juxta-
posed symbols X and Y in a right-hand side we have:
� X=̇Y; this keeps X and Y together in the handle;
� if X is a non-terminal: for each symbol s in LASTALL(X) and each terminal t in

FIRST(Y) (or Y itself if Y is a terminal) we have s>· t; this allows X to be reduced
completely when the first sign of Y appears in the input; note that we have
FIRST(Y) here rather than FIRSTALL(Y);

� if Y is a non-terminal: for each symbol s in FIRSTALL(Y) we have X<·s; this pro-
tects X while Y is being recognized.

# E T F n + × ( )� �������������������������������������������������������������������������������������
# <·/=̇ <· <· <· <·� �������������������������������������������������������������������������������������
E =̇ =̇ =̇� �������������������������������������������������������������������������������������
T >· >· =̇ >·� �������������������������������������������������������������������������������������
F >· >· >· >·� �������������������������������������������������������������������������������������
n >· >· >· >·� �������������������������������������������������������������������������������������
+ <·/=̇ <· <· <·� �������������������������������������������������������������������������������������
× =̇ <· <·� �������������������������������������������������������������������������������������
( <·/=̇ <· <· <· <·� �������������������������������������������������������������������������������������
) >· >· >· >·� �������������������������������������������������������������������������������������
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Figure 9.12 Simple-precedence table to Figure 9.2, with conflicts



196 Deterministic bottom-up parsing [Ch. 9

Simple precedence is not the answer to all our problems as is evident from Figure
9.12 which displays the results of an attempt to construct the precedence table for the
operator-precedence grammar of Figure 9.2. Not even this simple grammar is simple-
precedence, witness the conflicts for ##<·//==̇̇EE, ((<·//==̇̇EE and ++<·//==̇̇TT.

SSSS -->> ## EE’’ ##
EE’’ -->> EE
EE -->> EE ++ TT’’
EE -->> TT’’
TT’’ -->> TT
TT -->> TT ×× FF
TT -->> FF
FF -->> nn
FF -->> (( EE ))

FIRSTALL(EE’’) = {EE, TT’’, TT, FF, nn, ((} LASTALL(EE’’) = {TT’’, TT, FF, nn, ))}
FIRSTALL(EE) = {EE, TT’’, TT, FF, nn, ((} LASTALL(EE) = {TT, FF, nn, ))}
FIRSTALL(TT’’) = {TT, FF, nn, ((} LASTALL(TT’’) = {FF, nn, ))}
FIRSTALL(TT) = {TT, FF, nn, ((} LASTALL(TT) = {FF, nn, ))}
FIRSTALL(FF) = {nn, ((} LASTALL(FF) = {nn, ))}

## EE’’ EE TT’’ TT FF nn ++ ×× (( ))� �����������������������������������������������������������������������������������������������������
## =̇ <· <· <· <· <· <·� �����������������������������������������������������������������������������������������������������
EE’’ =̇� �����������������������������������������������������������������������������������������������������
EE >· =̇ =̇� �����������������������������������������������������������������������������������������������������
TT’’ >· >· >·� �����������������������������������������������������������������������������������������������������
TT >· >· =̇ >·� �����������������������������������������������������������������������������������������������������
FF >· >· >· >·� �����������������������������������������������������������������������������������������������������
nn >· >· >· >·� �����������������������������������������������������������������������������������������������������
++ =̇ <· <· <· <·� �����������������������������������������������������������������������������������������������������
×× =̇ <· <·� �����������������������������������������������������������������������������������������������������
(( =̇ <· <· <· <· <·� �����������������������������������������������������������������������������������������������������
)) >· >· >· >·� �����������������������������������������������������������������������������������������������������
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Figure 9.13 A modified grammar with its simple-precedence table, without conflicts

There are two ways to remedy this. We can adapt the grammar by inserting extra
levels around the troublesome non-terminals. This is done in Figure 9.13 and works in
this case; it brings us, however, farther away from our goal, to produce a correct parse
tree, since we now produce a parse tree for a different grammar. Or we can adapt the
parsing method, as explained in the next section.

9.2.4 Weak-precedence parsing
It turns out that most of the simple-precedence conflicts are <·/=̇ conflicts. Now the
difference between <· and =̇ is in a sense less important than that between either of them
and >· . Both <· and =̇ result in a shift and only >· asks for a reduce. Only when a reduce
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is found will the difference between <· and =̇ become significant for finding the head of
the handle. Now suppose we drop the difference between <· and =̇ and combine them
into ≤·; then we need a different means of identifying the handle and the proper right-
hand side. This can be done by requiring not only that all right-hand sides be different,
but also that no right-hand side be equal to the tail of another right-hand side. A gram-
mar that conforms to this and has a conflict-free ≤·/>· precedence table is called weak
precedence. Figure 9.14 gives the (conflict-free) weak-precedence table for the gram-
mar of Figure 9.2. It is of course possible to retain the difference between <· and =̇
where it exists; this will improve the error detection capability of the parser.

# E T F n + × ( )� �������������������������������������������������������������������������������
# ≤· <· <· <· <·� �������������������������������������������������������������������������������
E =̇ =̇ =̇� �������������������������������������������������������������������������������
T >· >· =̇ >·� �������������������������������������������������������������������������������
F >· >· >· >·� �������������������������������������������������������������������������������
n >· >· >· >·� �������������������������������������������������������������������������������
+ ≤· <· <· <·� �������������������������������������������������������������������������������
× =̇ <· <·� �������������������������������������������������������������������������������
( ≤· <· <· <· <·� �������������������������������������������������������������������������������
) >· >· >· >·� �������������������������������������������������������������������������������
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Figure 9.14 Weak-precedence table to the grammar of Figure 9.2

The rule that no right-hand side should be equal to the tail of another right-hand
side is more restrictive than is necessary. More lenient rules exist in several variants,
which, however, all require more work in identifying the reduction rule. See, for
instance, Ichbiah and Morse [Precedence 1970] or Sekimoto [Precedence 1972].

Weak precedence is a useful method that applies to a relatively large group of
grammars. Especially if parsing is used to roughly structure an input stream, as in the
first pass or scan of a complicated system, weak precedence can be of service.

9.2.5 Extended precedence and mixed-strategy precedence
The above methods determine the precedence relations by looking at 1 symbol on the
stack and 1 token in the input. Once this has been said, the idea suggests itself to
replace the 1’s by m and n respectively, and to determine the precedence relations from
the topmost m symbols on the stack and the first n tokens in the input. This is called
(m,n)-extended precedence.

We can use the same technique to find the left end of the handle on the stack when
using weak precedence: use k symbols on the left and l on the right to answer the ques-
tion if this is the head of the handle. This is called (k,l)(m,n)-extended [weak] pre-
cedence.

By increasing its parameters, extended precedence can be made reasonably
powerful. Yet the huge tables required (2 × 300 × 300 × 300 = 54 million entries for
(1,2)(2,1) extended precedence with 300 symbols) severely limit its applicability.
Moreover, even with large values of k, l, m and n it is inferior still to LR(1), which we
treat in Section 9.5.
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If a grammar is (k,l)(m,n)-extended precedence, it is not always necessary to test
the full k, l, m and n symbols. Indeed it is almost never necessary and large parts of the
grammar can almost always be handled by (normal) weak-precedence methods; the full
(k,l)(m,n)-extended precedence power is needed only in a small number of spots in the
grammar. This phenomenon has led to techniques in which the (normal) weak-
precedence table has a (small) number of exception entries that refer to further, more
powerful tables. This technique is called mixed-strategy precedence. Mixed-strategy
precedence has been investigated by McKeeman [Books 1970].

9.2.6 Actually finding the correct right-hand side
All the above methods identify only the bounds of the handle; the actual right-hand side
is still to be determined. It may seem that a search through all right-hand sides is neces-
sary for each reduction, but this is not so. The right-hand sides can be arranged in a
tree structure with their right-most symbols forming the root of the tree, as in Figure
9.15. When we have found a >· relation, we start walking down the stack looking for a <·
and at the same time we follow the corresponding path through the tree; when we find
the <· we should be at the beginning of a rule in the tree, or we have found an error in
the input; see Figure 9.15. The tree can be constructed by sorting the grammar rules on
their symbols in backward order and combining equal tails. As an example, the path
followed for <· TT ==̇̇ ×× ==̇̇ FF >· has been indicated by a dotted line.

SS -->> ## EE ##

FF -->> (( EE ))

FF -->> nn

TT -->> FF

TT -->> TT ×× FF

EE -->> TT

EE -->> EE ++ TT

##EE##SS

))EE((FF

nnFF

FF
TT

××TTTT

TT
EE

++EEEE

.......................................

Figure 9.15 Tree structure for efficiently finding right-hand sides

For several methods to improve upon this, see the literature (Section 13.8).

9.3 BOUNDED-CONTEXT PARSING

There is a different way to solve the annoying problem of the identification of the
right-hand side: let the identity of the rule be part of the precedence relation. A gram-
mar is (m,n) bounded-context (BC(m,n)) if (and only if) for each combination of m
symbols on the stack and n tokens in the input there is a unique parsing decision which
is either “shift” (≤·) or “reduce using rule X” (>· X), as obtained by a variant of the rules
for extended precedence. Figure 9.16 gives the BC(2,1) tables for the grammar of Fig-
ure 9.2. Note that the rows correspond to stack symbol pairs; the entry Accept means
that the input has been parsed and Error means that a syntax error has been found.
Blank entries will never be accessed; all-blank rows have been left out. See, for
instance, Loeckx [Precedence 1970] for the construction of such tables.

Bounded-context (especially BC(2,1)) was once very popular but has been
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## ++ ×× nn (( ))� �������������������������������������������������������������������������������������������������������������
##SS Accept
##EE >· SS-->>EE ≤· Error
##TT >· EE-->>TT >· EE-->>TT ≤· Error
##FF >· TT-->>FF >· TT-->>FF >· TT-->>FF Error
##nn >· FF-->>nn >· FF-->>nn >· FF-->>nn Error Error Error
##(( Error Error Error ≤· ≤· Error
EE++ Error Error Error ≤· ≤· Error
EE)) >· FF-->>((EE)) >· FF-->>((EE)) >· FF-->>((EE)) Error Error >· FF-->>((EE))
TT×× Error Error Error ≤· ≤· Error
++TT >· EE-->>EE++TT >· EE-->>EE++TT ≤· >· EE-->>EE++TT
++FF >· TT-->>FF >· TT-->>FF >· TT-->>FF >· TT-->>FF
++nn >· FF-->>nn >· FF-->>nn >· FF-->>nn Error Error >· FF-->>nn
++(( Error Error Error ≤· ≤· Error
××FF >· TT-->>TT××FF >· TT-->>TT××FF >· TT-->>TT××FF >· TT-->>TT××FF
××nn >· FF-->>nn >· FF-->>nn >· FF-->>nn Error Error >· FF-->>nn
××(( Error Error Error ≤· ≤· Error
((EE Error ≤· ≤·
((TT Error >· EE-->>TT ≤· >· EE-->>TT
((FF Error >· TT-->>FF >· TT-->>FF >· TT-->>FF
((nn Error >· FF-->>nn >· FF-->>nn Error Error >· FF-->>nn
(((( Error Error Error ≤· ≤· Error

�
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�

Figure 9.16 BC(2,1) tables for the grammar of Figure 9.2

superseded almost completely by LALR(1) (Section 9.6). Recently, interest in
bounded-context grammars has been revived, since it has turned out that such gram-
mars have some excellent error recovery properties; see Section 10.8. This is not com-
pletely surprising if we consider that bounded-context grammars have the property that
a small number of symbols in the sentential form suffice to determine completely what
is going on.

9.3.1 Floyd productions
Bounded-context parsing steps can be summarized conveniently by using Floyd pro-
ductions. Floyd productions are rules for rewriting a string that contains a marker, ∆,
on which the rules focus. A Floyd production has the form α∆β => γ∆δ and means
that if the marker in the string is preceded by α and is followed by β, the construction
must be replaced by γ∆δ. The rules are tried in order starting from the top and the first
one to match is applied; processing then resumes on the resulting string, starting from
the top of the list, and the process is repeated until no rule matches.

Although Floyd productions were not primarily designed as a parsing tool but
rather as a general string manipulation language, the identification of the ∆ in the string
with the gap in a bottom-up parser suggests itself and was already made in Floyd’s ori-
ginal article [Misc 1961]. Floyd productions for the grammar of Figure 9.2 are given in
Figure 9.17. The parser is started with the ∆ at the left of the input.

The apparent convenience and conciseness of Floyd productions makes it very
tempting to write parsers in them by hand, but Floyd productions are very sensitive to
the order in which the rules are listed and a small inaccuracy in the order can have a
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∆∆ nn ==>> nn ∆∆
∆∆ (( ==>> (( ∆∆
nn ∆∆ ==>> FF ∆∆
TT ∆∆ ** ==>> TT** ∆∆
TT**FF ∆∆ ==>> TT ∆∆
FF ∆∆ ==>> TT ∆∆
EE++TT ∆∆ ==>> EE ∆∆
TT ∆∆ ==>> EE ∆∆
((EE)) ∆∆ ==>> FF ∆∆
∆∆ ++ ==>> ++ ∆∆
∆∆ )) ==>> )) ∆∆
∆∆ ## ==>> ## ∆∆
##EE## ∆∆ ==>> SS ∆∆

Figure 9.17 Floyd productions for the grammar of Figure 9.2

devastating effect.

9.4 LR METHODS

The LR methods are based on the combination of two ideas that have already been
touched upon in previous sections. To reiterate, the problem is to find the handle in a
sentential form as efficiently as possible, for as large a class of grammars as possible.
Such a handle is searched for from left to right. Now, from Section 5.3.4 we recall that
a very efficient way to find a string in a left-to-right search is by constructing a finite-
state automaton. Just doing this is, however, not good enough. It is quite easy to con-
struct an FS automaton that would recognize any of the right-hand sides in the grammar
efficiently, but it would just find the left-most reducible substring in the sentential
form. This substring is, however, often not the handle.

The idea can be made practical by applying the same trick that was used in
Earley’s parser to drastically reduce the fan-out of the breadth-first search (see Section
7.2): start the automaton with the start rule of the grammar and only consider, in any
position, right-hand sides that could be derived from the start symbol. This top-down
restriction device served in the Earley parser to reduce the cost to O (n 3), here we
require the grammar to be such that it reduces the cost to O(n). The resulting automa-
ton is started in its initial state at the left end of the sentential form and allowed to run
to the right; it has the property that it stops at the right end of the handle and that its
accepting state tells us how to reduce the handle. How this is done will be explained in
the next section.

Since practical FS automata easily get so big that their states cannot be displayed
on a single page of a book, we shall use the grammar of Figure 9.18 for our examples.
It is a simplified version of that of Figure 9.2, in which only one binary operator is left,
for which we have chosen the -- rather than the ++. Although this is not essential, it
serves to remind us that the proper parse tree must be derived, since ((aa--bb))--cc is not the
same as aa--((bb--cc)) (whereas ((aa++bb))++cc and aa++((bb++cc)) are). The ## indicates the end of the
input.
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SSSS -->> EE ##
EE -->> EE -- TT
EE -->> TT
TT -->> nn
TT -->> (( EE ))

Figure 9.18 A very simple grammar for differences of numbers

9.4.1 LR(0)
We shall now set out to construct a top-down-restricted handle-recognizing FS automa-
ton for the grammar of Figure 9.18, and start by constructing a non-deterministic ver-
sion. We recall that a non-deterministic automaton can be drawn as a set of states con-
nected by arrows (transitions), each marked with one symbol or with ε. Each state will
contain one item. Like in the Earley parser, an item consists of a grammar rule with a
dot � embedded in its right-hand side. An item X→ . . . Y � Z . . . in a state means that
the (non-deterministic!) automaton bets on X→ . . . YZ . . . being the handle and that it
has already recognized . . . Y. Unlike the Earley parser there are no back-pointers. To
simplify the explanation of the transitions involved, we introduce a second kind of
state, which we call a station. It has only ε arrows incoming and outgoing, contains
something of the form � X and is drawn in a rectangle rather than in an ellipse. When
the automaton is in such a station at some point in the sentential form, it thinks that at
this point a handle starts that reduces to X. Consequently each � X station has ε-
transitions to items for all rules for X, each with the dot at the left end, since no part of
the rule has yet been recognized; see Figure 9.19. Equally reasonably, each state hold-
ing an item X→ . . . � Z . . . has an ε-transition to the station � Z, since the bet on an X
may be over-optimistic and the automaton may have to settle for a Z. The third and last
source of arrows in the non-deterministic automaton is straightforward. From each state
containing X→ . . . � P . . . there is a P-transition to the state containing
X→ . . . P � . . . , for P a terminal or a non-terminal. This corresponds to the move the
automaton makes when it really meets a P. Note that the sentential form may contain
non-terminals, so transitions on non-terminals should also be defined.

With this knowledge we refer to Figure 9.19. The stations for SS, EE and TT are
drawn at the top of the picture, to show how they lead to all possible items for SS, EE and
TT, respectively. From each station, ε-arrows fan out to all states containing items with
the dot at the left, one for each rule for the non-terminal in that station; from each such
state, non-ε-arrows lead down to further states. Now the picture is almost complete. All
that needs to be done is to scan the items for a dot followed by a non-terminal (readily
discernable from the outgoing arrow marked with it) and to connect each such item to
the corresponding station through an ε-arrow. This completes the picture.

There are two things to be noted on this picture. First, for each grammar rule with
a right-hand side of length l there are l +1 items and they are easily found in the picture.
Moreover, for a grammar with r different non-terminals, there are r stations. So the
number of states is roughly proportional to the size of the grammar, which assures us
that the automaton will have a modest number of states. For the average grammar of a
hundred rules something like 300 states is usual. The second is that all states have out-
going arrows except the ones which contain an item with the dot at the right end.
These are accepting states of the automaton and indicate that a handle has been found;
the item in the state tells us how to reduce the handle.
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� � SS

SS-->> � � EE##

EE

SS-->>EE � � ##

##

SS-->>EE## � �

εε

� � EE

EE-->> � � EE--TT

EE

EE-->>EE � � --TT

--

EE-->>EE-- � � TT

TT

EE-->>EE--TT � �

εε

EE-->> � � TT

TT

EE-->>TT � �

εε

� � TT

TT-->> � � nn

nn

TT-->>nn � �

εε

TT-->> � � ((EE))

((

TT-->>(( � � EE))

EE

TT-->>((EE � � ))

))

TT-->>((EE)) � �

εε
εε

εε εε

εε

εε

Figure 9.19 A non-deterministic handle recognizer for the grammar of Figure 9.18

We shall now run this NDA on the sentential form EE--nn--nn, to see how it works. As
in the FS case we can do so if we are willing to go through the trouble of resolving the
non-determinism on the fly. The automaton starts at the station � � SS and can immediately
make ε-moves to SS-->> � � EE##, � � EE, EE-->> � � EE--TT, EE-->> � � TT, � � TT, TT-->> � � nn and TT-->> � � ((EE)). Moving over
the EE reduces the set of states to SS-->>EE � � ## and EE-->>EE � � --TT; moving over the next -- brings
us at EE-->>EE-- � � TT from which ε-moves lead to � � TT, TT-->> � � nn and TT-->> � � ((EE)). Now the move
over nn leaves only one item: TT-->>nn � � , which tells us through the dot at the end of the
item, that we have found a handle, nn, and that we should reduce it to TT using TT-->>nn. See
Figure 9.20. This reduction gives us a new sentential form, EE--TT--nn, on which we can
repeat the process.

� � SS

SS-->> � � EE##
� � EE

EE-->> � � EE--TT

EE-->> � � TT
� � TT

TT-->> � � nn

TT-->> � � ((EE))

EE
SS-->>EE � � ##

EE-->>EE � � --TT
--

EE-->>EE-- � � TT
� � TT

TT-->> � � nn

TT-->> � � ((EE))

nn TT-->>nn � � --nn

Figure 9.20 The sets of NDA states while analysing EE--nn--nn
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Just as in the FS case, we will soon tire of doing it this way, and the first thing we
need to do is to make the NDA deterministic, if we are to use it in earnest. We use the
subset construction of Section 5.3.1 to construct a deterministic automaton that has sets
of the items of Figure 9.19 as its states. The result is shown in Figure 9.21, where we
have left out the stations to avoid clutter and since they are evident from the other
items. We see that the deterministic automaton looks a lot less understandable than
Figure 9.19; this is the price to be paid for having determinism. Yet we see that the
subset construction has correctly identified the subsets we had already constructed by
hand in the previous paragraph. This type of automaton is called an LR(0) automaton.

SS-->> � � EE##

EE-->> � � EE--TT

EE-->> � � TT

TT-->> � � nn

TT-->> � � ((EE))

1

TT
EE-->>TT � �

2
TT

TT-->>(( � � EE))

EE-->> � � EE--TT

EE-->> � � TT

TT-->> � � nn

TT-->> � � ((EE))

6

TT-->>nn � �

3nn nn

SS-->>EE � � ##

EE-->>EE � � --TT

4
--

EE-->>EE-- � � TT

TT-->> � � nn

TT-->> � � ((EE))
7

-- TT-->>((EE � � ))

EE-->>EE � � --TT

9

SS-->>EE## � �

5

##

EE-->>EE--TT � �

8

TT

TT-->>((EE)) � �

10

))

EE

nn
((

EE

((

((

Figure 9.21 The corresponding deterministic handle recognizer

It is customary to number the states of the deterministic automaton, as has already
been done in Figure 9.21 (the order of the numbers is arbitrary, they serve identifica-
tion purposes only). Now it has become much easier to represent the sentential form
with its state information, both implementationwise in a computer and in a drawing:

➀ EE ➃ -- ➆ nn ➂ -- nn

The sequence ➀ ➃ ➆ ➂ can be read from Figure 9.21 using the path EE--nn. We start with
state ➀ on the stack and shift in symbols from the sentential form, all the while assess-
ing the new states. As soon as an accepting state shows up on the top of the stack (and
it cannot show up elsewhere on the stack) the shifting stops and a reduce is called for;
the accepting state indicates how to reduce. Accepting state ➂ calls for a reduction
TT-->>nn, so our new sentential form will be EE--TT--nn.

Repeating the handle-finding process on this new form we obtain:

➀ EE ➃ -- ➆ TT ➇ -- nn

which shows us two things. First, the automaton has identified a new reduce, EE-->>EE--TT,
from state ➇, which is correct. The second thing is that by restarting the automaton at
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the beginning of the sentential form we have done superfluous work: up to state 7, that
is, up to the left end of the handle, nothing has changed. We can save work as follows:
after a reduction of a handle to X, we look at the new exposed state on the stack and
follow the path marked X in the automaton, starting from that state. In our example we
have reduced to TT, found a ➆ exposed on the stack and the automaton leads us from
there to ➇ along the path marked TT. This type of shift on a non-terminal that has just
resulted from a reduction is called a GOTO-action. Note that the state exposed after a
reduction can never call for a reduction: if it did so, that reduction would already have
been performed earlier.

It is convenient to represent the LR(0) automaton by means of table in which the
rows correspond to states and the columns to symbols. In the intersection we find what
to do with a given symbol in a given state. The LR(0) table for the automaton of Fig-
ure 9.21 is given in Figure 9.22. An entry like s3 means “shift the input symbol onto
the stack and go to state ➂”, which is often abbreviated to “shift to 3”. The entry e
means that an error has been found: the corresponding symbol cannot legally appear in
that position. A blank entry will never even be consulted: either the state calls for a
reduction or the corresponding symbol will never at all appear in that position, regard-
less of the form of the input. In state 4, for instance, we will never meet an EE: the EE
would have originated from a previous reduction, but no reduction would do that in that
position. Since non-terminals are only put on the stack in legal places no empty entry
on a non-terminal will ever be consulted.

nn -- (( )) ## EE TT reduce by� ���������������������������������������������������������������������������������������������������
1 s3 e s6 e e s4 s2
2 EE -->> TT
3 TT -->> nn
4 e s7 e e s5
5 SS -->> EE ##
6 s3 e s6 e e s9 s2
7 s3 e s6 e e s8
8 EE -->> EE -- TT
9 e s7 e s10 e

10 TT -->> (( EE ))
�
�
�
�
�
�
�
�
�
�
�
�
�

Figure 9.22 LR(0) table for the grammar of Figure 9.18

In practice the “reduce by” entries for the reducing states do not directly refer to
the rules to be used, but to routines that have built-in knowledge of these rules, that
know how many entries to unstack and that perform the semantic actions associated
with the recognition of the rule in question. Parts of these routines will be generated by
a parser generator.

The table in Figure 9.22 contains much empty space and is also quite repetitious.
As grammars get bigger, the parsing tables get larger and they contain progressively
more empty space and redundancy. Both can be exploited by data compression tech-
niques and it is not uncommon that a table can be reduced to 15% of its original size by
the appropriate compression technique. See, for instance, Al-Hussainin and Stone [LR
1986] and Dencker, Dürre and Heuft [Misc 1984].

The advantages of LR(0) over precedence and bounded-context are clear. Unlike
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precedence, LR(0) immediately identifies the rule to be used for reduction, and unlike
bounded-context, LR(0) bases its conclusions on the entire left context rather than on
the last m symbols of it. In fact, LR(0) can be seen as a clever implementation of
BC(∞,0), i.e., bounded-context with unrestricted left context and zero right context.

9.4.2 LR(0) grammars
By now the reader may have the vague impression that something is wrong. On the
one hand we claim that there is no known method to make a linear-time parser for an
arbitrary grammar; on the other we have demonstrated above a method that seems to
work for an arbitrary grammar. A non-deterministic automaton as in Figure 9.19 can
certainly be constructed for any grammar, and the subset construction will certainly
turn it into a deterministic one, which will definitely not require more than linear time.
Voilà, a linear-time parser.

The problem lies in the accepting states of the deterministic automaton. An
accepting state may still have an outgoing arrow, say on a symbol ++, and if the next
symbol is indeed a ++, the state calls for both a reduction and for a shift: the automaton
is not really deterministic after all. Or an accepting state may be an honest accepting
state but call for two different reductions. The first problem is called a shift/reduce
conflict and the second a reduce/reduce conflict. Figure 9.23 shows examples (that
derive from a slightly different grammar than in Figure 9.18).

EE-->>TT � � ++EE
EE-->>TT � �

++

shift/reduce conflict
(on ++)

EE-->>EE--TT � �

EE-->>TT � �

reduce/reduce conflict
(always)

Figure 9.23 Two types of conflict

Note that there cannot be a shift/shift conflict. A shift/shift conflict would imply that
two different arrows leaving the same state would carry the same symbol. This is, how-
ever, prevented by the subset algorithm (which would have made into one the two
states the arrows point to).

A state that contains a conflict is called an inadequate state. A grammar that
leads to a deterministic LR(0) automaton with no inadequate states is called LR(0).
The grammar of Figure 9.18 is LR(0).

9.5 LR(1)

Our initial enthusiasm about the clever and efficient LR(0) parsing technique will soon
be damped considerably when we find out that very few grammars are in fact LR(0). If
we augment the grammar of Figure 9.18 by a single non-terminal SS’’ and replace
SS-->>EE## by SS’’-->>SS## and SS-->>EE to better isolate the end-marker, the grammar ceases to be
LR(0). The new grammar is given in Figure 9.24, the non-deterministic automaton in
Figure 9.25 and the deterministic one in Figure 9.26.

Apart from the split of state 5 in the old automaton into states 5 and 11, we
observe to our dismay that state 4 (marked ✘) is now inadequate, exhibiting a
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1. SS’’SS -->> SS ##
2. SS -->> EE
3. EE -->> EE -- TT
4. EE -->> TT
5. TT -->> nn
6. TT -->> (( EE ))

Figure 9.24 A non-LR(0) grammar for differences of numbers

� � SS’’

SS’’-->> � � SS##

SS

SS’’-->>SS � � ##

##

SS’’-->>SS## � �

εε

� � SS

SS-->> � � EE

EE

SS-->>EE � �

εε

� � EE

EE-->> � � EE--TT

EE

EE-->>EE � � --TT

--

EE-->>EE-- � � TT

TT

EE-->>EE--TT � �

εε

EE-->> � � TT

TT

EE-->>TT � �

εε

� � TT

TT-->> � � nn

nn

TT-->>nn � �

εε

TT-->> � � ((EE))

((

TT-->>(( � � EE))

EE

TT-->>((EE � � ))

))

TT-->>((EE)) � �

εε
εε εε

εε εε

εε

εε

Figure 9.25 Non-deterministic automaton for the grammar in Figure 9.24

shift/reduce conflict on --, and the grammar is not LR(0). We are the more annoyed
since this is a rather stupid inadequacy: SS-->>EE � � can never occur in front of a -- but only
in front of a ##, so there is no real problem at all. If we had developed the parser by
hand, we could easily test in state 4 if the symbol ahead was a -- or a ## and act accord-
ingly (or else there was an error in the input). Since, however, practical parsers have
hundreds of states, such manual intervention is not acceptable and we have to find
algorithmic ways to look at the symbol ahead.

Taking our clue from the the explanation of the Earley parser,† we attach to each
dotted item a look-ahead symbol; we shall separate the look-ahead symbol from the
item by a space rather than enclose it between [[]]’s, to avoid visual clutter. The con-
struction of a non-deterministic handle-finding automaton using this kind of items, and
the subsequent subset construction yield an LR(1) parser.
� ���������������������������

† This is historically incorrect: LR(1) parsing was invented (Knuth [LR 1965]) before Earley
parsing (Earley [CF 1970]).
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SS’’-->> � � SS##

SS-->> � � EE

EE-->> � � EE--TT

EE-->> � � TT

TT-->> � � nn

TT-->> � � ((EE))

1

TT
EE-->>TT � �

2
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TT-->>(( � � EE))

EE-->> � � EE--TT

EE-->> � � TT
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6
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3
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4✘
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Figure 9.26 Inadequate LR(0) automaton for the grammar in Figure 9.24

We shall now examine Figure 9.27, the non-deterministic automaton. Like the
items, the stations have to carry a look-ahead symbol too. Actually, a look-ahead sym-
bol in a station is more natural than that in an item. A station like � � EE## just means: hop-
ing to see an EE followed by a ##. The parser starts at station � � SS’’, which has an invisible
look-ahead. From it we have ε-moves to all production rules for SS’’, of which there is
only one; this yields the item SS’’-->> � � SS##, again with empty look-ahead. This item neces-
sitates the station � � SS##; we do not automatically construct all possible stations as we did
for the LR(0) automaton, but only those to which there are actual moves from else-
where in the automaton. The station � � SS## has ## for a look-ahead and produces one item,
SS-->> � � EE ##. It is easy to see how the look-ahead propagates. The station � � EE##, arrived at
from the previous item, causes the item EE-->> � � EE--TT ##, which in its turn necessitates the
station � � EE--, since now the automaton can be in the state “hoping to find an EE followed
by a --”. The rest of the automaton will hold no surprises.

The look-ahead derives either from the symbol following the non-terminal:

the item EE-->> � � EE--TT leads to station � � EE--

or from the previous look-ahead if the non-terminal is the last symbol in the item:

the item SS-->> � � EE ## leads to station � � EE##

There is a complication which does not occur in our example. When a non-terminal is
followed by another non-terminal:

P→ � QR x

there will be ε-moves from this item to all stations � Q y, where for y we have to fill in
all terminals in FIRST(R). This is reasonable since all these and only these symbols
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Figure 9.27 Non-deterministic LR(1) automaton for the grammar in Figure 9.24

can follow Q in this particular item. It will be clear that this is a rich source of stations.
The next step is to run the subset algorithm on this automaton to obtain the deter-

ministic automaton; if the automaton has no inadequate states, the grammar was LR(1)
and we have obtained an LR(1) parser. The result is given in Figure 9.28. As was to
be expected, it contains many more states than the LR(0) automaton although the 60%
increase is very modest, due to the simplicity of the grammar. An increase of a factor
of 10 or more is more likely in practice. (Although Figure 9.28 was constructed by
hand, LR automata are normally created by a parser generator exclusively.)

We are glad but not really surprised to see that the problem of state 4 in Figure
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SS’’-->>� � SS##
SS-->>� � EE##

EE-->> � � EE--TT ##
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Figure 9.28 Deterministic LR(1) automaton for the grammar in Figure 9.24

9.26, which is now state ➅ in Figure 9.28, has been resolved: on ## reduce using SS-->>EE,
on -- shift to ➇ and on any other symbol give an error message.

It is again useful to represent the LR(1) automaton in a table, the LR(1) parsing
table. Since some reduction rules now occur several times in the table, it is convenient
to number the rules, so they can be referred to by number in the table. The table gives
for each (state, symbol) pair whether:
� to shift the symbol onto the stack and go to state N (written sN),
� to reduce using rule R, remove the entries corresponding to the right-hand side

from the stack and enter the table again with the pair (statenew, lhs), where statenew
is the state just uncovered and now on top of the stack and lhs is the left-hand side
of R (written rR), or

� to announce an error (written e).
Figure 9.29 shows the LR(1) table; the blank entries can never be accessed.

The sentential form EE--nn--nn leads to the following stack:

➀ EE ➅ -- ➇ nn ➄ -- nn

and since the look-ahead is --, the correct reduction TT-->>nn is indicated.
Note that if the sentential form had been EE--nnnn, the LR(1) parser would find an

error:

➀ EE ➅ -- ➇ nn ➄ nn

since the pair (5, nn) yields e. It is instructive to see that the LR(0) parser of Figure 9.22
would do the reduction:
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nn -- (( )) ## SS EE TT� �����������������������������������������������������������������������������������������������
1 s5 e s7 e e s2 s6 s4
2 e e e e s3

3/acc
4 e r4 e e r4
5 e r5 e e r5
6 e s8 e e r2
7 s11 e s14 e e s12 s10
8 s5 e s7 e e s9
9 e r3 e e r3

10 e r4 e r4 e
11 e r5 e r5 e
12 e s15 e s13 e
13 e r6 e e r6
14 s11 e s14 e e s17 s10
15 s11 e s14 e e s16
16 e r3 e r3 e
17 e s15 e s18 e
18 e r6 e r6 e

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Figure 9.29 LR(1) table for the grammar of Figure 9.24

➀ EE ➃ -- ➆ nn ➂ nn

since state 3 is an accepting state. Even a second reduction would follow:

➀ EE ➃ -- ➆ TT ➇ nn

which through EE-->>EE--TT yields

➀ EE ➃ nn

Only now is the error found, since the pair (4, nn) in Figure 9.22 yields e. Not surpris-
ingly, the LR(0) automaton is less alert than the LR(1) automaton.

All stages of the LR(1) parsing of the string nn--nn--nn are given in Figure 9.30. Note
that state ➅ in h causes a shift (look-ahead --) while in l it causes a reduce 2 (look-
ahead ##).

9.5.1 LR(1) with ε-rules
In Section 3.3.2 we have seen that one has to be careful with ε-rules in bottom-up
parsers: they are hard to recognize bottom-up. Fortunately LR(1) parsers are strong
enough to handle them without problems. In the non-deterministic automaton, an ε-
rule is nothing special; it is just an exceptionally short list of moves starting from a sta-
tion (see station � � BBcc in Figure 9.32(a). In the deterministic automaton, the ε-reduction
is possible in all states of which the ε-rule is a member, but hopefully its look-ahead
sets it apart from all other rules in those states. Otherwise a shift/reduce or
reduce/reduce conflict results, and indeed the presence of ε-rules in a grammar raises
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a ➀ nn--nn--nn## shift
b ➀ nn ➄ --nn--nn## reduce 5
c ➀ TT ➃ --nn--nn## reduce 4
d ➀ EE ➅ --nn--nn## shift
e ➀ EE ➅ -- ➇ nn--nn## shift
f ➀ EE ➅ -- ➇ nn ➄ --nn## reduce 5
g ➀ EE ➅ -- ➇ TT ➈ --nn## reduce 3
h ➀ EE ➅ --nn## shift
i ➀ EE ➅ -- ➇ nn## shift
j ➀ EE ➅ -- ➇ nn ➄ ## reduce 5
k ➀ EE ➅ -- ➇ TT ➈ ## reduce 3
l ➀ EE ➅ ## reduce 2
m ➀ SS ➁ ## shift
n ➀ SS ➁ ## ➂ reduce 1
o ➀ SS’’ ➂ accept

Figure 9.30 LR(1) parsing of the string nn--nn--nn

the risks of such conflicts and reduces the likelihood of the grammar to be LR(1).

SS’’SS -->> SS ##
SS -->> AA BB cc
AA -->> aa
BB -->> bb
BB -->> εε

Figure 9.31 A simple grammar with an ε-rule

To avoid page-filling drawings, we demonstrate the effect using the trivial gram-
mar of Figure 9.31. Figure 9.32(a) shows the non-deterministic automaton, Figure
9.32(b) the resulting deterministic one. Note that no special actions were necessary to
handle the rule BB-->>εε.

The only complication occurs again in determining the look-ahead sets in rules in
which a non-terminal is followed by another non-terminal; here we meet the same
phenomenon as in an LL(1) parser (Section 8.2.2.1). Given an item, for instance,
P→ � ABC [d ], we are required to produce the look-ahead set for the station � A [ . . . ].
If B had been a terminal, it would have been the look-ahead. Now we take the FIRST
set of B, and if B produces ε (is nullable) we add the FIRST set of C since B can be
transparent and allow us to see the first token of C. If C is also nullable, we may even
see [d ], so in that case we also add d to the look-ahead set. The result of these opera-
tions is written as FIRST(BC [d ]) (which is, in fact, equal to FIRST(BCd)).

9.5.2 Some properties of LR(k) parsing
Instead of a look-ahead of one token, k tokens can be used. It is not difficult to do so
but it is extremely tedious and the resulting tables assume gargantuan size (see, e.g.,
Ukkonen [LR 1985]). Moreover it does not really help much. Although an LR(2)
parser is more powerful than an LR(1) parser, in that it can handle some grammars that
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� � SS’’

SS’’-->> � � SS##

SS

SS’’-->>SS � � ##

##

SS’’-->>SS## � �

εε

� � SS##

SS-->> � � AABBcc ##

AA

SS-->>AA � � BBcc ##

BB

SS-->>AABB � � cc ##

cc

SS-->>AABBcc � � ##

εε

� � AAbb

AA-->> � � aa bb

aa

AA-->>aa � � bb

εε

� � AAcc

AA-->> � � aa cc

aa

AA-->>aa � � cc

εε

� � BBcc

BB-->>εε � � cc

εε

BB-->> � � bb cc

bb

BB-->>bb � � cc

εεεε εε

εε

εε

(a)

SS’’-->> � � SS##
SS-->> � � AABBcc ##
AA-->> � � aa cc
AA-->> � � aa bb

1

SS’’-->>SS � � ##

2

SS’’-->>SS## � �

3

SS

##

aa AA-->>aa � � cc
AA-->>aa � � bb

4

SS-->>AA � � BBcc ##
BB-->>εε � � cc
BB-->> � � bb cc

5

BB
SS-->>AABB � � cc ##

7

SS-->>AABBcc � � ##

8
cc

AA
BB-->>bb � � cc

6

bb

(b)

Figure 9.32 Non-deterministic and deterministic LR(1) automata for Figure 9.31

the other cannot, the emphasis is on “some”. If a common-or-garden variety grammar
is not LR(1), chances are minimal that it is LR(2) or higher.

Some theoretically interesting properties of varying practical significance are
briefly mentioned here. It can be proved that any LR(k) grammar with k >1 can be
transformed into an LR(k −1) grammar (and so to LR(1), but not always to LR(0)),
often at the expense of an enormous increase in size; see, e.g. Mickunas, Lancaster and
Schneider [LR 1976]. It can be proved that if a language allows parsing with a push-
down automaton as described in Section 3.4, it has an LR(1) grammar; such languages
are called deterministic languages. It can be proved that if a grammar can be handled
by any of the deterministic methods of Chapters 8 and 9 (except the non-canonical
methods of 9.9), it can be handled by an LR(k) parser (that is, all deterministic methods
are weaker than or equally strong as LR(k)).

An LR(1) parser has the immediate error detection property: the parser will stop
at the first incorrect token in the input and not even perform another shift or reduce.
This is important because this early error detection property allows a maximum amount
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of context to be preserved for error recovery; see Section 10.2.6.
In summary, LR(k) parsers are the strongest deterministic parsers possible and

they are the strongest linear-time parsers known (with the possible exception of some
non-canonical parsers; see Section 9.9). They react to errors immediately, are paragons
of virtue and beyond compare. They are also not widely used.

9.6 LALR(1) PARSING

The reader will have sensed that our journey has not yet come to an end; the goal of a
practical, powerful, linear-time parser has still not be attained. Even at their inception
by Knuth in 1965 [LR 1965], it was realized that LR(1) parsers would be impractical in
that the space required for their deterministic automata would be prohibitive. A modest
grammar might already require hundreds of thousands or even millions of states,
numbers that were totally incompatible with the computer memories of those days and
that would even tax present-day memories.

In the face of this difficulty, development of this line of parsers came to a stand-
still, partially interrupted by Korenjak’s invention of a method to partition the gram-
mar, build LR(1) parsers for each of the parts and combine these into a single over-all
parser (Korenjak [LR 1969]). This helped, but not much, in view of the added com-
plexity.

The problem was finally solved by using an unlikely and discouraging-looking
method. Consider the LR(1) automaton in Figure 9.28 and imagine boldly discarding
all look-ahead information from it. Then we see that each state in the LR(1) automaton
reverts to a specific state in the LR(0) automaton; for instance, LR(1) states 7 and 14
collapse into LR(0) state 6 and LR(1) states 4 and 10 collapse into LR(0) state 3. There
is not a single state in the LR(1) automaton that was not already present in a rudimen-
tary form in the LR(0) automaton. Also, the transitions remain intact during the col-
lapse: both LR(1) states 7 and 14 have a transition to state 10 on TT, but so has LR(0)
state 6 to 3. By striking out the look-ahead information from an LR(1) automaton, it
collapses into an LR(0) automaton for the same grammar, with a great gain as to
memory requirements but also at the expense of the look-ahead power. This will prob-
ably not surprise the reader too much, although a formal proof of this phenomenon is
not trivial.

The idea is now to collapse the automaton but to keep the look-ahead information
(and collapse it too, but not discard it). The surprising fact is that this preserves almost
all the original look-ahead power and still saves an enormous amount of memory. The
resulting automaton is called an LALR(1) automaton, for “Look Ahead LR[(0)] with a
look-ahead of 1 token.” LALR(k) also exists and is LR(0) with an add-on look-ahead of
k tokens.

The LALR(1) automaton for our grammar of Figure 9.24 is given in Figure 9.33,
where the look-aheads are sets now and are shown between [[ and ]]. We see that the
original conflict in state 4 is indeed still resolved, as it was in the LR(1) automaton, but
that its size is equal to that of the LR(0) automaton. That now is a very fortunate state
of affairs!

We have finally reached our goal. LALR(1) parsers are powerful, almost as
powerful as LR(1) parsers, they have fairly modest memory requirements, only slightly
inferior to (= larger than) those of LR(0) parsers,† and they are time-efficient. LALR(1)
� ���������������������������

† Since the LALR(1) tables contain more information than the LR(0) tables (although they have
the same size), they lend themselves less well to data compression. So practical LALR(1)
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SS’’-->> � � SS## [[]]

SS-->> � � EE [[##]]

EE-->> � � EE--TT [[##--]]

EE-->> � � TT [[##--]]

TT-->> � � nn [[##--]]

TT-->> � � ((EE)) [[##--]]

1

TT
EE-->>TT � � [[##--))]]

2
TT

TT-->>(( � � EE)) [[##--))]]

EE-->> � � EE--TT [[##--))]]

EE-->> � � TT [[##--))]]

TT-->> � � nn [[##--))]]

TT-->> � � ((EE)) [[##--))]]

6

TT-->>nn � � [[##--))]]

3
nn nn

SS-->>EE � � [[##]]

EE-->>EE � � --TT [[##--]]

4
--

EE-->>EE-- � � TT [[##--))]]

TT-->> � � nn [[##--))]]

TT-->> � � ((EE)) [[##--))]]
7

-- TT-->>((EE � � )) [[##--))]]

EE-->>EE � � --TT [[##--))]]

9

SS’’-->>SS � � ## [[]]

5

SS

SS’’-->>SS## � � [[]]

11

##

EE-->>EE--TT � � [[##--))]]

8

TT

TT-->>((EE)) � � [[##--))]]

10

))

EE

nn ((

EE

((

((

Figure 9.33 The LALR(1) automaton for the grammar of Figure 9.24

parsing may very well be the most-used parsing method in the world today.

9.6.1 Constructing the LALR(1) parsing tables
When we have sufficiently drunk in the beauty of the vista that spreads before us on
these heights, and start thinking about returning home and actually building such a
parser, it will come to us that there is a small but annoying problem left. We have
understood how the desired parser should look and also seen how to construct it, but
during that construction we used the unacceptably large LR(1) parser as an intermedi-
ate step.

So the problem is to find a shortcut by which we can produce the LALR(1) parse
table without having to construct the one for LR(1). This particular problem has fas-
cinated scores of computer scientists to this day (see the references in 13.6, for
instance, Park and Choe [LR 1987]), and several good (and some very clever) algo-
rithms are known.

We shall treat here only one algorithm, one that is both intuitively relatively clear
and reasonably efficient. It was (probably) first described in rather vague terms by
Anderson, Eve and Horning [LR 1973], it is used in the well-known parser generator
yacc (Johnson [LR 1978]) and is described in more detail by Aho, Sethi and Ullman
[Books 1986]. The algorithm does not seem to have a name; we shall call it the chan-
nel algorithm here.

We again use the grammar of Figure 9.24, which we now know is LALR(1) (but
not LR(0)). Since we want to do look-ahead but do not yet know what to look for, we
use LR(0) items extended with a yet unknown look-ahead field, indicated by an empty
� ���������������������������

parsers will be bigger than LR(0) parsers.
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Figure 9.34 Non-deterministic automaton with channels

square; a possible item would be AA-->>bbCC � � DDee � � . Using such items, we construct the
non-deterministic LR(0) automaton in the usual fashion; see Figure 9.34. Now suppose
that we were told by some oracle what the look-ahead set of the item SS-->> � � EE � � is
(second column, second row in Figure 9.34); call this look-ahead set L. Then we could
draw a number of conclusions. The first is that the item SS-->>EE � � � � also has L. The next
is that the look-ahead set of the station � � EE� � is also L, and from there L spreads to
EE-->> � � EE--TT, EE-->>EE � � --TT, EE-->>EE-- � � TT, EE-->>EE--TT � � , EE-->> � � TT and EE-->>TT � � . From EE-->>EE-- � � TT and EE-->> � � TT
it flows to the station � � TT and from there it again spreads on.

The flow possibilities of look-ahead information from item to item once it is
known constitute “channels” which connect items. Each channel connects two items
and is one-directional. There are two kinds of channels. From each station channels run
down to each item that derives from it; the input to these channels comes from else-
where. From each item that has the dot in front of a non-terminal A, a channel runs
parallel to the ε-arrow to the station � A � . If A is the last symbol in the right-hand side,
the channel propagates the look-ahead of the item it starts from. If A is not the last sym-
bol, but is followed by, for instance, CDe (so the entire item would be something like
P→B � ACDe � ), the input to the channel is FIRST(CDe); such input is said to be “gen-
erated spontaneously”, as opposed to “propagated” input. The full set of channels has
been drawn as dotted lines (carrying propagated input) and as dashed lines (carrying
spontaneous input) in Figure 9.34. It can be represented in a computer as a list of input
and output ends of channels:
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Input end leads to output end
� � SS’’� � ====>> SS’’-->> � � SS## � �

SS’’-->> � � SS## � � ====>> SS’’-->>SS � � ## � �

[[##]] ====>> � � SS� �

SS’’-->>SS � � ## � � ====>> SS’’-->>SS## � � � �

......

Next we run the subset algorithm on this (channelled) non-deterministic automa-
ton in slow motion and watch carefully where the channels go. This procedure
severely taxes the human brain; a more practical way is to just construct the determinis-
tic automaton without concern for channels and then use the above list (in its complete
form) to re-establish the channels. This is easily done by finding the input and output
end items and stations in the states of the deterministic automaton and construct the
corresponding channels. Note that a single channel in the non-deterministic automaton
can occur many times in the deterministic automaton, since items can (and will) be
duplicated by the subset algorithm. The result can best be likened to a bowl of mixed
spaghetti and tagliatelli (the channels and the transitions) with occasional chunks of
ham (the item sets) and will not be printed in this book.

Now we are close to home. For each channel we pump its input to the channel’s
end. First this will only have effect for channels that have spontaneous input: a ## will
flow in state 1 from item SS’’-->> � � SS##[[� � ]] to station � � SS[[� � ]], which will then read � � SS[[##]]; a
-- from EE-->> � � EE--TT[[� � ]] flows to the � � EE[[� � ]], which changes to � � EE[[--]]; etc. etc. We go on
pumping until all look-ahead sets are stable and nothing changes any more. We have
now obtained the LALR(1) automaton and can discard the channels (although we must,
of course, keep the transitions).

It is interesting to look more closely at state 4 (see Figure 9.33) and to see how
SS-->>EE � � [[##]] gets its look-ahead which excludes the --, although the latter is present in the
look-ahead set of EE-->>EE � � --TT[[##--]] in state 4. To this end, a magnified view of the top
left corner of the full channelled LALR(1) automaton is presented in Figure 9.35; it
comprises the states 1 to 4. Again channels with propagated input are dotted, those
with spontaneous input are dashed and transitions are drawn. We can now see more
clearly that SS-->>EE � � [[##]] derives its look-ahead from SS-->> � � EE[[##]] in 1, while EE-->>EE � � --TT[[##--
]] derives its look-ahead (indirectly) from � � EE[[--]] in 1. The latter has a look-ahead --
generated spontaneously in EE-->> � � EE--TT[[� � ]] in 1. The channel from SS-->> � � EE[[##]] to � � EE[[##--]]
only works “downstream”, which prevents the -- from flowing back. LALR(1) parsers
often give one the feeling that they succeed by a narrow margin!

9.6.2 LALR(1) with ε-rules
The same complications arise as in Section 9.5.1 in the determination of the FIRST set
of the rest of the right-hand side: when a non-terminal is nullable we have to also
include the FIRST set of what comes after it, and so on. We meet a special complica-
tion if the entire rest of the right-hand side can be empty: then we may see the look-
ahead � , which we do not know yet. In fact this creates a third kind of channel that has
to be watched in the subset algorithm. We shall not be so hypocritical as to suggest the
construction of the LALR(1) automaton for the grammar of Figure 9.31 as an exercise
to the reader, but we hope the general principles are clear. Let a parser generator do the
rest.
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� � SS’’ [[]]

SS’’-->> � � SS## [[]]
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Figure 9.35 Part of the deterministic automaton with channels (magnified cut)

9.6.3 Identifying LALR(1) conflicts
When a grammar is not LR(1), the constructed LR(1) automaton will have conflicts,
and the user of the parser generator will have to be notified. Such notification often
takes such forms as:

Reduce/reduce conflict
in state 213 on look-ahead #

SS -->> EE versus AA -->> TT ++ EE

This may seem cryptic but the user soon learns to interpret such messages and to reach
the conclusion that indeed “the computer can’t see this”. This is because LR(1) parsers



218 Deterministic bottom-up parsing [Ch. 9

can handle all deterministic grammars and our idea of “what a computer can see” coin-
cides reasonably well with what is deterministic.

The situation is worse for those (relatively rare) grammars that are LR(1) but not
LALR(1). The user never really understands what is wrong with the grammar: the com-
puter should be able to make the right parsing decisions, but it complains that it cannot.
Of course there is nothing wrong with the grammar; the LALR(1) method is just margi-
nally too weak to handle it.

To alleviate the problem, some research has gone into methods to elicit from the
faulty automaton a possible input string that would bring it into the conflict state. See
DeRemer and Pennello [LR 1982]. The parser generator can then display such input
with both its possible partial parse trees.

9.6.4 SLR(1)
There is a simpler way to proceed with the non-deterministic automaton of Figure 9.34.
We can first pump around the look-ahead sets until they are all known and then apply
the subset algorithm, rather than vice versa. This gives us the SLR(1) automaton (for
Simple LR(1)); see DeRemer [LR 1971]. The same automaton can be obtained without
using channels at all: construct the LR(0) automaton and then add to each item
A → . . . a look-ahead set that is equal to FOLLOW(A). Pumping around the look-
ahead sets in the non-deterministic automaton effectively calculates the FOLLOW sets
of each non-terminal and spreads these over each item derived from it.

The SLR(1) automaton is shown in Figure 9.36. FOLLOW(SS)={##},
FOLLOW(EE)={##, --, ))} and FOLLOW(TT)={##, --, ))}; consequently, only states 1 and 4
differ from those in the LALR(1) automaton of Figure 9.33. The increased look-ahead
sets do not spoil the adequateness of any states: the grammar is also SLR(1).

SS’’-->> � � SS## [[]]

SS-->> � � EE [[##]]

EE-->> � � EE--TT [[##--))]]

EE-->> � � TT [[##--))]]

TT-->> � � nn [[##--))]]

TT-->> � � ((EE)) [[##--))]]

1

TT
EE-->>TT � � [[##--))]]

2
TT

TT-->>(( � � EE)) [[##--))]]

EE-->> � � EE--TT [[##--))]]

EE-->> � � TT [[##--))]]

TT-->> � � nn [[##--))]]

TT-->> � � ((EE)) [[##--))]]

6

TT-->>nn � � [[##--))]]

3
nn nn

SS-->>EE � � [[##]]

EE-->>EE � � --TT [[##--))]]

4
--

EE-->>EE-- � � TT [[##--))]]

TT-->> � � nn [[##--))]]

TT-->> � � ((EE)) [[##--))]]
7

-- TT-->>((EE � � )) [[##--))]]

EE-->>EE � � --TT [[##--))]]

9

SS’’-->>SS � � ## [[]]

5

SS

SS’’-->>SS## � � [[]]

11

##
EE-->>EE--TT � � [[##--))]]

8

TT

TT-->>((EE)) � � [[##--))]]

10

))

EE

nn ((

EE

((

((

Figure 9.36 SLR(1) automaton for the grammar of Figure 9.24

SLR(1) parsers are intermediate in power between LR(0) and LALR(1). Since
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SLR(1) parsers have the same size as LALR(1) parsers and are considerably less
powerful, LALR(1) parsers are generally preferred.

9.6.5 Conflict resolvers
When states in an automaton have conflicts and no stronger method is available, the
automaton can still be useful, provided we can find other ways to resolve the conflicts.
Most LR parser generators have built-in automatic conflict resolvers that will make
sure that a deterministic automaton results, whatever properties the input grammar may
have. Such a system will just enumerate the problems it has encountered and indicate
how it has solved them.

Two useful and popular rules of thumb to solve LR conflicts are:
� on a shift/reduce conflict, shift (only on those look-aheads for which the conflict

occurs);
� on a reduce/reduce conflict, reduce using the longest rule.
Both rules implement the same idea: take the largest bite possible. If you find that there
is a production of A somewhere, make it as long as possible, including as much
material on both sides as possible. This is very often what the grammar writer wants.

Systems with built-in conflict resolvers are a mixed blessing. On the one hand
they allow very weak or even ambiguous grammars to be used (see for instance, Aho,
Johnson and Ullman [Misc 1975]). This can be a great help in formulating grammars
for difficult and complex analysis jobs; see, for instance, Kernighan and Cherry [Misc
1975], who make profitable use of automatic conflict resolution for the specification of
typesetter input.

On the other hand a system with conflict resolvers may impose a structure on the
input where there is none. Such a system does no longer correspond to any grammar-
like sentence-generating mechanism, and it may be very difficult to specify exactly
what strings will be accepted and with what structure. How severe a drawback this is
depends on the application and of course on the capabilities of the parser generator
user.

Note that it is not humanly possible to have dynamic (parse-time) conflict-
resolvers as in the LL case (Section 8.2.5.3). The conflict-resolver would be called
upon in a context that is still under construction, and its user would be required to fully
understand the underlying LR automaton. Some experiments have been done with
interactive conflict resolvers, which consult the user of the parser when a conflict actu-
ally arises: a large chunk of text around the conflict point is displayed and the user is
asked to resolve the conflict. This is useful in, for instance, document conversion. See
Share [Misc 1988].

9.7 FURTHER DEVELOPMENTS OF LR METHODS

Although the LALR(1) method as explained in Section 9.6 is quite satisfactory for most
applications, a number of extensions to and improvements of the LR methods have
been studied. The most important of these will be briefly explained in this section; for
details see the literature, Section 13.6 and the original references. Most of the more
advanced methods have not yet found their way into existing parser generators.
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9.7.1 Elimination of unit rules
Many rules in practical grammars are of the form A →B; examples can be found in Fig-
ures 2.9, 4.4, 5.2, 7.8, 8.7, 9.37 and many others. Such rules are called unit rules, sin-
gle rules or chain rules. They generally serve naming purposes only and have no
semantics attached to them. Consequently, their reduction is a matter of stack manipu-
lation and state transition only, to no visible purpose for the user. Such “administrative
reductions” can take a considerable part of the parsing time (50% is not unusual). Sim-
ple methods to short-cut such reductions are easily found (for instance, removal by sys-
tematic substitution) but may result in an exponential increase in table size. Better
methods were found but turned out to be complicated and to impair the error detection
properties of the parser. The latter can again be corrected, at the expense of more com-
plication. See Heilbrunner [LR 1985] for a thorough treatment and Chapman [LR
1987] for much practical information.

Note that the term “elimination of unit rules” in this case is actually a misnomer:
the unit rules themselves are not removed from the grammar, but rather their effect
from the parser tables. Compare this to the actual elimination of unit rules in Section
4.2.3.2.

MMeettrree -->> IIaammbbiicc || TTrroocchhaaiicc || DDaaccttyylliicc || AAnnaappeessttiicc

Figure 9.37 A (multiple) unit rule

9.7.2 Regular right part grammars
As shown in Section 2.3.2.3, there are two interpretations of a regular right-hand side
of a rule: the recursive and the iterative interpretation. The recursive interpretation is
no problem: for a form like A + anonymous non-terminals are introduced, the reduction
of which entails no semantic actions. The burden of constructing a list of the recog-
nized A’s lies entirely on the semantic routines attached to the A’s.

The iterative interpretation causes more problems. When an A + has been recog-
nized and is about to be reduced, the stack holds an indeterminate number of A’s:

...... AA······AAAAAA||

The right end of the handle has been found, but the left end is doubtful. Scooping up
all A’s from the right may be incorrect since some may belong to another rule; after all,
the top of the stack may derive from a rule P→QAAA + . A possible solution is to have
for each reducing state and look-ahead a FS automaton that scans the stack backwards
while examining states in the stack to determine the left end and the actual rule to
reduce to. The part to be reduced (the handle) can then be shown to a semantic routine
which can, for instance, construct a list of A’s, thereby relieving the A’s from a task
that is not structurally theirs. The resulting tables can be enormous and clever algo-
rithms have been designed for their construction and reduction. See for instance,
LaLonde [LR 1981]. Sassa and Nakata [LR 1987] provide a different and simpler tech-
nique.

9.7.3 Improved LALR(1) table construction
The channel algorithm for the construction of LALR(1) parse tables explained in Sec-
tion 9.6.1 is relatively fast as it is, but the underlying automata have a rich structure and
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many other algorithms are known for this problem. There exist simple and complicated
variants and improvements, gaining factors of 5 or 10 over the simple channel algo-
rithm. See for instance, DeRemer and Pennello [LR 1982] and the Park, Choe and
Chang [LR 1985, 1987] versus Ives [LR 1986, 1987] discussion. Bermudez and
Logothetis [LR 1989] present a remarkably elegant interpretation of LALR(1) parsing.

9.7.4 Incremental parsing
In incremental parsing, the structured input (a program text, a structured document,
etc.) is kept in linear form together with a parse tree. When the input is (incrementally)
modified by the user, for instance, by typing or deleting a character, it is the task of the
incremental parser to update the corresponding parse tree, preferably at minimum cost.
This requires serious measures inside the parser, to quickly determine the extent of the
damage done to the parse tree, localize its effect and take remedial steps. Formal
requirements for the grammar to make this easier have been found. See for instance,
Degano, Mannucci and Mojana [LR 1988] and many others in Section 13.6.

9.7.5 Incremental parser generation
In incremental parser generation, the parser generator keeps the grammar together with
its parsing table(s) and has to respond quickly to user-made changes in the grammar, by
updating and checking the tables. Research on this is in its infancy. See Heering, Klint
and Rekers [LR 1989] and Horspool [LR 1989].

9.7.6 LR-regular
Rather than trying to resolve inadequate states by looking ahead a fixed number of
tokens, we can have an FS automaton for each inadequate state that is sent off up the
input stream; the state in which this automaton stops is used as a look-ahead. This pars-
ing technique is called LR-regular. See Čulik and Cohen [LR 1973].

A variant of this method reads in the entire input into an array and runs a single
FS automaton (derived from the grammar) backwards over the array, recording the
state of the automaton with each token. Next, during (forward) LR parsing, these
recorded states rather than the tokens are used as look-aheads.

9.7.7 Recursive ascent
In Sections 8.2.6 and 8.4 we have seen that an LL parser can be implemented con-
veniently using recursive descent. Analogously, an LR parser can be implemented
using recursive ascent, but the required technique is not nearly as obvious as in the LL
case. The key idea is to have the recursion stack mimic the LR parsing stack. To this
end there is a procedure for each state; when a token is to be shifted to the stack, the
procedure corresponding to the resulting state is called instead. This indeed constructs
the correct recursion stack, but causes problems when a reduction has to take place: a
dynamically determined number of procedures has to return in order to unstack the
right-hand side. A simple technique to achieve this is to have two global variables,
one, Nt, holding the non-terminal recognized and the second, l, holding the length of
the right-hand side. All procedures will check l and if it is non-zero, they will decrease
l by one and return immediately. Once l is zero, the procedure that finds that situation
will call the appropriate state procedure based on Nt. For details see Roberts [LR 1988,
1989, 1990] and Kruseman Aretz [LR 1988]. The advantage of recursive ascent over
table-driven is its potential for high-speed parsing.
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9.8 TOMITA’S PARSER

Now that we have seen the precise criteria for the existence of an LR-like parser for a
grammar, i.e., that there is a handle-recognizing finite-state automaton with no inade-
quate states for that grammar, we become interested in the grammars for which the cri-
teria are not completely fulfilled and for which the automaton has some inadequate
states. Tomita [CF 1986] has given an efficient and very effective approach to such
grammars.

Tomita’s method can be summarized as doing breadth-first search as in Section
7.1.2 over those parsing decisions that are not solved by the LR automaton (which can
be LR(1), LALR(1), SLR(1), LR(0), precedence or even simpler), while at the same
time keeping the partial parse trees in a form akin to the common representation of
Section 7.1.3. More precisely, whenever an inadequate state is encountered on the top
of the stack, the following steps are taken:
1. For each possible reduce in the state, a copy of the stack is made and the reduce is

applied to it. This removes part of the right end of the stack and replaces it with a
non-terminal; using this non-terminal as a move in the automaton, we find a new
state to put on the top of the stack. If this state allows again reductions, this copy
step is repeated until all reduces have been treated, resulting in equally many stack
copies.

2. Stacks that have a right-most state that does not allow a shift on the next input
token are discarded (since they resulted from incorrect guesses). Copies of the
next input token are shifted onto the remaining stacks.

There are a number of things to be noted here. First, if the automaton uses look-ahead,
this is of course taken into account in deciding which reduces are possible in step 1
(ignoring this information would not be incorrect but would cause more stacks to be
copied and subsequently discarded). Second, the process in step 1 may not terminate.
If a grammar has loops (rules of the form A →B, B →A) reduction will alternate
between A and B. There are two solutions: upon creating a stack, check if it is already
there (and then ignore it) or check the grammar in advance for loops (and then reject
it). Third, if all stacks are discarded in step 2 the input was in error, at that specific
point.

SSSS -->> EE ##
EE -->> EE ++ EE
EE -->> dd

Figure 9.38 A moderately ambiguous grammar

The above forms the basic mechanism of the Tomita parser. Since simple stack
duplication may cause a proliferation of stacks and is apt to duplicate much information
that is not in need of duplication, two optimizations are used in the practical form of the
parser: combining equal states and combining equal stack prefixes. We shall demon-
strate all three techniques using the grammar of Figure 9.38 as an example. The gram-
mar is a variant of that of Figure 3.1 and is moderately ambiguous. Its LR(0) automa-
ton is shown in Figure 9.39; it has one inadequate state, ➄. Since the grammar is ambi-
guous, there is not much point in using a stronger LR method. For more (and larger!)
examples see Tomita [CF 1986].
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SS-->> � � EE##
EE-->> � � EE++EE
EE-->> � � dd

1

EE SS-->>EE � � ##
EE-->>EE � � ++EE

3
++

EE-->>EE++ � � EE
EE-->> � � EE++EE
EE-->> � � dd

4

dd

EE-->>dd � �

2
dd

SS-->>EE## � �

6

##

EE

EE-->>EE++EE � �

EE-->>EE � � ++EE

5✘
++

Figure 9.39 LR(0) automaton to the grammar of Figure 9.38

9.8.1 Stack duplication
Refer to Figure 9.40, in which we assume the input dd++dd++dd##. The automaton starts in
state ➀ (a). The steps shift (b), reduce, shift, shift (c) and reduce (d) are problem-free
and bring us to state ➄. The last state, however, is inadequate, allowing a reduce and a
shift. True to the breadth-first search method and in accordance with step 1 above, the
stack is now duplicated and the top of one of the copies is reduced (e1) while the other
one is left available for a subsequent shift (e2). Note that no further reduction is possi-
ble and that both stacks now have a different top state. Both states allow a shift and
then another (f1, f2) and then a reduce (g1, g2). Now both stacks carry an inadequate
state on top and need to be duplicated, after which operation one of the copies under-
goes a reduction (h1.1, h1.2, h2.1, h2.2). It now turns out that the stack in h2.1 again
features an inadequate state ➄ after the reduction; it will again have to be duplicated
and have one copy reduced. This gives the stack in h2.1a. Now all possible reductions
have been done and it is time for a shift again. Only state ➂ allows a shift on ##, so the
other stacks are discarded and we are left with i1.1 and i2.1a. Both require a reduction,
yielding j1.1 and j2.1a, which are accepting states. The parser stops and has found two
parsings.

In order to save space and to avoid cluttering up the pictures, we have not shown
the partial parse trees that resulted from the various reductions that have taken place. If
we had done so, we would have found the two SS’s in j.1.1 and j.2.1a holding the parse
trees of Figure 9.41.

9.8.2 Combining equal states
Examining Figure 9.40 f and g, we see that once both stacks have the same state on top,
further actions on both stacks will be identical, and the idea suggests itself to combine
the two stacks to avoid duplicate work. This approach is depicted in Figure 9.42(f) and
(g) (Figure 9.42(a) to (e) are identical to those of Figure 9.40 and are not shown). That
this is, however, not entirely without problems becomes evident as soon as we need to
do a reduce that spans the merge point. This happens in (g), which also features an
inadequate state. Now a number of things happen. First, since the state is inadequate,
the whole set of combined stacks connected to it are duplicated. One copy (h3) is left
for the shift, the other is subjected to the reduce. This reduce, however, spans the merge
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a ➀ dd++dd++dd## shift
b ➀ dd ➁ ++dd++dd## reduce, shift, shift
c ➀ EE ➂ ++ ➃ dd ➁ ++dd## reduce
d ➀ EE ➂ ++ ➃ EE ➄ ++dd## duplicate to e1 and

e2; reduce e1
e1 ➀ EE ➂ ++dd## shift, shift, to f1
e2 ➀ EE ➂ ++ ➃ EE ➄ ++dd## shift, shift, to f2
f1 ➀ EE ➂ ++ ➃ dd ➁ ## reduce to g1
f2 ➀ EE ➂ ++ ➃ EE ➄ ++ ➃ dd ➁ ## reduce to g2
g1 ➀ EE ➂ ++ ➃ EE ➄ ## duplicate to h1.1 and

h1.2; reduce h1.1
g2 ➀ EE ➂ ++ ➃ EE ➄ ++ ➃ EE ➄ ## duplicate to h2.1 and

h2.2; reduce h2.1
h1.1 ➀ EE ➂ ## shift to i1.1
h1.2 ➀ EE ➂ ++ ➃ EE ➄ ## discard
h2.1 ➀ EE ➂ ++ ➃ EE ➄ ## reduce again, to h2.1a
h2.2 ➀ EE ➂ ++ ➃ EE ➄ ++ ➃ EE ➄ ## discard
h2.1a ➀ EE ➂ ## shift to i2.1a
i1.1 ➀ EE ➂ ## ➅ reduce to j1.1
i2.1a ➀ EE ➂ ## ➅ reduce to j2.1a
j1.1 ➀ SS accept
j2.1a ➀ SS accept

Figure 9.40 Sequence of stack configurations while parsing dd++dd++dd##

SS

EE ##

EE ++ EE

EE ++ EE dd

dd dd

SS

EE ##

EE ++ EE

dd EE ++ EE

dd dd

Figure 9.41 Parse trees in the accepting states of Figure 9.40

point (state ➃) and extends up both stacks, comprising a different left-most EE in both
branches. To perform it properly, the stack combination is undone and the reduce is
applied to both stacks (h1, h2). The reduce in (h2) results again in state ➄, which
necessitates another copy operation (h2.1, h2.2) and a reduce on one of the copies
(h2.1).

Now the smoke has cleared and we have obtained five stacks (h1, h2.1, h2.2 and a
double h3) having four tops, two of which (h1 and h2.1) carry the state ➂, while the
other two (h2.2 and h3) carry a ➄. These can be combined into two bundles (h’ and h").
Next the shift of ## obliterates all stacks with top state ➄ (i). State ➅, which is now on
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f ➀ EE ➂ ++
➃ dd ➁ ## reduce to g

➀ EE ➂ ++ ➃ EE ➄ ++

g ➀ EE ➂ ++
➃ EE ➄ ## duplicate to g’, g"

➀ EE ➂ ++ ➃ EE ➄ ++

g’ ➀ EE ➂ ++
➃ EE ➄ ## for reduce; undo

➀ EE ➂ ++ ➃ EE ➄ ++ combination: g’.1, g’.2

g" ➀ EE ➂ ++
➃ EE ➄ ## for shift: h3

➀ EE ➂ ++ ➃ EE ➄ ++

g’.1 ➀ EE ➂ ++ ➃ EE ➄ ## reduce to h.1

g’.2 ➀ EE ➂ ++ ➃ EE ➄ ++ ➃ EE ➄ ## reduce to h.2

h1 ➀ EE ➂ ## shift

h2 ➀ EE ➂ ++ ➃ EE ➄ ## reduce again, h2.1, h2.2

h3 ➀ EE ➂ ++
➃ EE ➄ ## shift

➀ EE ➂ ++ ➃ EE ➄ ++

h2.1 ➀ EE ➂ ## shift

h2.2 ➀ EE ➂ ++ ➃ EE ➄ ## shift

h’ ➀ EE
➂ ## shift to i

➀ EE

➀ EE ➂ ++
h" ➀ EE ➂ ++ ➃ EE ➄ ++ ➃ EE ➄ ## discard

➀ EE ➂ ++ ➃ EE

i ➀ EE
➂ ## ➅

for reduce; undo
➀ EE combination, i’, i"

i’ ➀ EE ➂ ## ➅ reduce to j1
i" ➀ EE ➂ ## ➅ reduce to j2

j1 ➀ SS accept
j2 ➀ SS accept

Figure 9.42 Stack configurations with equal-state combination



226 Deterministic bottom-up parsing [Ch. 9

top, induces a reduce spanning a merge point, the combined stack is split and the
reduce is applied to both stacks, resulting in the two parsings for dd++dd++dd## (j1, j2).

Although in this example the stack combinations are undone almost as fast as they
are performed, stack combination greatly contributes to the parsers efficiency in the
general case. It is essential in preventing exponential growth wherever possible. Note,
however, that, even though the state ➂ in i is preceded by EE in all branches, we cannot
combine these EE’s since they differ in the partial parse trees attached to them.

9.8.3 Combining equal stack prefixes
When step 1 above calls for the stack to be copied, there is actually no need to copy the
entire stack; just copying the top states suffices. When we duplicate the stack of Figure
9.40(d), we have one forked stack for (e):

e’ ➀ EE ➂ ++ ➃ EE ➄ ++dd##
➄

Now the reduce is applied to one top state ➄ and only so much of the stack is copied as
is subject to the reduce:

e ➀
EE ➂ ++dd## shift

EE ➂ ++ ➃ EE ➄ shift

In our example almost the entire stack gets copied, but if the stack is somewhat larger,
considerable savings can result.

Note that the title of this section is in fact incorrect: in practice no equal stack pre-
fixes are combined, they are never created in the first place. The pseudo-need for com-
bination arises from our wish to explain first the simpler but impractical form of the
algorithm in Section 9.8. A better name for the technique would be “common stack
prefix preservation”.

Both optimizations can combine to produce shuntyard-like stack constellations
like the one in Figure 9.43; here Tomita’s notation is used, in which � represents a
state and � a symbol. The reader may verify that the constellation represents seven
stacks.

�

�
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� ���
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�

�
�

� ��

� ��

� ��

�

�
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� ��

�

�
�

�

�

�

� ��

Figure 9.43 Stack constellation with combined heads and tails, in Tomita’s notation

9.8.4 Discussion
We have explained Tomita’s parser using an LR(0) table; in his book Tomita uses an
SLR(1) table. In fact the method will work with any bottom-up table or even with no
table at all. The weaker the table, the more non-determinism will have to be resolved
by breadth-first search, and for the weakest of all tables, the absent table, the method
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degenerates into full breadth-first search. Since the latter is involved in principle in all
variants of the method, the time requirements are in theory exponential; in practice they
are very modest, generally linear or slightly more than linear and almost always less
than those of Earley’s parser or of the CYK parser, except for very ambiguous gram-
mars.

9.9 NON-CANONICAL PARSERS

All parsers treated so far in this chapter are “canonical parsers”, which means that they
identify the productions in reverse right-most order. A “non-canonical parser” identi-
fies the productions in arbitrary order, or rather in an unrestricted order. Removing the
restriction on the identification order of the productions makes the parsing method
stronger, as can be expected. Realistic examples are too complicated to be shown here
(see Tai [LR 1979] for some), but the following example will demonstrate the princi-
ple.

SSSS -->> PP QQ || RR SS
PP -->> aa
QQ -->> bb cc
RR -->> aa
SS -->> bb dd

Figure 9.44 A short grammar for non-canonical parsing

The grammar of Figure 9.44 produces two sentences, aabbcc and aabbdd. Suppose the input
is aabbcc. The aa can be a PP or an RR; for both, the look-ahead is a bb, so an LR(1) parser
cannot decide whether to reduce to PP or to RR and the grammar is not LR(1). Suppose,
however, that we leave the undecidable undecided and search on for another reducible
part (called a phrase in non-canonical parsing to distinguish it from the “handle”).
Then we find the tokens bbcc, which can clearly be reduced to QQ. Now, this QQ provides
the decisive look-ahead for the reduction of the aa. Since PP can be followed by a QQ and RR
cannot, reduction to PP is indicated based on look-ahead QQ; the grammar is NCLR(1)
(Non-Canonical LR(1)). We see that in non-canonical parsers the look-ahead sets con-
tain non-terminals as well as terminals.

There are disadvantages too. After each reduce, one has to rescan possibly large
parts of the stack. This may jeopardize the linear time requirement, although with some
dexterity the problem can often be avoided. A second problem is that rules are recog-
nized in essentially arbitrary order which makes it difficult to attach semantics to them.
A third point is that although non-canonical parsers are more powerful than canonical
ones, they are only marginally so: most grammars that are not LR(1) are not NCLR(1)
either.

Overall the advantages do not seem to outweigh the disadvantages and non-
canonical parsers are not used often. See, however, Salomon and Cormack [LR 1989].

Non-canonical precedence parsing has been described by Colmerauer [Precedence
1970].
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9.10 LR(k) AS AN AMBIGUITY TEST

It is often important to be sure that a grammar is not ambiguous, but unfortunately it
can be proved that there cannot be an algorithm that can, for every CF grammar, decide
whether it is ambiguous or unambiguous. This is comparable to the situation described
in 3.5.2, where the fundamental impossibility of a recognizer for Type 0 grammars was
discussed. (See Hopcroft and Ullman [Books 1979, p. 200]). The most effective ambi-
guity test for a CF grammar we have at present is the construction of the corresponding
LR(k) automaton, but it is of course not a perfect test: if the construction succeeds, the
grammar is guaranteed to be unambiguous; if it fails, in principle nothing is known. In
practice, however, the reported conflicts will often point to genuine ambiguities.
Theoretically, the construction of an LR-regular parser (see 9.7.6) is an even stronger
test, but the choice of the look-ahead automaton is problematic.
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Error handling

Until now, we have discussed parsing techniques while largely ignoring what happens
when the input contains errors. In practice, however, the input often contains errors,
the most common being typing errors and misconceptions, but we could also be dealing
with a grammar that only roughly, not precisely, describes the input, for instance in pat-
tern matching. So, the question arises how to deal with errors. A considerable amount
of research has been done on this subject, far too much to discuss in one chapter. We
will therefore limit our discussion to some of the more well-known error handling
methods, and not pretend to cover the field; see Section 13.11 for more in-depth infor-
mation.

10.1 DETECTION VERSUS RECOVERY VERSUS CORRECTION

Usually, the least that is required of a parser is that it detects the occurrence of one or
more errors in the input, that is, we require error detection. The least informative ver-
sion of this is that the parser announces: “input contains syntax error(s)”. We say that
the input contains a syntax error when the input is not a sentence of the language
described by the grammar. All parsers discussed in the previous chapters (except
operator-precedence) are capable of detecting this situation without extensive modifi-
cation. However, there are few circumstances in which this behaviour is acceptable:
when we have just typed a long sentence, or a complete computer program, and the
parser only tells us that there is a syntax error somewhere, we will not be pleased at all,
not only about the syntax error, but also about the quality of the parser or lack thereof.

The question as to where the error occurs is much more difficult to answer; in fact
it is almost impossible. Although some parsers have the correct-prefix property, which
means that they detect an error at the first symbol in the input that results in a prefix
that cannot start a sentence of the language, we cannot be sure that this indeed is the
place in which the error occurs. It could very well be that there is an error somewhere
before this symbol but that this is not a syntax error at that point. There is a difference
in the perception of an error between the parser and the user. In the rest of this chapter,
when we talk about errors, we mean syntax errors, as detected by the parser.

So, what happens when input containing errors is offered to a parser with a good
error detection capability? The parser might say: “Look, there is a syntax error at posi-
tion so-and-so in the input, so I give up”. For some applications, especially highly
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interactive ones, this may be satisfactory. For many, though, it is not: often, one would
like to know about all syntax errors in the input, not just about the first one. If the
parser is to detect further syntax errors in the input, it must be able to continue parsing
(or at least recognizing) after the first error. It is probably not good enough to just
throw away the offending symbol and continue. Somehow, the internal state of the
parser must be adapted so that the parser can process the rest of the input. This adapta-
tion of the internal state is called error recovery.

The purpose of error recovery can be summarized as follows:
� an attempt must be made to detect all syntax errors in the input;
� equally important, an attempt must be made to avoid spurious error messages.

These are messages about errors that are not real errors in the input, but result
from the continuation of the parser after an error with improper adaptation of its
internal state.
Usually, a parser with an error recovery method can no longer deliver a parse tree

if the input contains errors. This is sometimes the cause of considerable trouble. In the
presence of errors, the adaptation of the internal state can cause semantic actions asso-
ciated with grammar rules to be executed in an order that is impossible for syntactically
correct input, which sometimes leads to unexpected results. A simple solution to this
problem is to ignore semantic actions as soon as a syntax error is detected, but this is
not optimal and may not be acceptable. A better option is the use of a particular kind
of error recovery method, an error correction method.

Error correction methods transform the input into syntactically correct input, usu-
ally by deleting, inserting, or changing symbols. It should be stressed that error correc-
tion methods cannot always change the input into the input actually intended by the
user, nor do they pretend that they can. Therefore, some authors prefer to call these
methods error repair methods rather than error correction methods. The main advan-
tage of error correction over other types of error recovery is that the parser still can
produce a parse tree and that the semantic actions associated with the grammar rules
are executed in an order that could also occur for some syntactically correct input. In
fact, the actions only see syntactically correct input, sometimes produced by the user
and sometimes by the error corrector.

In summary, error detection, error recovery, and error correction require increas-
ing levels of heuristics. Error detection itself requires no heuristics. A parser detects an
error, or it does not. Determining the place where the error occurs may require heuris-
tics, however. Error recovery requires heuristics to adapt the internal parser state so
that it can continue, and error correction requires heuristics to repair the input.

10.2 PARSING TECHNIQUES AND ERROR DETECTION

Let us first examine how good the parsing techniques discussed in this book are at
detecting an error. We will see that some parsing techniques have the correct-prefix
property while other parsing techniques only detect that the input contains an error but
give no indication where the error occurs.

10.2.1 Error detection in non-directional parsing methods
In Section 4.1 we saw that Unger’s parsing method tries to find a partition of the input
sentence that matches one of the right-hand sides of the start symbol. The only thing
that we can be sure of in the case of one or more syntax errors is, that we will find no
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such partition. For example, suppose we have the grammar of Figure 4.1, repeated in
Figure 10.1, and input ××++.

EExxpprrSS -->> EExxpprr ++ TTeerrmm || TTeerrmm
TTeerrmm -->> TTeerrmm ×× FFaaccttoorr || FFaaccttoorr

FFaaccttoorr -->> (( EExxpprr )) || ii

Figure 10.1 A grammar describing simple arithmetic expressions

Fitting the first right-hand side of EExxpprr with the input will not work, because the input
only has two symbols. We will have to try the second right-hand side of EExxpprr. Like-
wise, we will have to try the second right-hand side of TTeerrmm, and then we will find that
we cannot find an applicable right-hand side of FFaaccttoorr, because the first one requires
at least three symbols, and the second one only one. So, we know that there are one or
more errors, but we do not know how many errors there are, nor where they occur. In a
way, Unger’s method is too well prepared for dealing with failures, because it expects
any partition to fail.

For the CYK parser, the situation is similar. We will find that if the input contains
errors, the start symbol will not be a member of the top element of the recognition
table.

So, the unmodified non-directional methods behave poorly on errors in the input.

10.2.2 Error detection in finite-state automata
Finite-state automata are very good at detecting errors. Consider for instance the deter-
ministic automaton of Figure 5.10, repeated in Figure 10.2.

SS AABB

BBCC

AACC

◊◊◊◊aa

bb

cc

aa

aa

ccbb

Figure 10.2 Deterministic automaton for the grammar of Figure 5.5

When this automaton is offered the input aabbccccaa, it will detect an error when it is in
state AACC, on the second cc in the input.

Finite-state automata have the correct-prefix property. In fact, they have the
immediate error detection property, which we discussed in Chapter 8 and which means
that an error is detected as soon as the erroneous symbol is first examined.

10.2.3 Error detection in general directional top-down parsers
The breadth-first general directional top-down parser also has the correct-prefix pro-
perty. It stops as soon as there are no predictions left to work with. Predictions are only
dropped by failing match steps, and as long as there are predictions, the part of the
input parsed so far is a prefix of some sentence of the language.

The depth-first general directional top-down parser does not have this property. It
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will backtrack until all right-hand sides of the start symbol have failed. However, it can
easily be doctored so that it does have the correct-prefix property: the only thing that
we must remember is the furthest point in the input that the parser has reached, a kind
of high-water mark. The first error is found right after this point.

10.2.4 Error detection in general directional bottom-up parsers
The picture is quite different for the general directional bottom-up parsers. They will
just find that they cannot reduce the input to the start symbol. This is only to be
expected because, in contrast to the top-down parsers, there is no test before an input
symbol is shifted.

As soon as a top-down component is added, such as in Earley’s parser, the parser
regains the correct-prefix property. For instance, if we use the Earley parser with the
grammar from Figure 7.8 and input aa--++aa, we get the items sets of Figure 10.3 (com-
pare this with Figure 7.11). Itemset3 will be empty, and an error is detected.

SS-->> � � EE @@11
EE-->> � � EEQQFF@@11
EE-->> � � FF @@11
FF-->> � � aa @@11

. . . . . . . . . . . . . . . . . .

act/pred0

= itemset0

aa1

FF-->>aa � � @@11
EE-->>FF � � @@11
SS-->>EE � � @@11

completed1

EE-->>EE � � QQFF@@11
QQ-->> � � ++ @@22
QQ-->> � � -- @@22

. . . . . . . . . . . . . . . . . .

act/pred1

= itemset1

--2

QQ-->>-- � � @@22

completed2

EE-->>EEQQ � � FF@@11
FF-->> � � aa @@33

. . . . . . . . . . . . . . . . . .

act/pred2

= itemset2

++3

completed3

. . . . . . . . . . . . . . . . . .

act/pred3

= itemset3

Figure 10.3 Items sets of the Earley parser working on aa--++aa

10.2.5 Error detection in deterministic top-down parsers
In Sections 8.2.3 and 8.2.4 we have seen that strong-LL(1) parsers have the correct-
prefix property but not the immediate error detection property, because in some cir-
cumstances they may make some ε-moves before detecting an error, and that full LL(1)
parsers have the immediate error detection property.

10.2.6 Error detection in deterministic bottom-up parsers
Let us first examine the error detection capabilities of precedence parsers. We saw in
Section 9.2.1 that operator-precedence parsers fail to detect some errors. When they do
detect an error, it is because there is no precedence relation between the symbol on top
of the parse stack and the next input symbol. This is called a character-pair error.

The other precedence parsers (simple, weak, extended, and bounded-context) have
three error situations:
� there is no precedence relation between the symbol on top of the parse stack and

the next input symbol (a character-pair error).
� the precedence relations indicate that a handle is found and that a reduction must

be applied, but there is no non-terminal with a right-hand side that matches the
handle. This is called a reduction error.

� after a reduction has been made, there is no precedence relation between the sym-
bol at the top of the stack (the symbol that was underneath the <·) and the left-hand
side to be pushed. This is called a stackability error.



Sec. 10.2] Parsing techniques and error detection 233

Reduction errors can be detected at an early stage by continuously checking that
the symbols between the last <· and the top of the stack form the prefix of some right-
hand side. Graham and Rhodes [ErrHandl 1975] show that this can be done quite effi-
ciently.

In Section 9.5.2 we saw that an LR(1) parser has the immediate error detection
property. LALR(1) and SLR(1) parsers do not have this property, but they do have the
correct prefix property. Error detection in Tomita’s parser depends on the underlying
parsing technique.

10.3 RECOVERING FROM ERRORS

Error handling methods fall in different classes, depending on what level they approach
the error. The general parsers usually apply an error handling method that considers the
complete input. These methods use global context, and are therefore called global
error handling methods. The Unger and CYK parsers need such a method, because
they have no idea where the error occurred. These methods are very effective, but the
penalty for this effectivity is paid for in efficiency: they are very time consuming,
requiring at least cubic time. As the general parsing methods already are time consum-
ing anyway, this is usually deemed acceptable. We will discuss such a method in Sec-
tion 10.4.

On the other hand, efficient parsers are used because they are efficient. For them,
error handling methods are required that are less expensive. We will discuss the best
known of these methods.

These methods have the following information at their disposal:
� in the case of a bottom-up parser: the parse stack; in the case of a top-down

parser: the prediction;
� the input string, and the point where the error was detected.

There are four classes of these methods: the ad hoc methods, which do not really
form a class; the regional error handling methods, which use some (regional) context
around the point of error detection to determine how to proceed; the local error han-
dling methods only use the parser state and the input symbol (local context) to deter-
mine what happens next; and the suffix methods, which use zero context. Examples of
these methods will be discussed in Sections 10.5, 10.6, 10.7 and 10.8.

In our discussions, we will use the terms error detection point, indicating the point
where the parser detects the error, and error symbol, which indicates the input symbol
on which the error is detected.

10.4 GLOBAL ERROR HANDLING

The most well-known global error handling method is the least-error correction
method. The purpose of this method is to derive a syntactically correct input from the
supplied one using as few corrections as possible. Usually, a symbol deletion, a symbol
insertion, and a symbol change all count as one correction (one edit operation).

It is important to realize that the number of corrections needed can easily be lim-
ited to a maximum: first, we compute the shortest sentence that can be generated from
the grammar. Let us say it has length m. If the input has length n, we can change this
input into the shortest sentence with a number of edit operations that is the maximum
of m and n: change the first symbol of the input into the first symbol of the shortest
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sentence, etc. If the input is shorter than the shortest sentence, this results in a max-
imum of n changes, and we have to insert the last m −n symbols of the shortest sen-
tence. If the input is longer than the shortest sentence, we have to delete the last n −m
symbols of the input.

Another important point is that, when searching for a least-error correction, if we
already know that we can do it with, say, k corrections, we do not have to investigate
possibilities known to require more.

With this in mind, let us see how such an error correction method works when
incorporated in an Unger parser. We will again use the grammar of Figure 10.1 as an
example, again with input sentence ××++. This is a very short sentence indeed, to limit the
amount of work. The shortest sentence that can be generated from the grammar is ii, of
length one. The observation above limits the number of corrections needed to a max-
imum of two.

Now, the first rule to be tried is EExxpprr -->> EExxpprr ++ TTeerrmm. This leads to the fol-
lowing partitions:

� �������������������������������������������������������������
EExxpprr max:2� �������������������������������������������������������������

EExxpprr ++ TTeerrmm� �������������������������������������������������������������� �������������������������������������������������������������
? 1 ××++ ?
? ×× 1 ++ ?
? ××++ 1 ?

×× ? 1 ++ ?
×× ? ++ 0 ?
××++ ? 1 ? cut-off� �������������������������������������������������������������

�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

Notice that we include the number of corrections needed for each part of a partition in
the right of the column, a question mark indicating that the number of corrections is yet
unknown. The total number of corrections needed for a certain partition is the sum of
the number of corrections needed for each of the parts. The top of the table also con-
tains the maximum number of corrections allowed for the rule. For the parts matching
a terminal, we can decide how many corrections are needed, which results in the
column below the ++. Also notice that we have to consider empty parts, although the
grammar does not have ε-rules. The empty parts stand for insertions. The cut-off
comes from the Unger parser detecting that the same problem is already being exam-
ined.

Now, the Unger parser continues by trying to derive ε from EExxpprr. The current
partition already requires one correction, so the maximum number of corrections
allowed is now one. The rule EExxpprr -->> EExxpprr ++ TTeerrmm has the following result:

� �������������������������������������������������������
EExxpprr max:1� �������������������������������������������������������

EExxpprr ++ TTeerrmm� �������������������������������������������������������� �������������������������������������������������������
? 1 ? cut-off� �������������������������������������������������������
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�

�
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so we will have to try the other rule for EExxpprr: EExxpprr -->> TTeerrmm. Likewise, TTeerrmm -->>
TTeerrmm ×× FFaaccttoorr will result in a cut-off, so we will have to use TTeerrmm -->> FFaaccttoorr.
The rule FFaaccttoorr -->> (( EExxpprr )) will again result in a cut-off, so FFaaccttoorr -->> ii will
be used:
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� �������������������������������
EExxpprr max:1� �������������������������������
TTeerrmm max:1� �������������������������������
FFaaccttoorr max:1� �������������������������������
ii max:1� �������������������������������� �������������������������������

1� �������������������������������
�
�
�
�
�
�
�

�
�
�
�
�
�
�

So, we find, not surprisingly, that input part ε can be corrected to ii, requiring one
correction (inserting ii) to make it derivable from EExxpprr (and TTeerrmm and FFaaccttoorr). To
complete our work on the first partition of ××++ over the right-hand side EExxpprr ++ TTeerrmm,
we have to examine if, and how, TTeerrmm derives ××++. We already need two corrections
for this partition, so no more corrections are allowed because of the maximum of two.
For the rule TTeerrmm -->> TTeerrmm ×× FFaaccttoorr we get the following partitions (in which we
cheated a bit: we used some information computed earlier):

� �������������������������������������������������������������
TTeerrmm max:0� �������������������������������������������������������������

TTeerrmm ×× FFaaccttoorr� �������������������������������������������������������������� �������������������������������������������������������������
1 1 ××++ ? too many corrections
1 ×× 0 ++ ? too many corrections
1 ××++ 1 1 too many corrections

×× ? 1 ++ ? too many corrections
×× ? ++ 1 1 too many corrections
××++ ? 1 1 cut-off� �������������������������������������������������������������
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So, we will have to try TTeerrmm -->> FFaaccttoorr. After that, FFaaccttoorr -->> (( EExxpprr )) results
in the following partitions:

� �������������������������������������������������������������
TTeerrmm max:0� �������������������������������������������������������������
FFaaccttoorr max:0� �������������������������������������������������������������

(( EExxpprr ))� �������������������������������������������������������������� �������������������������������������������������������������
1 1 ××++ 2 too many corrections
1 ×× ? ++ 1 too many corrections
1 ××++ ? 1 cut-off

×× 1 1 ++ 1 too many corrections
×× 1 ++ ? 1 too many corrections
××++ 2 1 1 too many corrections� �������������������������������������������������������������

��
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�

This does not work either. The rule FFaaccttoorr -->> ii results in the following:

� ���������������������������������
TTeerrmm max:0� ���������������������������������
FFaaccttoorr max:0� ���������������������������������
ii max:0� ���������������������������������� ���������������������������������
××++ 2 too many corrections� ���������������������������������
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So we get either a cut-off or too many corrections (or both). This means that the parti-
tion that we started with is the wrong one. The other partitions are tried in a similar
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way, resulting in the following partition table, with completed error correction counts:

� �������������������������������������������������������������
EExxpprr max:2� �������������������������������������������������������������

EExxpprr ++ TTeerrmm� �������������������������������������������������������������� �������������������������������������������������������������
1 1 ××++ >0 too many corrections
1 ×× 1 ++ 1 too many corrections
1 ××++ 1 1 too many corrections

×× 1 1 ++ 1 too many corrections
×× 1 ++ 0 1
××++ ? 1 1 cut-off� �������������������������������������������������������������
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So, provided that we do not find better corrections later on, using the rule EExxpprr -->>
EExxpprr ++ TTeerrmm we find the corrected sentence ii++ii, by replacing the ×× with an ii, and
inserting an ii at the end of the input. Now, the Unger parser proceeds by trying the
rule EExxpprr -->> TTeerrmm. Continuing this process, we will find two more possibilities
using two corrections: the input can be corrected to ii××ii by inserting an ii in front of the
input and replacing the ++ with another ii, or the input can be corrected by replacing ××
with an ii and deleting ++ (or deleting ×× and replacing ++ with an ii).

This results in three possible corrections for the input, all three requiring two edit
operations. Choosing between these corrections is up to the parser writer. If the parser
is written to handle ambiguous input anyway, the parser might deliver three parse trees
for the three different corrections. If the parser must deliver only one parse tree, it
could just pick the first one found. Even in this case, however, the parser has to con-
tinue searching until it has exhausted all possibilities or it has found a correct parsing,
because it is not until then that the parser knows if the input in fact did contain any
errors.

As is probably clear by now, least-errors correction does not come cheap, and it is
therefore usually only applied in general parsers, because these do not come cheap any-
way.

Lyon [ErrHandl 1974] has added least-errors correction to the CYK parser and the
Earley parser, although his CYK parser only handles replacement errors. In his version
of the CYK parser, the non-terminals in the recognition table have an error count asso-
ciated with it. In the bottom row, which is the one for the non-terminals deriving a sin-
gle terminal symbol, all entries contain all non-terminals that derive a single terminal
symbol. If the non-terminal derives the corresponding terminal symbol it has error
count 0, otherwise it has error count 1 (a replacement). Now, when we find that a
non-terminal A with rule A→BC is applicable, it is entered in the recognition table with
an error count equal to the sum of that of B and C, but only if it is not already a member
of the same recognition table entry, but with a lower error count.

Aho and Peterson [ErrHandl 1972] also added least-errors correction to the Earley
parser by extending the grammar with error productions, so that it produces any string
of terminal symbols, with an error count. As in Lyon’s method, the Earley items are
extended with an error count indicating how many corrections were needed to create
the item. An item is only added to an item set if it does not contain one like it which
has a lower error count.
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10.5 AD HOC METHODS

The ad hoc error recovery methods are called ad hoc because they cannot be automati-
cally generated from the grammar. These methods are as good as the parser writer
makes them, which in turn depends on how good the parser writer is in anticipating
possible syntax errors. We will discuss three of these ad hoc methods: error produc-
tions, empty table slots and error tokens.

10.5.1 Error productions
Error productions are grammar rules, added by the grammar writer so that anticipated
syntax errors become part of the language (and thus are no longer syntax errors). These
error productions usually have a semantic action associated with them that reports the
error; this action is triggered when the error production is used. An example where an
error production could be useful is the Pascal if-statement. The latter has the following
syntax:

iiff--ssttaatteemmeenntt -->> IIFF bboooolleeaann--eexxpprreessssiioonn
TTHHEENN ssttaatteemmeenntt eellssee--ppaarrtt

eellssee--ppaarrtt -->> EELLSSEE ssttaatteemmeenntt || εε

A common error is that an iiff--ssttaatteemmeenntt has an eellssee--ppaarrtt, but the statement in
front of the eellssee--ppaarrtt is terminated by a semicolon. In Pascal, a semicolon is a state-
ment separator rather than a statement terminator and is not allowed in front of an
EELLSSEE. This situation could be detected by changing the grammar rule for eellssee--ppaarrtt
into

eellssee--ppaarrtt -->> EELLSSEE ssttaatteemmeenntt || εε || ;; EELLSSEE ssttaatteemmeenntt

where the last right-hand side is the error production.
The most important disadvantages of error productions are:

� only anticipated errors can be handled;
� the modified grammar might (no longer) be suitable for the parsing method used,

because conflicts could be introduced by the added rules.
The advantage is that a very adequate error message can be given. Error productions
can be used profitably in conjunction with another error handling method, to handle
some frequent errors on which the other method does not perform well.

10.5.2 Empty table slots
In most of the efficient parsing methods, the parser consults one or more parse tables
and bases its next parsing decision on the result. These parsing tables have error
entries (represented as the empty slots), and if one of these is consulted, an error is
detected. In this error handling method, the empty table slots are used to refer to error
handling routines. Each empty slot has its own error handling routine, which is called
when the corresponding slot is consulted. The error handling routines themselves are
written by the parser writer. By very careful design of these error handling routines,
very good results can be obtained; see for instance Conway and Wilcox [ErrHandl
1973]. In order to achieve good results, however, the parser writer must invest consid-
erable effort. Usually, this is not considered worth the gain, in particular because good
error handling can be generated automatically.
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10.5.3 Error tokens
Another popular error recovery method uses error tokens. An error token is a special
token that is inserted in front of the error detection point. The parser will pop states
from the parse stack until this token becomes valid, and then skip symbols from the
input until an acceptable symbol is found. The parser writer extends the grammar with
rules using this error token. An example of this is the following grammar:

iinnppuutt -->> iinnppuutt iinnppuutt__lliinnee || εε
iinnppuutt__lliinnee -->> EERRRROORR__TTOOKKEENN NNEEWWLLIINNEE || SSTTRRIINNGG NNEEWWLLIINNEE

This kind of grammar is often seen in interactive applications, where the input is line
by line. Here, EERRRROORR__TTOOKKEENN denotes the error token, and NNEEWWLLIINNEE denotes an end of
line marker. When an error occurs, states are popped until EERRRROORR__TTOOKKEENN becomes
acceptable, and then symbols are skipped until a NNEEWWLLIINNEE is encountered.

This method can be quite effective, provided that care is taken in designing the
rules using the error token.

10.6 REGIONAL ERROR HANDLING

In regional error handling, most often applied in bottom-up parsers, recovery from
errors is done by collecting some context around the error detection point, usually as a
part of the parse stack around the error, and reducing that part (including the error) to a
left-hand side. Therefore, this class of error handling methods is also often called
phrase level error handling.

10.6.1 Backward/forward move
An error handling method that is applicable to bottom-up parsers is the
backward/forward move error recovery method, presented by Graham and Rhodes
[ErrHandl 1975]. It consists of two stages: the first stage condenses the context around
the error as much as possible. This is called the condensation phase. Then the second
stage, the correction phase, changes the parsing stack and/or the input so that parsing
can continue. The method is best applicable to simple precedence parsers, and we will
use such a parser as an example.

Our example comes from the grammar and precedence table of Figure 9.13. Sup-
pose that we have input ##nn××++nn##. The simple precedence parser has the following parse
stacks at the end of each step, up to the error detection point:

## <· nn >· shift nn, next symbol is ××
## <· FF >· reduce nn
## <· TT =̇ ×× reduce FF, shift ××

No precedence relation is found to exist between the ×× and the ++, resulting in an error
message that ++ is not expected.

Let us now examine the condensation phase in some detail. As said before, the
purpose of this phase is to condense the context around the error as much as possible.
The left-context is condensed by a so-called backward move: assuming a >· relation
between the top of the parse stack and the symbol on which the error is detected (that
is, assuming that the parse stack built so far has the end of a handle as its top element),
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perform all possible reductions. In our example, no reductions are possible. Now
assume a =̇ or a <· between the top of the stack and the next symbol. This enables us to
continue parsing a bit. This step is the so-called forward move: first we shift the next
symbol, resulting in the following parse stack:

## <· TT =̇ ×× =̇/<· ++ shift ++

Next, we disable the check that the top of the stack should represent a prefix of a right-
hand side. Then, we continue parsing until either another error occurs or a reduction is
called for that spans the error detection point. This gives us some right-context to work
with, which can be condensed by a second backward move, if needed. For our exam-
ple, this results in the following steps:

## <· TT =̇ ×× =̇/<· ++ <· nn >· ## shift nn, next symbol is ##
## <· TT =̇ ×× =̇/<· ++ <· FF >· ## reduce nn
## <· TT =̇ ×× =̇/<· ++ <· TT >· ## reduce FF
## <· TT =̇ ×× =̇/<· ++ =̇ TT’’ >· ## reduce TT

So now we have the situation depicted in Figure 10.4.

. . . <· . . . . . .

nearest <· to the left of
the error detection point

error detection
point

top of
stack

➀ ➁

➂

Figure 10.4 Situation after the backward/forward moves

This is where the correction phase starts. The correction phase considers three parts of
the stack for replacement with some right-hand side. These parts are indicated with ➀,
➁ and ➂ in Figure 10.4. Part ➀ is considered because the precedence at the error
detection point could be >· , part ➁ is considered because the precedence at the error
detection point could be <·, and part ➂ is considered because this precedence could be
=̇. Another option is to just delete one of these parts. This results in a fairly large
number of possible changes, which now must be limited by making sure that the parser
can continue after reducing the right-hand side to its corresponding left-hand side.

In the example, we have the following situation:

<· TT =̇ ×× ?· ++ =̇ TT’’ >·

➀ ➁

➂

The left-hand sides that could replace part ➀ are: EE, TT’’, TT, and FF. These are the non-
terminals that have a precedence relation with the next symbol: the ++. The only left-
hand side that could replace part ➁ is FF. Part ➂ could be replaced by EE, TT’’, TT, and FF.
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This still leaves a lot of choices, but some “corrections” are clearly better than others.
Let us now see how we can discriminate between them.

Replacing part of the parse stack by a right-hand side can be seen as an edit opera-
tion on the stack. The cost of this edit operation can be assessed as follows. With
every symbol, we can associate a certain insertion cost I and a certain deletion cost D.
The cost for changing for instance TT×× to FF would then be D(TT)+D(××)+I(FF). These costs
are determined by the parser writer. The cheapest parse stack correction is then chosen.
If there is more than one with the same lowest cost, we just pick one.

Assigning identical costs to all edit operations, in our example, we end up with
two possibilities, both replacing part ➀: TT (deleting the ××), or TT××FF (inserting an FF).
Assigning higher costs to editing a non-terminal, which is not unreasonable, would
only leave the first of these. Parsing then proceeds as follows:

<· TT =̇ ×× ? ++ =̇ TT’’ >· error situation
<· TT >· ++ =̇ TT’’ >· error corrected by deleting ××
<· TT’’ >· ++ =̇ TT’’ >· reducing TT
<· EE =̇ ++ =̇ TT’’ >· reducing TT’’
<· EE >· reducing EE++TT’’
<· EE’’ >· reducing EE
<· SS >· reducing EE’’

The principles of this method have also been applied in LR parsers. There, how-
ever, the backward move is omitted, because in an LR parser the state on top of the
stack, together with the next input symbol, determine the reduction that can be applied.
If the input symbol is erroneous, we have no way of knowing which reductions can be
applied. For further details, see Pennello and DeRemer [ErrHandl 1978] and also
Mickunas and Modry [ErrHandl 1978].

10.7 LOCAL ERROR HANDLING

All local error recovery techniques are so-called acceptable-set error recovery tech-
niques. These techniques work as follows: when a parser detects an error, a certain set
called the acceptable-set is calculated from the parser state. Next, symbols from the
input are skipped until a symbol is found that is a member of the acceptable-set. Then,
the parser state is adapted so that the symbol that is not skipped becomes acceptable.
There is a family of such techniques; the members of this family differ in the way they
determine the acceptable-set, and in the way in which the parser state is adapted. We
will now discuss several members of this family.

10.7.1 Panic mode
Panic mode is probably the simplest error recovery method that is still somewhat effec-
tive. In this method, the acceptable-set is determined by the parser writer, and is fixed
for the whole parsing process. The symbols in this set usually indicate the end of a
syntactic construct, for instance a statement in a programming language. For the pro-
gramming language Pascal, this set could contain the symbols ;; and eenndd. When an
error is detected, symbols are skipped until a symbol is found that is a member of this
set. Then, the parser must be brought into a state that makes this symbol acceptable. In
an LL parser, this might require deleting the first few symbols of the prediction, in an
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LR parser this might involve popping states from the parse stack until a state is
uncovered in which the symbol is acceptable.

The recovery capability of panic mode is often quite good, but many errors can go
undetected, because sometimes large parts of the input are skipped. The method has
the advantage that it is very easy to implement.

10.7.2 FOLLOW set error recovery
Another early acceptable-set recovery method is the FOLLOW set error recovery
method. The idea is applicable in an LL parser, and works as follows: when we are
parsing a part of the input, and the top of the prediction stack results most recently from
a prediction for the non-terminal A, and we detect an error, we skip symbols until we
find a symbol that is a member of FOLLOW(A). Next, we remove the unprocessed
part of the current right-hand side of A from the prediction, and continue parsing. As
we cannot be sure that the current input symbol can follow A in the present context and
is thus acceptable, this is not such a good idea. A better idea is to use that part of
FOLLOW(A) that can follow A in this particular context, making sure that the symbol
that is not skipped will be accepted, but this is not trivial to do.

The existence of this method is probably the reason that the family of acceptable-
set error recovery methods is often called FOLLOW set error recovery. However, for
most members of this family this is a confusing name.

A variant of this method that has become very popular in recursive descent parsers
is based on the observation that at any point during the parsing process, there are a
number of active non-terminals (for which we are now trying to match a right-hand
side), and in general this number is larger than one. Therefore, we should use the union
of the FOLLOW sets of these non-terminals, rather than the FOLLOW set of just the
most recent of them. A better variant uses the union of those parts of the FOLLOW sets
that can follow the non-terminals in this particular context. An expansion of this idea is
the following: suppose the parser is in the following state when it detects an error:

. . . a . . .

. . . X 1
. . . Xn##

We can then have the acceptable-set contain the symbols in FIRST(X 1), FIRST(X 2),
. . . , and ##, and recover by skipping symbols until we meet a symbol of this
acceptable-set, and then removing symbols from the prediction until the input symbol
becomes acceptable.

Many variations of this technique exist; see for instance Pemberton [ErrHandl
1980] and Stirling [ErrHandl 1985].

10.7.3 Acceptable-sets derived from continuations
A very interesting and effective member of the acceptable-set recovery method family
is the one discussed by Röhrich [ErrHandl 1980]. The idea is as follows. Suppose that
a parser with the correct prefix property detects an error in the input after having pro-
cessed a prefix u. Because of the correct prefix property, we know that this prefix u is
the start of some sentence in the language. Therefore, there must be a continuation,
which is a terminal string w, such that uw is a sentence of the language. Now suppose
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we can compute such a continuation. We can then correct the error as follows:
� Determine a continuation w of u.
� For all prefixes w′ of w, compute the set of terminal symbols that would be

accepted by the parser after it has parsed w′, and take the union of these sets. If a
is a member of this set, uw′a is a prefix of some sentence in the language. This set
is our acceptable-set. Note that it includes all symbols of w, including the end-
marker.

� Skip symbols from the input until we find a symbol that is a member of this set.
Note that as a result of this, everything up to the end-marker may be skipped.

� Insert the shortest prefix of w that makes this symbol acceptable in front of this
symbol. If everything up to the end-marker was skipped, insert w itself.

� Produce an error message telling the user which symbols were skipped and which
symbols were inserted.

� Restart the parser in the state where the error was detected and continue parsing,
starting with the inserted symbols. Now, the error is corrected, and the parser
continues as if nothing has happened.

10.7.3.1 Continuation grammars
There are two problems here, how to determine the continuation and how to calculate
the acceptable-set without going through all possible parsings. Let us regard a gram-
mar as a generating device. Suppose we are generating a sentence from a grammar, and
have obtained a certain sentential form. Now, we want to produce a sentence from it as
soon as possible, using the fewest possible production steps. We can do this if we
know for each non-terminal which right-hand side is the quickest “exit”, that is, which
right-hand side leads to a terminal production in as few production steps as possible.

It turns out that we can compute these right-hand sides in advance. To this end, we
compute for each symbol the minimum number of production steps needed to obtain a
terminal derivation from it. We call this number the step count. Terminal symbols
have step count 0, non-terminal symbols have an as yet unknown step count, which we
set to infinity. Next, we examine each right-hand side in turn. If we already have a step
count for each of the members of a right-hand side, the right-hand side itself needs the
sum of these step counts, and the left-hand side needs one more if it uses this right-
hand side. If this is less than we had for this non-terminal, we update its step count.

We repeat this process until none of the step counts changes. If we had a proper
grammar to begin with, all of the step counts will now be finite. Now, all we have to
do is for each left-hand side to mark the right-hand side with the lowest step count. The
grammar rules thus obtained are called a continuation grammar, although these rules
together probably do not form a proper grammar.

Let us see how this works with an example. Consider the grammar of Figure 8.9,
repeated in Figure 10.5 for reference.

SSeessssiioonn -->> FFaaccttss QQuueessttiioonn || (( SSeessssiioonn )) SSeessssiioonn
FFaaccttss -->> FFaacctt FFaaccttss || εε
FFaacctt -->> !! SSTTRRIINNGG

QQuueessttiioonn -->> ?? SSTTRRIINNGG

Figure 10.5 An example grammar



Sec. 10.7] Local error handling 243

The first pass over the right-hand sides shows us that FFaaccttss, FFaacctt, and QQuueessttiioonn
each have step count 1. In the next pass, we find that SSeessssiioonn has step count 3. The
resulting continuation grammar is presented in Figure 10.6.

SSeessssiioonn -->> FFaaccttss QQuueessttiioonn
FFaaccttss -->> εε
FFaacctt -->> !! SSTTRRIINNGG

QQuueessttiioonn -->> ?? SSTTRRIINNGG

Figure 10.6 The continuation grammar of the grammar of Figure 10.5

10.7.3.2 Continuation in an LL parser
In an LL parser, it now is easy to compute a continuation when an error occurs. We
take the prediction, and derive a terminal string from it using only rules from the con-
tinuation grammar, processing the prediction from left to right. Each terminal that we
meet ends up in the acceptable-set; in addition, every time a non-terminal is replaced
by its right-hand side from the continuation grammar, we add to the acceptable-set the
terminal symbols from the FIRST set of the current sentential form starting with this
non-terminal.

Let us demonstrate this with an example. Suppose that we have the input (( ??
SSTTRRIINNGG ?? SSTTRRIINNGG for the LL(1) parser of Figure 8.10. When the parser detects an
error, it is in the following state:

(( ?? SSTTRRIINNGG ?? SSTTRRIINNGG ##

. . . )) SSeessssiioonn ##

Now, a continuation will be computed, starting with the sentential form )) SSeessssiioonn ##,
using the continuation grammar. During this computation, when the prediction starts
with a non-terminal, the FIRST set of the prediction will be computed and the non-
terminal will be replaced by its right-hand side in the continuation grammar. The
FIRST set is shown in square brackets below the line:

)) SSeessssiioonn ## -->>

)) [((!!??] FFaaccttss QQuueessttiioonn ## -->>

)) [((!!??] [!!??] ε QQuueessttiioonn ## -->>

)) [((!!??] [!!??] [??] ?? SSTTRRIINNGG ##

Consequently, the continuation is )) ?? SSTTRRIINNGG ## and the acceptable-set contains ((, )),
!!, ??, SSTTRRIINNGG and ##. We see that we should keep the ?? and insert the first symbol of
the continuation, )). So, the parser is restarted in the following state:
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(( ?? SSTTRRIINNGG )) ?? SSTTRRIINNGG ##

. . . )) SSeessssiioonn ##

and proceeds as usual.

10.7.3.3 Continuation in an LR parser
Unlike an LL parser, an LR parser does not feature a sentential form which represents
the rest of the input. It is therefore more difficult to compute a continuation. Röhrich
[ErrHandl 1980] demonstrates that an LR parser can be generated that has a terminal
symbol associated with each state of the handle recognizer so that we can obtain a con-
tinuation by pretending that the parser has this symbol as input when it is in the
corresponding state. The sequence of states that the parser goes through when these
symbols are given as input then determines the continuation. The acceptable-set con-
sists of the terminal symbols on which a shift or reduce can take place (i.e. which are
acceptable) in any of these states.

10.7.4 Insertion-only error correction
Fischer, Milton and Quiring [ErrHandl 1980] propose an error correction method for
LL(1) parsers using only insertions. This method has become known as the FMQ error
correction method. In this method, the acceptable-set is the set of all terminal symbols.
Fischer, Milton and Quiring argue that the advantage of using only insertions (and thus
no deletions or replacements) is that a syntactically correct input is built around the
input supplied by the user, so none of the symbols supplied by the user are deleted or
changed. Of course, the question arises if every input can be corrected in this way, and
in general the answer is no; for some languages it can however, and other languages are
easily modified so that it can.

Let us investigate which properties a language must have for every error to be
correctable by insertions only. Suppose we have an input xa . . . such that the start
symbol does derive a sentence starting with x, but not a sentence starting with xa; so x
is a correct prefix, but xa is not. Now, if this error is to be corrected by an insertion y,
xya must again be a correct prefix. This leads to the notion of insert-correctable gram-
mars: a grammar is said to be insert-correctable if for every prefix x of a sentence and
every symbol a in the language there is a continuation of x that includes a (so an inser-
tion can always be found). Fischer, Milton and Quiring demonstrate that it is decidable
whether an LL(1) grammar is insert-correctable.

So, the FMQ error correction method is applicable in an LL(1) parser built from
an insert-correctable grammar. In addition, the LL(1) parser must have the immediate
error detection property. As we have seen in Section 8.2.4, the usual (strong-)LL(1)
parser does not have this property, but the full LL(1) parser does. Fischer, Tai and Mil-
ton [ErrHandl 1979] show that for the class of LL(1) grammars in which every non-
terminal that derives ε does so explicitly through an ε-rule, the immediate error detec-
tion property can be retained while using strong-LL(1) tables.

Now, how does the error corrector work? Suppose that an error is detected on
input symbol a, and the current prediction is X 1

. . . Xn##. The state of the parser is
then:
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. . . a . . .

. . . X 1
. . . Xn##

As a is an error, we know that it is not a member of FIRST(X 1
. . . Xn##). We also

know that the grammar is insert-correctable, so X 1
. . . Xn## must derive a terminal

string containing a. The error corrector now determines the cheapest insertion after
which a is acceptable. Again, every symbol has associated with it a certain insertion
cost, determined by the parser writer; the cost of an insertion is the sum of the costs of
the symbols in the insertion.

To compute the cheapest insertion, the error corrector uses some tables that are
precomputed for the grammar at hand (by the parser generator). First, there is a table
that we will call cchheeaappeesstt__ddeerriivvaattiioonn, giving the cheapest terminal derivation for
each symbol (for a terminal, this is of course the terminal itself). Second, there is a
table that we will call cchheeaappeesstt__iinnsseerrttiioonn giving for each symbol/terminal combi-
nation (X,a) the cheapest insertion y such that X→* ya . . . , if it exists, or an indication
that it does not exist. Note that in any prediction X 1

. . . Xn## there must be at least one
symbol X such that the (X,a) entry of the cchheeaappeesstt__iinnsseerrttiioonn table contains an
insertion (or else the grammar was not insert-correctable).

Going back to our parser, we can now compute the cheapest insertion z such that a
becomes acceptable. Consulting cchheeaappeesstt__iinnsseerrttiioonn(X 1 , a), we can distinguish
two cases:
� cchheeaappeesstt__iinnsseerrttiioonn(X 1 , a) contains an insertion y 1; in this case, we have

found an insertion.
� cchheeaappeesstt__iinnsseerrttiioonn(X 1 , a) does not contains an insertion. In this case, we

use cchheeaappeesstt__ddeerriivvaattiioonn(X 1) as the first part of the insertion, and continue
with X 2 in exactly the same way as we did with X 1 . In the end, this will result in
an insertion y 1

. . . yi , where y 1 , . . . ,yi −1 come from the
cchheeaappeesstt__ddeerriivvaattiioonn table, and yi comes from the cchheeaappeesstt__iinnsseerrttiioonn
table.

In some LL(1) parsers, notably recursive descent ones, the prediction is not explicitly
available, only the first part X 1 is. In this case, we can use this first part to compute an
insertion y 1 , either as cchheeaappeesstt__iinnsseerrttiioonn(X 1 , a) or as
cchheeaappeesstt__ddeerriivvaattiioonn(X 1) (which may or may not make a acceptable), and we
insert it:

. . . y 1a . . .

. . . X 1
. . . Xn##

If the insertion y 1 does not make a acceptable yet, after parsing y 1 , the parser is in the
following state:
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. . . y 1 a . . .

. . . X 2
. . . Xn##

and the process is repeated (X 2 is now explicitly available).
The most serious disadvantage of the FMQ error corrector is that it behaves rather

poorly on those errors that are better corrected by a deletion. Advantages are that it
always works, can be generated automatically, and is simple.

Anderson and Backhouse [ErrHandl 1982] present a significant improvement of
the implementation described above, which is based on the observation that it is suffi-
cient to only compute the first symbol of the insertion: if we detect an error symbol a
after having read prefix u, and w = w 1w 2

. . . wn is a cheapest insertion, then w 2
. . . wn

is a cheapest insertion for the error a after having read uw 1 . So, the
cchheeaappeesstt__ddeerriivvaattiioonn and cchheeaappeesstt__iinnsseerrttiioonn tables are not needed. Instead,
tables are needed that are indexed similarly, but only contain the first symbol of the
insertion. The latter tables are much smaller, and easier to compute.

10.7.5 Locally least-cost error recovery
Like the FMQ error correction method, locally least-cost error recovery (see Back-
house [Books 1979] and Anderson, Backhouse, Bugge and Stirling [ErrHandl 1983]) is
a technique for recovering from syntax errors by editing the input string at the error
detection point. The FMQ method corrects the error by inserting terminal symbols, the
locally least-cost method corrects the error by either deleting the error symbol, or
inserting a sequence of terminal or non-terminal symbols after which the error symbol
becomes correct, or changing the error symbol. Unlike the least-errors analysis dis-
cussed in Section 10.4, which considers the complete input string in determining the
corrections to be made, the locally least-cost method only considers the error symbol
itself and the symbol after that. The correction is determined by its cost: every symbol
has a certain insertion cost, every terminal symbol has a certain deletion cost, and every
replacement also has a certain cost. All these costs are determined by the parser writer.
When considering if the error symbol is to be deleted, the cost of an insertion that
would make the next input symbol acceptable is taken into account. The cheapest
correction is chosen.

This principle does not rely on a particular parsing method, although the imple-
mentation does. The method has successfully been implemented in LL, LR, and Earley
parsers; see Backhouse [Books 1979], Anderson and Backhouse [ErrHandl 1981],
Anderson, Backhouse, Bugge and Stirling [ErrHandl 1983], and Choe and Chang
[ErrHandl 1986] for details.

10.8 SUFFIX PARSING

Although the error correction and error recovery methods discussed above have their
good and bad points, they all have the following problems in common:
� On an error, they change the input and/or the parser state, using heuristics to

choose one of the many possibilities. We can, however, never be sure that we
picked the right change.

� Selecting the wrong change can cause an avalanche of spurious error messages.
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Only the least-errors analysis of Section 10.4 does not have this problem.
A quite different approach to error recovery is that of Richter [ErrHandl 1985].

He proposes a method that does not have the problems mentioned above, but has some
problems of its own. The author argues that we should not try to repair an error,
because we cannot be sure that we get it right. Neither should we try to change parser
state and/or input. The only thing that we can assume is that the rest of the input (the
input that comes after the error symbol, excluding the error symbol itself) is a suffix
(tail) of a sentence of the language. This is an assumption made in several error
recovery methods, but the difference is that most error recovery methods assume more
than that, in that they use (some of) the parser state information built so far.

The set of strings that are some suffix of some sentence of a language forms itself
a language. This language of suffixes is called the suffix-language of the original
language and, in fact, the suffix-language of a context-free language is again a
context-free language, for which a grammar can be constructed given the grammar of
the original language. Such a grammar is called a suffix-grammar, and one can be con-
structed in the following way: for every non-terminal A in the original grammar, we
introduce a new non-terminal A′ which derives a suffix of a sentence generated by the
original non-terminal. If the original grammar contains a rule

A →→ X 1X 2
.. .. .. Xn

the suffix-grammar will also contain this rule and, in addition, it will contain the fol-
lowing rules deriving a suffix of what A can derive:

A′ →→ X′1X 2
.. .. .. Xn

A′ →→ X′2 .. .. .. Xn
...... ...... ......

A′ →→ X′n

If Xi is a terminal symbol, X′i is the empty string.
All the new non-terminals (marked with a ′) derive the empty string, which is also

a suffix,albeit a degenerate one. If S is the start symbol of the original grammar, the
suffix-grammar has start symbol S suffix with the following rules:

S suffix →→ S || S′

The error recovery method now works as follows: parsing starts with a parser for
the original language, preferably one with the correct prefix property. When an error is
detected, it is reported, the error symbol is skipped and a parser derived from the
suffix-grammar, a so-called suffix-parser, is started on the rest of the input (which must
be a suffix or else there is another error). When another error is detected, it is again
reported, the error symbol is skipped, and the suffix-parser is reset to its starting state,
ready to accept another suffix.

This method has several advantages:
� Each error reported is guaranteed to be a different syntax error, and no error is

reported more than once. This maintains a high level of user confidence in the
error messages.

� After each error, the parser is restarted in the proper state. There are no spurious
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error messages.
� No input is skipped, apart from the error symbols.
This sounds just about perfect, so there must be a catch, and indeed there is one; it con-
cerns the suffix-grammar. For the method to be practical, we need an efficient suffix-
parser. However, the suffix-grammar may not be suitable for any of the deterministic
parsing methods, such as LL or LR. In fact, the way we constructed the suffix-grammar
almost certainly results in an ambiguous grammar. This, however, does not mean that
the language is ambiguous. Richter conjectures that any kind of bounded-context pro-
perty of the original grammar is sufficient for the existence of a deterministic suffix-
grammar. This conjecture is confirmed by Cormack [ErrHandl 1989] for a subset of
the bounded-context grammars.

Another, less important, disadvantage is that sometimes not all syntax errors are
reported. This is not really a disadvantage in a highly interactive environment, where it
is probably more important that all reported errors are real errors. Also, in the presence
of errors, the parser is unable to deliver a meaningful parse tree, which may or may not
be a disadvantage.



11
Comparative survey

Practical parsing is concerned almost exclusively with context-free (Type 2) and regu-
lar (Type 3) grammars. Unrestricted (Type 0) and context-sensitive (Type 1) grammars
are hardly used since, first, they are user-unfriendly in that it is next to impossible to
construct a clear and readable Type 0 or Type 1 grammar and, second, all known
parsers for them have exponential time requirements. Van Wijngaarden grammars take
a slightly different position: Van Wijngaarden grammars can be made very clear and
informative, but we do not at present have any parsing technique for even a reasonable
subset of them, regardless of time requirements; for some experimental results see Sec-
tion 13.3.

Regular grammars are used mainly to describe patterns that have to be found in
surrounding text. For this application a recognizer suffices. There is only one such
recognizer: the finite-state automaton described in Section 5.3. Actual parsing with a
regular grammar, when required, is generally done using techniques for CF grammars.
For parsing with register-vector grammars, which are a special form of regular gram-
mars, see Section 13.10.

In view of the above we shall restrict ourselves to CF grammars in the rest of this
chapter.

11.1 CONSIDERATIONS

The initial demands on a CF parsing technique are obvious: it should be general (i.e.,
able to handle all CF grammars), it should be fast (i.e., have linear time requirements)
and preferably it should be easy to program. There are two serious obstacles to this
naive approach to choosing a parser. The first is that the automatic generation of a
linear-time parser is possible only for a subset of the CF grammars. The second is that,
although this subset is often described as “very large” (especially for LR(1) and
LALR(1)), experience shows that a grammar that is designed to best describe the
language without concern for parsing is virtually never in this set. What is true,
though, is that for almost any arbitrary grammar a slightly different grammar can be
found that generates the same language and that does allow linear-time parsing; finding
such a grammar, however, almost always requires human intervention and cannot be
automated. Using a modified grammar has the disadvantage that the resulting parse
trees will differ to a certain extent from the ones implied by the original grammar.
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Furthermore, it is important to notice that no linear-time method can handle ambiguous
grammars.

An immediate consequence of the above observations is that the stability of the
grammar is an important datum. If the grammar is subject to continual revision, it is
impossible or at least highly inconvenient to adapt each version by hand to the require-
ments of a linear-time method, and we have no choice but to use a general method.
Likewise, if the grammar is ambiguous, we are forced to use a general method.

11.2 GENERAL PARSERS

There are three general methods that should be considered: Unger’s, Earley’s and
Tomita’s.

11.2.1 Unger
An Unger parser (Section 4.1) is easy to program, especially the form given in Section
12.2, but its exponential time requirements limit its applicability to occasional use. The
relatively small effort of adding a well-formed substring table (Section 12.3) can
improve its efficiency dramatically, and in this form it can be very useful, especially if
the average input string is limited to some tens of tokens. The thus modified Unger
parser requires in principle a time proportional to n N +1 , where n is the number of
tokens in the input and N is the maximum number of non-terminals in any right-hand
side in the grammar, but in practice it is often much faster. An additional advantage of
the Unger parser is that it can usually be readily understood by all participants in a pro-
ject, which is something that can be said of almost no other parser.

11.2.2 Earley
A simple, robust and efficient version of the Earley parser has been presented by Gra-
ham, Harrison and Ruzzo [CF 1980]. It requires a time proportional to n 3 for ambigu-
ous grammars (plus the time needed to enumerate the parse trees), at most n 2 for
unambiguous grammars and at most n for grammars for which a linear-time method
would work; in this sense the Earley parser is self-adapting. Since it does not require
preprocessing on the grammar, it is possible to have one grammar-independent Earley
parser and to supply it with the grammar and the input whenever a parsing is needed. If
this is convenient, the Earley parser is preferable to Tomita’s method.

11.2.3 Tomita
At the expense of considerably more programming and some loss of convenience in
use, the Tomita parser (Section 9.8) will provide a parsing in slightly more than linear
time for all but the most ambiguous grammars. Since it requires preprocessing on the
grammar, it is convenient to generate a separate parser for each grammar (using a
parser generator); if the grammar is, however, very unstable, the preprocessing can be
done each time the parser is called. The Tomita parser is presently the parser of choice
for serious parsing in situations where a linear-time method cannot be applied and the
grammar is reasonably stable.

As explained in Section 9.8, the Tomita parser uses a table to restrict the breadth-
first search and the question arises what type of table would be optimal. Experimental
data on this are lacking. An LR(0) table is relatively easy to construct (9.4.1) and
should give reasonable results but an SLR(1) table is still not difficult to construct
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(9.6.4) and might be preferable. In view of the additional construction effort, an
LALR(1) table may not have any advantage over the SLR(1) table in this case. An
LR(1) table probably requires too much space.

11.2.4 Notes
It should be noted that if any of the general parsers performs in linear time, it may still
be a factor of ten or so slower than a real linear-time method, due to the much heavier
administration they need.

None of the general parsers identifies with certainty a part of the parse tree before
the whole parse tree is completed. Consequently, if semantic actions are connected to
the grammar rules, none of these actions can be performed until the whole parse is fin-
ished. The actions certainly cannot influence the parsing process. They can, however,
reject certain parse trees afterwards; this is useful to implement context conditions in a
context-free parser.

11.3 LINEAR-TIME PARSERS

Among the grammars that allow linear-time parsing, the operator-precedence gram-
mars (see Section 9.2.1) occupy a special place, in that they can be ambiguous. They
escape the general rule that ambiguous grammars cannot be parsed in linear time by
virtue of the fact that they do not provide a full parse tree but rather a parse skeleton. If
every sentence in the generated language has only one parse skeleton, the grammar can
be operator-precedence. Operator-precedence is by far the simplest practical method;
if the parsing problem can be brought into a form that allows an operator-precedence
grammar (and that is possible for almost all formula-like inputs), a parser can be con-
structed by hand in a very short time.

11.3.1 Requirements
Now we come to the full linear-time methods. As mentioned above, grammars are not
normally in a form that allows linear-time parsing and have to be modified by hand to
be so. This implies that for the use of a linear-time parser at least the following condi-
tions must be fulfilled:
� the grammar must be relatively stable, so that the modification process will not

have to be repeated too often;
� the user must be willing to accept a slightly different parse tree than would

correspond to the original grammar.
It should again be pointed out that the transformation of the grammar cannot, in gen-
eral, be performed by a program (if it could, we would have a stronger parsing
method).

11.3.2 Strong-LL(1) versus LALR(1)
For two linear-time methods, strong-LL(1)† (Section 8.2.2) and LALR(1) (Section 9.6),
parser generators are readily available, both as commercial products and in the public
domain. Using one of them will in almost all cases be more practical and efficient than
� ���������������������������

† What is advertised as an “LL(1) parser generator” is almost always actually a strong-LL(1)
parser generator.
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writing your own; for one thing, writing a parser generator may be (is!) interesting, but
doing a reasonable job on the error recovery is a protracted affair, not to be taken on
lightly. So the choice is between (strong-)LL(1) and LALR(1); full LL(1) or LR(1)
might occasionally be preferable, but parser generators for these are not (yet) easily
available and their advantages will probably not provide enough ground to write one.
The main differences between (strong-)LL(1) and LALR(1) can be summarized as fol-
lows:
� LL(1) generally requires larger modifications to be made to the grammar than

LALR(1).
� LL(1) allows semantic actions to be performed even before the start of an alterna-

tive; LALR(1) performs semantic actions only at the end of an alternative.
� LL(1) parsers are often easier to understand and modify.
� If an LL(1) parser is implemented as a recursive-descent parser, the semantic

actions can use named variables and attributes, much as in a programming
language. No such use is possible in a table-driven parser.

� Both methods are roughly equivalent as to speed and memory requirements; a
good implementation of either will outperform a mediocre implementation of the
other.
People evaluate the difference in power between LL(1) and LALR(1) differently;

for some the requirements made by LL(1) are totally unacceptable, others consider
them a minor inconvenience, largely offset by the advantages of the method.

If one is in a position to design the grammar along with the parser, there is little
doubt that LL(1) is to be preferred: not only will parsing and performing semantic
actions be easier, text that conforms to an LL(1) grammar is also clearer to the human
reader. A good example is the design of Modula-2 by Wirth (see Programming in
Modula-2 (Third, corrected edition) by Niklaus Wirth, Springer-Verlag, Berlin, 1985).

11.3.3 Table size
The table size of a linear-time parser (in the order of 10K to 100K bytes) may be a seri-
ous problem to some applications. The strongest linear-time method with negligible
table size is weak precedence with precedence functions.



12
A simple general context-free parser

Although LL(1) and LALR(1) parsers are easy to come by, they are of limited use out-
side the restricted field of programming language processing, and general parsers are
not widely available. The general parser shown here in full detail will yield all parsings
of a sentence according to a CF grammar, with no restriction imposed on the grammar.
It can be typed in and made operational in a couple of hours, to enable the reader to
experiment directly with a general CF parser. The parser, which is rather primitive,
takes exponential time in the worst case; an extension to reduce the time requirement to
polynomial time is discussed in Section 12.3. The interested reader who has access to a
Prolog interpreter may wish to look into Definite Clause Grammars (Section 6.7).
These are perhaps easier to use than the parser in this chapter, but cannot handle left-
recursion.

12.1 PRINCIPLES OF THE PARSER

The parser, presented as a Pascal program in Figure 12.1, is the simplest we can think
of that puts no restrictions on the grammar. Since it searches a forest of possible parse
trees to find the applicable ones, it is not completely trivial, though. The parser is an
Unger parser in that a top-down analysis is made, dividing the input into segments that
are to be matched to symbols in the pertinent right-hand side. A depth-first search
(using recursive-descent) is used to enumerate all possibilities. To keep the size of the
parser reasonable, a number of oversimplifications have been made (for one thing,
names of non-terminals can be one character long only). Once the parser is running,
these can all be rectified.

pprrooggrraamm UUnnggeerr((iinnppuutt,, oouuttppuutt));; {{ UUnnggeerr ppaarrsseerr iinn PPaassccaall }}

ccoonnsstt
NNooSSyymmbbooll == ’’ ’’;;
MMaaxxRRuulleess == 1100;;
MMaaxxRRhhssLLeennggtthh == 1100;;
MMaaxxIInnppuuttLLeennggtthh == 1100;;
AArrrraayySSiizzee == 11000000;; {{ ffoorr aallll ssttaacckkss aanndd lliissttss }}

ttyyppee
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SSyymmbboollTTyyppee == cchhaarr;;
RRuulleeNNmmbbTTyyppee == iinntteeggeerr;;

RRhhssTTyyppee == ppaacckkeedd aarrrraayy [[11....MMaaxxRRhhssLLeennggtthh]] ooff SSyymmbboollTTyyppee;;
IInnppuuttSSttrriinnggTTyyppee == ppaacckkeedd aarrrraayy [[11....MMaaxxIInnppuuttLLeennggtthh]] ooff SSyymmbboollTTyyppee;;

RRuulleeTTyyppee == rreeccoorrdd LLhhssFFiieelldd:: SSyymmbboollTTyyppee;; RRhhssFFiieelldd:: RRhhssTTyyppee;; eenndd;;

SSttaacckkEElleemmTTyyppee ==
rreeccoorrdd

NNmmbbFFiieelldd:: RRuulleeNNmmbbTTyyppee;; RRhhssUUsseeddFFiieelldd:: iinntteeggeerr;; {{ tthhee rruullee }}
PPoossFFiieelldd,, LLeennFFiieelldd,, IInnppUUsseeddFFiieelldd:: iinntteeggeerr;; {{ tthhee ssuubbssttrriinngg }}

eenndd;;

vvaarr
IInnppuuttSSttrriinngg:: IInnppuuttSSttrriinnggTTyyppee;;
IInnppuuttLLeennggtthh:: iinntteeggeerr;;

GGrraammmmaarr:: aarrrraayy [[11....MMaaxxRRuulleess]] ooff RRuulleeTTyyppee;;
NNRRuulleess:: iinntteeggeerr;;
SSttaarrtt:: SSyymmbboollTTyyppee;;

SSttaacckk:: aarrrraayy [[11....AArrrraayySSiizzee]] ooff SSttaacckkEElleemmTTyyppee;;
NNSSttaacckkEElleemmss:: iinntteeggeerr;;

RRuulleeSSttaacckk:: aarrrraayy [[11....AArrrraayySSiizzee]] ooff RRuulleeNNmmbbTTyyppee;;
NNRRuulleessSSttaacckkeedd:: iinntteeggeerr;;
NNDDeerriivvaattiioonnss:: iinntteeggeerr;;

{{ RRUULLEE AADDMMIINNIISSTTRRAATTIIOONN }}
pprroocceedduurree SSttoorreeRRuullee((llhhss:: SSyymmbboollTTyyppee;; rrhhss:: RRhhssTTyyppee));;

bbeeggiinn
NNRRuulleess::== NNRRuulleess++11;;
wwiitthh GGrraammmmaarr[[NNRRuulleess]] ddoo
bbeeggiinn LLhhssFFiieelldd::== llhhss;; RRhhssFFiieelldd::== rrhhss;; eenndd;;

eenndd {{ SSttoorreeRRuullee }};;

pprroocceedduurree WWrriitteeRRhhss((rrhhss:: RRhhssTTyyppee));;
vvaarr nn:: iinntteeggeerr;;
bbeeggiinn

ffoorr nn::== 11 ttoo MMaaxxRRhhssLLeennggtthh ddoo
iiff rrhhss[[nn]] <<>> NNooSSyymmbbooll tthheenn wwrriittee((rrhhss[[nn]]));;

eenndd {{ WWrriitteeRRhhss }};;

pprroocceedduurree WWrriitteeRRuullee((nnmmbb:: RRuulleeNNmmbbTTyyppee));;
bbeeggiinn

wwiitthh GGrraammmmaarr[[nnmmbb]] ddoo
bbeeggiinn

wwrriittee((LLhhssFFiieelldd,, ’’ -->> ""’’));;
WWrriitteeRRhhss((RRhhssFFiieelldd));;
wwrriittee((’’""’’));;

eenndd;;
eenndd {{ WWrriitteeRRuullee }};;

pprroocceedduurree PPuusshhRRuullee((nn:: RRuulleeNNmmbbTTyyppee));;
bbeeggiinn
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NNRRuulleessSSttaacckkeedd::== NNRRuulleessSSttaacckkeedd++11;;
RRuulleeSSttaacckk[[NNRRuulleessSSttaacckkeedd]]::== nn;;

eenndd;;

pprroocceedduurree PPooppRRuullee;;
bbeeggiinn NNRRuulleessSSttaacckkeedd::== NNRRuulleessSSttaacckkeedd--11;; eenndd;;

pprroocceedduurree PPaarrssiinnggFFoouunndd;;
vvaarr rr:: iinntteeggeerr;;
bbeeggiinn

NNDDeerriivvaattiioonnss::== NNDDeerriivvaattiioonnss++11;;
ffoorr rr::== 11 ttoo NNRRuulleessSSttaacckkeedd ddoo
bbeeggiinn WWrriitteeRRuullee((RRuulleeSSttaacckk[[rr]]));; wwrriitteellnn;; eenndd;;
wwrriitteellnn;;

eenndd {{ PPaarrssiinnggFFoouunndd }};;

{{ HHAANNDDLLIINNGG OOFF KKNNOOWWNN PPAARRSSIINNGGSS }}
pprroocceedduurree SSttaarrttNNeewwKKnnoowwnnGGooaall((nnmmbb:: RRuulleeNNmmbbTTyyppee;; ppooss,, lleenn:: iinntteeggeerr));;

bbeeggiinn eenndd;;

pprroocceedduurree RReeccoorrddKKnnoowwnnPPaarrssiinngg;;
bbeeggiinn eenndd;;

{{ PPAARRSSIINNGG SSTTAACCKK HHAANNDDLLIINNGG }}
pprroocceedduurree PPuusshhSSttaacckk((nnmmbb:: RRuulleeNNmmbbTTyyppee;; ppooss,, lleenn:: iinntteeggeerr));;

bbeeggiinn
NNSSttaacckkEElleemmss::== NNSSttaacckkEElleemmss++11;;
wwiitthh SSttaacckk[[NNSSttaacckkEElleemmss]] ddoo
bbeeggiinn

NNmmbbFFiieelldd::== nnmmbb;; RRhhssUUsseeddFFiieelldd::== 00;;
PPoossFFiieelldd::== ppooss;; LLeennFFiieelldd::== lleenn;; IInnppUUsseeddFFiieelldd::== 00;;

eenndd;;
eenndd {{ PPuusshhSSttaacckk }};;

pprroocceedduurree PPooppSSttaacckk;;
bbeeggiinn NNSSttaacckkEElleemmss::== NNSSttaacckkEElleemmss--11;; eenndd;;

ffuunnccttiioonn IIssTTooBBeeAAvvooiiddeedd((nnmmbb:: RRuulleeNNmmbbTTyyppee;; ppooss,, lleenn:: iinntteeggeerr)):: BBoooolleeaann;;
vvaarr ii:: iinntteeggeerr;;
bbeeggiinn

IIssTTooBBeeAAvvooiiddeedd::== ffaallssee;;
ffoorr ii::== 11 ttoo NNSSttaacckkEElleemmss ddoo

wwiitthh SSttaacckk[[ii]] ddoo
iiff ((NNmmbbFFiieelldd==nnmmbb))
aanndd ((PPoossFFiieelldd==ppooss))
aanndd ((LLeennFFiieelldd==lleenn)) tthheenn

IIssTTooBBeeAAvvooiiddeedd::== ttrruuee;;
eenndd {{ IIssTTooBBeeAAvvooiiddeedd }};;

pprroocceedduurree AAddvvaanncceeTTOOSS((lleenn:: iinntteeggeerr));;
bbeeggiinn

wwiitthh SSttaacckk[[NNSSttaacckkEElleemmss]] ddoo
bbeeggiinn

RRhhssUUsseeddFFiieelldd::== RRhhssUUsseeddFFiieelldd++11;;
IInnppUUsseeddFFiieelldd::== IInnppUUsseeddFFiieelldd++lleenn;;

eenndd;;
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eenndd {{ AAddvvaanncceeTTOOSS }};;

pprroocceedduurree RReettrraaccttTTOOSS((lleenn:: iinntteeggeerr));;
bbeeggiinn

wwiitthh SSttaacckk[[NNSSttaacckkEElleemmss]] ddoo
bbeeggiinn

RRhhssUUsseeddFFiieelldd::== RRhhssUUsseeddFFiieelldd--11;;
IInnppUUsseeddFFiieelldd::==IInnppUUsseeddFFiieelldd--lleenn;;

eenndd;;
eenndd {{ RReettrraaccttTTOOSS }};;

{{ TTHHEE AAUUTTOOMMAATTOONN }}
pprroocceedduurree TTrryyAAllllRRuulleessFFoorr((llhhss:: SSyymmbboollTTyyppee;; ppooss,, lleenn:: iinntteeggeerr));;

vvaarr nnmmbb:: RRuulleeNNmmbbTTyyppee;;

pprroocceedduurree DDooTTooppOOffSSttaacckk;;
vvaarr ttoossSSyymmbb:: SSyymmbboollTTyyppee;; {{ aaccttiivvee ssyymmbbooll oonn ttoopp ooff SSttaacckk }}

pprroocceedduurree DDooNNeexxttOOnnSSttaacckk;;
vvaarr ssvv:: SSttaacckkEElleemmTTyyppee;;
bbeeggiinn {{ tthhee nnoonn--tteerrmmiinnaall oonn ttoopp ooff SSttaacckk wwaass rreeccooggnniizzeedd }}

RReeccoorrddKKnnoowwnnPPaarrssiinngg;;
{{ ssaavvee ttoopp ooff SSttaacckk }}
ssvv::== SSttaacckk[[NNSSttaacckkEElleemmss]];; NNSSttaacckkEElleemmss::== NNSSttaacckkEElleemmss--11;;
iiff ((NNSSttaacckkEElleemmss == 00)) tthheenn PPaarrssiinnggFFoouunndd eellssee
bbeeggiinn

AAddvvaanncceeTTOOSS((ssvv..LLeennFFiieelldd));;
DDooTTooppOOffSSttaacckk;;
RReettrraaccttTTOOSS((ssvv..LLeennFFiieelldd));;

eenndd;;
{{ rreessttoorree ttoopp ooff SSttaacckk }}
NNSSttaacckkEElleemmss::== NNSSttaacckkEElleemmss++11;; SSttaacckk[[NNSSttaacckkEElleemmss]]::== ssvv;;

eenndd {{ DDooNNeexxttOOnnSSttaacckk }};;

pprroocceedduurree TTrryyAAllllLLeennggtthhssFFoorr
((llhhss:: SSyymmbboollTTyyppee;; ppooss,, mmaaxxlleenn:: iinntteeggeerr));;
vvaarr lleenn:: iinntteeggeerr;;
bbeeggiinn

ffoorr lleenn::== 00 ttoo mmaaxxlleenn ddoo
TTrryyAAllllRRuulleessFFoorr((llhhss,, ppooss,, lleenn));;

eenndd {{ TTrryyAAllllLLeennggtthhssFFoorr }};;

bbeeggiinn {{ DDooTTooppOOffSSttaacckk }}
wwiitthh SSttaacckk[[NNSSttaacckkEElleemmss]] ddoo
bbeeggiinn

ttoossSSyymmbb::== GGrraammmmaarr[[NNmmbbFFiieelldd]]..RRhhssFFiieelldd[[RRhhssUUsseeddFFiieelldd++11]];;

iiff ttoossSSyymmbb == NNooSSyymmbbooll tthheenn
bbeeggiinn

iiff ((IInnppUUsseeddFFiieelldd == LLeennFFiieelldd)) tthheenn DDooNNeexxttOOnnSSttaacckk;;
eenndd
eellssee iiff ((IInnppUUsseeddFFiieelldd << LLeennFFiieelldd)) aanndd

((ttoossSSyymmbb == IInnppuuttSSttrriinngg[[PPoossFFiieelldd++IInnppUUsseeddFFiieelldd]]))
tthheenn
bbeeggiinn {{ 11 ssyymmbbooll wwaass rreeccooggnniizzeedd }}

AAddvvaanncceeTTOOSS((11));;
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DDooTTooppOOffSSttaacckk;;
RReettrraaccttTTOOSS((11));;

eenndd
eellssee TTrryyAAllllLLeennggtthhssFFoorr((ttoossSSyymmbb,, PPoossFFiieelldd++IInnppUUsseeddFFiieelldd,,

LLeennFFiieelldd--IInnppUUsseeddFFiieelldd));;
eenndd;;

eenndd {{ DDooTTooppOOffSSttaacckk }};;

ffuunnccttiioonn KKnnoowwnnGGooaallSSuucccceeeeddss
((nnmmbb:: RRuulleeNNmmbbTTyyppee;; ppooss,, lleenn:: iinntteeggeerr)):: BBoooolleeaann;;
bbeeggiinn KKnnoowwnnGGooaallSSuucccceeeeddss::== ffaallssee;; eenndd;;

pprroocceedduurree TTrryyRRuullee((nnmmbb:: RRuulleeNNmmbbTTyyppee;; ppooss,, lleenn:: iinntteeggeerr));;
bbeeggiinn

iiff nnoott IIssTTooBBeeAAvvooiiddeedd((nnmmbb,, ppooss,, lleenn)) tthheenn
iiff nnoott KKnnoowwnnGGooaallSSuucccceeeeddss((nnmmbb,, ppooss,, lleenn)) tthheenn
bbeeggiinn

PPuusshhSSttaacckk((nnmmbb,, ppooss,, lleenn));;
SSttaarrttNNeewwKKnnoowwnnGGooaall((nnmmbb,, ppooss,, lleenn));;
wwrriittee((’’TTrryyiinngg rruullee ’’));; WWrriitteeRRuullee((nnmmbb));;
wwrriitteellnn((’’ aatt ppooss ’’,, ppooss::00,, ’’ ffoorr lleennggtthh ’’,, lleenn::00));;
PPuusshhRRuullee((nnmmbb));;
DDooTTooppOOffSSttaacckk;;
PPooppRRuullee;;
PPooppSSttaacckk;;

eenndd;;
eenndd {{ TTrryyRRuullee }};;

bbeeggiinn {{ TTrryyAAllllRRuulleessFFoorr }}
ffoorr nnmmbb::== 11 ttoo NNRRuulleess ddoo

iiff GGrraammmmaarr[[nnmmbb]]..LLhhssFFiieelldd == llhhss tthheenn
TTrryyRRuullee((nnmmbb,, ppooss,, lleenn));;

eenndd {{ TTrryyAAllllRRuulleessFFoorr }};;

pprroocceedduurree PPaarrssee((iinnpp:: IInnppuuttSSttrriinnggTTyyppee));;
vvaarr nn:: iinntteeggeerr;;
bbeeggiinn

NNSSttaacckkEElleemmss::== 00;; NNRRuulleessSSttaacckkeedd::== 00;; NNDDeerriivvaattiioonnss::== 00;;
IInnppuuttLLeennggtthh::== 00;;
ffoorr nn::== 11 ttoo MMaaxxIInnppuuttLLeennggtthh ddoo
bbeeggiinn

IInnppuuttSSttrriinngg[[nn]]::== iinnpp[[nn]];;
iiff iinnpp[[nn]] <<>> NNooSSyymmbbooll tthheenn IInnppuuttLLeennggtthh::== nn;;

eenndd;;
wwrriitteellnn((’’PPaarrssiinngg ’’,, IInnppuuttSSttrriinngg));;
TTrryyAAllllRRuulleessFFoorr((SSttaarrtt,, 11,, IInnppuuttLLeennggtthh));;
wwrriitteellnn((NNDDeerriivvaattiioonnss::00,, ’’ ddeerriivvaattiioonn((ss)) ffoouunndd ffoorr ssttrriinngg ’’,,

IInnppuuttSSttrriinngg));;
wwrriitteellnn;;

eenndd {{ PPaarrssee }};;

pprroocceedduurree IInniittGGrraammmmaarr;; {{ GGrraammmmaarr 44 }}
bbeeggiinn

SSttaarrtt::== ’’SS’’;;
SSttoorreeRRuullee((’’SS’’,, ’’LLSSRR ’’));;
SSttoorreeRRuullee((’’SS’’,, ’’ ’’));;
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SSttoorreeRRuullee((’’LL’’,, ’’(( ’’));;
SSttoorreeRRuullee((’’LL’’,, ’’ ’’));;
SSttoorreeRRuullee((’’RR’’,, ’’)) ’’));;

eenndd;;

pprroocceedduurree DDooPPaarrsseess;;
bbeeggiinn

PPaarrssee((’’(()))) ’’));;
PPaarrssee((’’(((((()))))))))) ’’));;

eenndd;;

bbeeggiinn
NNRRuulleess::== 00;;
IInniittGGrraammmmaarr;;
DDooPPaarrsseess;;

eenndd..

Figure 12.1 A full context-free parser

12.2 THE PROGRAM

As is usual with well-structured Pascal programs, the program of Figure 12.1 can most
easily be read from the end backwards. The body of the program initializes the number
of rules in the grammar NNRRuulleess to zero, fills the array GGrraammmmaarr by calling IInniittGGrraamm--
mmaarr and then calls DDooPPaarrsseess. The elements of GGrraammmmaarr are of the type RRuulleeTTyyppee
and consist of a LLhhssFFiieelldd of the type SSyymmbboollTTyyppee and a RRhhssFFiieelldd which is a
packed array of SSyymmbboollTTyyppee. Packed arrays of SSyymmbboollTTyyppee use NNooSSyymmbbooll as a filler
and are required to contain at least one filler. IInniittGGrraammmmaarr sets the SSttaarrtt symbol
and fills the array GGrraammmmaarr through successive calls of SSttoorreeRRuullee, which also
increases NNRRuulleess.

In Figure 12.1, the grammar has been built into the program for simplicity; in
practice IInniittGGrraammmmaarr would read the grammar and call SSttoorreeRRuullee as needed. The
same technique is used for DDooPPaarrsseess: the input strings are part of the program text for
simplicity, whereas they would normally be read in or obtained in some other fashion.
DDooPPaarrsseess calls PPaarrssee for each input string (which again uses NNooSSyymmbbooll as a filler).
PPaarrssee initializes some variables of the parser, copies the input string to the global vari-
able IInnppuuttSSttrriinngg† and then comes to its main task: calling TTrryyAAllllRRuulleessFFoorr, to try
all rules for the SSttaarrtt symbol to match IInnppuuttSSttrriinngg from 1 to IInnppuuttLLeennggtthh.

Immediately above the declaration of PPaarrssee we find the body of TTrryyAAllllRRuulleess--
FFoorr, which is seen to scan the the grammar for the proper left-hand side and to call
TTrryyRRuullee when it has found one.

To understand the workings of TTrryyRRuullee, we have to consider the parsing stack,
implemented as the array SSttaacckk. Its elements correspond to the nodes just on the left
of the dotted line in Figure 6.2 and together they form a list of goals to be achieved for
the completion of the parse tree presently under consideration. Each element (of the
� ���������������������������

† If the parser is incorporated in a larger Pascal program, many of the globally defined names
can be made local to the procedure PPaarrssee. Although this technique reduces the danger of con-
fusion between names when there are many levels, we have not done so here since it is artificial
to do so for the top level.
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type SSttaacckkEElleemmTTyyppee) describes a rule, given by its number (NNmmbbFFiieelldd) and how
much of its right-hand side has already been matched with the input (RRhhssUUsseeddFFiieelldd);
furthermore it records where the matched part in IInnppuuttSSttrriinngg starts (PPoossFFiieelldd),
how much must be matched (LLeennFFiieelldd) and how much has already been matched
(IInnppUUsseeddFFiieelldd). An element is stacked by a call PPuusshhSSttaacckk((nnmmbb,, ppooss,, lleenn)),
which records the number, position and length of the goal and sets both UUsseeddFFiieelldds to
zero. An element is removed by calling PPooppSSttaacckk.

SSttaacckk contains the active nodes in the parse tree, which is only a fraction of the
nodes of the parse tree as already recognized (Figure 6.2). The left-most derivation of
the parse tree as far as recognized can be found on the stack RRuulleeSSttaacckk, as an array of
rule numbers. When the parse stack SSttaacckk becomes empty, a parsing has been found,
recorded in RRuulleeSSttaacckk.

To prepare the way for a subsequent addition to the parser of a method to
remember known parsings, three hooks have been placed, SSttaarrttNNeewwKKnnoowwnnGGooaall,
RReeccoorrddKKnnoowwnnPPaarrssiinngg and KKnnoowwnnGGooaallSSuucccceeeeddss, each of which corresponds to a
dummy procedure or function. We shall ignore them until Section 12.3.

We now return to TTrryyRRuullee. Ignoring for the moment the tests nnoott IIssTToo--
BBeeAAvvooiiddeedd and nnoott KKnnoowwnnGGooaallSSuucccceeeeddss, we see that a match of rule number nnmmbb
with the input from ppooss over lleenn symbols is established as a goal by calling
PPuusshhRRuullee. The goal is then pursued by calling the local procedure DDooTTooppOOffSSttaacckk.
When this call returns, TTrryyRRuullee is careful to restore the original situation, to allow
further parsings to be found.

DDooTTooppOOffSSttaacckk is the most complicated of our system of (mutually recursive)
procedures. It starts by examining the top element on the stack and establishes what the
first symbol in the right-hand side is that has not yet been matched (ttoossSSyymmbb). If this is
NNooSSyymmbbooll, the right-hand side is exhausted and cannot match anything any more. That
is all right, however, if the input has been completely matched too, in which case we
call DDooNNeexxttOOnnSSttaacckk; otherwise the goal has failed and DDooTTooppOOffSSttaacckk returns. If the
right-hand side is not exhausted, it is possible that we find a direct match of the termi-
nal in the right-hand side (if there is one) to the terminal in the input. In that case we
record the match in the top element on the stack through a call of AAddvvaanncceeTTOOSS((11)) and
call DDooTTooppOOffSSttaacckk recursively to continue our search.

If there is no direct match, we assume that ttoossSSyymmbb is a non-terminal and use a
call to the local procedure TTrryyAAllllLLeennggtthhssFFoorr to try matches for all appropriate
lengths of segments of the input starting at the first unmatched position. Since we do
not visibly distinguish between a terminal and a non-terminal in our program (one of
the oversimplifications), we cannot prevent TTrryyAAllllLLeennggtthhssFFoorr from being called for
a terminal symbol. Since there is no rule for that terminal, the calls of TTrryyAAllllRRuulleess--
FFoorr inside TTrryyAAllllLLeennggtthhssFFoorr will find no match.

The local procedure TTrryyAAllllLLeennggtthhssFFoorr selects increasingly longer segments of
the input, and calls TTrryyAAllllRRuulleessFFoorr for each of them; the latter procedure is already
known.

DDooNNeexxttOOnnSSttaacckk is called when the goal on top of the stack has been attained.
The top element of SSttaacckk is removed and set aside, to be restored later to allow further
parsings to be found. If this removes the last element from the stack, a parsing has been
found and the corresponding procedure is called. If not, there is more work to do on the
present partial parsing. The successful match is recorded in the element presently on
top of the stack (which ordered the just attained match) through a call of AAddvvaanncceeTTOOSS,
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and DDooTTooppOOffSSttaacckk is called to continue the search. All procedures take care to restore
the original situation.

The other procedures except IIssTTooBBeeAAvvooiiddeedd perform simple administrative
tasks only.

Note that besides the parse stack and the rule stack, there is also a search stack.
Whereas the former are explicit, the latter is implicit and is contained in the Pascal
recursion stack and the variables ssvv in incarnations of DDooNNeexxttOOnnSSttaacckk.

12.2.1 Handling left recursion
It has been explained in Section 6.3.1 that a top-down parser will loop on a left-
recursive grammar and that this problem can be avoided by making sure that no goal is
accepted when that same goal is already being pursued. This is achieved by the test
nnoott IIssTTooBBeeAAvvooiiddeedd in TTrryyRRuullee. When a new goal is about to be put on the parse
stack, the function IIssTTooBBeeAAvvooiiddeedd is called, which runs down the parse stack to see
if the same goal is already active. If it is, IIssTTooBBeeAAvvooiiddeedd returns ttrruuee and the goal is
not tried for the second time.

The program in Figure 12.1 was optimized for brevity and, hopefully, for clarity.
It contains many obvious inefficiencies, the removal of which will, however, make the
program larger and less perspicuous. The reader will notice that the semicolon was
used as a terminator rather than as a separator; the authors find that this leads to a
clearer style.

12.3 PARSING IN POLYNOMIAL TIME

An effective and relatively simple way to avoid exponential time requirement in a
context-free parser is to equip it with a well-formed substring table, often abbreviated
to WFST. A WFST is a table that shows all partial parse trees for each substring (seg-
ment) of the input string; it is very similar to the table generated by the CYK algorithm.
It is can be shown that the amount of work needed to construct the table cannot exceed
O(n k +1) where n is the length of the input string and k is the maximum number of
non-terminals in any right-hand side. This takes the exponential sting out of the depth-
first search.

The WFST can be constructed in advance (which is what the CYK algorithm
does), or while parsing proceeds (“on the fly”). We shall do the latter here. Also, rather
than using a WFST as defined above, we shall use a known-parsing table, which shows
the partial parse trees for each combination of a grammar rule and a substring. These
two design decisions have to do with the order in which the relevant information
becomes available in the parser of Figure 12.1.

KKnnoowwnnPPaarrssiinnggTTyyppee == rreeccoorrdd SSttaarrttFFiieelldd,, EEnnddFFiieelldd:: iinntteeggeerr;; eenndd;;

KKnnoowwnnGGooaallTTyyppee ==
rreeccoorrdd

NNmmbbFFiieelldd:: RRuulleeNNmmbbTTyyppee;; PPoossFFiieelldd,, LLeennFFiieelldd:: iinntteeggeerr;;{{ tthhee ggooaall}}
SSttaarrttPPaarrssiinnggFFiieelldd:: iinntteeggeerr;; {{ tteemmppoorraarryy vvaarriiaabbllee }}
KKnnoowwnnPPaarrssiinnggFFiieelldd:: aarrrraayy [[11....AArrrraayySSiizzee]] ooff KKnnoowwnnPPaarrssiinnggTTyyppee;;
NNKKnnoowwnnPPaarrssiinnggssFFiieelldd:: iinntteeggeerr;;

eenndd;;
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KKnnoowwnnGGooaallLLiisstt:: aarrrraayy [[11....AArrrraayySSiizzee]] ooff KKnnoowwnnGGooaallTTyyppee;;
NNKKnnoowwnnGGooaallss:: iinntteeggeerr;;
KKnnoowwnnRRuulleeLLiisstt:: aarrrraayy [[11....AArrrraayySSiizzee]] ooff RRuulleeNNmmbbTTyyppee;;
NNKKnnoowwnnRRuulleess:: iinntteeggeerr;;

ffuunnccttiioonn KKnnoowwnnGGooaallNNuummbbeerr((nnmmbb:: RRuulleeNNmmbbTTyyppee;; ppooss,, lleenn:: iinntteeggeerr))::iinntteeggeerr;;
vvaarr nn:: iinntteeggeerr;;
bbeeggiinn

KKnnoowwnnGGooaallNNuummbbeerr::== 00;;
ffoorr nn::== 11 ttoo NNKKnnoowwnnGGooaallss ddoo

wwiitthh KKnnoowwnnGGooaallLLiisstt[[nn]] ddoo
iiff ((nnmmbb==NNmmbbFFiieelldd))
aanndd ((ppooss==PPoossFFiieelldd))
aanndd ((lleenn==LLeennFFiieelldd)) tthheenn

KKnnoowwnnGGooaallNNuummbbeerr::== nn;;
eenndd {{ KKnnoowwnnGGooaallNNuummbbeerr }};;

pprroocceedduurree SSttaarrttNNeewwKKnnoowwnnGGooaall((nnmmbb:: RRuulleeNNmmbbTTyyppee;; ppooss,, lleenn:: iinntteeggeerr));;
bbeeggiinn

NNKKnnoowwnnGGooaallss::== NNKKnnoowwnnGGooaallss++11;;
wwiitthh KKnnoowwnnGGooaallLLiisstt[[NNKKnnoowwnnGGooaallss]] ddoo
bbeeggiinn

NNmmbbFFiieelldd::== nnmmbb;; PPoossFFiieelldd::== ppooss;; LLeennFFiieelldd::== lleenn;;
SSttaarrttPPaarrssiinnggFFiieelldd::== NNRRuulleessSSttaacckkeedd++11;;
NNKKnnoowwnnPPaarrssiinnggssFFiieelldd::== 00;;

eenndd;;
eenndd {{ SSttaarrttNNeewwKKnnoowwnnGGooaall }};;

pprroocceedduurree RReeccoorrddKKnnoowwnnPPaarrssiinngg;;
vvaarr nn,, ii:: iinntteeggeerr;;
bbeeggiinn

wwiitthh SSttaacckk[[NNSSttaacckkEElleemmss]] ddoo
bbeeggiinn

nn::== KKnnoowwnnGGooaallNNuummbbeerr((NNmmbbFFiieelldd,, PPoossFFiieelldd,, LLeennFFiieelldd));;
wwiitthh KKnnoowwnnGGooaallLLiisstt[[nn]] ddoo
bbeeggiinn

NNKKnnoowwnnPPaarrssiinnggssFFiieelldd::== NNKKnnoowwnnPPaarrssiinnggssFFiieelldd++11;;
wwiitthh KKnnoowwnnPPaarrssiinnggFFiieelldd[[NNKKnnoowwnnPPaarrssiinnggssFFiieelldd]] ddoo
bbeeggiinn

SSttaarrttFFiieelldd::== NNKKnnoowwnnRRuulleess++11;;
ffoorr ii::== SSttaarrttPPaarrssiinnggFFiieelldd ttoo NNRRuulleessSSttaacckkeedd ddoo
bbeeggiinn

NNKKnnoowwnnRRuulleess::== NNKKnnoowwnnRRuulleess++11;;
KKnnoowwnnRRuulleeLLiisstt[[NNKKnnoowwnnRRuulleess]]::== RRuulleeSSttaacckk[[ii]];;

eenndd;;
EEnnddFFiieelldd::== NNKKnnoowwnnRRuulleess;;

eenndd;;
eenndd;;

eenndd;;
eenndd {{ RReeccoorrddKKnnoowwnnPPaarrssiinngg }};;

ffuunnccttiioonn KKnnoowwnnGGooaallSSuucccceeeeddss
((nnmmbb:: RRuulleeNNmmbbTTyyppee;; ppooss,, lleenn:: iinntteeggeerr)):: BBoooolleeaann;;
vvaarr nn,, oollddNNRRuulleessSSttaacckkeedd,, ii,, jj:: iinntteeggeerr;;
bbeeggiinn

nn::== KKnnoowwnnGGooaallNNuummbbeerr((nnmmbb,, ppooss,, lleenn));;
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iiff nn == 00 tthheenn KKnnoowwnnGGooaallSSuucccceeeeddss::== ffaallssee eellssee
bbeeggiinn

oollddNNRRuulleessSSttaacckkeedd::== NNRRuulleessSSttaacckkeedd;;
wwiitthh KKnnoowwnnGGooaallLLiisstt[[nn]] ddoo
bbeeggiinn

ffoorr ii::== 11 ttoo NNKKnnoowwnnPPaarrssiinnggssFFiieelldd ddoo
wwiitthh KKnnoowwnnPPaarrssiinnggFFiieelldd[[ii]] ddoo
bbeeggiinn

ffoorr jj::== SSttaarrttFFiieelldd ttoo EEnnddFFiieelldd ddoo
bbeeggiinn

NNRRuulleessSSttaacckkeedd::== NNRRuulleessSSttaacckkeedd++11;;
RRuulleeSSttaacckk[[NNRRuulleessSSttaacckkeedd]]::==

KKnnoowwnnRRuulleeLLiisstt[[jj]];;
eenndd;;
AAddvvaanncceeTTOOSS((lleenn));;
DDooTTooppOOffSSttaacckk;;
RReettrraaccttTTOOSS((lleenn));;
NNRRuulleessSSttaacckkeedd::== oollddNNRRuulleessSSttaacckkeedd;;

eenndd;;
eenndd;;
KKnnoowwnnGGooaallSSuucccceeeeddss::== ttrruuee;;

eenndd;;
eenndd {{ KKnnoowwnnGGooaallSSuucccceeeeddss }};;

NNKKnnoowwnnGGooaallss::== 00;; NNKKnnoowwnnRRuulleess::== 00;; {{ iinn pprroocceedduurree PPaarrssee }}

Figure 12.2 Additions for the known-parsing table

Our parser can be equipped with the known-parsing table by incorporating the
declarations of Figure 12.2 in it. SSttaarrttNNeewwKKnnoowwnnGGooaall, RReeccoorrddKKnnoowwnnPPaarrssiinngg and
KKnnoowwnnGGooaallSSuucccceeeeddss replace the dummy declarations in Figure 12.1, the other
declarations and the initialization statement are to be inserted in the appropriate places.
The thus modified parser will no longer require exponential time (if sufficient memory
is supplied; see the constant declarations).

Returning to the mechanism of the parser, we see that when a new goal is esta-
blished in TTrryyRRuullee for which IIssTTooBBeeAAvvooiiddeedd yields ffaallssee, a call is made to
KKnnoowwnnGGooaallSSuucccceeeeddss. This function accesses the known-parsing table to find out if
the goal has been pursued before. When called for the very first time, it will yield
ffaallssee since there are no known parsings yet and nnoott KKnnoowwnnGGooaallSSuucccceeeeddss will
succeed as in the unmodified parser. We enter the block that really tries the rule, pre-
ceded by a call to SSttaarrttNNeewwKKnnoowwnnGGooaall. This prepares the table for the recording of
the zero or more parsings that will be found for this new goal.

Goals are recorded in a three-level data structure. The first level is the array
KKnnoowwnnGGooaallLLiisstt, whose elements are of type KKnnoowwnnGGooaallTTyyppee. A known goal has
three fields describing the rule number, position and length of the goal and a KKnnoowwnn--
PPaarrssiinnggFFiieelldd, which is an array of elements of type KKnnoowwnnPPaarrssiinnggTTyyppee and
which forms the second level; it has also a field SSttaarrttPPaarrssiinnggFFiieelldd, which is only
meaningful while the present table entry is being constructed. Each element in KKnnoowwnn--
PPaarrssiinnggFFiieelldd describes a partial parse tree for the described goal. The partial parse
tree is represented as a list of rule numbers, just as the full parse tree. These lists are
stored one after another in the array KKnnoowwnnRRuulleeLLiisstt, which is the third level; the
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beginning and end of each parsing are recorded in the SSttaarrttFFiieelldd and EEnnddFFiieelldd of
the known parsing.

SSttaarrttNNeewwKKnnoowwnnGGooaall records the goal in a new element of KKnnoowwnnGGooaallLLiisstt. It
sets SSttaarrttPPaarrssiinnggFFiieelldd to NNRRuulleessSSttaacckkeedd++11, since that is the position in RRuulleeSS--
ttaacckk where the first rule number for the present goal will go. When the main mechan-
ism of the parser has found a parsing for the goal (in DDooNNeexxttOOnnSSttaacckk) it calls
RReeccoorrddKKnnoowwnnPPaarrssiinngg, which adds the parsing found in RRuulleeSSttaacckk between
SSttaarrttPPaarrssiinnggFFiieelldd and NNRRuulleessSSttaacckkeedd to the present known goal under con-
struction. To this end, it finds the pertinent element in KKnnoowwnnGGooaallLLiisstt, adds an ele-
ment to the corresponding KKnnoowwnnPPaarrssiinnggFFiieelldd and copies the parsing to the array
KKnnoowwnnRRuulleeLLiissttwhile recording the begin and end in the element in KKnnoowwnnPPaarrssiinngg--
FFiieelldd. There is no need to signal the end of the construction of a known goal. Note
that as long as the goal is under construction, it is also on the parse stack; this means
that IIssTTooBBeeAAvvooiiddeedd will yield ttrruuee which in turn guarantees that SSttaarrttNNeewwKKnnoowwnn--
GGooaall will not be called again while the known goal is being constructed.

The next time the goal is tried by TTrryyRRuullee, KKnnoowwnnGGooaallSSuucccceeeeddss will indeed
succeed: for each of the elements in the pertinent KKnnoowwnnPPaarrssiinnggFFiieelldd, the
corresponding segment of KKnnoowwnnRRuulleeLLiisstt, which contains one partial parse tree, is
copied to the RRuulleeSSttaacckk as if the parsing had been performed normally. The advance
in length is noted and DDooTTooppOOffSSttaacckk is called, again just as in the normal parsing pro-
cess. Upon its return, the original situation is restored, including the value of NNRRuu--
lleessSSttaacckkeedd.

It will be obvious that copying a ready-made solution is much faster than recon-
structing that solution. That it makes the difference between exponential and polyno-
mial behaviour is less obvious, but true nevertheless. The unmodified parser tries
41624 rules for the built-in example, the parser with the known-parsing table only 203.
The new parser can be improved considerably in many points, with a corresponding
increase in efficiency; the O(n k +1) dependency remains, though.



13
Annotated bibliography

The purpose of this annotated bibliography is to supply the reader with more material
and with more detail than was possible in the preceding chapters, rather than to just list
the works referenced in the text. The annotations cover a considerable number of sub-
jects that have not been treated in the rest of the book.

The articles and books presented here have been selected for two criteria:
relevancy and accessibility. The notion of relevancy has been interpreted very widely;
parsers are used in an increasing number of applications and relevancy to others is hard
to judge. In practice, entries have only been rejected if they were either too theoretical
or did not supply insight into or understanding of parsing. Accessibility has been taken
to mean ready availability to a researcher who has access to a moderately well-
equipped university or company research library. We expect such a library to hold most
of the prominent computer science journals, but not all or even a major part of the
proceedings of conferences on programming languages and compiler construction, let
alone technical reports from various research institutes all over the world. We have
often been forced to compromise this criterion, to include pertinent material not other-
wise available; for instance, nothing seems to have been published on left-corner pars-
ing in journals. Fortunately, relevant material that was first published in a technical
report or as a PhD thesis was often published later in a prominent journal; in these
cases a reference to the original publication can be found by consulting the journal
paper referenced here. We have kept the references to technical reports to the absolute
minimum. No non-English (that is, no non-English-language) material has been
included. It is our intention that the present collection be complete under the above cri-
teria, but we have no real hope that such perfection has been attained. We shall be
grateful to be pointed to additional references.

The bibliography contains about 400 entries, almost all of them from the Western
world. Some papers from the Soviet Union and Eastern Europe have been included, if
available in translation. Much work on parsing has been done and is still being done in
Japan; it has been sorely underrepresented in this collection, for reasons of accessibil-
ity. Only readily available full material in translation has been included, although much
more is available in the form of abstracts in English.

This annotated bibliography differs in several respects from the habitual literature
list.
� The entries have been grouped into fourteen categories:
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13.1 miscellaneous literature (Misc);
13.2 unrestricted PS and CS grammars (PSCS);
13.3 van Wijngaarden grammars and affix grammars (VW);
13.4 general context-free parsers (CF);
13.5 LL parsing (LL);
13.6 LR parsing (LR);
13.7 left-corner parsing (LC);
13.8 precedence and bounded-context parsing (Precedence);
13.9 finite-state automata (FS);
13.10 natural language handling (NatLang);
13.11 error handling (ErrHandl);
13.12 transformations on grammars (Transform);
13.13 general books on parsing (Books);
13.14 some books on computer science (CSBooks).
The nature of publications in parsing is so that the large majority of them can
easily be assigned a single category. Some that span two categories have been
placed in one, with a reference in the other. Publications of a more general nature
have found a place in “Miscellaneous Literature”.

� The entries are annotated. This annotation is not a copy of the abstract provided
with the paper (which generally said something about the results obtained) but is
rather the result of an attempt to summarize the technical content in terms of what
has been explained elsewhere in this book.

� The entries are ordered chronologically rather than alphabetically.
This arrangement has the advantage that it is much more meaningful than a single
alphabetic list, ordered on author names. Each section can be read as the history of
research on that particular aspect of parsing, related material is found closely
together and recent material is easily separated from older publications. A disad-
vantage is that it is now difficult to locate entries by author; to remedy this, an
author index has been supplied. Only a tiny fraction of the entries is referred to in
the previous chapters; these occurrences are also included in the author index.

Terms from computer science have been used more freely in the annotations than in the
rest of the book (an example is “transitive closure”). See, for instance, Sedgewick
[CSBooks 1988] or Smith [CSBooks 1989] for an explanation.

Note that there is a journal called Computer Languages (Elmsford, NY) and one
called Computer Language (San Francisco, CA); both abbreviate to Comput. Lang.; the
place name is essential to distinguish between them (although the first originates from
Exeter, Devon, England).

13.1 MISCELLANEOUS LITERATURE
� Noam Chomsky, “Three models for the description of language”, IEEE Trans.

Inform. Theory, vol. 2, no. 3, p. 113-124, 1956. In an attempt to delineate the set of
correct English sentences, the author considers three mechanisms. Finite-state automata are rejected on
the grounds that they cannot cope with arbitrary nesting. Phrase structure grammars are considered prob-
ably applicable but declared impractical due to their problems in expressing context conditions. Most of
these problems can be solved if we augment PS grammars with transformation rules, which specify the
rearrangement of parts of the derivation tree.

� Noam Chomsky, “On certain formal properties of grammars”, Inform. Control,
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vol. 2, p. 137-167, 1959. This article discusses what later became known as the Chomsky
hierarchy. Chomsky defines type 1 grammars in the “context-sensitive” way. His motivation for this is
that it permits the construction of a tree as a structural description. Type 2 grammars exclude ε-rules, so
in Chomsky’s system, type 2 grammars are a subset of type 1 grammars.
Next, the so called counter languages are discussed. A counter language is a language recognized by a
finite automaton, extended with a finite number of counters, each of which can assume infinitely many
values. L 1={a nb n | n>0} is a counter language, L 2={xy | x,y∈{a,b}* , y is the mirror image of x} is not,
so there are type 2 languages that are not counter languages. The reverse is not investigated.
The Chomsky Normal Form is introduced, but not under that name, and a bit different: Chomsky calls a
type 2 grammar regular if production rules have the form A→a or A→BC, with B≠C, and if A→αAβ
and A→γAη then α=γ and β=η. A grammar is self-embedding if there is a derivation A→* αAβ with α≠ε
and β≠ε. The bulk of the paper is dedicated to the theorem that the extra power of type 2 grammars over
type 3 grammars lies in this self-embedding property.

� J.W. Backus, F.L. Bauer, J. Green, C. Katz, J. McCarthy, P. Naur (Ed.), A.J.
Perlis, H. Rutishauser, K. Samelson, B. Vauquois, J.H. Wegstein, A.
van Wijngaarden, M. Woodger, “Report on the algorithmic language ALGOL
60”, Commun. ACM, vol. 3, no. 5, p. 299-314, May 1960. First application of a BNF

grammar (for the definition of a programming language). Revised report by the same authors: Commun.
ACM, vol. 6, no. 1, p. 1-17, Jan 1963.

� R.A. Brooker, I.R. MacCallum, D. Morris, J.S. Rohl, “The compiler-compiler”,
Annual Review in Automatic Programming, vol. 3, p. 229-275, 1960 ????. One of

the first extensive descriptions of a compiler-compiler. Parsing is done by a backtracking non-exhaustive
top-down parser using a transduction-like grammar. This grammar is kept in an integrated form and
modifications can be made to it while parsing.

� Robert W. Floyd, “A descriptive language for symbol manipulation”, J. ACM,
vol. 8, p. 579-584, Oct 1961. Original paper describing Floyd productions. See Section 9.3.1.

� Robert S. Ledley, James B. Wilson, “Automatic-programming-language transla-
tion through syntactical analysis”, Commun. ACM, vol. 5, no. 3, p. 145-155,
March 1962. An English-to-Korean (!) translation system is described in detail, in which parts

of the Korean translation are stored in attributes in the parse tree, to be reordered and interspersed with
Korean syntactic markers on output. The parser is Irons’ [CF 1961].

� Melvin E. Conway, “Design of a separable transition-diagram compiler”, Com-
mun. ACM, vol. 6, no. 7, p. 396-408, July 1963. The first to introduce coroutines and to

apply them to structure a compiler. The parser is Irons’ [CF 1961], made deterministic by a No-Loop
Condition and a No-Backup Condition. It follows transition diagrams rather than grammar rules.

� Robert W. Floyd, “The syntax of programming languages − a survey”, IEEE
Trans. Electronic Comput., vol. EC-13, p. 346-353, 1964. Early analysis of the

advantages of and problems with the use of grammars for the specification of programming languages.
Contains a bibliography of almost 100 entries.

� Jerome Feldman, David Gries, “Translator writing systems”, Commun. ACM,
vol. 11, no. 2, p. 77-113, Feb. 1968. Grand summary of the work done on parsers (with

semantic actions) before 1968.

� D.J. Cohen, C.C. Gotlieb, “A list structure form of grammars for syntactic
analysis”, Computing Surveys, vol. 2, no. 1, p. 65-82, 1970. CF rules are represented as

linked lists of alternatives, which themselves are linked lists of members. The trick is that both lists end
in different null pointers. This representation is very amenable to various backtracking and non-
backtracking top-down and bottom-up parsing methods (by interpreting the grammar). Several practical
parsers are given in flowchart form. An algorithm is given to “invert” a grammar, i.e. the linked lists, to
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create a data structure that will efficiently guide a bottom-up parser.

� A. Birman, J.D. Ullman, “Parsing algorithms with backtrack”, Inform. Control,
vol. 23, no. 1, p. 1-34, 1973. Models classes of recursive descent parsers, capable of

recognizing all deterministic context-free languages and also some non-context-free languages.

� B.W. Kernighan, L.L. Cherry, “A system for typesetting mathematics”, Commun.
ACM, vol. 18, no. 3, p. 151-157, March 1975. A good example of the use of an

ambiguous grammar to specify the preferred analysis of special cases.

� A.V. Aho, S.C. Johnson, J.D. Ullman, “Deterministic parsing of ambiguous gram-
mars”, Commun. ACM, vol. 18, no. 8, p. 441-452, 1975. Demonstrates how LL and LR

parsers can be constructed for certain classes of ambiguous grammars, using simple disambiguating
rules, such as operator-precedence.

� Jacques Cohen, “Experience with a conversational parser generation system”,
Softw. Pract. Exper., vol. 5, p. 169-180, 1975. Realistic description of the construction of

a professional interactive parser generator.

� Jay Earley, “Ambiguity and precedence in syntax description”, Acta Inform., vol.
4, p. 183-192, 1975. Informal description of how to use precedence information for

disambiguation.

� Michael Marcotty, Henry F. Ledgard, Gregor V. Bochmann, “A sampler of for-
mal definitions”, Computing Surveys, vol. 8, no. 2, p. 191-276, June 1976.

Describes and compares four semantic definition methods: VW grammars, production systems and the
axiomatic approach, Vienna Definition Language, and attribute grammars. No clear winner emerges.

� R.M. Wharton, “Resolution of ambiguity in parsing”, Acta Inform., vol. 6, no. 4,
p. 387-395, 1976. It is proposed that ambiguity be resolved in a bottom-up parser by 1)

reducing upon a shift/reduce conflict, 2) reducing the shorter right-hand side upon a reduce/reduce con-
flict and 3) reducing the textual first right-hand side upon a reduce/reduce conflict with equal lengths. In
a top-down parser, criteria similar to 2) and 3) are applied to each LL(1) conflict.

� R.B. Hunter, A.D. McGettrick, R. Patel, “LL versus LR parsing with illustrations
from Algol 68”, ACM SIGPLAN Notices, vol. 12, no. 6, p. 49-53, June 1977.

Syntax-improved LL(1) (Foster [Transform 1968]) and LR(1) are equally unsuccessful in handling a CF
version of the grammar of Algol 68. After hand adaptation LL(1) has the advantage.

� Niklaus Wirth, “What can we do about the unnecessary diversity of notation for
syntactic definitions?”, Commun. ACM, vol. 20, no. 11, p. 822-823, Nov 1977.

Introduces Wirth’s notation for extended CF grammars, using {{......}} for repetition, [[......]] for optional-
ity, ((......)) for grouping and ""......"" for quoting.

� Jacques Cohen, Martin S. Roth, “Analyses of deterministic parsing algorithms”,
Commun. ACM, vol. 21, no. 6, p. 448-458, June 1978. Gives methods to calculate the

average parsing times and their standard deviations from the input grammar, for several parsers. The
resulting formulae are finite series, and are sometimes given in closed form.

� Kuo-Chung Tai, “On the implementation of parsing tables”, ACM SIGPLAN
Notices, vol. 14, no. 1, p. 100-101, Jan 1979. How to implement parsing tables using

hashing.

� Peter Deussen, “One abstract accepting algorithm for all kinds of parsers”. In
Automata, languages and programming, Hermann A. Maurer (eds.), Lecture
Notes in Computer Science #71, Springer-Verlag, Berlin, p. 203-217, 1979. Parsing
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is viewed as an abstract search problem, for which a high-level algorithm is given. The selection predi-
cate involved is narrowed down to give known linear parsing methods.

� Robert Endre Tarjan, Andrew Chi-Chih Yao, “Storing a sparse table”, Commun.
ACM, vol. 22, no. 11, p. 606-611, Nov. 1979. Two methods of storing sparse tables are

presented and analysed: trie structure and double displacement.

� Hanan Samet, “A coroutine approach to parsing”, ACM Trans. Prog. Lang. Syst.,
vol. 2, no. 3, p. 290-306, July 1980. Some inputs consist of interleaved chunks of text

conforming to different grammars. An example is programming text interrupted at unpredictable points
by macro-processor directives. This situation can be handled by having separate parsers for each gram-
mar, cooperating in coroutine fashion.

� Anton Nijholt, “Parsing strategies: A concise survey”. In Mathematical Founda-
tions of Computer Science, J. Gruska & M. Chytil (eds.), Lecture Notes in Com-
puter Science #118, Springer-Verlag, Berlin, p. 103-120, 1981. The context-free

parser and language field is surveyed in terse prose. Highly informative to the connoisseur.

� Esko Ukkonen, “Lower bounds on the size of deterministic parsers”, J. Comput.
Syst. Sci., vol. 26, p. 153-170, 1983. Worst-case lower bounds for the parser sizes are given

for the various classes of LL(k) and LR(k) parsers for k=0,1 and k≥2. All LL(k) lower bounds are poly-
nomial, except the one for full LL(k >1), which is exponential; all LR(k) bounds are exponential.

� Fernando C.N. Pereira, David H.D. Warren, “Parsing as deduction”. In Proceed-
ings of the 21st Annual Meeting of the Association for Computational Linguistics,
Cambridge, Mass., p. 137-144, 1983. The Prolog deduction mechanism is top-down depth-

first. It can be exploited to do parsing, using Definite Clause grammars. Parsing can be done more effi-
ciently with Earley’s technique. The corresponding Earley deduction mechanism is derived and
analysed.

� Anton Nijholt, Deterministic top-down and bottom-up parsing: historical notes
and bibliographies, Mathematisch Centrum, Amsterdam, p. 118, 1983. Over a 1000

references about LL(k), LR(k) and precedence parsing, with short histories and surveys of the three
methods.

� Peter Dencker, Karl Dürre, Johannes Heuft, “Optimization of parser tables for
portable compilers”, ACM Trans. Prog. Lang. Syst., vol. 6, no. 4, p. 546-572, Oct
1984. Given an n×m parser table, an n×m bit table is used to indicate which entries are error

entries; this table is significantly smaller than the original table and the remaining table is now sparse
(typically 90-98% don’t-care entries). The remaining table is compressed row-wise (column-wise) by
setting up an interference graph in which each node corresponds to a row (column) and in which there is
an edge between any two nodes the rows (columns) of which occupy an element in the same position. A
(pseudo-)optimal partitioning is found by a minimal graph-colouring heuristic.

� W.M. Waite, L.R. Carter, “The cost of a generated parser”, Softw. Pract. Exper.,
vol. 15, no. 3, p. 221-237, 1985. Supports with measurements the common belief that

compilers employing generated parsers suffer significant performance degradation with respect to recur-
sive descent compilers. Reasons: interpretation of parse tables versus direct execution, attribute storage
allocation and the mechanism to determine which action(s) to perform. Then, a parser interface is pro-
posed that simplifies integration of the parser; implementation of this interface in assembly language
results in generated parsers that cost the same as recursive descent ones. The paper does not consider
generated recursive descent parsers.

� Gerard D. Finn, “Extended use of null productions in LR(1) parser applications”,
Commun. ACM, vol. 28, no. 9, p. 961-972, Sept 1985. Extensive account of how to use

an LR parser for conversion purposes. Makes a strong case for the use of parsers for conversion.
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Contains a good introduction to parsing.

� Robert Gerardy, “Experimental comparison of some parsing methods”, ACM
SIGPLAN Notices, vol. 22, no. 8, p. 79-88, Aug 1987. Experimental time measurements

for recursive descent, operator-precedence and SLR(1) parsing show a ratio of 1 : 4 : 10, in that order.
All parsers were written in Pascal and parsed a mini-Pascal language.

� Michael Share, “Resolving ambiguities in the parsing of translation grammars”,
ACM SIGPLAN Notices, vol. 23, no. 8, p. 103-109, Aug 1988. The UNIX LALR

parser generator yacc is extended to accept LALR conflicts and to produce a parser that requests an
interactive user decision when a conflict occurs while parsing. The system is used in document conver-
sion.

� Josef Grosch, “Generators for high-speed front-ends”. In Compiler Compilers
and High-Speed Compilation, D. Hammer (eds.), Lecture Notes in Computer Sci-
ence #371, Springer-Verlag, Berlin, p. 81-92, 1989. A coherent system of lexical

scanner generator, LALR(1) parser generator and LL(1) parser generator, using a uniform input syntax,
is presented. The scanner beats UNIX lex by a factor of 5, the LALR parser beats yacc by a factor of 2.

� Vance E. Waddle, “Production trees: a compact representation of parsed pro-
grams”, ACM Trans. Prog. Lang. Syst., vol. 12, no. 1, p. 61-83, Jan 1990.

Redundant items are removed from a traditional parse tree through a number of techniques: unit produc-
tions are contracted, terminals symbols are removed, structure information in links is replaced by a rule
number, etc. Each node in the resulting parse tree corresponds to one right-hand side and contains the
rule number and a list of pointer to the nodes for the non-terminals in the right-hand side. A space saving
of a factor 20 is achieved on the average. A grammar form that corresponds more closely to this
representation is defined.

� Frank G. Pagan, “Comparative efficiency of general and residual parsers”, ACM
SIGPLAN Notices, vol. 25, no. 4, p. 59-68, April 1990. The switch from table-driven

LL(1) to recursive descent or from table-driven LR(1) to recursive ascent is viewed as an example of
partial computation. Underlying theory and examples are given.

� Boris Burshteyn, “On the modification of the formal grammar at parse time”,
ACM SIGPLAN Notices, vol. 25, no. 5, p. 117-123, May 1990. Modifying the

grammar under control of and utilizing information obtained by the parsing process is proposed as a
means of handling context-sensitivity. For example, the recognition of the declaration of an array aaaaaa
could cause the introduction of a new grammar rule expr→aaaaaa[[expr]], (generated from a template), thus
allowing forms like aaaaaa[[33]] to be used. With a correction in the same journal, Vol. 25, No. 8, p 6.

13.2 UNRESTRICTED PS AND CS GRAMMARS

This section also covers some other non-context-free grammar types, excluding VW
(two-level) grammars and affix grammars, for which see Section 13.3.

� Alfred V. Aho, “Indexed grammars − an extension of context-free grammars”, J.
ACM, vol. 15, no. 4, p. 647-671, Oct 1968. In an indexed grammar, each non-terminal N

in a sentential form is followed by zero or more “indices”, which govern which of the alternatives for N
are allowed for this occurrence of N. The indices propagate according to specific rules.
L (CF) ⊂ L (Indexed) ⊂ L (CS).

� William A. Woods, “Context-sensitive parsing”, Commun. ACM, vol. 13, no. 7, p.
437-445, July 1970. The paper presents a canonical form for context-sensitive (ε-free)

derivation trees. Parsing is then performed by an exhaustive guided search over these canonical forms
exclusively. This guarantees that each possible parsing will be found exactly once.
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� Jacques Loeckx, “The parsing for general phrase-structure grammars”, Inform.
Control, vol. 16, p. 443-464, 1970. The paper sketches two non-deterministic parsers for PS

grammars, one top-down, which tries to mimic the production process and one bottom-up, which tries to
find a handle. The instructions of the parsers are derived by listing all possible transitions in the gram-
mar and weeding out by hand those that cannot occur. Trial-and-error methods are discussed to resolve
the non-determinism, but no instruction selection mechanisms are given. Very readable, nice pictures.

� Daniel A. Walters, “Deterministic context-sensitive languages, Parts I & II”,
Inform. Control, vol. 17, no. 1, p. 14-61, 1970. The definition of LR(k) grammars is

extended to context-sensitive grammars. Emphasis is more on theoretical properties than on obtaining a
parser.

� Z.J. Ghandour, “Formal systems and analysis of context-sensitive languages”,
Computer J., vol. 15, no. 3, p. 229-237, 1972. Ghandour describes a formal production

system that is in some ways similar to but far from identical to a two-level grammar. A hierarchy of 4
classes is defined on these systems, with Class 1 ⊇ Class 2 ⊃ Class 3 ⊃ Class 4, Class 1 ⊇ CS and Class
4 = CF. A parsing algorithm for Class 1 systems is given in fairly great detail.

� N.A. Khabbaz, “Multipass precedence analysis”, Acta Inform., vol. 4, p. 77-85,
1974. A hierarchy of CS grammars is given that can be parsed using multipass precedence

parsing. The parser and the table construction algorithm are given explicitly.

� Eberhard Bertsch, “Two thoughts on fast recognition of indexed languages”,
Inform. Control, vol. 29, p. 381-384, 1975. Proves that parsing with (tree-)unambiguous

indexed grammars is possible in O(n 2) steps.

� Robert W. Sebesta, Neil D. Jones, “Parsers for indexed grammars”, Intern. J.
Comput. Inform. Sci., vol. 7, no. 4, p. 344-359, Dec 1978. Very good explanation of

indexed grammars. Three classes of indexed grammars are defined, corresponding to strong-LL, LL and
LR, respectively. It is shown that the flag sets generated by indexed grammars are regular sets.

� C.J.M. Turnbull, E.S. Lee, “Generalized deterministic left to right parsing”, Acta
Inform., vol. 12, p. 187-207, 1979. The LR(k) parsing machine is modified so that the

reduce instruction removes the reduced right-hand side from the stack and pushes an arbitrary number of
symbols back into the input stream. (The traditional LR(k) reduce is a special case of this: it pushes the
recognized non-terminal back into the input and immediately shifts it. The technique is similar to that put
forward by Dömölki [CF 1968].) The new machine is capable of parsing efficiently a subset of the Type
0 grammars, DRP grammars (for Deterministic Regular Parsable). Membership of this subset is unde-
cidable, but an approximate algorithm can be constructed by extending the LR(k) parse table algorithm.
Details are not given, but can be found in a technical report by the first author.

� Kurt Mehlhorn, “Parsing macro grammars top down”, Inform. Control, vol. 40,
no. 2, p. 123-143, 1979. Macro grammars are defined as follows. The non-terminals in a CF

grammar are given parameters, as if they were routines in a programming language. The values of these
parameters are strings of terminals and non-terminals (the latter with the proper number of parameters).
A parameter can be passed on, possibly concatenated with some terminals and non-terminals, or can be
made part of the sentential form. An algorithm to construct a recursive-descent parser for a macro gram-
mar (if possible) is given.

� G. Barth, “Fast recognition of context-sensitive structures”, Computing, vol. 22,
p. 243-256, 1979. A recording grammar (an RG) is a CF grammar in which each (numbered)

production rule belongs to one of three classes: normal, recording and directed. During production, nor-
mal rules behave normally and a recording rule records its own occurrence by appending its number to a
string called the π-element. When production leaves a “recording” stage, the entire π-element is added to
a set called the Ω-component, which collects all contexts created so far. When production enters a
“directed” stage, an element (a context) is retrieved from the Ω-component, transferred through a
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mapping I and used to direct the choice of production rules until the element is exhausted. The expres-
sive power of RGs is equal to that of Type 0 grammars.
An LL(k) version of RGs can be defined, based on LL(k)-ness of the underlying CF grammar, plus a few
simple restrictions on the mapping I; the resulting property is called RLL(k).
For parsing, an LL(k) parse is performed; during “normal” parsing, nothing special is done, during
“recording” parsing the rule numbers are recorded and subsequently added to the Ω-component; during
“directed” parsing, which is actually “checking” parsing, the rule numbers are checked for consistency
with the Ω-component, using a simple finite transducer. The parser (+ checker) works in linear time.
It is not clear how convenient RLL(k) RGs are; neither of the two examples provided to demonstrate the
power of RGs is RLL(k).

� G.Sh. Vol’dman, “A parsing algorithm for context-sensitive grammars”, Pro-
gram. Comput. Softw., vol. 7, p. 302-307, 1981. Extends Earley’s algorithm first to

length-increasing phrase structure grammars and then to non-decreasing PS grammars (= CS grammars).
The resulting algorithm has exponential time requirements but is often much better.

� Lawrence A. Harris, “SLR(1) and LALR(1) parsing for unrestricted grammars”,
Acta Inform., vol. 24, p. 191-209, 1987. The notion of an LR(0) item can easily be defined

for unrestricted grammars: “For each item λ→µ1
� Xµ2 there is a transition on X to the item λ→µ1X � µ2

and an ε-transition to any item Xδ→ � η”, for any symbol X. These items are grouped by subset construc-
tion into the usual states, called here preliminary states, since some of them may actually be ineffective.
A GOTO function is also defined. If we can, for a given grammar, calculate the FOLLOW sets of all
left-hand sides (undecidable in the general case), we can apply a variant of the usual SLR(1) test and
construct a parsing table for a parser as described by Turnbull and Lee [PSCS 1979].
To obtain the LALR(1) definition, a look-ahead grammar system is defined that will, for each item in
each state, generate the (unrestricted) language of all continuations after that item. If we can, for a given
grammar, calculate the FIRST sets of all these languages (undecidable in the general case), we can apply
a variant of the usual LALR(1) test and construct a parsing table for a similar parser. If one of the above
constructions succeeds, a linear-time parser is obtained.
The author gives many hand-calculated examples and explores error detection properties. More general
definitions of SLR(1) and LALR(1) are possible, encompassing larger sets of grammars, at the cost of a
still further reduced chance of decidability.

13.3 VAN WIJNGAARDEN GRAMMARS AND AFFIX GRAMMARS

Note that van Wijngaarden grammars and two-level grammars are synonyms; affix
grammars are different.

� M. Sintzoff, “Existence of a van Wijngaarden syntax for every recursively enu-
merable set”, Annales de la Société Scientifique de Bruxelles, vol. 81, no. II, p.
115-118, 1967. A relatively simple proof of the theorem that for every semi-Thue system we

can construct a VW grammar that produces the same set.

� A. van Wijngaarden, B.J. Mailloux, J.E.L. Peck, C.H.A. Koster, M. Sintzoff,
C.H. Lindsey, L.G.L.T. Meertens, R.G. Fisker, “Revised report on the algorithmic
language ALGOL 68”, Acta Inform., vol. 5, p. 1-236, 1975. VW grammars found their

widest application to date in the definition of ALGOL 68. Section 1.1.3 of the ALGOL 68 Revised
Report contains a very carefully worded description of the two-level mechanism. The report contains
many interesting applications.

� C.H.A. Koster, “Affix grammars”. In ALGOL 68 Implementation, J.E.L. Peck
(eds.), North-Holland Publ. Co., Amsterdam, p. 95-109, 1971. Context conditions are

expressed inside a context-free grammar by introducing affixes, which are divided in derived and inher-
ited and which have to fulfill user-defined primitive predicates. If the affix grammar is well-formed, a
parser for it can be constructed.
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� David Crowe, “Generating parsers for affix grammars”, Commun. ACM, vol. 15,
no. 8, p. 728-734, Aug 1972. A bounded-context (Floyd productions) parser is extended with

affix manipulation.

� A. van Wijngaarden, “The generative power of two-level grammars”. In Auto-
mata, Languages and Programming, J. Loeckx (eds.), Lecture Notes in Computer
Science #14, Springer-Verlag, Berlin, p. 9-16, 1974. The generative power of VW

grammars is illustrated by creating a VW grammar that simulates a Turing machine; the VW grammar
uses only one metanotion, thus proving that one metanotion suffices.

� Sheila A. Greibach, “Some restrictions on W-grammars”, Intern. J. Comput.
Inform. Sci., vol. 3, no. 4, p. 289-327, 1974. The consequences of two easily checkable

restrictions on the form of the rules in a VW grammar are explored in great detail and are found to be
surprising. Although this highly technical paper is not directly concerned with parsing, it is very instruc-
tive in that it shows methods of exploring the field.

� C.H.A. Koster, “Two-level grammars”. In Compiler Construction: An Advanced
Course, F.L. Bauer & J. Eickel (eds.), Lecture Notes in Computer Science #21,
Springer-Verlag, Berlin, p. 146-156, 1974. Easy introduction to two-level (VW)

grammars, starting from one-level VW grammars. Examples of practical handling of context in a VW
grammar.

� P. Deussen, “A decidability criterion for van Wijngaarden grammars”, Acta
Inform., vol. 5, p. 353-375, 1975. The criterion, which is given in detail, can be paraphrased

very roughly as follows: the language generated by a VW grammar is decidable if (but not only if) there
are no ε-rules and either there are no free metanotions (occurring on the right-hand side only) or there are
no dummy metanotions (occurring on the left-hand side only).

� David A. Watt, “The parsing problem for affix grammars”, Acta Inform., vol. 8,
p. 1-20, 1977. A technique is described to convert an affix grammar into a CF grammar called a

head grammar which contains a special kind of non-terminal, copy-symbols. For the head grammar they
are ε-rules, but for the affix grammar they effect affix manipulations on the affix stack. Primitive predi-
cates are also ε-rules, but do checks on the affixes. Parsing is done by any CF parser, preferably LR(1).
The affixes are not used to control the parsing but only to declare an input string erroneous: for the tech-
nique to work, the affix grammar must in effect be an attribute grammar.

� J. Craig Cleaveland, Robert C. Uzgalis, Grammars for Programming Languages,
Elsevier, New York, p. 154, 1977. In spite of its title, the book is a highly readable

explanation of two-level grammars, also known as van Wijngaarden grammars or VW grammars. After
an introductory treatment of formal languages, the Chomsky hierarchy and parse trees, it is shown to
what extent CF languages can be used to define a programming language. These are shown to fail to
define a language completely and the inadequacy of CS grammars is demonstrated. VW grammars are
then explained and the remainder of the book consists of increasingly complex and impressive examples
of what a VW grammar can do. These examples include keeping a name list, doing type checking and
handling block structure in the definition of a programming language. Recommended reading.

� R. Meersman, G. Rozenberg, “Two-level meta-controlled substitution gram-
mars”, Acta Inform., vol. 10, p. 323-339, 1978. The authors prove that the uniform

substitution rule is essential for two-level grammars; without it, they would just generate the CF
languages. This highly technical paper examines a number of variants of the mechanisms involved.

� Lutz Wegner, “Bracketed two-level grammars − a decidable and practical
approach to language definition”. In Automata, languages and programming, Her-
mann A. Maurer (eds.), Lecture Notes in Computer Science #71, Springer-Verlag,
Berlin, p. 668-682, 1979. The metanotions of a VW grammar are partitioned into two blocks,
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“synthesized” and “derived”; they are separated in a hyperrule by special markers, “brackets”, and are
treated more or less as attributes. Under reasonable conditions parsability can be obtained. The thus res-
tricted VW grammars are very readable.

� Lutz Michael Wegner, “On parsing two-level grammars”, Acta Inform., vol. 14,
p. 175-193, 1980. The article starts by defining a number of properties a VW grammar may

exhibit; among these are “left(right) bound”, “free of hidden empty notions”, “uniquely assignable” and
“locally unambiguous”. Most of these properties are undecidable, but sub-optimal tests can be devised.
For each VW grammar GVW , a CF skeleton grammar GSK is defined by considering all hypernotions in
the VW grammar as non-terminals of GSK and adding the cross-references of the VW grammar as pro-
duction rules to GSK . GSK generates a superset of GVW . The cross-reference problem for VW grammars is
unsolvable but again any sub-optimal algorithm (or manual intervention) will do. Parsing is now done by
parsing with GSK and then reconstructing and testing the metanotions. A long list of conditions necessary
for the above to work are given; these conditions are in terms of the properties defined at the beginning.

� Dick Grune, “How to produce all sentences from a two-level grammar”, Inform.
Process. Lett., vol. 19, p. 181-185, Nov 1984. All terminal productions are derived

systematically in breadth-first order. The author identifies pitfalls in this process and describes remedies.
A parser is used to identify the hyperrules involved in a given sentential form. This parser is a general
CF recursive descent parser to which a consistency check for the metanotions has been added; it is not
described in detail.

� A.J. Fisher, “Practical LL(1)-based parsing of van Wijngaarden grammars”, Acta
Inform., vol. 21, p. 559-584, 1985. Fisher’s parser is based on the idea that the input string

was generated using only a small, finite, part of the infinite strict grammar that can be generated from
the VW grammar. The parser tries to reconstruct this part of the strict grammar on the fly while parsing
the input. The actual parsing is done by a top-down interpretative LL(1) parser, called the terminal
parser. It is driven by a fragment of the strict grammar and any time the definition of a non-terminal is
found missing by the terminal parser, the latter asks another module, the strict syntax generator, to try to
construct it from the VW grammar. For this technique to work, the VW grammar has to satisfy three con-
ditions: the defining CF grammar of each hyperrule is unambiguous, there are no free metanotions, and
the skeleton grammar (as defined by Wegner [VW 1980]) is LL(1). The parser system is organized as a
set of concurrent processes (written in occam), with both parsers, all hyperrule matchers and several
other modules as separate processes. The author claims that “this concurrent organization ... is strictly a
property of the algorithm, not of the implementation”, but a sequential, albeit slower, implementation
seems quite possible. The paper gives heuristics for the automatic generation of the cross-reference
needed for the skeleton grammar; gives a method to handle general hyperrules, hyperrules that fit all
hypernotions, efficiently; and pays much attention to the use of angle brackets in VW grammars.

� Jacques Cohen, Timothy J. Hickey, “Parsing and compiling using Prolog”, ACM
Trans. Prog. Lang. Syst., vol. 9, no. 2, p. 125-164, April 1987. See same paper [CF

1987].

13.4 GENERAL CONTEXT-FREE PARSERS
� E.T. Irons, “A syntax-directed compiler for ALGOL 60”, Commun. ACM, vol. 4,

no. 1, p. 51-55, Jan 1961. The first to describe a full parser. It is essentially a full backtracking
recursive descent left-corner parser. The published program is corrected in a Letter to the Editor by B.H.
Mayoh, Commun. ACM, vol. 4, no. 6, p. 284, June 1961.

� Itiroo Sakai, “Syntax in universal translation”. In Proceedings 1961 International
Conference on Machine Translation of Languages and Applied Language
Analysis, Her Majesty’s Stationery Office, London, p. 593-608, 1962. Using a

formalism that seems equivalent to a CF grammar in Chomsky Normal Form and a parser that is essen-
tially a CYK parser, the author describes a translation mechanism in which the source language sentence
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is transformed into a binary tree (by the CYK parser). Each production rule carries a mark telling if the
order of the two constituents should be reversed in the target language. The target language sentence is
then produced by following this new order and by replacing words. A simple Japanese-to-English exam-
ple is provided.

� E.T. Irons, “The structure and use of the syntax directed compiler”, Annual
Review in Automatic Programming, vol. 3, p. 207-228, 1962. Extended version of

Irons [CF 1961].

� E.T. Irons, “An error-correcting parse algorithm”, Commun. ACM, vol. 6, no. 11,
p. 669-673, Nov 1963. Contrary to the title, the most interesting part of this paper is the parser

it describes, which is essentially Earley’s algorithm without look-ahead. The invention of this parser was
prompted by the author’s dissatisfaction with the error detection properties of backtracking parsers. This
one does not backtrack, it keeps all possible parsings in parallel instead. When the set of possible pars-
ings becomes exhausted due to an error in the input, the last non-empty set is analysed for continuations,
both terminal and non-terminal, including all successors and alternatives. Then input symbols are dis-
carded until one is found that is a terminal in the continuation set or the beginning of a non-terminal in
that set. Symbols are then inserted to bridge any possible gap thus created, and parsing continues. Note
that this is essentially Röhrich’s algorithm. The author points out applications for this parser as a pattern
matcher.

� Sheila A. Greibach, “Formal parsing systems”, Commun. ACM, vol. 7, no. 8, p.
499-504, Aug 1964. “A formal parsing system G=(V,µ,T,R) consists of two finite disjoint

vocabularies, V and T, a many-to-many map, µ, from V onto T, and a recursive set R of strings in T called
syntactic sentence classes” (verbatim). This is intended to solve an additional problem in parsing, which
occurs often in natural languages: a symbol found in the input does not always uniquely identify a termi-
nal symbol from the language (for instance, will (verb) versus will (noun)). On this level, the language is
given as the entire set R, but in practice it is given through a “context-free phrase structure generator”,
i.e. a grammar. To allow parsing, this grammar is brought into what is now known as Greibach Normal
Form: each rule is of the form Z→aY 1

. . . Ym . Now a directed production analyser is defined which con-
sists of an unlimited set of pushdown stores and an input stream, the entries of which are sets of terminal
symbols, derived through µ from the lexical symbols. For each consecutive input entry, the machine
scans the stores for a top non-terminal Z for which there is a rule Z→aY 1

. . . Ym with a in the input set.
A new store is filled with a copy of the old store and the top Z is replaced by Y 1

. . . Ym ; if the resulting
store is longer than the input, it is discarded. Stores will contain non-terminals only. For each store that is
empty when the input is exhausted, a parsing has been found. This is in effect non-deterministic top-
down parsing with a one-symbol look-ahead. This is probably the first description of a parser that will
work for any CF grammar.
A large part of the paper is dedicated to undoing the damage done by converting to Greibach Normal
Form.

� T.V. Griffiths, S.R. Petrick, “On the relative efficiencies of context-free grammar
recognizers”, Commun. ACM, vol. 8, no. 5, p. 289-300, May 1965. To achieve a

unified view of the parsing techniques known at that time, the authors define a non-deterministic two-
stack machine whose only type of instruction is the replacement of two given strings on the tops of both
stacks by two other strings; the machine is started with the input on one stack and the start symbol on the
other and it “recognizes” the input if both stacks get empty simultaneously. For each parsing technique
considered, a simple mapping from the grammar to the machine instructions is given; the techniques
covered are top-down (called top-down), left-corner (called bottom-up) and bottom-up (called direct-
substitution). Next, look-ahead techniques are incorporated to attempt to make the machine deterministic.
The authors identify left-recursion as a trouble-spot. All grammars are required to be ε-free. The pro-
cedures for the three parsing methods are given in a Letter to the Editor, Commun. ACM, vol. 8, no. 10,
p. 594, Oct 1965.

� Susumu Kuno, “The predictive analyzer and a path elimination technique”, Com-
mun. ACM, vol. 8, no. 7, p. 453-462, July 1965. The author extends his predictive
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analyser (in modern terminology: an exhaustive top-down parser for grammars in Greibach Normal
Form) (see Kuno and Oettinger, reprinted by Grosz, Sparck Jones and Webber [NatLang 1986]) with a
table of well-formed substrings. Through ingenious bit manipulation the table is made to fit in a small
memory. Time gains are considerable (as expected).

� Susumu Kuno, “An augmented predicative analyzer for context-free languages −
its relative efficiency”, Commun. ACM, vol. 9, no. 11, p. 810-823, Nov 1966.

Converting a CF grammar to Greibach Normal Form often greatly distorts its structure. To keep track of
the structure, the right-hand side of each rule in the CF grammar is prefixed with a marker, a special
non-terminal which produces ε. A conversion algorithm is described that results in rules of the form
A→M +aBC . . . , where M + is a non-empty sequence of markers. The Kuno predictive analyser (see
Kuno [CF 1965]) is extended with a second stack on which the marker parts of the rules are kept. When a
parsing is found, the marker stack allows easy reconstruction of the parsing according to the original CF
grammar. The parser is compared to two other parsers, using a large number of criteria.

� D.H. Younger, “Recognition of context-free languages in time n 3”, Inform. Con-
trol, vol. 10, no. 2, p. 189-208, Feb 1967. A Boolean recognition matrix R is constructed in

a bottom-up fashion, in which R [i,l,p ] indicates that the segment of the input string starting at position i
with length l is a production of non-terminal p. This matrix can be filled in O(n 3) actions, where n is the
length of the input string. If R [0,n, 0] is set, the whole string is a production of non-terminal 0. Many of
the bits in the matrix can never be used in any actual parsing; these can be removed by doing a top-down
scan starting from R [0,n, 0] and removing all bits not reached this way. If the matrix contains integer
rather than Boolean elements, it is easy to fill it with the number of ways a given segment can be pro-
duced by a given non-terminal; this yields the ambiguity rate.

� S.H. Unger, “A global parser for context-free phrase structure grammars”, Com-
mun. ACM, vol. 11, no. 4, p. 240-247, April 1968. The Unger parser (as described in

Section 4.1) is extended with a series of tests to avoid partitionings that could never lead to success. For
instance, a section of the input is never matched against a non-terminal if it begins with a token no pro-
duction of the non-terminal could begin with. Several such tests are described and ways are given to
statically derive the necessary information (FIRST sets, LAST sets, EXCLUDE sets) from the grammar.
Although none of this changes the exponential character of the algorithm, the tests do result in a consid-
erable speed-up in practice. (There is an essential correction to one of the flowcharts given in Commun.
ACM, vol. 11, no. 6, p. 427, June 1968.)

� B.A. Chartres, J.J. Florentin, “A universal syntax-directed top-down analyzer”, J.
ACM, vol. 15, no. 3, p. 447-464, July 1968. The non-deterministic two-stack top-down

parser of Griffiths and Petrick [CF 1965] is extended with a third stack and a status variable. One stack
holds the rest of the input, the second holds the prediction that should match that input and the third holds
a tracing of the outline of the production tree constructed so far; when input and prediction stack are
empty, the third stack holds the completed parse tree. This three-stack mechanism can be run both for-
ward and backward; the status variable keeps track of the direction. By properly reacting to the values on
the tops of the stacks and the direction variable, it is possible to make the mechanism perform a full
backtracking exhaustive search. Much work is spent on handling left recursion and ε-rules.

� Bálint Dömölki, “A universal compiler system based on production rules”, BIT,
vol. 8, no. 4, p. 262-275, Oct 1968. The heart of the compiler system described here is a

production system consisting of an ordered set of production rules, which are the inverses of the gram-
mar rules; note that the notions “left-hand side” (lhs) and “right-hand side” (rhs) are reversed from their
normal meanings in this abstract. The system attempts to derive the start symbol, by always applying the
first applicable production rule (first in two respects: from the left in the string processed, and in the
ordered set of production rules). This resolves shift/reduce conflicts in favour of reduce, and
reduce/reduce conflicts by length and by the order of the production rules. When a reduction is found, the
lhs of the reducing rule is offered for semantic processing and the rhs is pushed back into the input
stream, to be reread. Since the length of the rhs is not restricted, the method can handle non-CF gram-
mars.
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The so-called “Syntactic Filter” uses a bitvector technique to determine if, and if so which, production
rule is applicable: for every symbol i in the alphabet, there is a bitvector B [i ], with one bit for each of the
positions in each lhs; this bit set to 1 if this position contains symbol i. There is also a bitvector U mark-
ing the first symbol of each lhs, and a bitvector V marking the last symbol of each lhs. Now, a stack of
bitvectors Qt is maintained, with Q 0 = 0 and Qt = ((Qt −1>>1) ∨ U) ∧ B[it], where it is the t-th input
symbol. Qt contains the answer to the question whether the last j symbols received are the first j symbols
of some lhs, for any lhs and j. A 1 “walks” through an lhs part of the Q vector, as this lhs is recognized.
An occurrence of a lhs is found if Q t ∧ V ≠ 0. After doing a replacement, t is set back k places, where k
is the length of the applied lhs, so a stack of Qt-s must be maintained. If some Qt = 0, we have an error.
An interesting implementation of the Dömölki algorithm is given by Hext and Roberts [CF 1970].

� T. Kasami, K. Torii, “A syntax-analysis procedure for unambiguous context-free
grammars”, J. ACM, vol. 16, no. 3, p. 423-431, July 1969. A rather complicated

presentation of a variant of the CYK algorithm, including the derivation of a O(n 2log n) time bound for
unambiguous Chomsky Normal Form grammars.

� J. Earley, “An efficient context-free parsing algorithm”, Commun. ACM, vol. 13,
no. 2, p. 94-102, Feb 1970. This famous paper gives an informal description of the Earley

algorithm. The algorithm is compared both theoretically and experimentally with some general search
techniques and with the CYK algorithm. It easily beats the general search techniques. Although the
CYK algorithm has the same worst-case efficiency as Earley’s, it requires O(n 3) on any grammar,
whereas Earley’s requires O(n 2) on unambiguous grammars and O(n) on bounded-state grammars. The
algorithm is easily modified to handle Extended CF grammars. (Also reprinted by Grosz, Sparck Jones
and Webber [NatLang 1986])

� J.B. Hext, P.S. Roberts, “Syntax analysis by Domölki’s algorithm”, Computer J.,
vol. 13, no. 3, p. 263-271, Aug 1970. Dömölki’s algorithm is a bottom-up parser in which

the item sets are represented as bitvectors. A backtracking version is presented which can handle any
grammar. To reduce the need for backtracking a 1-character look-ahead is introduced and an algorithm
for determining the actions on the look-ahead is given. Since the internal state is recalculated by vector
operations for each input character, the parse table is much smaller than usual and its entries are one bit
each. This, and the fact that it is all bitvector operations, makes the algorithm suitable for implementa-
tion in hardware.

� Bernard Lang, “Parallel non-deterministic bottom-up parsing”, ACM SIGPLAN
Notices, vol. 6, no. 12, p. 56-57, Dec 1971. The full breadth-first search of an Earley

parser is limited through the use of weak-precedence relations, in so far as these are unique. Abstract of a
larger technical report.

� F.P. Kaminger, “Generation, recognition and parsing of context-free languages
by means of recursive graphs”, Computing, vol. 11, no. 1, p. 87-96, 1973. Formal

description of the use of recursive graphs instead of CF grammars to describe, generate and parse
context-free languages.

� Bernard Lang, “Deterministic techniques for efficient non-deterministic parsers”.
In Automata, languages and programming, J. Loeckx (eds.), Lecture Notes in
Computer Science #14, Springer-Verlag, Berlin, p. 255-269, 1974. Explores the

theoretical properties of doing breadth-first search to resolve the non-determinism in a bottom-up auto-
maton with conflicts. See Tomita [CF 1986] for a practical realization.

� M. Bouckaert, A. Pirotte, M. Snelling, “Efficient parsing algorithms for general
context-free parsers”, Inform. Sci., vol. 8, no. 1, p. 1-26, Jan 1975. The authors

observe that the Predictor in an Earley parser will often predict items that start with symbols that can
never match the first few symbols of the present input; such items will never bear fruit and could as well
be left out. To accomplish this, they extend the k-symbol reduction look-ahead Earley parser with a t-
symbol prediction mechanism; this results in very general Mk

t parsing machines, the properties of which
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are studied, in much formal detail. Three important conclusions can be drawn. Values of k or t larger
than one lose much more on processing than they will normally gain on better prediction and sharper
reduction; such parsers are better only for asymptotically long input strings. The Earley parser without
look-ahead (M0

0) performs better than the parser with 1 symbol look-ahead; Earley’s recommendation to
use always 1 symbol look-ahead is unsound. The best parser is M0

1; i.e. use a one symbol predictive
look-ahead and no reduction look-ahead.

� L. Valiant, “General context-free recognition in less than cubic time”, J. Comput.
Syst. Sci., vol. 10, p. 308-315, 1975. Reduces CYK to bit matrix multiplication and then

applies Strassen’s† algorithm.

� C.H.A. Koster, “A technique for parsing ambiguous grammars”. In GI-4. Jahres-
tagung, D. Siefkes (eds.), Lecture Notes in Computer Science #26, Springer-
Verlag, New York, p. 233-246, 1975. Three recursive-descent parsing techniques are

described: no backtrack, partial backtrack and full backtrack.

� B. Sheil, “Observations on context-free parsing”, Statistical Methods in Linguis-
tics, p. 71-109, 1976. The author proves that any CF backtracking parser will have polynomial

time requirements if provided with a well-formed substring table (WFST), which holds the well-formed
substrings recognized so far and which is consulted before each attempt to recognize a substring. The
time requirements of the parser is O(n c+1) where c is the maximum number of non-terminals in any
right-hand side. A 2-form grammar is a CF grammar such that no production rule in the grammar has
more than two non-terminals on the right-hand side; nearly all practical grammars are already 2-form. 2-
form grammars, of which Chomsky Normal Form grammars are a subset, can be parsed in O(n 3). An
algorithm for a dividing top-down parser with a WFST is supplied. Required reading for anybody who
wants to write or use a general CF grammar. Many practical hints and opinions (controversial and other-
wise) are given.

� Susan L. Graham, Michael A. Harrison, “Parsing of general context-free
languages”. In Advances in Computing, Vol. 14, Academic Press, New York, p.
77-185, 1976. The 109 page article describes three algorithms in a more or less unified manner:

CYK, Earley’s and Valiant’s. The main body of the paper is concerned with bounds for time and space
requirements. Sharper bounds than usual are derived for special grammars, for instance, for linear gram-
mars.

� Jaroslav Král, “A top-down no backtracking parsing of general context-free
languages”. In Mathematical Foundations of Computer Science, J. Gruska (eds.),
Lecture Notes in Computer Science #53, Springer-Verlag, Berlin, p. 333-341,
1977. The states of a top-down breadth-first general CF parser are combined whenever possible,

resulting in an Earley-like parser without the bottom-up component.

� G.K. Manacher, “An improved version of the Cocke-Younger-Kasami algo-
rithm”, Comput. Lang. (Elmsford, NY), vol. 3, p. 127-133, 1978. This paper discusses

some modifications to the CYK algorithm that make it more efficient. First, the “length induction” itera-
tion of CYK is replaced by an iteration that combines sets of non-terminals that derive strings of length
j−1 with sets of non-terminals that derive strings of length k≤j−1. Then, the recognition table of CYK is
replaced by three tables of lists, where each table has a list for each non-terminal/number pair. The first
table maps a non-terminal/length pair to a list of positions, indicating where substrings of this length start
that are derived by this non-terminal. The second table maps a non-terminal/position pair to a list of
lengths, indicating the lengths of the substrings starting at this position that are derived by this non-
� ���������������������������

† Volker Strassen, “Gaussian elimination is not optimal”, Numerische Mathematik, vol. 13, p.
354-356, 1969. Shows how to multiply two 2×2 matrices using 7 multiplications rather than 8
and extends the principle to larger matrices.
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terminal. The third table maps a non-terminal/position pair to a list of lengths, indicating the lengths of
the substrings ending at this position that are derived by this non-terminal. With these modifications a
time bound O(s(n)) is established for unambiguous grammars, where s(n) is the number of triplets
(A,i, j) for which the non-terminal A derives the substring starting at position i, with length j. This is at
worst O(n 2).

� W.L. Ruzzo, “On the complexity of general context-free language parsing and
recognition”. In Automata, Languages and Programming, Hermann A. Maurer
(eds.), Lecture Notes in Computer Science #71, Springer-Verlag, Berlin, p. 489-
497, 1979. This is an extended abstract, summarizing some time requirement results: it is shown

that parsing strings of length n is only O(log n) harder than just recognizing them. Also, the time to mul-
tiply √

� �

n *√
� �

n Boolean matrices is a lower bound on the time needed to recognize all prefixes of a string,
and this, in turn, is a lower bound on the time needed to generate a convenient representation of all parses
of a string (basically the CYK recognition table, but reduced so that a non-terminal only is present in the
recognition table if it can be used to derive the sentence).

� S.L. Graham, M.A. Harrison, W.L. Ruzzo, “An improved context-free recog-
nizer”, ACM Trans. Prog. Lang. Syst., vol. 2, no. 3, p. 415-462, July 1980. The

well-formed substring table of the CYK parser is filled with dotted items as in an LR parser rather than
with the usual non-terminals. This allows the number of objects in each table entry to be reduced consid-
erably. Special operators are defined to handle ε- and unit rules.
The authors do not employ any look-ahead in their parser; they claim that constructing the recognition
triangle is pretty fast already and that probably more time will be spent in enumerating and analysing the
resulting parse trees. They speed up the latter process by removing all useless entries before starting to
generate parse trees. To this end, a top-down sweep through the triangle is performed, similar to the
scheme to find all parse trees, which just marks all reachable entries without following up any of them
twice. The non-marked entries are then removed (p. 443).
Much attention is paid to efficient implementation, using ingenious data structures.

� A. Bossi, N. Cocco, L. Colussi, “A divide-and-conquer approach to general
context-free parsing”, Inform. Process. Lett., vol. 16, no. 4, p. 203-208, May 1983.

The proposed parsing method yields for a string T two sets: a set of partial parse trees that may be incom-
plete at their left edge (which then coincides with the left end of T), called L, and a similar right-edge set
called R. To parse a string, it is cut in two pieces, each is parsed and the R set of the left-hand piece is
combined with the L set of the right-hand piece.

� Masaru Tomita, Efficient parsing for natural language, Kluwer Academic Pub-
lishers, Boston, p. 201, 1986. Tomita describes an efficient parsing algorithm to be used in a

“natural-language setting”: input strings of some tens of words and considerable but not pathological
ambiguity. The algorithm is essentially LR, starting parallel parses when an ambiguity is found in the
LR-table. Full examples are given of handling ambiguities, lexical elements with multiple meanings and
unknown lexical elements.
The algorithm is compared extensively to Earley’s algorithm by measurement and it is found to be con-
sistently five to ten times faster than the latter, in the domain for which it is intended. Earley’s algorithm
is better in pathological cases; Tomita’s fails on unbounded ambiguity. No time bounds are given expli-
citly, but graphs show a behaviour better than O(n 3). Bouckaert’s algorithm (Bouckaert, Pirotte and
Snelling [CF 1975]) is shown to be between Earley’s and Tomita’s in speed.
MacLisp programs of the various algorithms are given and the application in the Nishida and Doshita
Machine Translation System is described.

� Eiichi Tanaka, Mitsuru Ikeda, Kimio Ezure, “Direct parsing”, Patt. Recog., vol.
19, no. 4, p. 315-323, 1986. Variants of Unger’s and Earley’s parser are compared in a

chromosome recognition situation. The possibility of stopping the Unger parser after the first parsing has
been found is exploited.

� Jacques Cohen, Timothy J. Hickey, “Parsing and compiling using Prolog”, ACM
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Trans. Prog. Lang. Syst., vol. 9, no. 2, p. 125-164, April 1987. Several methods are
given to convert grammar rules into Prolog clauses. In the bottom-up method, a rule E→E+T
corresponds to a clause reduce ([n (t), t (+),n (e) | X ],[n (e) | X ]) where the parameters represent the stack
before and after the reduction. In the top-down method, a rule T ′→*FT ′ corresponds to a clause
rule (n (tprime),[t (*),n ( f ),n (tprime)]). A recursive descent parser is obtained by representing a rule
S→aSb by the clause s (ASB) :− append (A,SB,ASB),append (S,B,SB),a (A),s (S),b (B). which attempts
to cut the input list ASB into three pieces A, S and B, which can each be recognized as an a, an s and a b,
respectively. A fourth type of parser results if ranges in the input list are used as parameters: s (X 1,X 4)
:− link (X 1,a,X 2),s (X 2,X 3), link (X 3,b,X 4) in which link (P,x,Q) describes that the input contains the
token x between positions P and Q. For each of these methods, ways are given to limit non-determinism
and backtracking, resulting among others in LL(1) parsers.
By supplying additional parameters to clauses, context conditions can be constructed and carried around,
much as in a VW grammar (although this term is not used). It should be noted that the resulting Prolog
programs are actually not parsers at all: they are just logic systems that connect input strings to parsings.
Consequently they can be driven both ways: supply a string and it will produce the parsing; supply a
parsing and it will produce the string; supply nothing and it will produce all strings with their parsings in
the language.
As a separate topic, it is shown that Prolog is an effective language to do grammar manipulation in: cal-
culation of FIRST and FOLLOW sets, etc. As an equally unrelated topic, examples of code generation
in Prolog are shown.

� Masaru Tomita, “An efficient augmented-context-free parsing algorithm”, Am. J.
Comput. Linguist., vol. 13, no. 1-2, p. 31-46, Jan-June 1987. Tomita’s parser [CF

1986] is extended with Boolean functions for the non-terminals that decide if a proposed reduce is appli-
cable given the context. A method for deriving these functions in Lisp from more abstract specifications
is given.

13.5 LL PARSING
� R. Kurki-Suonio, “On top-to-bottom recognition and left recursion”, Commun.

ACM, vol. 9, no. 7, p. 527-528, July 1966. Gives a good account of Greibach’s algorithm
for the removal of left-recursion from a grammar. The resulting distortion of the parsing process is coun-
tered by leaving (ε-producing) markers in the grammar at the original ends of the right-hand sides in a
left-recursive rule. This 2-page paper also gives an algorithm for removing ε-rules. Again, these leave
markers behind, which can interfere with the markers from a possibly subsequent removal of left-
recursion. Rules for solving this interference are given.

� K. Čulik II, “Contribution to deterministic top-down analysis of context-free
languages”, Kybernetica, vol. 5, no. 4, p. 422-431, 1968. This paper introduces LL(f)

grammars where f is a function mapping strings of terminals to an arbitrary range, always uniquely deter-
mining a right-hand side. f is called a distinctive function.

� P.M. Lewis II, R.E. Stearns, “Syntax-directed transduction”, J. ACM, vol. 15, no.
3, p. 465-488, 1968. Although this article is about transduction, it is often given as a reference

for LL(k), because it is one of the first articles discussing the LL(k) property, and it has an appendix on
the recognition of LL(k) languages.

� D. Wood, “The theory of left factored languages, Part I”, Computer J., vol. 12,
no. 4, p. 349-356, 1969. A description of a variant of LL(1) grammars and parsing.

� R. Kurki-Suonio, “Notes on top-down languages”, BIT, vol. 9, p. 225-238, 1969.
Gives several variants of the LL(k) condition. Also demonstrates the existence of an LL(k) language
which is not LL(k−1).

� D. Wood, “The theory of left factored languages, Part II”, Computer J., vol. 13,
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no. 1, p. 55-62, 1970. More results about LL(1) and LL(k) grammars, including a recursive-
descent parser in pseudo-Algol 60.

� D.J. Rosenkrantz, R.E. Stearns, “Properties of deterministic top-down gram-
mars”, Inform. Control, vol. 17, p. 226-256, 1970. Many formal properties of LL(k)

grammars are derived and tests for LL(k) and strong-LL(k) are given.

� Donald E. Knuth, “Top-down syntax analysis”, Acta Inform., vol. 1, p. 79-110,
1971. A Parsing Machine (PM) is defined, which is effectively a set of mutually recursive

Boolean functions which absorb input if they succeed and absorb nothing if they fail. Properties of the
languages accepted by PMs are examined. This leads to CF grammars, dependency graphs, the null string
problem, back-up, LL(k), follow-function, LL(1), s-languages and a comparison of top-down versus
bottom-up parsing. The author is one of the few scientists who provide insight in their thinking process.

� Paul W. Abrahams, “A syntax-directed parser for recalcitrant grammars”, Intern.
J. Comput. Math., vol. A3, p. 105-115, 1972. LL(1) parsing with conflict resolvers, called

oracles.

� M. Griffiths, “LL(1) grammars and analyzers”. In Compiler Construction: an
advanced course, F.L. Bauer & J. Eickel (eds.), Lecture Notes in Computer Sci-
ence #21, Springer-Verlag, New York, p. 57-84, 1974. A discussion of the LL(1)

property, including a decision algorithm and the production of an analyser in the form of executable text.
These lecture notes also discuss some grammar transformations, including elimination of left-recursion,
factorization, and substitution. Semantic insertions (or hooks for semantic actions) are also given some
attention.

� T. Komor, “A note on left-factored languages”, Computer J., vol. 17, no. 3, p.
242-244, 1974. Points out an error in a paper by Wood on left-factored languages [LL 1970],

and suggests an extension to Fosters SID [Transform 1968] involving ε-rules.

� S. Jarzabek, T. Krawczyk, “LL-regular grammars”, Inform. Process. Lett., vol. 4,
no. 2, p. 31-37, 1975. Introduces LL-regular (LLR) grammars: for every rule A→α1 | . . . | αn ,

a partition (R 1 , . . . ,Rn) of disjoint regular sets must be given such that the rest of the input sentence is a
member of exactly one of these sets. A parser can then be constructed by creating finite-state automata
for these sets, and letting these finite state automata determine the next prediction.

� A. Nijholt, “On the parsing of LL-regular grammars”. In Mathematical Founda-
tions of Computer Science, A. Mazurkiewicz (eds.), Lecture Notes in Computer
Science #45, Springer-Verlag, Berlin, p. 446-452, 1976. Derives a parsing algorithm for

LL-regular grammars with a regular pre-scan from right to left that leaves markers, and a subsequent
scan which consists of an LL(1)-like parser.

� D. Wood, “A bibliography of top-down parsing”, ACM SIGPLAN Notices, vol.
13, no. 2, p. 71-76, Feb 1978. Contains some 90 literature references up to 1978 on

deterministic top-down parsing and related issues.

� J. Lewi, K. de Vlaminck, J. Huens, M. Huybrechts, “The ELL(1) parser generator
and the error-recovery mechanism”, Acta Inform., vol. 10, p. 209-228, 1978. See

same paper [ErrHandl 1978].

� V.W. Setzer, “Non-recursive top-down syntax analysis”, Softw. Pract. Exper.,
vol. 9, no. 1, p. 237-245, 1979. Compares recursive and non-recursive implementations of

table-driven top-down parsers. The introduction of actions is facilitated by implementing the driver and
the tables as a loop over a case statement (on the states) over case statements (on the input token).

� Stephan Heilbrunner, “On the definition of ELR(k) and ELL(k) grammars”, Acta
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Inform., vol. 11, p. 169-176, 1979. Comparison and analysis of various definitions of
extended LL(k) and extended LR(k), based on the transformations involved.

� D.R. Milton, L.W. Kirchhoff, B.R. Rowland, “An ALL(1) compiler generator”,
ACM SIGPLAN Notices, vol. 14, no. 8, p. 152-157, Aug 1979. Presents an LL(1)

parser generator and attribute evaluator which allows LL(1) conflicts to be solved by examining attribute
values; the generated parsers use the error correction algorithm of Fischer, Milton and Quiring [ErrHandl
1980].

� D.A. Poplawski, “On LL-regular grammars”, J. Comput. Syst. Sci., vol. 18, p.
218-227, 1979. Presents proof that, given a regular partition, it is decidable whether a grammar

is LL-regular with respect to this partition; it is undecidable whether or not such a regular partition exists.
The paper then discusses a two-pass parser; the first pass works from right to left, marking each terminal
with an indication of the partition that the rest of the sentence belongs to. The second pass then uses these
indications for its predictions.

� V.N. Glushkova, “Lexical analysis of LL(k) languages”, Program. Comput.
Softw., vol. 5, p. 166-172, 1979. Examines the reduction of LL(k) grammars to simple-LL(1)

grammars by combining terminal symbols into new terminal symbols.

� J. Cohen, R. Sitver, D. Auty, “Evaluating and improving recursive descent
parsers”, IEEE Trans. Softw. Eng., vol. SE-5, no. 5, p. 472-480, Sept 1979. Derives

formulas which express the execution time of systematically generated recursive descent parsers, and
uses these formulas to estimate the gain of various optimizations, such as the elimination of some routine
calls and merging of common code.

� S. Sippu, E. Soisalon-Soininen, “On constructing LL(k) parsers”. In Automata,
Languages and Programming, H.A. Maurer (eds.), Lecture Notes in Computer
Science #71, Springer-Verlag, Berlin, p. 585-595, 1979. Presents a method for

constructing canonical LL(k) parsers that can be regarded as the dual to the LR(k) technique of items and
viable prefixes. In the LL(k) method we have LL(k) items and viable suffixes. Like in the LR case, the
LL(k) method also has LA(p)LL(k) and SLL(k) variants; the SLL(k) variant coincides with the strong-
LL(k) grammars. Note that, although the S of SLL stands for Simple, this is not the same Simple LL as
the simple LL discussed in chapter 8.

� A. Nijholt, “LL-regular grammars”, Intern. J. Comput. Math., vol. A8, p. 303-
318, 1980. This paper discusses strong-LL-regular grammars, which are a subset of the LL-

regular grammars, exactly as the strong-LL(k) grammars are a subset of the LL(k) grammars, and derives
some properties.

� Seppo Sippu, Eljas Soisalon-Soininen, “On LL(k) parsing”, Inform. Control, vol.
53, no. 3, p. 141-164, June 1982. Theoretical background to Sippu and Soisalon-Soininen

[LL 1979].

� K. John Gough, “A new method of generating LL(1) look-ahead sets”, ACM SIG-
PLAN Notices, vol. 20, no. 6, p. 16-19, June 1985. Presents an efficient method for

computing the FIRST and FOLLOW sets, using “begun-by”, “precedes”, and “ends” relations.

� Thomas J. Sager, “A technique for creating small fast compiler front ends”, ACM
SIGPLAN Notices, vol. 20, no. 10, p. 87-94, Oct 1985. Presents a predictive parser that

has its tables compacted through the use of a minimal perfect hash function, thus making them very
small. An example is given for the Pascal language.

� Barry Dwyer, “Improving Gough’s LL(1) look-ahead generator”, ACM SIGPLAN
Notices, vol. 20, no. 11, p. 27-29, Nov 1985. Refer to Gough [LL 1985]. Improves on

Gough’s algorithm by not computing those FIRST and FOLLOW sets that are not needed for the LL(1)
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parser generation.

� David R. Hanson, “Compact recursive-descent parsing of expressions”, Softw.
Pract. Exper., vol. 15, no. 12, p. 1205-1212, Dec 1985. Discusses recursive descent

parsing of expressions by using a precedence table for the operators instead of a parsing routine for each
precedence level. There is for instance only one routine for expressions involving binary operators; the
precedence of the expression to be parsed is a parameter.

� Reinhold Heckmann, “An efficient ELL(1)-parser generator”, Acta Inform., vol.
23, p. 127-148, 1986. The problem of parsing with an ELL(1) grammar is reduced to finding

various FIRST and FOLLOW sets. Theorems about these sets are derived and very efficient algorithms
for their calculation are supplied.

� Dick Grune, Ceriel J.H. Jacobs, “A programmer-friendly LL(1) parser genera-
tor”, Softw. Pract. Exper., vol. 18, no. 1, p. 29-38, Jan 1988. Presents a practical

ELL(1) parser generator, called LLgen, that generates fast error correcting recursive descent parsers. In
addition to the error correction, LLgen features static as well as dynamic conflict resolvers and a separate
compilation facility. The grammar can be viewed as a program, allowing for a natural positioning of
semantic actions.

� Keiichi Yoshida, Yoshiko Takeuchi, “Some properties of an algorithm for con-
structing LL(1) parsing tables using production indices”, J. Inform. Process., vol.
11, no. 4, p. 258-262, 1988. Presents an LL(1) parse table algorithm that, rather than first

computing FIRST and FOLLOW sets, computes a so-called FIRST-table and FOLLOW-table, which are
indexed by a (non-terminal, symbol) pair, and deliver a grammar rule number.

� H. Dobler, K. Pirklbauer, “Coco-2, − A new compiler compiler”, ACM SIGPLAN
Notices, vol. 25, no. 5, p. 82-90, May 1990. The authors present an integrated system

consisting of a lexical phase using a heavily reduced FS automaton, and a syntactic phase which uses a
table-driven LL(1) parser. Semantic actions are interspersed in the syntactic phase.

13.6 LR PARSING
� D.E. Knuth, “On the translation of languages from left to right”, Inform. Control,

vol. 8, p. 607-639, 1965. This is the original paper on LR(k). It defines the notion as an
abstract property of a grammar and gives two tests for LR(k). The first works by constructing for the
grammar a regular grammar which generates all possible already reduced parts (= stacks) plus their
look-aheads; if this grammar has the property that none of its words is a prefix to another of its words,
the original grammar was LR(k). The second consists of implicitly constructing all possible item sets (=
states) and testing for conflicts. Since none of this is intended to yield a reasonable parsing algorithm,
notation and terminology differs from that in later papers on the subject. Several theorems concerning
LR(k) grammars are given and proved.

� A.J. Korenjak, “A practical method for constructing LR(k) processors”, Com-
mun. ACM, vol. 12, no. 11, p. 613-623, Nov 1969. The huge LR(1) parsing table is

partitioned as follows. A non-terminal Z is chosen judiciously from the grammar, and two grammars are
constructed, G 0 , in which Z is considered to be a terminal symbol, and G 1 , which is the grammar for Z
(i.e. which has Z as the start symbol). If both grammars are LR(1) and moreover a master LR(1) parser
can be constructed that controls the switching back and forth between G 0 and G 1 , the parser construction
succeeds (and the original grammar was LR(1) too). The three resulting tables together are much smaller
than the LR(1) table for the original grammar. It is also possible to chose a set of non-terminals
Z 1

. . . Zn and apply a variant of the above technique.

� David Pager, “A solution to an open problem by Knuth”, Inform. Control, vol. 17,
p. 462-473, 1970. Highly mathematical paper concerning the properties of certain partitions of
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the states of an LR(1) parser with a view to reducing the size of the LR automaton.

� H. Langmaack, “Application of regular canonical systems to grammars translat-
able from left to right”, Acta Inform., vol. 1, p. 111-114, 1971. Different proof of the

decidability of LR(k).

� Franklin L. DeRemer, “Simple LR(k) grammars”, Commun. ACM, vol. 14, no. 7,
p. 453-460, July 1971. SLR(k) explained by its inventor. Several suggestions are made on how

to modify the method; use a possibly different k for each state; use possibly different lengths for each
look-ahead string. The relation to Korenjak’s approach [LR 1969] is also discussed.

� A.V. Aho, J.D. Ullman, “Optimization of LR(k) parsers”, J. Comput. Syst. Sci.,
vol. 6, p. 573-602, 1972. An algorithm is given to determine which entries in an LR(k) table

can never be accessed; the values of these entries are immaterial (so-called don’t-care entries) and can be
merged with other values. A second algorithm is given to determine which error entries could be merged
with which reduce entry, with the only result that error detection is postponed. Both algorithms and a
merging technique are used to reduce table size. It is proved that using these algorithms, one can produce
SLR(1) and LALR(1) tables. It is also proved that SLR(1) is identical to Korenjak’s method [LR 1969]
with all non-terminals selected. See also Soisalon-Soininen [LR 1982].

� David S. Wise, “Generalized overlap resolvable grammars and their parsers”, J.
Comput. Syst. Sci., vol. 6, p. 538-572, Dec 1972. See same paper [Precedence 1972].

� T. Anderson, J. Eve, J.J. Horning, “Efficient LR(1) parsers”, Acta Inform., vol. 2,
p. 12-39, 1973. Coherent explanation of SLR(1), LALR(1), elimination of unit rules and table

compression, with good advice.

� Karel Čulik II, Rina Cohen, “LR-regular grammars − an extension of LR(k)
grammars”, J. Comput. Syst. Sci., vol. 7, p. 66-96, 1973. The input is scanned from

right to left by a FS automaton which records its state at each position. Next this sequence of states is
parsed from left to right using an LR(0) parser. If such a FS automaton and LR(0) parser exist, the gram-
mar is LR-regular. The authors conjecture, however, that it is unsolvable to construct this automaton and
parser. Examples are given of cases in which the problem can be solved.

� A.V. Aho, J.D. Ullman, “A technique for speeding up LR(k) parsers”, SIAM J.
Computing, vol. 2, no. 2, p. 106-127, June 1973. Describes two detailed techniques to

eliminate unit rules, one by recognizing particular stack configurations and one by merging shifts on
non-terminals (GOTO’s).

� Shoji Sekimoto, Kuniaki Mukai, Masaru Sudo, “A method of minimizing LR(k)
parsers”, Systems, Computers and Control, vol. 4, no. 5, p. 73-80, 1973. The states

of an LR(1) parser are grouped into classes by one of several equivalence relations. The parser records
only in which class it is, not in which state. When a reduction is called for, additional computation is
required to determine which reduction. The tables for the class transitions are much smaller than those
for the state transitions.

� Jaroslav Král, Jiří Demner, “A note on the number of states of the DeRemer’s
recognizer”, Inform. Process. Lett., vol. 2, p. 22-23, 1973. Gives a formula for the

number of states of an SLR(1) parser for an LL(1) grammar.

� A.V. Aho, S.C. Johnson, “LR parsing”, Computing Surveys, vol. 6, no. 2, p. 99-
124, 1974. LR parsing explained in a readable fashion, by the experts. Required reading.

� Matthew M. Geller, Susan L. Graham, Michael A. Harrison, “Production prefix
parsing”. In Automata, languages and programming, J. Loeckx (eds.), Lecture
Notes in Computer Science #14, Springer-Verlag, Berlin, p. 232-241, 1974. The
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items in a non-deterministic LR(0|1) automaton are simplified in that rather than A→β � γ only β (the pro-
duction prefix) is recorded. If the corresponding deterministic automaton is free of conflicts and has no
compound states (that is, each state contains only one production prefix) the grammar is a production
prefix grammar. Table size is proportional to grammar size. Production prefix(1) is between simple pre-
cedence and SLR(1) in power.

� David Pager, “On eliminating unit productions from LR(k) parsers”. In Automata,
languages and programming, J. Loeckx (eds.), Lecture Notes in Computer Sci-
ence #14, Springer-Verlag, Berlin, p. 242-254, 1974. The unit rules (and only the unit

rules) of the grammar are collected in a directed graph, which is a set of multi-rooted trees (no cycles
allowed). For each leaf, the states of all its predecessors are contracted.

� J.J. Horning, “LR grammars and analyzers”. In Compiler Construction, an
Advanced Course, F.L. Bauer & J. Eickel (eds.), Lecture Notes in Computer Sci-
ence #21, Springer-Verlag, New York, p. 85-108, 1974. These lecture notes present a

concise discussion of LR(k) grammars and LR(0), SLR(1) (more restrictive adding of reduce entries by
using FOLLOW sets), LALR(1) (using shift entries to determine state after reduce), and LR(1) (adding
look-ahead to items) constructor algorithms. Also some attention is given to the representation of LR
tables, including some compactification techniques.

� Paul Purdom, “The size of LALR(1) parsers”, BIT, vol. 14, p. 326-337, 1974.
Experimental size analysis for LALR(1) parsers. Although parser size can be exponential in the grammar
size, it is found in practice to be linear in the grammar size.

� Hans H. Kron, Hans-Jürgen Hoffman, Gerhard Winkler, “On a SLR(k)-based
parser system which accepts non-LR(k) grammars”. In GI-4. Jahrestagung, D.
Siefkes (eds.), Lecture Notes in Computer Science #26, Springer-Verlag, New
York, p. 214-223, 1975. For each inadequate state in an LR(0) automaton, a resolution tree is

constructed of maximum depth k. If this construction succeeds, the grammar is of type FSLR(k). If it
fails, a parser is generated that performs breadth-first search to resolve the remaining inadequacies.
Detailed algorithms are given.

� A.J. Demers, “Elimination of single productions and merging of non-terminal
symbols in LR(1) grammars”, Comput. Lang. (Elmsford, NY), vol. 1, no. 2, p.
105-119, April 1975. The unit rules are used to define subsets of the non-terminals, the

members of which can be treated as equivalent, similar to Aho and Ullman [LR 1973]. Explicit proofs
are given.

� Harry B. Hunt III, Thomas G. Szymanski, Jeffrey D. Ullman, “On the complex-
ity of LR(k) testing”, Commun. ACM, vol. 18, no. 12, p. 707-716, Dec 1975. Time

bounds as a function of the grammar size are derived for testing many properties of grammars. A practi-
cal result is that both the LL(k) and the LR(k) properties can be tested in O(n k+2). These and other
bounds given in the paper are upper bounds, and actual testing is often much faster.

� O.L. Madsen, B.B. Kristensen, “LR-parsing of extended context-free grammars”,
Acta Inform., vol. 7, no. 1, p. 61-73, 1976. The right parts are allowed to contain choices

{ω1 | . . . |ωn} and repetitions {ω}* . In addition to the dotted items in the LR sets, there are also marked
items, which have a # rather than a � . The # means one of three things: here starts a repetition, one ele-
ment of a repetition has just been recognized or one member of a choice has just been recognized. Upon
reduction, these marked items will tell how to unstack the entire right-hand side.

� R.C. Backhouse, “An alternative approach to the improvement of LR(k) parsers”,
Acta Inform., vol. 6, no. 3, p. 277-296, 1976. Traditionally, the field of bottom-up parsing

is described in terms of handle-finding automata. The author describes it in terms of left-contexts, in
which a left-context is a set of stack configurations of the LR(k) parser. Other bottom-up techniques are
explained as approximations to these sets.
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� Thomas G. Szymanski, John H. Williams, “Non-canonical extensions of bottom-
up parsing techniques”, SIAM J. Computing, vol. 5, no. 2, p. 231-250, June 1976.

Theory of non-canonical versions of several bottom-up parsing techniques, with good informal introduc-
tion.

� Marc L. Joliat, “A simple technique for partial elimination of unit productions
from LR(k) parsers”, IEEE Trans. Comput., vol. C-25, no. 7, p. 763-764, July
1976. A very simple algorithm is given that alters some of the transitions in an LR parse table to

bypass unit rules.

� M.M. Geller, M.A. Harrison, “Characteristic parsing: a framework for producing
compact deterministic parsers”, J. Comput. Syst. Sci., vol. 14, no. 3, p. 265-317,
June 1977. Given a deterministic LR(1) automaton, suppose we add some (arbitrary) items to

some states. This will have two effects: the discriminatory power of the automaton will weaken and its
minimum size will decrease (since now some states will coincide). For a large number of grammars
there is a characteristic item addition technique that will minimize automaton size while preserving just
enough power. This requires a heavy mathematical apparatus.

� Matthew M. Geller, Michael A. Harrison, “On LR(k) grammars and languages”,
Theoret. Comput. Sci., vol. 4, p. 245-276, 1977. Theoretical groundwork for the

“characteristic parsing technique” of Geller and Harrison [LR June 1977].

� D. Pager, “The lane-tracing algorithm for constructing LR(k) parsers and ways of
enhancing its efficiency”, Inform. Sci., vol. 12, p. 19-42, 1977. An item A→β � Xγ in an

LR parser (called a “configuration” here) has in general two kinds of successors: a set of “immediate
successors” X→ � ξn and the “transition successor” A→βX � γ. An item together with a sequence of its
successive successors is called a lane. Lanes are used 1) to collect enough look-ahead context to convert
an LR(0) automaton to LALR(1); 2) to determine which LALR(1) states should be split to resolve
remaining LALR(1) conflicts. The required algorithms are of considerable complexity.

� Wilf R. LaLonde, “Regular right part grammars and their parsers”, Commun.
ACM, vol. 20, no. 10, p. 731-741, Oct 1977. The notion of regular right part grammars

and its advantages are described in detail. A parser is proposed that does LR(k) parsing to find the right
end of the handle and then, using different parts of the same table, scans the stack backwards using a
look-ahead (to the left!) of m symbols to find the left end; this is called LR(m, k). The corresponding
parse table construction algorithm is given by LaLonde [LR 1979].

� David Pager, “A practical general method for constructing LR(k) parsers”, Acta
Inform., vol. 7, no. 3, p. 249-268, 1977. When during the construction of an LR(1) parser a

state has to be added, one can consider merging it with an already existing state, if no conflict can arise
from this. The problem is that it is not easy to tell whether conflicts may arise from a certain merge. To
this end, the notions weak compatibility and strong compatibility are defined. Algorithms for the efficient
construction of conflict-free small full LR(1) parse tables are given.

� D. Pager, “Eliminating unit productions from LR(k) parsers”, Acta Inform., vol.
9, p. 31-59, 1977. Very detailed description of a unit rule elimination algorithm.

� A. Celentano, “Incremental LR parsers”, Acta Inform., vol. 10, p. 307-321, 1978.
Very clear exposition of how the Ghezzi and Mandrioli algorithm [LR 1979] can be made to work on
parse sequences rather than on parse trees, thus improving efficiency.

� Stephen C. Johnson, YACC: yet another compiler-compiler , Bell Laboratories,
Murray Hill, New Jersey 07974, p. 34, 1978. In spite of its title, yacc is one of the most

widely used parser generators. It generates LALR(1) parsers from a grammar with embedded semantic
actions and features a number of disambiguating and conflict-resolving mechanisms. The generated
parser is in C.
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� Akifumi Makinouchi, “On single production elimination in simple LR(k)
environment”, J. Inform. Process., vol. 1, no. 2, p. 76-80, 1978. An SLR(1) parser is

extended with the possibility of specifying grammar rules of the form ¬{Cl}A¬{Cr}→ . . . , which can
only be applied when the symbol before the A cannot produce a member of {Cl} as its last token, and the
token after A is not in {Cr}. Such rules allow some convenient ambiguities to be resolved without loos-
ing the generative power of the system.

� W.R. LaLonde, “Constructing LR parsers for regular right part grammars”, Acta
Inform., vol. 11, p. 177-193, 1979. Describes the algorithms for the regular right part

parsing technique explained by LaLonde [LR 1977]. The back scan is performed using so-called read-
back tables. Compression techniques for these tables are given.

� Stephan Heilbrunner, “On the definition of ELR(k) and ELL(k) grammars”, Acta
Inform., vol. 11, p. 169-176, 1979. See same paper [LL 1979].

� Otto Mayer, “On deterministic canonical bottom-up parsing”, Inform. Control,
vol. 43, p. 280-303, 1979. A general framework is presented for deterministic canonical

bottom-up parsers, from which well-known parsers arise as special cases.

� Carlo Ghezzi, Dino Mandrioli, “Incremental parsing”, ACM Trans. Prog. Lang.
Syst., vol. 1, no. 1, p. 58-70, July 1979. The authors observe that when a grammar allows

bottom-up parsing using some technique T and is at the same time RL(k) for any k, then any modification
to the input text can only affect nodes that produce the modified part. By keeping the entire parse tree in
a both left-most and right-most threaded form, these nodes can be located and updated quickly. The case
LR(1) ∧ RL(1) is treated in full.

� Kai Koskimies, Eljas Soisalon-Soininen, “On a method for optimizing LR
parsers”, Intern. J. Comput. Math., vol. A7, p. 287-295, 1979. Defines criteria under

which Pager’s algorithm for the elimination of unit rules [LR 1977] can be safely applied to SLR(1)
parsers.

� Kuo-Chung Tai, “Noncanonical SLR(1) grammars”, ACM Trans. Prog. Lang.
Syst., vol. 1, no. 2, p. 295-320, Oct 1979. A survey of non-canonical parsing methods is

given and two non-canonical variants of SLR(1) parsing are described.

� Gerald A. Fisher Jr., Manfred Weber, “LALR(1) parsing for languages without
reserved words”, ACM SIGPLAN Notices, vol. 14, no. 11, p. 26-30, Nov 1979. A

heuristic is given for designing an LALR(1) programming language without reserved words. First design
the LALR(1) language with reserved words, using a non-terminal iiddeennttiiffiieerr for the identifiers. Now
allow iiddeennttiiffiieerr to also produce all reserved words and modify the grammar (or the language) until
the grammar is LALR(1) again, using feedback from an LALR(1) parser generator.

� Eljas Soisalon-Soininen, “On the space-optimizing effect of eliminating single
productions from LR parsers”, Acta Inform., vol. 14, p. 157-174, 1980. Improvement

of Pager’s unit rule elimination algorithm [LR 1977].

� Carlo Ghezzi, Dino Mandrioli, “Augmenting parsers to support incrementality”,
J. ACM, vol. 27, no. 3, p. 564-579, 1980. The algorithm of Ghezzi and Mandrioli [LR

1979] is extended to all LR(k) grammars.

� Jacek Witaszek, “The LR(k) parser”. In Mathematical Foundations of Computer
Science, P. Dembiński (eds.), Lecture Notes in Computer Science #88, Springer-
Verlag, New York, p. 686-697, 1980. Three size-reducing transformations on LR(k) tables

are defined that leave the LR(k) property undisturbed. One is similar to minimising a FS automaton, one
removes unused look-ahead and one allows delaying error detection. No full algorithms given, but see
Witaszek [LR 1988].
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� Bent Bruun Kristensen, Ole Lehrmann Madsen, “Methods for computing
LALR(k) lookahead”, ACM Trans. Prog. Lang. Syst., vol. 3, no. 1, p. 60-82, Jan
1981. The LALR(k) look-ahead sets are seen as the solution to a set of equations, which are

solved by recursive traversal of the LR(0) automaton. Full algorithms plus proofs are given.

� R. Kemp, “LR(0) grammars generated by LR(0) parsers”, Acta Inform., vol. 15, p.
265-280, 1981. Theoretical analysis of the set of LR(0) grammars that produce a given LR(0)

parser.

� Theodore P. Baker, “Extending look-ahead for LR parsers”, J. Comput. Syst. Sci.,
vol. 22, no. 2, p. 243-259, 1981. A FS automaton is derived from the LR automaton as

follows: upon a reduce to A the automaton moves to all states that have an incoming arc marked A. This
automaton is used for analysing the look-ahead as in an LR-regular parser (Čulik and Cohen [LR 1973]).

� Stephan Heilbrunner, “A parsing automata approach to LR theory”, Theoret.
Comput. Sci., vol. 15, p. 117-157, 1981. Parsing is explained in terms of item grammars,

which describe the stack configurations of the parser. The theory is first developed for LR and then
applied uniformly to LL and LC.

� Wilf R. LaLonde, “The construction of stack-controlling LR parsers for regular
right part grammars”, ACM Trans. Prog. Lang. Syst., vol. 3, no. 2, p. 168-206,
April 1981. Traditional LR parsers shift each input token onto the stack; often, this shift could be

replaced by a state transition, indicating that the shift has taken place. Such a parser is called a stack-
controlling LR parser, and will do finite-state recognition without stack manipulation whenever possible.
Algorithms for the construction of stack-controlling LR parse tables are given. The paper is complicated
by the fact that the new feature is introduced not in a traditional LR parser, but in an LR parser for regu-
lar right parts (for which see LaLonde [LR 1977]).

� Charles Wetherell, A. Shannon, “LR − automatic parser generator and LR(1)
parser”, IEEE Trans. Softw. Eng., vol. SE-7, no. 3, p. 274-278, May 1981. This

short paper discusses a full LR(1) parser generator and parser, written in ANSI 66 Fortran for portability,
and using an algorithm by Pager [LR 1977].

� Augusto Celentano, “An LR parsing technique for extended context-free gram-
mars”, Comput. Lang. (Elmsford, NY), vol. 6, no. 2, p. 95-107, 1981. The results of

repetitions or selections are popped off the parsing stack before the entire right-hand side has been recog-
nized. Remarkably, this can be done for any extended LR(1) grammar. Explicit algorithms are given.

� Paul W. Purdom, Cynthia A. Brown, “Parsing extended LR(k) grammars”, Acta
Inform., vol. 15, p. 115-127, 1981. An LR state is stacked only at the beginning of a right-

hand side; all other work is done on a global state. At a reduce, the reduced non-terminal is already on
the top of the stack and needs only to be unstacked. This does not work for all extended LR(k) gram-
mars, but any extended LR(k) can be converted into one for which the method works.

� Takehiro Tokuda, “Eliminating unit reductions from LR(k) parsers using
minimum contexts”, Acta Inform., vol. 15, p. 447-470, 1981. Very densely written

analysis of algorithms for the elimination of unit rules from a special class of LR(k) parsers.

� Colin Burgess, Laurence James, “An indexed bibliography for LR grammars and
parsers”, ACM SIGPLAN Notices, vol. 16, no. 8, p. 14-26, Aug 1981. Useful,

detailed and structured bibliography containing around 115 entries.

� David Spector, “Full LR(1) parser generation”, ACM SIGPLAN Notices, vol. 16,
no. 8, p. 58-66, Aug 1981. A heuristic algorithm for enlarging an LR(0) table to full LR(1) is

given and demonstrated on two examples. With letter of correction (vol. 16, no. 11, Nov 1981, p. 2).
See also Ancona, Dodero and Gianuzzi [LR 1982] and Spector [LR 1988].
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� M. Ancona, V. Gianuzzi, “A new method for implementing LR(k) tables”,
Inform. Process. Lett., vol. 13, no. 4/5, p. 171-176, 1981. For each inadequate state

there is a separate automaton handling that inadequacy by doing a look-ahead of one token. If this auto-
maton has inadequate states the process is repeated. A tables construction algorithm is given.

� Eljas Soisalon-Soininen, “Inessential error entries and their use in LR parser
optimization”, ACM Trans. Prog. Lang. Syst., vol. 4, no. 2, p. 179-195, April
1982. More sophisticated and general algorithms are given for the techniques described by Aho

and Ullman [LR 1972].

� M. Ancona, G. Dodero, V. Gianuzzi, “Building collections of LR(k) items with
partial expansion of lookahead strings”, ACM SIGPLAN Notices, vol. 17, no. 5, p.
24-28, May 1982. In addition to the usual terminals, non-terminals are allowed in the look-

ahead sets, leading to very substantial savings in the number of states. Only if an inadequate state turns
up the non-terminals are developed as far as needed to resolve the inadequacy. The algorithm will also
work reasonably for k >1.

� J.C.H. Park, “A new LALR formalism”, ACM SIGPLAN Notices, vol. 17, no. 7,
p. 47-61, July 1982. Simplified operators corresponding to Predict and Accept are defined

precisely and applied to LR and LALR parser generation. Difficult to read.

� Frank DeRemer, Thomas J. Pennello, “Efficient computation of LALR(1) look-
ahead sets”, ACM Trans. Prog. Lang. Syst., vol. 4, no. 4, p. 615-649, Oct 1982. 1.

The LALR(1) look-ahead sets are calculated by four linear sweeps over the LR(0) automaton, calculating
the sets Direct Read, Read, Follow and Look-Ahead, respectively. 2. An obvious simplification leads to
“Not Quite LALR(1)”, NQLALR(1), and is shown to be inadequate. 3. The debugging of non-LALR(1)
grammars is treated.

� Colin Burgess, Laurence James, “A revised index bibliography for LR grammars
and parsers”, ACM SIGPLAN Notices, vol. 17, no. 12, p. 18-26, Dec 1982. A

revision of Burgess and James [LR 1981], extending the number of entries to about 160.

� Jorma Tarhio, “LR parsing of some ambiguous grammars”, Inform. Process.
Lett., vol. 14, no. 3, p. 101-103, 1982. The reduction items in all inadequate states are

collected. The rules in them are extended at the end with “synchronization symbols”, to make the
shift/reduce and reduce/reduce conflicts go away. These synchronization symbols are context-dependent;
for instance each identifier could be followed by a token indicating its type. The synchronization symbols
are inserted in the input stream by the lexical analyser while parsing.

� Rakesh Agrawal, Keith D. Detro, “An efficient incremental LR parser for gram-
mars with epsilon productions”, Acta Inform., vol. 19, no. 4, p. 369-376, 1983. A

linear time and space implementation of Celentano’s algorithm [LR 1978] is described, which can also
handle ε-rules.

� Takehiro Tokuda, “A fixed-length approach to the design and construction of
bypassed LR(k) parsers”, J. Inform. Process., vol. 6, no. 1, p. 23-30, 1983. The idea

of removing unit reductions is extended to removing all reductions that do not involve semantic actions;
this leads to bypassed LR(k) parsers. Full algorithms are given. Some of the literature on removing unit
rules is analysed critically.

� Dashing Yeh, “On incremental shift-reduce parsing”, BIT, vol. 23, no. 1, p. 36-48,
1983. The input tokens to an LR parser are stored in a linked list; each node in this list also holds

a pointer to a stack pertinent for the token in the node. These stacks can be merged and are in fact also
stored in the nodes. This arrangement greatly simplifies incremental parsing. Very clear explanation.

� Kenzo Inoue, Fukumi Fujiwara, “On LLC(k) parsing method of LR(k)
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grammars”, J. Inform. Process., vol. 6, no. 4, p. 206-217, 1983. Assume an LR(k)
grammar. Start parsing using the (full) LL(k) method, until an LL(k) conflict is encountered, say on non-
terminal A. A is then parsed with the LR(k) method, using the proper predicted look-ahead set. If during
the LR (sub)parsing the number of items narrows down to one, an LL(k) (sub-sub)parsing is started; etc.
Full algorithms for all tables are given. LLC means “Least Left Corner”.

� Lothar Schmitz, “On the correct elimination of chain productions from LR
parsers”, Intern. J. Comput. Math., vol. 15, no. 2, p. 99-116, 1984. Rigorous proofs of

some claims about unit-free LR(k) parsers.

� N.P. Chapman, “LALR(1,1) parser generation for regular right part grammars”,
Acta Inform., vol. 21, p. 29-45, 1984. Efficient construction algorithm for LALR(1,1) parse

tables, which find the right end of the handle by traditional LALR(1) parsing and then scan the stack
backwards using a look-ahead of 1 symbol to find the left end.

� Joseph C.H. Park, K.M. Choe, C.H. Chang, “A new analysis of LALR formal-
isms”, ACM Trans. Prog. Lang. Syst., vol. 7, no. 1, p. 159-175, Jan 1985. The

recursive closure operator CLOSURE of Kristensen and Madsen [LR 1981] is abstracted to an iterative
δ-operator such that CLOSURE≡δ* . This operator allows the formal derivation of four algorithms for the
construction of LALR look-ahead sets.

� Esko Ukkonen, “Upper bounds on the size of LR(k) parsers”, Inform. Process.
Lett., vol. 20, no. 2, p. 99-105, Feb 1985. Upper bounds for the number of states of an

LR(k) parser are given for several types of grammars.

� S. Heilbrunner, “Truly prefix-correct chain-free LR(1) parsers”, Acta Inform.,
vol. 22, no. 5, p. 499-536, 1985. A unit-free LR(1) parser generator algorithm, rigorously

proven correct.

� Fred Ives, “Unifying view of recent LALR(1) lookahead set algorithms”, ACM
SIGPLAN Notices, vol. 21, no. 7, p. 131-135, July 1986. A common formalism is given

in which the LALR(1) look-ahead set construction algorithms of DeRemer and Pennello [LR 1982],
Park, Choe and Chang [LR 1985] and the author can be expressed. See also Park and Choe [LR 1987].

� Manuel E. Bermudez, Karl M. Schimpf, “A practical arbitrary look-ahead LR
parsing technique”, ACM SIGPLAN Notices, vol. 21, no. 7, p. 136-144, July 1986.

To resolve LR(0) conflicts at run time, for each conflict state a FS automaton is developed that will do
arbitrary look-ahead. Grammars for which parsers can be constructed by this technique are called
LAM(m) where m in some way limits the size of the look-ahead FS automata. It can handle some non-
LR(k) grammars. See also Baker [LR 1981].

� Thomas J. Pennello, “Very fast LR parsing”, ACM SIGPLAN Notices, vol. 21, no.
7, p. 145-151, July 1986. The tables and driver of a traditional LALR(1) parser are replaced

by assembler code performing linear search for small fan-out, binary search for medium and a calculated
jump for large fan-out. This modification gained a factor of 6 in speed at the expense of a factor 2 in size.

� Ikuo Nakata, Masataka Sassa, “Generation of efficient LALR parsers for regular
right part grammars”, Acta Inform., vol. 23, p. 149-162, 1986. The stack of an

LALR(1) parser is augmented with a set of special markers that indicate the start of a right-hand side;
adding such a marker during the shift is called a stack-shift. Consequently there can now be a
shift/stack-shift conflict, abbreviated to stacking conflict. The stack-shift is given preference and any
superfluous markers are eliminated during the reduction. Full algorithms are given.

� A.M.M. Al-Hussaini, R.G. Stone, “Yet another storage technique for LR parsing
tables”, Softw. Pract. Exper., vol. 16, no. 4, p. 389-401, 1986. Excellent introduction

to LR table compression in general. The submatrix technique introduced in this paper partitions the rows
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into a number of submatrices, the rows of each of which are similar enough to allow drastic compressing.
The access cost is O(1). A heuristic partitioning algorithm is given.

� Masataka Sassa, Ikuo Nakata, “A simple realization of LR-parsers for regular
right part grammars”, Inform. Process. Lett., vol. 24, no. 2, p. 113-120, Jan 1987.

For each item in each state on the parse stack of an LR parser, a counter is kept indicating how many
preceding symbols on the stack are covered by the recognized part in the item. Upon reduction, the
counter of the reducing item tells us how many symbols to unstack. The manipulation rules for the
counters are simple. The counters are stored in short arrays, one array for each state on the stack.

� Joseph C.H. Park, Kwang-Moo Choe, “Remarks on recent algorithms for LALR
lookahead sets”, ACM SIGPLAN Notices, vol. 22, no. 4, p. 30-32, April 1987.

Careful analysis of the differences between the algorithms of Park, Choe and Chang [LR 1985] and Ives
[LR 1986]. See also Ives [LR 1987].

� Fred Ives, “Response to remarks on recent algorithms for LALR lookahead sets”,
ACM SIGPLAN Notices, vol. 22, no. 8, p. 99-104, 1987. Remarks by Park and Choe

[LR 1987] are refuted and a new algorithm is presented that is significantly better than that of Park, Choe
and Chang [LR 1985] and that previously presented by Ives [LR 1986].

� Nigel P. Chapman, LR Parsing: Theory and Practice, Cambridge University
Press, New York, NY, p. 228, 1987. Detailed treatment of the title subject. Highly

recommended for anybody who wants to acquire in-depth knowledge about LR parsing. Good on size of
parse tables and attribute grammars.

� Eljas Soisalon-Soininen, Jorma Tarhio, “Looping LR parsers”, Inform. Process.
Lett., vol. 26, no. 5, p. 251-253, Jan 1988. For some (non-LR) grammars it is true that

there are ways to resolve the conflicts in an LR parser for them that will make the parser loop on some
inputs (executing an endless sequence of reduces). A test is given to detect such grammars.

� Jacek Witaszek, “A practical method for finding the optimum postponement
transformation for LR(k) parsers”, Inform. Process. Lett., vol. 27, no. 2, p. 63-67,
Feb 1988. By allowing the LR(k) automaton to postpone error checking, the size of the

automaton can be reduced dramatically. Finding the optimum postponement transformation is, however,
a large combinatorial problem. A good heuristic algorithm for finding a (sub)optimal transformation is
given.

� Dashing Yeh, Uwe Kastens, “Automatic construction of incremental LR(1)
parsers”, ACM SIGPLAN Notices, vol. 23, no. 3, p. 33-42, March 1988. Detailed

algorithms for an incremental LR(1) parser that allows multiple modifications and ε-rules.

� Manuel E. Bermudez, Karl M. Schimpf, “On the (non-)relationship between
SLR(1) and NQLALR(1) grammars”, ACM Trans. Prog. Lang. Syst., vol. 10, no.
2, p. 338-342, April 1988. Shows a grammar that is SLR(1) but not NQLALR(1).

� Pierpaolo Degano, Stefano Mannucci, Bruno Mojana, “Efficient incremental LR
parsing for syntax-directed editors”, ACM Trans. Prog. Lang. Syst., vol. 10, no. 3,
p. 345-373, July 1988. The non-terminals of a grammar are partitioned by hand into sets of

“incrementally compatible” non-terminals, meaning that replacement of one non-terminal by an incre-
mentally compatible one is considered a minor structural change. Like in Korenjak’s method [LR 1969],
for a partitioning in n sets n +1 parse tables are constructed, one for each set and one for the grammar that
represents the connection between the sets. The parser user is allowed interactively to move or copy the
string produced by a given non-terminal to a position where an incrementally compatible one is required.
This approach keeps the text (i.e. the program text) reasonably correct most of the time and uses rather
small tables.
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� George H. Roberts, “Recursive ascent: an LR analog to recursive descent”, ACM
SIGPLAN Notices, vol. 23, no. 8, p. 23-29, Aug 1988. Each LR state is represented by a

subroutine. The shift is implemented as a subroutine call, the reduction is followed by a subroutine
return possibly preceded by a return stack adjustment. The latter prevents the generation of genuine sub-
routines since it requires explicit return stack manipulation. A small and more or less readable LR(0)
parser is shown, in which conflicts are resolved by means of the order in which certain tests are done,
like in a recursive descent parser.

� F.E.J. Kruseman Aretz, “On a recursive ascent parser”, Inform. Process. Lett.,
vol. 29, no. 4, p. 201-206, Nov 1988. Each state in an LR automaton is implemented as a

subroutine. A shift calls that subroutine. A reduce to X is effected as follows. X and its length n are stored
in global variables; all subroutines are rigged to decrement n and return as long as n>0, and to call the
proper GOTO state of X when n hits 0. This avoids the explicit stack manipulation of Roberts [LR 1988].

� David Spector, “Efficient full LR(1) parser generation”, ACM SIGPLAN Notices,
vol. 23, no. 12, p. 143-150, Dec 1988. A relatively simple method is given for extending an

LR(0) table to full LR(1). The method isolates the inadequate states, constructs the full look-ahead sets
for them and then splits them (and possible predecessor states). The algorithm is described informally.

� Manuel E. Bermudez, George Logothetis, “Simple computation of LALR(1)
look-ahead sets”, Inform. Process. Lett., vol. 31, no. 5, p. 233-238, 1989. The

original LALR(1) grammar is replaced by a not much bigger grammar that has been made to incorporate
the necessary state splitting through a simple transformation. The SLR(1) automaton of this grammar is
the LALR(1) automaton of the original grammar.

� George H. Roberts, “Another note on recursive ascent”, Inform. Process. Lett.,
vol. 32, no. 5, p. 263-266, 1989. The fast parsing methods of Pennello [LR 1986],

Kruseman Aretz [LR 1988] and Roberts are compared. A special-purpose optimizing compiler can select
the appropriate technique for each state.

� James Kanze, “Handling ambiguous tokens in LR parsers”, ACM SIGPLAN
Notices, vol. 24, no. 6, p. 49-54, June 1989. It may not always be possible to infer from

the appearance of an input symbol the terminal symbol it corresponds to in the parser. In that case a
default assumption can be made and the error recovery mechanism of the parser can be rigged to try
alternatives. A disadvantage is that an LALR parser may already have made reductions (or a strong-LL
parser may have made ε-moves) that have ruined the context. An implementation in UNIX’s yacc is
given.

� Daniel J. Salomon, Gordon V. Cormack, “Scannerless NSLR(1) parsing of pro-
gramming languages”, ACM SIGPLAN Notices, vol. 24, no. 7, p. 170-178, July
1989. The traditional CF syntax is extended with two rule types: A→× B, which means that any

sentential form in which A generates a terminal production of B (with B regular) is illegal, and A−/ B,
which means that any sentential form in which terminal productions of A and B are adjacent, is illegal.
The authors show that the addition of these two types of rules allow one to incorporate the lexical phase
of a compiler into the parser. The system uses a non-canonical SLR(1) parser.

� J. Heering, P. Klint, J. Rekers, “Incremental generation of parsers”, ACM SIG-
PLAN Notices, vol. 24, no. 7, p. 179-191, July 1989. In a very unconventional approach

to parser generation, the initial information for an LR(0) parser consists of the grammar only. As parsing
progresses, more and more entries of the LR(0) table (actually a graph) become required and are con-
structed on the fly. LR(0) inadequacies are resolved using Tomita’s method. All this greatly facilitates
handling (dynamic) changes to the grammar.

� R. Nigel Horspool, “ILALR: an incremental generator of LALR(1) parsers”. In
Compiler Compilers and High-Speed Compilation, D. Hammer (eds.), Lecture
Notes in Computer Science #371, Springer-Verlag, Berlin, p. 128-136, 1989.
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Grammar rules are checked as they are typed in. To this end, LALR(1) parse tables are kept and continu-
ally updated. When the user interactively adds a new rule, the sets FIRST and NULLABLE are recalcu-
lated and algorithms are given to distribute the consequences of possible changes over the LR(0) and
look-ahead sets. Some serious problems are reported and practical solutions are given.

� Daniel J. Salomon, Gordon V. Cormack, “Corrections to the paper: Scannerless
NSLR(1) parsing of programming languages”, ACM SIGPLAN Notices, vol. 24,
no. 11, p. 80-83, Nov 1989. More accurate time measurements and corrections to the

algorithms are supplied. See same authors [LR July 1989].

� Stylianos D. Pezaris, “Shift-reduce conflicts in LR parsers”, ACM SIGPLAN
Notices, vol. 24, no. 11, p. 94-95, Nov 1989. It is shown that if an LR(1) parser either has

no shift/reduce conflicts or has shift/reduce conflicts that have been decided to be solved by shifting, the
same parsing behaviour can be obtained from the corresponding LR(0) parser (which will have no
reduce/reduce conflicts) in which all shift/reduce conflicts are resolved in favour of the shift. With this
resolution principle, for instance the programming language C can be parsed with an LR(0) parser.

� Gregor Snelting, “How to build LR parsers which accept incomplete input”, ACM
SIGPLAN Notices, vol. 25, no. 4, p. 51-58, April 1990. When an LR parser finds a

premature end-of-file, the incomplete parse tree is completed using some heuristics on the top state of the
stack. The heuristics mainly favour reduction over shift and their application is repeated until the parse
tree is complete or further completion would involve too much guessing. The technique is explained in
the setting of a language-based editor.

� George H. Roberts, “From recursive ascent to recursive descent: via compiler
optimizations”, ACM SIGPLAN Notices, vol. 25, no. 4, p. 83-89, April 1990. Shows

a number of code transformations that will turn an LR(1) recursive ascent parser (see Roberts [LR 1988]
and [LR 1989]) for an LL(1) grammar into a recursive descent parser.

13.7 LEFT-CORNER PARSING

This section also covers a number of related techniques: production-chain, LLP(k),
PLR(k), etc.

� D.J. Rosenkrantz, P.M. Lewis II, “Deterministic left-corner parsing”. In IEEE
Conference Record 11th Annual Symposium on Switching and Automata Theory,
p. 139-152, 1970. An LC(k) parser decides the applicability of a rule when it has seen the initial

non-terminal of the rule if it has one, plus a look-ahead of k symbols. Identifying the initial non-terminal
is done by bottom-up parsing, the rest of the rule is recognized top-down. A canonical LC pushdown
machine can be constructed in which the essential entries on the pushdown stack are pairs of non-
terminals, one telling what non-terminal has been recognized bottom-up and the other what non-terminal
is predicted top-down. As with LL, there is a difference between LC and strong-LC. There is a simple
algorithm to convert an LC(k) grammar into LL(k) form; the resulting grammar may be large, though.

� Y. Eric Cho, “Simple left-corner grammars”. In Proc. Seventh Princeton Confer-
ence on Information Sciences and Systems, Princeton, p. 557, 1973. LC parsing is

simplified by requiring that each right-hand side be recognizable (after LC reduction) by its first two
symbols and by handling left recursion as a special case. The required tables are extremely small.

� David B. Lomet, “Automatic generation of multiple exit parsing subroutines”. In
Automata, languages and programming, J. Loeckx (eds.), Lecture Notes in Com-
puter Science #14, Springer-Verlag, Berlin, p. 214-231, 1974. A production chain is a

chain of production steps X 0→X 1α1 , X 1→X 2α2 , . . . Xn −1→ttαn , with X 0 , . . . ,Xn −1 non-terminals and
tt a terminal. If the input is known to derive from X 0 and starts with tt, each production chain from X 0 to
tt is a possible explanation of how tt was produced. The set of all production chains connecting X 0 to tt
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is called a production expression. An efficient algorithm for the construction and compression of pro-
duction expressions is given. Each production expression is then implemented as a subroutine which con-
tains the production expression as a FS automaton.

� Michael Hammer, “A new grammatical transformation into LL(k) form”. In
Proceedings Sixth Annual ACM Symposium on Theory of Computing, p. 266-275,
1974. Each left corner in a left-corner parser is described as a FS automaton and implemented as

a subroutine. Parsing is then performed by recursive descent using these subroutines. The FS automata
can be incorporated into the grammar to yield an LL(k) grammar.

� J. Král, J. Demner, “Parsing as a subtask of compiling”. In Mathematical Foun-
dations of Computer Science, J. Bečvář (eds.), Lecture Notes in Computer Science
#32, Springer-Verlag, Berlin, p. 61-74, 1975. Various considerations that went into the

design of a variant of left-corner parsing, called semi-top-down.

� E. Soisalon-Soininen, E. Ukkonen, “A characterization of LL(k) grammars”. In
Automata, Languages and Programming, S. Michaelson & R. Milner (eds.), Edin-
burgh University Press, Edinburgh, p. 20-30, 1976. Introduces a subclass of the LR(k)

grammars called predictive LR(k) (PLR(k)). The deterministic LC(k) grammars are strictly included in
this class, and a grammatical transformation is presented to transform a PLR(k) into an LL(k) grammar.
PLR(k) grammars can therefore be parsed with the LL(k) parser of the transformed grammar. A conse-
quence is that the classes of LL(k), LC(k), and PLR(k) languages are identical.

� A. Nijholt, “Simple chain grammars”. In Automata, Languages and Program-
ming, A. Salomaa & M. Steinby (eds.), Lecture Notes in Computer Science #52,
Springer-Verlag, Berlin, p. 352-364, 1977. A non-terminal X is said to be chain-

independent if all production chains (see Lomet [LC 1974]) of X end in a different terminal symbol.
Two symbols X and Y are “mutually chain-independent” if different chains, one starting with X and the
other with Y, end with different symbols. A CF grammar is a simple chain grammar if it satisfies the fol-
lowing conditions: (1) all its symbols are chain-independent, (2) if A→αXβ and A→αYγ, then X and Y
are mutually chain-independent, and (3) if A→α and A→αβ then β=ε.
This class of grammars contains the LL(1) grammars without ε-rules, and is a subset of the LR(0) gram-
mars. A simple parser for these grammars is presented.

� Jaroslav Král, “Almost top-down analysis for generalized LR(k) grammars”. In
Methods of algorithmic language implementation, A.P. Ershov and C.H.A. Koster
(eds.), Lecture Notes in Computer Science #47, Springer-Verlag, Berlin, p. 149-
172, 1977. Very well-argued introduction to semi-top-down parsing; see Král [LC 1975].

� Jan Pittl, “Exponential optimization for the LLP(k) parsing method”. In
Mathematical Foundations of Computer Science, J. Gruska (eds.), Lecture Notes
in Computer Science #53, Springer-Verlag, Berlin, p. 435-442, 1977. The automata

by Lomet [LC 1974] are reduced using the “characteristic parsing” technique of Geller and Harrison [LR
1977].

� Alan J. Demers, “Generalized left corner parsing”. In Fourth ACM Symposium on
Principles of Programming Languages, p. 170-182, 1977. The right-hand side of each

rule is required to contain a marker. The part on the left of the marker is the left corner; it is recognized
by SLR(1) techniques, the rest by LL(1) techniques. An algorithm is given to determine the first admissi-
ble position in each right-hand side for the marker.

� Eljas Soisalon-Soininen, Esko Ukkonen, “A method for transforming grammars
into LL(k) form”, Acta Inform., vol. 12, p. 339-369, 1979. A restricted class of LR(k)

grammars is defined, the predictive LR(k) or PLR(k) grammars, which can be handled by left-corner
techniques. Like LC(k) grammars, they can be transformed into LL(k) grammars.
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� Esko Ukkonen, “A modification of the LR(k) method for constructing compact
bottom-up parsers”. In Automata, Languages and Programming, Hermann A.
Maurer (eds.), Lecture Notes in Computer Science #71, Springer-Verlag, Berlin,
p. 646-658, 1979. An LR(k) parser is extended to do left-corner parsing simultaneously by

compounding the states on the stack. This can be done for weak-PLR(k) grammars only, which, how-
ever, include almost all LR(k) grammars. The resulting table is gigantic but highly structured, and can be
condensed considerably.

� Daniel Chester, “A parsing algorithm that extends phrases”, Am. J. Comput.
Linguist., vol. 6, no. 2, p. 87-96, April-June 1980. See same paper [NatLang 1980].

� Jan Pittl, “On LLP(k) grammars and languages”, Theoret. Comput. Sci., vol. 16,
p. 149-175, 1981. See Pittl [LC 1982]. All LR(k) languages have an LLP(k) grammar. LLP(k)

lies somewhere between LL(k) and LR(k).

� Jan Pittl, “On LLP(k) parsers”, J. Comput. Syst. Sci., vol. 24, p. 36-68, 1982. This
paper first presents a non-deterministic parser using a mixed top-down-bottom-up strategy, and then
examines the circumstances under which these parsers are deterministic, resulting in the class of LLP(k)
grammars. The parser does not have the correct-prefix property, as the LL(k) and LR(k) parsers have.

� Yuji Matsumoto, Hozumi Tanaka, Hideki Hirakawa, Hideo Miyoshi, Hideki
Yasukawa, “BUP: a bottom-up parser embedded in Prolog”, New Generation
Computing, vol. 1, p. 145-158, 1983. A bottom-up parser for natural language text

embedded in Prolog is described, in which each grammar rule corresponds to a Prolog clause. The
parser, which is fact left-corner, can deal with any cycle-free grammar with no ε-rules. The dictionary is
handled separately. Explicit rules are given how to convert a grammar into Prolog clauses. A facility for
remembering previous successes and failures is included. A tracing facility is also described.

� Kenzo Inoue, Fukumi Fujiwara, “On LLC(k) parsing method of LR(k) gram-
mars”, J. Inform. Process., vol. 6, no. 4, p. 206-217, 1983. See same paper [LR 1983].

� Susan Hirsh, “P-PATR: a compiler for unification-based grammars”. In Natural
Language Understanding and Logic Programming, II, V. Dahl & P. Saint-Dizier
(eds.), Elsevier Science Publ., Amsterdam, p. 63-78, 1988. Left-corner parsing in

Prolog. How to handle ε-rules that hide left recursion (remove them by duplicating the rule).

13.8 PRECEDENCE AND BOUNDED-CONTEXT PARSING
� Harold Wolpe, “Algorithm for analyzing logical statements to produce a truth

function table”, Commun. ACM, vol. 1, no. 3, p. 4-13, March 1958. The paper
describes an algorithm to convert a Boolean expression into a decision table. The expression is first fully
parenthesized through a number of substitution rules that represent the priorities of the operators. Parsing
is then done by counting parentheses. Further steps construct a decision table.

� J.H. Wegstein, “From formulas to computer-oriented language”, Commun. ACM,
vol. 2, no. 3, p. 6-8, March 1959. A program that converts from arithmetic expressions to

three-address code is given as a one-page flowchart. The parser is basically operator-precedence, with
built-in precedences.

� Robert W. Floyd, “Syntactic analysis and operator precedence”, J. ACM, vol. 10,
no. 3, p. 316-333, July 1963. Operator-precedence explained and applied to an Algol 60

compiler.

� J. Eickel, M. Paul, F.L. Bauer, K. Samelson, “A syntax-controlled generator of
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formal language processors”, Commun. ACM, vol. 6, no. 8, p. 451-455, Aug 1963.
In this early paper, the authors develop and describe what is basically a (2,1) bounded-context parser.
Reduction rules have to have the form U ← V or R ← ST. Such a grammar is called an R-language; it is
“unique” if the parse tables can be constructed without conflict. The terminology in the paper differs con-
siderably from today’s.

� Robert W. Floyd, “Bounded context syntax analysis”, Commun. ACM, vol. 7, no.
2, p. 62-67, Feb 1964. For each right-hand side R in the grammar, enough context is

constructed (by hand) so that when R is found in a sentential form in the right context in a bottom-up
parser, it can safely be assumed to be the handle.

� Niklaus Wirth, Helmut Weber, “EULER − A generalization of ALGOL and its
formal definition, Part 1/2”, Commun. ACM, vol. 9, no. 1/2, p. 13-25/89-99,
Jan/Feb 1966. Detailed description of simple and extended precedence. A table generation

algorithm is given. Part 2 contains the complete precedence table plus functions for the language
EULER.

� David F. Martin, “Boolean matrix methods for the detection of simple pre-
cedence grammars”, Commun. ACM, vol. 11, no. 10, p. 685-687, Oct 1968. Finding

the simple-precedence relations is explained as matrix operations on matrices derived trivially from the
grammar.

� James R. Bell, “A new method for determining linear precedence functions for
precedence grammars”, Commun. ACM, vol. 12, no. 10, p. 567-569, Oct 1969. The

precedence relations are used to set up a connectivity matrix. Take the transitive closure and count 1’s in
each row. Check for correctness of the result.

� Alain Colmerauer, “Total precedence relations”, J. ACM, vol. 17, no. 1, p. 14-30,
Jan 1970. The non-terminal resulting from a reduction is not put on the stack but pushed back

into the input stream; this leaves room for more reductions on the stack. This causes precedence relations
that differ considerably from simple precedence.

� A. Learner, A.L. Lim, “A note on transforming grammars to Wirth-Weber pre-
cedence form”, Computer J., vol. 13, p. 142-144, 1970. An algorithm is given to

transform any CF grammar to simple precedence form (with possible duplicate right-hand sides).

� Jacques Loeckx, “An algorithm for the construction of bounded-context parsers”,
Commun. ACM, vol. 13, no. 5, p. 297-307, May 1970. By systematically generating all

BC states the parser may encounter.

� J. Ichbiah, S. Morse, “A technique for generating almost optimal Floyd-Evans
productions of precedence grammars”, Commun. ACM, vol. 13, no. 8, p. 501-508,
Aug 1970. The notion of “weak precedence” is defined in the introduction. The body of the

article is concerned with efficiently producing good Floyd-Evans productions from a given weak pre-
cedence grammar.

� A.V. Aho, P.J. Denning, J.D. Ullman, “Weak and mixed strategy precedence
parsing”, J. ACM, vol. 19, no. 2, p. 225-243, April 1972. The theory behind and a

comparison of various bottom-up (shift/reduce) parsing algorithms.

� Shoji Sekimoto, “Extended right precedence grammars and analyzing technique
for them”, Inform. Process. Japan, vol. 12, p. 21-25, 1972. In the presence of two rules

A→αXβ and B→β, weak precedence requires that there be no precedence relation between X and B.
This requirement is replaced by a more lenient (but more complicated) one, resulting in right precedence
and is further relaxed to extended right precedence.
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� David F. Martin, “A Boolean matrix method for the computation of linear pre-
cedence functions”, Commun. ACM, vol. 15, no. 6, p. 448-454, June 1972. Detailed

description of a variant of Bell’s method [Precedence 1969].

� A.V. Aho, J.D. Ullman, “Linear precedence functions for weak precedence gram-
mars”, Intern. J. Comput. Math., vol. A3, p. 149-155, 1972. The entries in a

precedence table have four values: <·, =̇, >· and blank. Since precedence functions can only represent three
relations: <, = and >, the blank is sacrificed, to the detriment of error detection. A weak precedence
table holds only three kinds of entries: ≤·, >· and blank, which can be mapped onto <, > and =. The result-
ing matrix will normally not allow precedence functions, but it will if a number of the =’s are sacrificed.
An algorithm is given to (heuristically) determine the minimal set of =’s to sacrifice; unfortunately this is
done by calling upon a heuristic algorithm for partitioning graphs.

� J. McAfee, L. Presser, “An algorithm for the design of simple precedence gram-
mars”, J. ACM, vol. 19, no. 3, p. 385-395, July 1972. An algorithm to construct for any

CF grammar a grammar with conflict-free simple-precedence relations that generates the same language
(with possible duplicate right-hand sides, though).

� David Crowe, “Generating parsers for affix grammars”, Commun. ACM, vol. 15,
no. 8, p. 728-734, Aug 1972. See same paper [VW 1972].

� David S. Wise, “Generalized overlap resolvable grammars and their parsers”, J.
Comput. Syst. Sci., vol. 6, p. 538-572, Dec 1972. A CF grammar is Generalized

Overlap-Resolvable (GOR) if the handle in a bottom-up parser can be found deterministically by identi-
fying the right-hand side on the top of the stack, preceded on the stack by a token from a set of admissi-
ble left-context tokens and by requiring that the next input token belong to a set of admissible right-
context tokens. A grammar is Overlap-Resolvable (OR) if it is GOR and ε-free. These grammars are
between mixed-strategy precedence and SLR(1) in power. A very efficient and flexible implementation
using Dömölki’s technique is described.

� Rainer Zimmer, “Soft precedence”, Inform. Process. Lett., vol. 1, p. 108-110,
1972. A grammar with a conflict-free precedence table in which not all right-hand sides are

different, causes reduce conflicts. For each reduce conflict a simple pattern is constructed which resolves
the conflict by checking the parse stack. If for each reduce conflict such a pattern exists, the grammar is
soft precedence. A matrix algorithm to find the patterns if they exist is given.

� A.V. Aho, J.D. Ullman, “Error detection in precedence parsers”, Math. Syst.
Theory, vol. 7, no. 2, p. 97-113, 1973. The full precedence matrix is split into two copies,

one used to decide between shifts and reduces, which contains ≤·, >· and blank, and the other to determine
the left end of the handle which contains <·, =̇ and blank. The techniques of Aho and Ullman [Precedence
1972] are now applied to both matrices.

� James N. Gray, Michael A. Harrison, “Canonical precedence schemes”, J. ACM,
vol. 20, no. 2, p. 214-234, April 1973. The theory behind precedence parsing.

� G. Terrine, “Coordinate grammars and parsers”, Computer J., vol. 16, p. 232-
244, 1973. A bounded-context parser is made to stack dotted items rather than terminals and

non-terminals. This makes it stronger than bounded-context but still weaker than LR.

� M.D. Mickunas, V.B. Schneider, “A parser-generating system for constructing
compressed compilers”, Commun. ACM, vol. 16, no. 11, p. 669-676, Nov 1973.

Describes a bounded-context parser with transduction facilities. Includes a compression algorithm for
BC tables.

� Susan L. Graham, “On bounded right context languages and grammars”, SIAM J.
Computing, vol. 3, no. 3, p. 224-254, Sept 1974. Theory of same.
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� J.H. Williams, “Bounded-context parsable grammars”, Inform. Control, vol. 28,
no. 4, p. 314-334, Aug 1975. A more general non-canonical form of bounded-context, called

bounded-context parsable, is defined which allows, among others, the parsing in linear time of some
non-deterministic languages. Although a parser could be constructed, it would not be practical.

� M.R. Levy, “Complete operator precedence”, Inform. Process. Lett., vol. 4, no. 2,
p. 38-40, Nov 1975. Establishes conditions under which operator-precedence works properly.

� D.S. Henderson, M.R. Levy, “An extended operator precedence parsing algo-
rithm”, Computer J., vol. 19, no. 3, p. 229-233, 1976. The relation <· is split into <·1 and

<·2 . a<·1b means that a may occur next to b, a<·2b means that a non-terminal has to occur between them.
Likewise for =̇ and >· . This is extended operator-precedence.

� M.S. Krishnamurthy, H.R. Ramesha Chandra, “A note on precedence func-
tions”, Inform. Process. Lett., vol. 4, no. 4, p. 99-100, Jan 1976. Proves for some

simple-precedence tables that no grammars for them exist.

� R.K. Shyamasundar, “A note on linear precedence functions”, Inform. Process.
Lett., vol. 5, no. 3, p. 81, 1976. Comments on Krishnamurthy and Ramesha Chandra

[Precedence 1976].

� M.H. Williams, “Complete operator precedence conditions”, Inform. Process.
Lett., vol. 6, no. 2, p. 60-62, April 1977. Revision of the criteria of Levy [Precedence

1975].

� Eberhard Bertsch, “The storage requirement in precedence parsing”, Commun.
ACM, vol. 20, no. 3, p. 192-194, March 1977. Suppose for a given grammar there exists a

precedence matrix but the precedence functions f and g do not exists. There always exist sets of pre-
cedence functions fi and gj such that for two symbols a and b, comparison of fc (b)(a) and gd (a)(b) yields
the precedence relation between a and b, where c and d are selection functions which select the fi and gj

to be compared. An algorithm is given to construct such a system of functions.

� R.K. Shyamasundar, “Precedence parsing using Dömölki’s algorithm”, Intern. J.
Comput. Math., vol. A6, p. 105-114, 1977. Dömölki’s algorithm can find a reducible

right-hand-side efficiently but cannot know if it is a handle. Precedence parsing can find the handle
easily but has trouble determining which right-hand side it is. Together they are a perfect match.

� I.H. Sudborough, “A note on weak operator precedence grammars”, Inform. Pro-
cess. Lett., vol. 7, no. 5, p. 213-218, 1978. Introduces weak operator-precedence and states

that L (SP)=L (WP) and L (SP)⊃L (WOP )⊃L (OP), where SP is simple precedence, WP is weak pre-
cedence, WOP is weak operator-precedence and OP is operator-precedence, and L (X) is the set of
languages generatable by X grammars.

� R.K. Shyamasundar, “Precedence-regular grammars”, Intern. J. Comput. Math.,
vol. A7, p. 173-186, 1979. Characterization of the class of grammars for which the

Shyamasundar/Dömölki technique (Shyamasundar [Precedence 1977]) works. Note that whereas in LL-
and LR-regular it is the rest of the input that is analysed by a FS automaton to resolve a conflict, in
precedence-regular it is the stack that is analysed by a Dömölki-like automaton.

� Peter Ružička, “Validity test for Floyd’s operator precedence parsing algo-
rithms”. In Mathematical Foundations of Computer Science, J. Bečvář (eds.), Lec-
ture Notes in Computer Science #74, Springer-Verlag, Berlin, p. 415-424, 1979.

Additions to the criteria by Levy [Precedence 1975].

� M.H. Williams, “Conditions for extended operator precedence parsing”, Com-
puter J., vol. 22, no. 2, p. 164-168, 1979. Tighter analysis of extended operator-precedence
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than Henderson and Levy [Precedence 1976].

� Amiram Yehudai, “A new definition for simple precedence grammars”, BIT, vol.
19, p. 282-284, 1979. A weaker definition of simple precedence is given, which is then shown

to define the same class.

� K.R. Moll, “Left context precedence grammars”, Acta Inform., vol. 14, p. 317-
335, 1980. Elaborate and definitely non-trivial refinement of the notion of precedence, to achieve

the viable-prefix property.

� Wilf R. LaLonde, Jim des Rivieres, “Handling operator precedence in arithmetic
expressions with tree transformations”, ACM Trans. Prog. Lang. Syst., vol. 3, no.
1, p. 83-103, Jan 1981. Algorithms that will restructure the parse tree when the operator

precedences are modified. The algorithm is also used to do parsing: first produce a parse tree in standard
form and then add the precedence information.

� David A. Workman, “SR(s,k) parsers: A class of shift-reduce bounded-context
parsers”, J. Comput. Syst. Sci., vol. 22, no. 1, p. 178-197, 1981. The look-back over all

combinations of m symbols on the stack in BC(m,n) parsers is replaced by an LR(m)-like automaton,
resulting in an SR(m,n) parser, if possible. The paper is mainly concerned with theoretical properties of
SR grammars and parsers.

� M.H. Williams, “A systematic test for extended operator precedence”, Inform.
Process. Lett., vol. 13, no. 4-5, p. 187-190, End 1981. The criteria of Williams

[Precedence 1979] in algorithmic form.

� M.C. Er, “A note on computing precedence functions”, Computer J., vol. 25, no.
3, p. 397-398, 1982. By determining longest paths in a digraph.

� Junichi Aoe, Yoneo Yamamoto, Ryosaku Shimada, “A practical method for
reducing weak precedence parsers”, IEEE Trans. Softw. Eng., vol. SE-9, no. 1, p.
25-30, Jan 1983. When a weak-precedence parser finds a >· relation and starts a reduce

sequence, the sequence stops when a ≤· is met; all intermediate relations are required to be >· , to continue
the sequence. The authors modify the parser to continue the sequence anyway, until a ≤· is found; the
intermediate relations are never tested and their values are immaterial. This is exploited to reduce the
parse table.

� Piotr Wyrostek, “On the ‘correct prefix property’ in precedence parsers”, Inform.
Process. Lett., vol. 17, no. 3, p. 161-165, Oct 1983. Extremely complicated

transformation of precedence grammars to mixed-strategy grammars which have, for some parsers, the
correct-prefix property. With an erratum in Inform. Process. Lett., vol. 19, no. 2, p. 111, Aug 1984.

� Piotr Wyrostek, “Precedence technique is not worse than SLR(1)”, Acta Inform.,
vol. 23, p. 361-392, 1986. The thesis in the title is proved by giving an algorithm that

transforms an SLR(1) grammar into a (1,1)-mixed-strategy precedence grammar with the viable-prefix
property (see also Graham [Precedence 1974]). The resulting precedence table is often smaller than the
SLR(1) table.

� R. Nigel Horspool, Michael R. Levy, “Correctness of an extended operator-
precedence parsing algorithm”, Inform. Process. Lett., vol. 24, no. 4, p. 265-273,
March 1987. Establishes conditions under which extended operator-precedence (see Henderson

and Levy [Precedence 1976]) works properly.
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13.9 FINITE-STATE AUTOMATA
� M.O. Rabin, D. Scott, “Finite automata and their decision problems”, IBM J.

Research and Development, vol. 3, p. 114-125, April 1959. A finite-state automaton is
considered as the definition of the set of strings it accepts. Many fundamental properties of FS automata
are exposed and proved. The very useful subset construction algorithm can be found in Definition 11.

� Ken Thompson, “Regular expression search algorithm”, Commun. ACM, vol. 11,
no. 6, p. 419-422, June 1968. The regular expression is turned into a transition diagram,

which is then interpreted in parallel. Remarkably, each step generates (IBM 7094) machine code to exe-
cute the next step.

� Walter L. Johnson, James S. Porter, Stephanie I. Ackley, Douglas T. Ross,
“Automatic generation of efficient lexical processors using finite state tech-
niques”, Commun. ACM, vol. 11, no. 12, p. 805-813, Dec 1968. Semantic actions are

attached to some rules of a FS grammar. A variant of the subset construction is described that requires
the unique determination of the states in which a semantic action is required.

� Franklin L. DeRemer, “Lexical analysis”. In Compiler Construction: An
Advanced Course, F.L. Bauer & J. Eickel (eds.), Lecture Notes in Computer Sci-
ence #21, Springer-Verlag, Berlin, p. 109-120, 1974. 1. General introduction to lexical

analysers, hand-written and generated. 2. Simplification of the LR parser generator algorithm for the
case of non-self-embedding CF grammars (which is possible since the latter in fact generate a regular
language).

� Alfred V. Aho, Margaret J. Corasick, “Efficient string matching: an aid to biblio-
graphic search”, Commun. ACM, vol. 18, no. 6, p. 333-340, June 1975. A given

string embedded in a longer text is found by a very efficient FS automaton derived from that string.

� M.E. Lesk, E. Schmidt, “Lex − a lexical analyzer generator”. In UNIX Manuals,
Bell Laboratories, Murray Hill, New Jersey, p. 13, 1975. The regular grammar is

specified as a list of regular expressions, each associated with a semantic action, which can access the
segment of the input that matches the expression. Substantial look-ahead is performed if necessary. lex is
a well-known and often-used lexical-analyser generator.

� D. Langendoen, “Finite-state parsing of phrase-structure languages”, Linguistic
Inquiry, vol. 6, no. 4, p. 533-554, 1975. See same author [NatLang 1975].

� Roman Krzemień, Andrzej Łukasiewicz, “Automatic generation of lexical
analyzers in a compiler-compiler”, Inform. Process. Lett., vol. 4, no. 6, p. 165-
168, March 1976. A grammar is quasi-regular if it does not feature nested recursion;

consequently it generates a regular language. An algorithm is given that identifies all quasi-regular
subgrammars in a CF grammar, thus identifying the “lexical part” of the grammar.

� Thomas J. Ostrand, Marvin C. Paull, Elaine J. Weyuker, “Parsing regular gram-
mars with finite lookahead”, Acta Inform., vol. 16, p. 125-138, 1981. Every regular

(Type 3) language can be recognized by a finite-state automaton without look-ahead, but such a device is
not sufficient to do parsing. For parsing, look-ahead is needed; if a regular grammar needs a look-ahead
of k tokens, it is called FL(k). FS grammars are either FL(k), FL(∞) or ambiguous; a decision algorithm
is described, which also determines the value of k, if appropriate.
A simple parsing algorithm is a FS automaton gouverned by a look-up table for each state, mapping
look-aheads to new states. A second algorithm avoids these large tables by constructing the relevant
look-ahead sets on the fly.

� V.P. Heuring, “The automatic generation of fast lexical analysers”, Softw. Pract.
Exper., vol. 16, no. 9, p. 801-808, 1986. The lexical analyser is not based directly on a FS
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automaton but has a number of built-in analysers for, e.g., identifier, integer, string, which can be
parametrized. The lexical analyser is about 6 times faster than UNIX lex.

� Douglas W. Jones, “How (not) to code a finite-state machine”, ACM SIGPLAN
Notices, vol. 23, no. 8, p. 19-22, Aug 1988. Small, well-structured and efficient code can

be generated for a FS machine by deriving a single deterministic regular expression from the FS machine
and implementing this expression directly using while and repeat constructions.

� Duane Szafron, Randy Ng, “LexAGen: an interactive incremental scanner gen-
erator”, Softw. Pract. Exper., vol. 20, no. 5, p. 459-483, May 1990. Extensive

description of an interactive generator for lexical analysers, in Smalltalk-80.

13.10 NATURAL LANGUAGE HANDLING
� Hamish P. Dewar, Paul Bratley, James P. Thorne, “A program for the syntactic

analysis of English sentences”, Commun. ACM, vol. 12, no. 8, p. 476-479, 1969.
The authors argue that the English language can be described by a regular grammar: most rules are regu-
lar already and the others describe concatenations of regular sublanguages. The finite-state parser used
constructs the state subsets on the fly, to avoid large tables. Features (attributes) are used to check con-
sistency and to weed out the state subsets.

� W.A. Woods, “Transition networks for natural languages”, Commun. ACM, vol.
13, no. 10, p. 591-606, Oct 1970. A recursive-descent parser guided by transition networks

rather than by grammar rules.

� D. Langendoen, “Finite-state parsing of phrase-structure languages”, Linguistic
Inquiry, vol. 6, no. 4, p. 533-554, 1975. A subset of the CF grammars that produces regular

(FS) languages is analysed and an algorithm is given to produce a FS parser for any grammar belonging
to this subset. Much attention is paid to the linguistic applicability of such grammars. We advice the
reader of this paper to make a list of the abbreviations used in it, to assist in reading.

� William A. Woods, “Cascaded ATN grammars”, Am. J. Comput. Linguist., vol. 6,
no. 1, p. 1-12, Jan-March 1980. The grammar (of a natural language) is decomposed into a

number of grammars, which are then cascaded, that is, the parser for grammar Gn obtains as input the
linearized parse tree produced by the parser for Gn −1 . Each grammar can then represent a linguistic
hypothesis. An efficient implementation is given.

� Daniel Chester, “A parsing algorithm that extends phrases”, Am. J. Comput.
Linguist., vol. 6, no. 2, p. 87-96, April-June 1980. A variant of a backtracking left-corner

parser is described that is particularly convenient for handling continuing phrases like: “the cat that
caught the rat that stole the cheese”.

� Harry Tennant, Natural language processing, Petrocelli Books, Inc., Princeton,
N.J., p. 276, 1981. Easy-going introduction to natural language processing; covers syntax,

semantics, knowledge representation and dialog with many amusing examples. With glossary.

� Philips J. Hayes, George V. Mouradian, “Flexible parsing”, Am. J. Comput.
Linguist., vol. 7, no. 4, p. 232-242, Oct-Dec 1981. A directional breadth-first bottom-up

parser yields some sets of partial parse trees for segments of the input text. Then several heuristics are
used to combine these into a “top-level hypothesis”. The purpose is to be able to parse fragmented or
ungrammatical natural language input.

� Ursula Klenk, “Microcomputers in linguistic data processing: Context-free pars-
ing”, Microprocess. Microprogram., vol. 9, no. 5, p. 281-284, May 1982. Shows the

feasibility of the implementation of four general CF parsers on a very small (48 kbytes) PC: breadth-first
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top-down, backtracking top-down, bottom-up and Earley’s algorithm.

� K. Sparck Jones, Y. Wilks, Automatic natural language parsing, Ellis Horwood
Ltd., Chicester, p. 208, 1983. Eighteen short chapters on the application of parsing in NL

processing, using CF grammars, Augmented Transition Networks, transducers, Generalized Phrase
Structure Grammars and otherwise. Many literature references.

� Margaret King (Ed.), Parsing Natural Language, Academic Press, London/New
York, p. 308, 1983. A compilation of twelve tutorials on aspects of parsing in a linguistic

setting. Very readable.

� Stuart M. Shieber, “Direct parsing of ID/LP grammars”, Linguistics and Philoso-
phy, vol. 7, p. 135-154, 1984. In this very readable paper, the Earley parsing technique is

extended in a straightforward way to ID/LP grammars (Gazdar et al. [NatLang 1985]). Practical algo-
rithms are given.

� Gerald Gazdar, Ewan Klein, Geoffrey Pullum, Ivan Sag, Generalized phrase
structure grammar, Basil Blackwell Publisher, Ltd., Oxford, UK, p. 276, 1985.

The phrase structure of natural languages is more easily and compactly described using Generalized
Phrase Structure Grammars (GPSGs) or Immediate Dominance/Linear Precedence grammars (ID/LP
grammars) than using conventional CF grammars. Theoretical foundations of these grammars are given
and the results are used extensively in linguistic syntactic theory. GPSGs are not to be confused with
general phrase structure grammars, aka Chomsky Type 0 grammars, which are called “unrestricted”
phrase structure grammars in this book.
The difference between GPSGs, ID/LP grammars and CF grammars is explained clearly. A GPSG is a
CF grammar, the non-terminals of which are not unstructured names but sets of features with their
values; such compound non-terminals are called categories. An example of a feature is NNOOUUNN, which can
have the values ++ or --; <<NNOOUUNN,,++>> will be a constituent of the categories “noun phrase”, “noun”, “noun
subject”, etc.
ID/LP grammars differ from GPSGs in that the right-hand sides of production rules consist of multisets
of categories rather than of ordered sequences. Thus, production rules (Immediate Dominance rules)
define vertical order in the production tree only. Horizontal order in each node is restricted through (but
not necessarily completely defined by) Linear Precedence rules. Each LP rule is considered to apply to
every node; this is called the Exhaustive Constant Partial Ordering property.

� Mary Dee Harris, Natural Language Processing, Reston Publ. Comp, Prentice
Hall, Reston, Virg., p. 368, 1985. A good and slow-paced introduction to natural language

processing, with a clear algorithmic view. Lexical analysis including look-up algorithms, phrase struc-
ture grammars (actually context-free) and semantic networks are explained and much attention is paid to
attaching semantics to the structures obtained.

� Veronica Dahl, Patrick Saint-Dizier, Natural language understanding and logic
programming, Elsevier Science Publ., Amsterdam, p. 243, 1985. Seventeen papers on

the application of various grammar types to natural languages.

� Glenn Blank, “A new kind of finite-state automaton: Register vector grammar”.
In Ninth International Conference on Artificial Intelligence, UCLA, p. 749-756,
Aug 1985. In FS grammars, emphasis is on the states: for each state it is specified which tokens

it accepts and to which new state each token leads. In Register-Vector grammars (RV grammars)
emphasis is on the tokens: for each token it is specified which state it maps onto which new state(s). The
mapping is done through a special kind of function, as follows. The state is a (global) vector (array) of
registers (features, attributes). Each register can be on or off. For each token there is a condition vector
with elements which can be on, off or mask (= ignore); if the condition matches the state, the token is
allowed. For each token there is a result vector with elements which can be on, off or mask (= copy); if
the token is applied, the result-vector elements specify how to construct the new state. ε-moves are incor-
porated by having tokens (called labels) which have ε for their representation. Termination has to be
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programmed as a separate register.
RV grammars are claimed to be compact and efficient for describing the FS component of natural
languages. Examples are given. Embedding is handled by having a finite number of levels inside the
state.

� Barbara J. Grosz, Karen Sparck Jones, Bonnie Lynn Webber, Readings in natural
language processing, Morgan Kaufmann Publishers, Inc., Los Altos, Ca. 94022, p.
664, 1986. Selected papers on NL processing, covering syntactic models, semantic

interpretation, discourse interpretation, language action and intention, NL generation and actual systems.

� Walter Goshawke, Ian D.K. Kelly, J. David Wigg, Computer translation of
natural language, Sigma Press, Wilslow, UK, p. 275, 1987. The book consists of three

parts. 1) Overview of progress in Machine Translation. 2) Description of the intermediate code SLUNT
(Spoken Languages Universal Numeric Translation), a stylized numeric language-independent vehicle
for semantics. 3) The International Communicator System, a set of programs to manipulate SLUNT
structures.

� Leonard Bolc (Ed.), Natural language parsing systems, Springer-Verlag, Berlin,
p. 367, 1987. A collection of recent papers on parsing in a natural language environment.

Among the subjects are Earley and CYK parsers, assigning probabilities to ambiguous parsings, error
recovery and, of course, attaching semantics to parsings.

� Jonathan H. Reed, “An efficient context-free parsing algorithm based on register
vector grammars”. In Third Annual IEEE Conference on Expert Systems in
Government, p. 34-40, 1987. The principles of RV grammars (Blank [NatLang 1985]) are

applied to CF grammars by having a separate RV grammar for each syntactic category, each allowing the
names of syntactic categories as tokens. The Earley parsing algorithm is then adapted to handle these
grammars. Measurements indicate that the parser is 1 to 3 times faster on small grammars and 5 to 10
times on large grammars.

� V. Dahl, P. Saint-Dizier, Natural language understanding and logic program-
ming, II, Elsevier Science Publ., Amsterdam, p. 345, 1988. Eighteen papers and two

panel sessions on programs for natural language understanding, mostly in Prolog.

� Glenn D. Blank, “A finite and real-time processor for natural language”, Com-
mun. ACM, vol. 32, no. 10, p. 1174-1189, Oct 1989. Several aspects of the register-

vector grammars of Blank [NatLang 1985] are treated and extended: notation, center-embedding (3 lev-
els), non-determinism through boundary-backtracking, efficient implementation.

13.11 ERROR HANDLING
� W.B. Smith, “Error detection in formal languages”, J. Comput. Syst. Sci., vol. 4,

p. 385-405, Oct 1970. A formal paper that examines properties of recognizers that determine
whether the number of substitution errors that has occurred is bounded by some function. Different
language classes and different levels of numbers of errors are examined. It appears that there is little
difference between languages under a constant maximum number of errors and under a constant max-
imum number of errors per block.

� J.E. LaFrance, “Optimization of error-recovery in syntax-directed parsing algo-
rithms”, ACM SIGPLAN Notices, vol. 5, no. 12, p. 2-17, Dec 1970. Floyd productions

are divided into groups, and each production in a group is tried in order. If all productions of a group
fail, error recovery takes place, depending on the type(s) of the rules in the group. Apart from local
corrections, in some cases all possible productions are traced three symbols ahead. The result is com-
pared with the next four input symbols, using a set of twenty patterns, each pattern modeling a particular
kind of error. If this fails, a FOLLOW-set recovery technique is applied. The implications of
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implementing this error recovery technique in a backtracking recursive descent parser are discussed.

� A.V. Aho, T.G. Peterson, “A minimum-distance error-correcting parser for
context-free languages”, SIAM J. Computing, vol. 1, no. 4, p. 305-312, 1972. A CF

grammar is extended with error productions so that it will produce Σ*; this is effected by replacing each
occurrence of a terminal in a rule by a non-terminal that produces said terminal “with 0 errors” and any
amount of garbage, including ε, “with 1 or more errors”. The items in an Earley parser are extended with
a count, indicating how many errors were needed to create the item. An item with error count k is added
only if no similar item with a lower error count is present already.

� C.J. Burgess, “Compile-time error diagnostics in syntax-directed compilers”,
Computer J., vol. 15, no. 4, p. 302-307, 1972. This paper attempts to define error

diagnostics formally by incorporating them as error productions in the grammar, and examines the extent
to which the positioning of these productions and messages in the grammar can be done automatically.
For left-factored grammars it appears to be easy.

� E.G. James, D.P. Partridge, “Adaptive correction of program statements”, Com-
mun. ACM, vol. 16, no. 1, p. 27-37, Jan 1973. Discusses an error correction technique that

uses artificial intelligence and approximate pattern matching techniques, basing corrections on built-in
statistics, which are adapted continuously.

� R.W. Conway, T.R. Wilcox, “Design and implementation of a diagnostic com-
piler for PL/I”, Commun. ACM, vol. 16, no. 3, p. 169-179, 1973. Describes a

diagnostic PL/C compiler, using a systematic method for finding places where repair is required, but the
repair strategy for each of these places is chosen by the implementor. The parser uses a separable transi-
tion diagram technique (see Conway [Misc 1963]). The error messages detail the error found and the
repair chosen.

� G. Lyon, “Syntax-directed least-errors analysis for context-free languages: a prac-
tical approach”, Commun. ACM, vol. 17, no. 1, p. 3-14, Jan 1974. Discusses a least-

errors analyser, based on Earley’s parser without look-ahead. The Earley items are extended with an
error count, and the parser is started with items for the start of each rule, in each state set. Earley’s
scanner is extended as follows: for all items with the dot in front of a terminal, the item is added to the
same state set with an incremented error count and the dot after the terminal (this represents an insertion
of the terminal); if the terminal is not equal to the input symbol associated with the state set, add the item
to the next state set with an incremented error count and the dot after the terminal (this represents a
replacement); add the item as it is to the next state set, with an incremented error count (this represents a
deletion). The completer does its work as in the Earley parser, but also updates error counts. Items with
the lowest error counts are processed first, and when a state set contains an item, the same item is only
added if it has a lower error count.

� R.A. Wagner, “Order-n correction for regular languages”, Commun. ACM, vol.
17, no. 5, p. 265-268, May 1974. Presents an O(n) algorithm which, given a string and a

finite-state automaton, can correct the string to an acceptable one with a minimum number of edit opera-
tions.

� C. Ghezzi, “LL(1) grammars supporting an efficient error handling”, Inform. Pro-
cess. Lett., vol. 3, no. 6, p. 174-176, July 1975. Faced with an erroneous token in an

environment where empty productions can occur, a strong-LL(1) parser will often do some ε-moves
before reporting the error; this makes subsequent error recovery more difficult. This undesirable
behaviour can be avoided by splitting each rule into a number of copies, one for each set of tokens it may
be followed by. An efficient algorithm for this transformation on the grammar is supplied. The resulting
grammar is of type CRLL(1).

� Susan L. Graham, Steven P. Rhodes, “Practical syntactic error recovery”, Com-
mun. ACM, vol. 18, no. 11, p. 639-650, Nov 1975. See Section 10.6.1 for a discussion of
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this error recovery method.

� J.-P. Lévy, “Automatic correction of syntax errors in programming languages”,
Acta Inform., vol. 4, p. 271-292, 1975. When a bottom-up parser encounters an error, part

of the stack is pushed back into the input stream (for instance, until a beacon token is on the top of the
stack). Starting from the new state now uncovered on the stack, all possible parsings of the input allow-
ing at most n errors are constructed, using breadth-first search and Lyon’s scheme [ErrHandl 1974], until
all parsers are in the same state or all parsers need to assume an n +1-st error. In the latter case the input
is rejected, otherwise one parse is chosen and parsing continues.

� S. Feyock, P. Lazarus, “Syntax-directed correction of syntax errors”, Softw. Pract.
Exper., vol. 6, no. 2, p. 207-219, 1976. When an error is detected, the following error

correction strategy is applied:
1. A set of correction strings is generated (delete current symbol, insert symbol, replace symbol,

interchange with next symbol).
2. This set is filtered (correction syntactically and semantically acceptable?).
3. If there is more than one element left, use a heuristic to determine the "best" one. If only one is

left, this is the one. If none are left, back-up one input symbol, and go back to step 1.

� David Gries, “Error recovery and correction”. In Compiler Construction, an
Advanced Course, Second Edition, F.L. Bauer & J. Eickel (eds.), Springer-Verlag,
New York, p. 627-638, 1976. Mostly an annotated bibliography containing some 35 entries,

not all on error handling.

� J. Ciesinger, “Generating error recovery in a compiler generating system”. In
GI-4 Fachtagung über Programmiersprachen, H.-J. Schneider & M. Nagl (eds.),
Lecture Notes in Computer Science #34, Springer-Verlag, New York, p. 185-193,
1976. Proposes an error recovery method using pairs of elements of the alphabet, called “braces”,

which are used to select part of the input that contains the error and select a goal (non-terminal) to which
this part must be reduced. Some conditions are derived which must be fulfilled by the braces, and it is
shown that the braces can be computed automatically, at parser generation time.

� K.S. Fu, “Error-correcting parsing for syntactic pattern recognition”. In Data
Structure, Computer Graphics and Pattern Recognition, A. Klinger et al. (eds.),
Academic Press, New York, p. 449-492, 1977. Discusses the least-errors analyser of Aho

and Peterson [ErrHandl 1972] in the context of stochastic grammars. Least-errors then becomes max-
imum likelihood. Many examples are given.

� S.Y. Lu, K.S. Fu, “Stochastic error-correcting syntax analysis for recognition of
noisy patterns”, IEEE Trans. Comput., vol. 26, no. 12, p. 1268-1276, 1977. This

paper models deletion, insertion, and replacement errors into a stochastic disformation model: each error
has a probability associated with it. Then, the model is incorporated into the stochastic context-free
grammar, and an Earley parser is modified to look for the most likely error correction. This proves to be
inefficient, so a sequential classification algorithm (SCA) is used. This SCA uses a stopping rule that
tells when it has seen enough terminals to make a decision. The authors are interested in pattern recogni-
tion rather than in parse trees.

� George Poonen, “Error recovery for LR(k) parsers”. In Inf. Process. 77, Bruce
Gilchrist (eds.), IFIP, North Holland Publ. Co., Amsterdam, p. 529-533, Aug
1977. A special token, ERRORMARK, is added to the grammar, to represent any incorrect stretch

of input. When encountering an error in an LR(1) parser, scan the stack for states having a shift on
ERRORMARK, collect all shift tokens of these states into an acceptable-set, skip the input until an
acceptable token is found and unstack until the corresponding accepting state is uncovered.

� Jean E. Musinski, “Lookahead recall error recovery for LALR parsers”, ACM
SIGPLAN Notices, vol. 12, no. 10, p. 48-60, Oct 1977. Shows how the error recovery of
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a specific LALR(1) parser can be improved by what amounts to the restricted decomposition of symbols
on the stack, to increase the acceptable set.

� E.-W. Dieterich, “Parsing and syntactic error recovery for context-free grammars
by means of coarse structures”. In Automata, Languages and Programming, A.
Salomaa & M. Steinby (eds.), Lecture Notes in Computer Science #52, Springer-
Verlag, Berlin, p. 492-503, 1977. Proposes a two-level parsing process that separates the

coarse structures from the rest of the grammar. These coarse structures consist of characteristic brackets,
for instance begin and end. Error recovery can then also be applied to these two levels.

� S. Sippu, E. Soisalon-Soininen, “On defining error recovery in context-free pars-
ing”. In Automata, Languages and Programming, A. Salomaa & M. Steinby
(eds.), Lecture Notes in Computer Science #52, Springer-Verlag, Berlin, p. 492-
503, 1977. Uses a grammatical transformation that leads to an LR grammar that incorporate

certain replacement, deletion, or insertion errors.

� Charles Wetherell, “Why automatic error correctors fail”, Comput. Lang. (Elms-
ford, NY), vol. 2, p. 179-186, 1977. Shows that there is no hope of building efficient

automatic syntactic error correctors which can handle large classes of errors perfectly. The author argues
that parser writers should instead study the error patterns and work for efficient correction of common
errors. Language designers must concentrate on ways to make languages less susceptible to common
errors.

� D.A. Turner, “Error diagnosis and recovery in one pass compilers”, Inform. Pro-
cess. Lett., vol. 6, p. 113-115, 1977. Proposes an extremely simple(minded) error recovery

method for recursive descent parsers: when an error occurs, the parser enters a recovering state. While in
this recovering state, error messages are inhibited. Apart from that, the parser proceeds until it requires a
definite symbol. Then, symbols are skipped until this symbol is found or the end of the input is reached.
Because this method can result in a lot of skipping, some fine-tuning can be applied.

� Thomas J. Pennello, Frank DeRemer, “A forward move algorithm for LR error
recovery”. In Fifth Annual ACM Symposium on Principles of Programming
Languages, p. 241-254, Jan 1978. Refer to Graham and Rhodes [ErrHandl 1975].

Backward moves are found to be detrimental to error recovery. The extent of the forward move is deter-
mined as follows. At the error, an LALR(1) parser is started in a state including all possible items. The
thus extended automaton is run until it wants to reduce past the error detection point. The resulting right
context is used in error correction. An algorithm for the construction of a reasonably sized extended
LALR(1) table is given.

� Kuo-Chung Tai, “Syntactic error correction in programming languages”, IEEE
Trans. Softw. Eng., vol. SE-4, no. 5, p. 414-425, 1978. Presents a technique for syntactic

error correction called pattern mapping. Patterns model the editing of the input string at the error detec-
tion point. These patterns are constructed by the parser developer. The patterns are sorted by a criterion
called the minimum distance correction with k correct look-ahead symbols, and whenever correction is
required, the first matching pattern is used. If no such pattern is found, error correction fails and another
error recovery method must be applied.

� M. Dennis Mickunas, John A. Modry, “Automatic error recovery for LR
parsers”, Commun. ACM, vol. 21, no. 6, p. 459-465, June 1978. When an error is

encountered, a set of provisional parsings of the beginning of the rest of the input (so-called condensa-
tions) are constructed: for each state a parsing is attempted and those that survive according to certain
criteria are accepted. This yields a set of target states. Now the stack is “frayed” by partly or completely
undoing any reduces; this yields a set of source states. Attempts are made to connect a source state to a
target state by inserting or deleting tokens. Careful rules are given.

� J. Lewi, K. de Vlaminck, J. Huens, M. Huybrechts, “The ELL(1) parser generator



306 Annotated bibliography [Ch. 13

and the error-recovery mechanism”, Acta Inform., vol. 10, p. 209-228, 1978.
Presents a detailed recursive descent parser generation scheme for ELL(1) grammars, and also presents
an error recovery method based on so-called synchronization triplets (a,b,A). a is a terminal from
FIRST(A), b is a terminal from LAST(A). The parser operates either in parsing mode or in error mode.
It starts in parsing mode, and proceeds until an error occurs. Then, in error mode, symbols are skipped
until either an end-marker b is found where a is the last encountered corresponding begin-marker, in
which case parsing mode resumes, or a begin-marker a is found, in which case A is invoked in parsing
mode. As soon as A is accepted, error-mode is resumed. The success of the method depends on careful
selection of synchronization triplets.

� G. David Ripley, “A simple recovery-only procedure for simple precedence
parsers”, Commun. ACM, vol. 21, no. 11, p. 928-930, Nov 1978. When an error

(character-pair, reduction or stackability) is encountered, the error is reported and the contents of the
stack are replaced by the one error symbol ????, which has the relation <· to all other symbols. Then the
parser is restarted. Subsequent attempts to reduce across the error symbol just result in a reduction to the
error symbol; no semantic routine is called.

� Joachim Ciesinger, “A bibliography of error-handling”, ACM SIGPLAN Notices,
vol. 14, no. 1, p. 16-26, Jan 1979. Around 90 literature references from 1963-1978.

� C.N. Fischer, K.-C. Tai, D.R. Milton, “Immediate error correction in strong
LL(1) parsers”, Inform. Process. Lett., vol. 8, no. 5, p. 261-266, June 1979. A

strong-LL(1) parser will sometimes perform some incorrect parsing actions, connected with ε-matches,
when confronted with an erroneous input symbol, before signalling an error; this impedes subsequent
error correction. A subset of the LL(1) grammars is defined, the nullable LL(1) grammars, in which
rules can only produce ε directly, not indirectly. A special routine, called before an ε-match is done,
hunts down the stack to see if the input symbol will be matched or predicted by something deeper on the
stack; if not, an error is signalled immediately. An algorithm to convert any strong-LL(1) grammar into a
non-nullable strong-LL(1) grammar is given. (See also Mauney and Fischer [ErrHandl 1981]).

� Susan L. Graham, Charles B. Haley, William N. Joy, “Practical LR error
recovery”, ACM SIGPLAN Notices, vol. 14, no. 8, p. 168-175, Aug 1979. A

considerable number of techniques is integrated. First-level error recovery does forward-move, restrict-
ing the possibilities to one correction only, using a cost function. The backward move is controlled by
error tokens in the grammar. The second level does panic mode error recovery using “beacon tokens”;
disaster is prevented by dividing the grammar into sections (like “declarations” or “statement”), which
the error recovery will not leave.

� Ajit B. Pai, Richard B. Kieburtz, “Global context recovery: a new strategy for
syntactic error recovery by table-driven parsers”, ACM Trans. Prog. Lang. Syst.,
vol. 2, no. 1, p. 18-41, Jan 1980. A fiducial symbol is a terminal symbol that has the property

that if it occurs on the top of the stack of an LL(1) parser, it will to a large degree determine the rest of
the stack. Two more explicit definitions are given, the most practical being: a terminal symbol that
occurs only once in the grammar, in a rule for a non-terminal that occurs only once in the grammar, etc.
Now, if an error occurs that cannot be repaired locally, the input is discarded until a fiducial symbol z
appears. Then the stack is popped until z, or a non-terminal N that produces z, appears. In the latter case n
is “developed” until z appears. Parsing can now continue. If the stack gets empty in this process, the start
symbol is pushed anew; it will produce z.
The paper starts with a very readable introduction to error recovery and a good local error correction
algorithm.

� T. Krawczyk, “Error correction by mutational grammars”, Inform. Process. Lett.,
vol. 11, no. 1, p. 9-15, 1980. Discusses an error correction method that automatically extends

a grammar by adding certain mutations of grammar rules, so that input with separator and parenthesis
errors can be corrected, while retaining the LR(k) grammar class. The parser delivers the parsing in the
form of a list of grammar rules used; the mutated rules in this list are replaced by their originals.
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� Steven Pemberton, “Comments on an error-recovery scheme by Hartmann”,
Softw. Pract. Exper., vol. 10, no. 3, p. 231-240, 1980. Error recovery in a recursive

descent parser is done by passing to each parsing routine a set of “acceptable” symbols. Upon encounter-
ing an error, the parsing routine will insert any directly required terminals and then skip input until an
acceptable symbol is found. Rules are given and refined on what should be in the acceptable set for cer-
tain constructs in the grammar.

� Johannes Röhrich, “Methods for the automatic construction of error correcting
parsers”, Acta Inform., vol. 13, no. 2, p. 115-139, Feb 1980. See Section 10.7.3 for a

discussion of this error recovery method. The paper also discusses implementation of this method in
LL(k) and LR(k) parsers, using so-called deterministic continuable stack automata.

� Seppo Sippu, Eljas Soisalon-Soininen, “A scheme for LR(k) parsing with error
recovery, Part I: LR(k) parsing/Part II: Error recovery/Part III: Error correction”,
Intern. J. Comput. Math., vol. A8, p. 27-42/107-119/189-206, 1980. A thorough

mathematical theory of non-deterministic and deterministic LR(k)-like parsers (which subsumes SLR(k)
and LALR(k)) is given. These parsers are then extended with error productions such that all errors that
are at least k tokens apart are corrected. It should be noted that the resulting parsers are almost certainly
non-deterministic.

� C.N. Fischer, D.R. Milton, S.B. Quiring, “Efficient LL(1) error correction and
recovery using only insertions”, Acta Inform., vol. 13, no. 2, p. 141-154, 1980. See

Section 10.7.4 for a discussion of this error recovery method.

� Kuo-Chung Tai, “Predictors of context-free grammars”, SIAM J. Computing, vol.
9, no. 3, p. 653-664, Aug 1980. Author’s abstract: "A predictor of a context-free grammar G

is a substring of a sentence in L (G) which determines unambiguously the contents of the parse stack
immediately before (in top-down parsing) or after (in bottom-up parsing) symbols of the predictor are
processed. Two types of predictors are defined, one for bottom-up parsers, one for top-down parsers.
Algorithms for finding predictors are given and the possible applications of predictors are discussed."
Predictors are a great help in error recovery.

� C.N. Fischer, J. Mauney, “On the role of error productions in syntactic error
correction”, Comput. Lang. (Elmsford, NY), vol. 5, p. 131-139, 1980. Presents a

number of examples in a Pascal parser illustrating the use of error productions in cases where an
automatic error corrector would not find the right continuation. Error productions can be added to the
grammar regardless of the error corrector.

� Jon Mauney, Charles N. Fischer, “An improvement to immediate error detection
in strong LL(1) parsers”, Inform. Process. Lett., vol. 12, no. 5, p. 211-212, 1981.

The technique of Fischer, Tai and Milton [ErrHandl 1979] is extended to all LL(1) grammars by having
the special routine which is called before an ε-match is done do conversion to non-nullable on the fly.
Linear time dependency is preserved by setting a flag when the test succeeds, clearing it when a symbol
is matched and by not performing the test if the flag is set: this way the test will be done at most once for
each symbol.

� Stuart O. Anderson, Roland C. Backhouse, “Locally least-cost error recovery in
Earley’s algorithm”, ACM Trans. Prog. Lang. Syst., vol. 3, no. 3, p. 318-347, July
1981. Parsing and error recovery are unified so that error-free parsing is zero-cost error recovery.

The information already present in the Earley items is utilized cleverly to determine possible continua-
tions. From these and from the input, the locally least-cost error recovery can be calculated, albeit at
considerable expense. Detailed algorithms are given.

� Rodney W. Topor, “A note on error recovery in recursive descent parsers”, ACM
SIGPLAN Notices, vol. 17, no. 2, p. 37-40, Feb 1982. Followset error recovery is

implemented in a recursive-descent parser by having one parse-and-error-recovery routine which is
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passed the actual routine for a rule, its FIRST set and its FOLLOWS set. This reduces the size of the
parser considerably and prevents clerical errors in hand-written parsers. Also see subsequent letter by
C.B. Boyd, vol. 17, no. 8, p. 101-103.

� Michael G. Burke, Gerald A. Fisher, “A practical method for syntactic error diag-
nosis and repair”, ACM SIGPLAN Notices, vol. 17, no. 6, p. 67-78, June 1982. See

Burke and Fisher [ErrHandl 1987].

� Jon Mauney, Charles N. Fischer, “A forward-move algorithm for LL and LR
parsers”, ACM SIGPLAN Notices, vol. 17, no. 6, p. 79-87, June 1982. Upon finding

an error, a Graham, Harrison and Ruzzo general CF parser [CF 1980] is started to do a forward move
analysis using cost functions. The general CF parser is run over a restricted piece of the input, allowing
regional least-cost error correction.

� F. Jalili, J.H. Gallier, “Building friendly parsers”. In 9th Annual ACM Symposium
on Principles of Programming Languages, ACM, New York, p. 196-206, 1982. An

interactive LALR(1) parser is described that uses forward move error recovery to better prompt the user
with possible corrections. The interactions of the interactive parsing and the forward move algorithm are
described in fairly great detail.

� S.O. Anderson, R.C. Backhouse, “An alternative implementation of an insertion-
only recovery technique”, Acta Inform., vol. 18, p. 289-298, 1982. Argues that the

FMQ error corrector of Fischer, Milton and Quiring [ErrHandl 1980] does not have to compute a com-
plete insertion. It is sufficient to compute the first symbol. If w = w 1w 2

. . . wn is an optimal insertion for
the error a following prefix u, then w 2

. . . wn is an optimal insertion for the error a following prefix uw 1 .
Also, immediate error detection is not necessary. Instead, the error corrector is called for every symbol,
and returns an empty insertion if the symbol is correct.

� S.O. Anderson, R.C. Backhouse, E.H. Bugge, C.P. Stirling, “An assessment of
locally least-cost error recovery”, Computer J., vol. 26, no. 1, p. 15-24, 1983.

Locally least-cost error recovery consists of a mechanism for editing the next input symbol at least cost,
where the cost of each edit operation is determined by the parser developer. The method is compared to
Wirth’s followset method (see Stirling [ErrHandl 1985]) and compares favorably.

� Seppo Sippu, Eljas Soisalon-Soininen, “A syntax-error-handling technique and its
experimental analysis”, ACM Trans. Prog. Lang. Syst., vol. 5, no. 4, p. 656-679,
Oct 1983. Phrase level error recovery replaces the top m elements from the stack and the next n

input tokens by a single non-terminal such that parsing can continue. The authors explore various search
sequences to determine the values of m and n. Local error recovery can be incorporated by introducing
for each terminal tt a new production rule TTeerrmm__tt -->> EEmmppttyy tt, and having a production rule EEmmppttyy
-->> εε. This allows both the correction of a phrase (n=0,m=0) to TTeerrmm__tt (i.e. insertion of tt) and of a
phrase (n,m) to EEmmppttyy (i.e. deletion of (n,m)). Experimental results are given.

� K. Hammond, V.J. Rayward-Smith, “A survey on syntactic error recovery and
repair”, Comput. Lang. (Elmsford, NY), vol. 9, no. 1, p. 51-68, 1984. Divides the

error recovery schemes into three classes:
1. local recovery schemes, such as “panic mode”, the followset method, the FMQ method (see

Fischer, Milton and Quiring [ErrHandl 1980]), LaFrance’s pattern matching method (see LaFrance
[ErrHandl 1970]), and Backhouse’s locally least-cost method (see Backhouse et al. [ErrHandl
1983]);

2. regional error recovery schemes, such as forward/backward move (see for instance Graham and
Rodhes [ErrHandl 1975]); and

3. global error recovery schemes, such as global minimum distance error recovery (see for instance
Aho and Peterson [ErrHandl 1972] and Lyon [ErrHandl 1974]), and mutational grammars (see for
instance Krawczyk [ErrHandl 1980]).

The paper summarizes the advantages and disadvantages of each method.
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� Michael Spenke, Heinz Mühlenbein, Monika Mevenkamp, Friedemann Mattern,
Christian Beilken, “A language-independent error recovery method for LL(1)
parsers”, Softw. Pract. Exper., vol. 14, no. 11, p. 1095-1107, Nov 1984. Presents an

error recovery method using deletions and insertions. The choice between different possible corrections
is made by comparing the cost of the insertion with the reliability of the symbol. A correction is plausible
if the reliability of the first non-skipped symbol is larger than the insert-cost of the insertion. The correc-
tion is selected among the plausible corrections, such that the fewest symbols are skipped. Reliability
and insert-cost of each symbol are tunable.

� Colin P. Stirling, “Follow set error recovery”, Softw. Pract. Exper., vol. 15, no. 3,
p. 239-257, March 1985. Describes the followset technique for error recovery: at all times

there is a set of symbols that depends on the parse stack and that will not be skipped, called the followset.
When an error occurs, symbols are skipped until one is found that is a member of this set. Then, symbols
are inserted and/or the parser state is adapted until this symbol is legal. In fact there is a family of error
recovery (correction) methods that differ in the way the followset is determined. The paper compares
several of these methods.

� Pyda Srisuresh, Michael J. Eager, “A portable syntactic error recovery scheme
for LR(1) parsers”. In Proc. 1985 ACM Comput. Sc. Conf., W.D. Dominick (eds.),
ACM, New Orleans, p. 390-399, March 1985. Presents a detailed account of the

implementation of an error recovery scheme that works at four levels, each one of a more global nature.
The first and the second level are local, attempting to recover from the error by editing the symbol in
front of the error detection point and the error symbol itself. The third level uses error tokens, and the
last level is panic mode.

� Helmut Richter, “Noncorrecting syntax error recovery”, ACM Trans. Prog. Lang.
Syst., vol. 7, no. 3, p. 478-489, July 1985. See Section 10.8 for a discussion of this method.

The errors can be pinpointed better by parsing backwards from the error detection point, using a reverse
grammar until again an error is found. The actual error must be in the indicated interval. Bounded-
context grammars are conjectured to yield deterministic suffix-grammars.

� Kwang-Moo Choe, Chun-Hyon Chang, “Efficient computation of the locally
least-cost insertion string for the LR error repair”, Inform. Process. Lett., vol. 23,
no. 6, p. 311-316, 1986. Refer to Anderson, Backhouse, Bugge and Stirling [ErrHandl 1983]

for locally least-cost error correction. The paper presents an efficient implementation in LR parsers,
using a formalism described by Park, Choe and Chang [LR 1985].

� Tudor Bălănescu, Serban Gavrilă, Marian Gheorghe, Radu Nicolescu, Liviu
Sofonea, “On Hartman’s error recovery scheme”, ACM SIGPLAN Notices, vol.
21, no. 12, p. 80-86, Dec 1986. More and tighter acceptable-sets for more grammar

constructions; see Pemberton [ErrHandl 1980].

� Michael G. Burke, Gerald A. Fisher, “A practical method for LL and LR syntac-
tic error diagnosis and recovery”, ACM Trans. Prog. Lang. Syst., vol. 9, no. 2, p.
164-197, April 1987. Traditional error recovery assumes that all tokens up to the error symbol

are correct. The article investigates the option of allowing earlier tokens to be modified. To this end,
parsing is done with two parsers, one of which is a number of tokens ahead of the other. The first parser
does no actions and keeps enough administration to be rolled back, and the second performs the semantic
actions; the first parser will modify the input stream or stack so that the second parser will never see an
error. This device is combined with three error repair strategies: single token recovery, scope recovery
and secondary recovery. In single token recovery, the parser is rolled back and single tokens are deleted,
inserted or replaced by tokens specified by the parser writer. In scope recovery, closers as specified by
the parser writer are inserted before the error symbol. In secondary recovery, sequences of tokens
around the error symbol are discarded. In each case, a recovery is accepted if it allows the parser to
advance a specified number of tokens beyond the error symbol. It is reported that this techniques
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corrects three quarters of the normal errors in Pascal programs in the same way as a knowledgeable
human would. The effects of fine-tuning are discussed.

� Jon Mauney, Charles N. Fischer, “Determining the extent of lookahead in syntac-
tic error repair”, ACM Trans. Prog. Lang. Syst., vol. 10, no. 3, p. 456-469, July
1988. A correction of an error can be validated by trying it and parsing on until a symbol is found

with the so-called Moderate Phrase Level Uniqueness. Once such a symbol is found, all minimal correc-
tions of the error are equivalent in the sense that after this MPLU symbol, the acceptable suffixes will be
identical. Measurements indicate that in Pascal the distance between two such symbols is fairly short,
for the most part.

� Gordon V. Cormack, “An LR substring parser for noncorrecting syntax error
recovery”, ACM SIGPLAN Notices, vol. 24, no. 7, p. 161-169, July 1989. Presents a

method to produce an LR parser for the substrings of a language described by a bounded-context(1,1)
grammar, thereby confirming Richter’s [ErrHandl 1985] conjecture that this can be done for BC gram-
mars. The resulting parser is about twice as large as an ordinary LR parser.

13.12 TRANSFORMATIONS ON GRAMMARS
� J.M. Foster, “A syntax-improving program”, Computer J., vol. 11, no. 1, p. 31-34,

May 1968. The parser generator SID (Syntax Improving Device) attempts to remove LL(1)
conflicts by eliminating left-recursion, and then left-factoring, combined with inline substitution. If this
succeeds, SID generates a parser in machine language.

� Kenichi Taniguchi, Tadao Kasami, “Reduction of context-free grammars”,
Inform. Control, vol. 17, p. 92-108, 1970. Considers algorithms to reduce or minimize the

number of non-terminals in a grammar.

� M.D. Mickunas, R.L. Lancaster, V.B. Schneider, “Transforming LR(k) grammars
to LR(1), SLR(1) and (1,1) bounded right-context grammars”, J. ACM, vol. 23,
no. 3, p. 511-533, July 1976. The required look-ahead of k tokens is reduced to k −1 by

incorporating the first token of the look-ahead into the non-terminal; this requires considerable care. The
process can be repeated until k =1 for all LR(k) grammars and even until k =0 for some grammars.

� D.J. Rosenkrantz, H.B. Hunt, “Efficient algorithms for automatic construction
and compactification of parsing grammars”, ACM Trans. Prog. Lang. Syst., vol. 9,
no. 4, p. 543-566, Oct 1987. Many grammar types are defined by the absence of certain

conflicts: LL(1), LR(1), operator-precedence, etc. A simple algorithm is given to modify a given gram-
mar to avoid such conflicts. Modification is restricted to the merging of non-terminals and possibly the
merging of terminals; semantic ambiguity thus introduced will have to be cleared up by later inspection.
Proofs of correctness and applicability of the algorithm are given. The maximal merging of terminals
while avoiding conflicts is also used to reduce grammar size.

13.13 GENERAL BOOKS ON PARSING
� Peter Zilany Ingerman, A Syntax-Oriented Translator, Academic Press, New

York, p. 132, 1966. Readable and realistic (for that time) advice for DIY compiler
construction, in archaic terminology. Uses a backtracking LC parser improved by FIRST sets.

� William M. McKeeman, James J. Horning, David B. Wortman, A Compiler Gen-
erator, Prentice Hall, Englewood Cliffs, N.J., p. 527, 1970. Good explanation of

precedence and mixed-strategy parsing. Full application to the XPL compiler.

� Alfred V. Aho, Jeffrey D. Ullman, The Theory of Parsing, Translation and
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Compiling, Volume I: Parsing, Prentice Hall, Englewood Cliffs, N.J., p. 542,
1972. The book describes the parts of formal languages and automata theory relevant to parsing in

a strict mathematical fashion. Since much of the pertinent theory of parsing had already been developed
in 1972, the book is still reasonably up to date and is a veritable trove of definitions, theorems, lemmata
and proofs.
The required mathematical apparatus is first introduced, followed by a survey of compiler construction
and by properties of formal languages. The rest of the book confines itself to CF and regular languages.
General parsing methods are treated in full: backtracking top-down and bottom-up, CYK and Earley.
Directional non-backtracking methods are explained in detail, including general LL(k), LC(k) and LR(k),
precedence parsing and various other approaches. A last chapter treats several non-grammatical methods
for language specification and parsing.
Many practical matters concerning parser construction are treated in volume II, where the theoretical
aspects of practical parser construction are covered; recursive descent is not mentioned, though.

� Frederick W. Weingarten, Translation of Computer Languages, Holden-Day, San
Francisco, Calif., p. 180, 1973. Describes some parsing techniques in an clear and easy style.

The coverage of subjects is rather eclectic. A full backtracking top-down parser for ε-free non-left-
recursive grammars and a full backtracking bottom-up parser for ε-free grammars are described. The
author does not explicitly forbid ε-rules, but his internal representation of grammar rules cannot represent
them. The Earley parser is described well, with an elaborate example. For linear-time parsers, bounded-
context and precedence are treated; a table-construction algorithm is given for precedence but not for
bounded-context. LR(k) is vaguely mentioned, LL(k) not at all. Good additional reading. Contains many
algorithms and flowcharts similar to Cohen and Gotlieb [Misc 1970].

� R.C. Gonzales, M.G. Thomason, Syntactic Pattern Recognition, Addison-Wesley,
Reading, Mass., p. 283, 1978. This book provides numerous examples of syntactic

descriptions of objects not normally considered subject to a syntax. Examples range from simple seg-
mented closed curves, trees and shapes of letters, via bubble chamber events, electronic networks, and
structural formulas of rubber molecules to snow flakes, ECGs, and fingerprints. Special attention is paid
to grammars for non-linear objects, for instance web grammars, plex grammars and shape grammars. A
considerable amount of formal language theory is covered. All serious parsing is done using the CYK
algorithm; Earley, LL(k) and LR(k) are not mentioned. Operator-precedence, simple precedence and fin-
ite automata are occasionally used. The authors are wrong in claiming that an all-empty row in the CYK
recognition matrix signals an error in the input.
Interesting chapters about stochastic grammars, i.e. grammars with probabilities attached to the produc-
tion rules, and about grammatical inference, i.e. methods to derive a reasonable grammar that will pro-
duce all sentences in a representative set R + and will not produce the sentences in a counterexample set
R − .

� John E. Hopcroft, Jeffrey D. Ullman, Introduction to Automata Theory,
Languages, and Computation, Addison-Wesley, Reading, Massachussetts, p. 418,
1979. A must for readers interested in formal language theory and computational

(im)possibilities.

� Roland C. Backhouse, Syntax of Programming Languages, Prentice Hall, Lon-
don, p. 290, 1979. Grammars are considered in depth, as far as they are relevant to

programming languages. FS automata and the parsing techniques LL and LR are treated in detail, and
supported by lots of well-explained math. Often complete and efficient algorithms are given in Pascal.
Much attention is paid to error recovery and repair, especially to least-cost repairs and locally optimal
repairs. Definitely recommended for further reading.

� A.J.T. Davie, R. Morisson, Recursive Descent Compiling, Ellis Horwood Ltd.,
Chichester, p. 195, 1981. Well-balanced description of the design considerations that go into a

recursive descent compiler; uses the St. Andrews University S-algol compiler as a running example.

� V.J. Rayward-Smith, A First Course in Formal Languages, Blackwell Scientific,
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Oxford, p. 123, 1983. Very useful intermediate between Révész [Books 1985] and Hopcroft
and Ullman [Books 1979]. Quite readable (the subject permitting); simple examples; broad coverage. No
treatment of LALR, no bibliography.

� György E. Révész, Introduction to Formal Languages, McGraw-Hill, Singapore,
p. 199, 1985. This nifty little book contains many results and elementary proofs of formal

languages, without being “difficult”. It gives a description of the ins and outs of the Chomsky hierarchy,
automata, decidability and complexity of context-free language recognition, including the hardest CF
language. Parsing is discussed, with descriptions of the Earley, LL(k) and LR(k) algorithms, each in a
few pages.

� William A. Barrett, Rodney M. Bates, David A. Gustafson, John D. Couch, Com-
piler Construction: Theory and Practice, Science Research Associates, Chicago,
p. 504, 1986. A considerable part (about 50%) of the book is concerned with parsing; formal

language theory, finite-state automata, top-down en bottom-up parsing and error recovery are covered in
very readable chapters. Only those theorems are treated that relate directly to actual parsing; proofs are
quite understandable. The book ends with an annotated bibliography of almost 200 entries, on parsing
and other aspects of compiler construction.

� A.V. Aho, R. Sethi, J.D. Ullman, Compilers: Principles, Techniques and Tools,
Addison-Wesley, Reading, Mass., p. 796, 1986. The “Red Dragon Book”. Excellent,

UNIX-oriented treatment of compiler construction. Even treatment of the various aspects.

� Anton Nijholt, Computers and Languages: Theory and Practice, Studies in Com-
puter Science and Artificial Intelligence, 4, North-Holland, Amsterdam, p. 482,
1988. Treats in narrative form computers, natural and computer languages, and artificial

intelligence, their essentials, history and interrelationships; for the sophisticated layperson. The account
is interspersed with highly critical assessments of the influence of the military on computers and artificial
intelligence. Much global information, little technical detail; treats parsing in breadth but not in depth.

13.14 SOME BOOKS ON COMPUTER SCIENCE
� David Harel, Algorithms: The Spirit of Computing, Addison-Wesley, Reading,

Mass, p. 425, 1987. Excellent introduction to the fundamentals of computer science for the
sophisticated reader.

� Robert Sedgewick, Algorithms, Addison-Wesley, Reading, Mass., p. 657, 1988.
Comprehensive, understandable treatment of many algorithms, beautifully done.

� Jeffrey D. Smith, Design and Analysis of Algorithms, PWS-Kent Publ. Comp.,
Boston, p. 447, 1989. Good introductory book, treating list handling, searching, breadth-first

and depth-first search, dynamic programming, etc., etc.
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