

Left-corner parsing

Laura Kassner

laura.kassner@gmx.de

Computational Linguistics II:
Parsing

January 10th, 2007

mailto:laura.kassner@gmx.de

Left-corner parsing

● Basics
● Building a left-corner recognizer...
● ... and transforming it into a parser
● Comparison to top-down and bottom-up

approaches

Left-corner parsing: Basics

What is left-corner parsing?

picture taken from Shravan Vasishth's HSP seminar slides

Left-corner parsing: Basics

● bottom-up and top-down aspects

Left-corner parsing: Basics

● bottom-up and top-down aspects
● bottom-up: rule k0 -> k1... kn can only be applied

if for every ki (1 <= i <= n), a complete partial
structure has been recognized

Left-corner parsing: Basics

● bottom-up and top-down aspects
● bottom-up: rule k0 -> k1... kn can only be applied

if for every ki (1 <= i <= n), a complete partial
structure has been recognized

● left-corner: a structure dominated by k1 must
have been recognized for a rule to be applied

Left-corner parsing: Basics

● bottom-up and top-down aspects
● bottom-up: rule k0 -> k1... kn can only be applied

if for every ki (1 <= i <= n), a complete partial
structure has been recognized

● left-corner: a structure dominated by k1 must
have been recognized for a rule to be applied

=> k1 is “left corner“ of the rule – first symbol on
the right hand side

Left-corner parsing: Basics

● bottom-up and top-down aspects
● bottom-up: rule k0 -> k1... kn can only be applied

if for every ki (1 <= i <= n), a complete partial
structure has been recognized

● left-corner: a structure dominated by k1 must
have been recognized for a rule to be applied

=> k1 is “left corner“ of the rule – first symbol on
the right hand side

=> rule used to make assumptions about the
category dominating k1 and about following
constituents

Left-corner parsing: Basics

What is a left-corner parse?

Left-corner parsing: Basics

What is a left-corner parse?

● context-free grammar G = <N, T, S, R>

Left-corner parsing: Basics

What is a left-corner parse?

● context-free grammar G = <N, T, S, R>
● string w

Left-corner parsing: Basics

What is a left-corner parse?

● context-free grammar G = <N, T, S, R>
● string w

=> series of rule indices γ = i1 ... in which
corresponds to a derivation of string w in G

Left-corner parsing: Basics

Ordering rules:

Left-corner parsing: Basics

Ordering rules:

1 – β ist the tree structure implied by γ

Left-corner parsing: Basics

Ordering rules:

1 – β ist the tree structure implied by γ

2 – nodes in β are ordered the following way:

Left-corner parsing: Basics

Ordering rules:

1 – β ist the tree structure implied by γ

2 – nodes in β are ordered the following way:

a) if n DD n1 ... nm, all nodes of the subtree with root
n1 are in front of n;

Left-corner parsing: Basics

Ordering rules:

1 – β ist the tree structure implied by γ

2 – nodes in β are ordered the following way:

a) if n DD n1 ... nm, all nodes of the subtree with root
n1 are in front of n;

b) n is in front of all other nodes it dominates

Left-corner parsing: Basics

Ordering rules:

1 – β ist the tree structure implied by γ

2 – nodes in β are ordered the following way:

a) if n DD n1 ... nm, all nodes of the subtree with root
n1 are in front of n;

b) n is in front of all other nodes it dominates

c) all nodes dominated by ni are in front of the nodes
dominated by ni+1

Left-corner parsing: Basics

Ordering rules:

1 – β ist the tree structure implied by γ

2 – nodes in β are ordered the following way:

a) if n DD n1 ... nm, all nodes of the subtree with root
n1 are in front of n;

b) n is in front of all other nodes it dominates

c) all nodes dominated by ni are in front of the nodes
dominated by ni+1

3 – the order of rule applications described by γ
does not violate these rules

Left-corner parsing: Basics

=> inorder tree traversal!!!

Left-corner parsing: Basics

An example:

Left-corner parsing: Basics

An example:
● grammar rules: 1: S -> AS 2: S-> BB 3: A -> bAA

 4: A -> a 5: B -> b 6: B -> e

Left-corner parsing: Basics

An example:
● grammar rules: 1: S -> AS 2: S-> BB 3: A -> bAA

 4: A -> a 5: B -> b 6: B -> e

● sentence: bbaaab

Left-corner parsing: Basics

An example:
● grammar rules: 1: S -> AS 2: S-> BB 3: A -> bAA

 4: A -> a 5: B -> b 6: B -> e

● sentence: bbaaab

Left-corner parsing: Basics

An example:
● grammar rules: 1: S -> AS 2: S-> BB 3: A -> bAA

 4: A -> a 5: B -> b 6: B -> e

● sentence: bbaaab

Order of nodes:

4 2 9 5 15 10 16 11 12 6 1 13 7

 3 14 8

Left-corner parsing: Basics

An example:
● grammar rules: 1: S -> AS 2: S-> BB 3: A -> bAA

 4: A -> a 5: B -> b 6: B -> e

● sentence: bbaaab

Order of nodes:

4 2 9 5 15 10 16 11 12 6 1 13 7

 3 14 8

TD parse: 1 3 3 4 4 4 2 6 5

Left-corner parsing: Basics

An example:
● grammar rules: 1: S -> AS 2: S-> BB 3: A -> bAA

 4: A -> a 5: B -> b 6: B -> e

● sentence: bbaaab

Order of nodes:

4 2 9 5 15 10 16 11 12 6 1 13 7

 3 14 8

TD parse: 1 3 3 4 4 4 2 6 5

BU parse: 4 4 3 4 3 6 5 2 1

Left-corner parsing: Basics

An example:
● grammar rules: 1: S -> AS 2: S-> BB 3: A -> bAA

 4: A -> a 5: B -> b 6: B -> e

● sentence: bbaaab

Order of nodes:

4 2 9 5 15 10 16 11 12 6 1 13 7

 3 14 8

TD parse: 1 3 3 4 4 4 2 6 5

BU parse: 4 4 3 4 3 6 5 2 1

LC parse: 3 3 4 4 4 1 6 2 5

Questions?

Building a left-corner recognizer

Building a left-corner recognizer

Data: CFG <N, T, S, R> Lexicon L

Building a left-corner recognizer

Data: CFG <N, T, S, R> Lexicon L

Data structures: 3 stacks

Building a left-corner recognizer

Data: CFG <N, T, S, R> Lexicon L

Data structures: 3 stacks

1) SENTENCE to be processed

Building a left-corner recognizer

Data: CFG <N, T, S, R> Lexicon L

Data structures: 3 stacks

1) SENTENCE to be processed

2) CATEGORIES to be recognized

Building a left-corner recognizer

Data: CFG <N, T, S, R> Lexicon L

Data structures: 3 stacks

1) SENTENCE to be processed

2) CATEGORIES to be recognized

3) CONSTITUENTS we are looking for

Building a left-corner recognizer

Data: CFG <N, T, S, R> Lexicon L

Data structures: 3 stacks

1) SENTENCE to be processed

2) CATEGORIES to be recognized

3) CONSTITUENTS we are looking for

Stack operations:

Building a left-corner recognizer

Data: CFG <N, T, S, R> Lexicon L

Data structures: 3 stacks

1) SENTENCE to be processed

2) CATEGORIES to be recognized

3) CONSTITUENTS we are looking for

Stack operations:

pop(STACK) push(element, STACK) first(STACK)

Building a left-corner recognizer
Procedures

Building a left-corner recognizer
Procedures

REDUCE

Building a left-corner recognizer
Procedures

REDUCE

Preconditions:

Building a left-corner recognizer
Procedures

REDUCE

Preconditions:

1) There is a rule k0 -> k1 ... kn in R or k1 is part of k0 for
an arbitrary lexical category k0

Building a left-corner recognizer
Procedures

REDUCE

Preconditions:

1) There is a rule k0 -> k1 ... kn in R or k1 is part of k0 for
an arbitrary lexical category k0

2) first(CATEGORIES) Є (N U T)

Building a left-corner recognizer
Procedures

REDUCE

Preconditions:

1) There is a rule k0 -> k1 ... kn in R or k1 is part of k0 for
an arbitrary lexical category k0

2) first(CATEGORIES) Є (N U T)

Input:

SENTENCE with first = k1; CATEGORIES;
CONSTITUENTS

Building a left-corner recognizer
Procedures

REDUCE

Preconditions:

1) There is a rule k0 -> k1 ... kn in R or k1 is part of k0 for
an arbitrary lexical category k0

2) first(CATEGORIES) Є (N U T)

Input:

SENTENCE with first = k1; CATEGORIES;
CONSTITUENTS

Output:

pop(SENTENCE); push(k2 ... kn t, CATEGORIES);
push(k0, CONSTITUENTS)

Building a left-corner recognizer
Procedures

REDUCE

=> delete first symbol from sentence (= left
corner of rule)

=> rest of right hand side of rule is pushed onto
CATEGORIES together with signal symbol for
end of rule 't'

=> CONSTITUENTS keeps in mind we are
looking for k0

Building a left-corner recognizer
Procedures

MOVE

Building a left-corner recognizer
Procedures

MOVE

Preconditions:

Building a left-corner recognizer
Procedures

MOVE

Preconditions:

1) first(CATEGORIES) = t

Building a left-corner recognizer
Procedures

MOVE

Preconditions:

1) first(CATEGORIES) = t

2) first(CONSTITUENTS) = A Є (N U T)

Building a left-corner recognizer
Procedures

MOVE

Preconditions:

1) first(CATEGORIES) = t

2) first(CONSTITUENTS) = A Є (N U T)

Input:

SENTENCE; CATEGORIES; CONSTITUENTS

Building a left-corner recognizer
Procedures

MOVE

Preconditions:

1) first(CATEGORIES) = t

2) first(CONSTITUENTS) = A Є (N U T)

Input:

SENTENCE; CATEGORIES; CONSTITUENTS

Output:

push(first(CONSTITUENTS), SENTENCE);
pop(CATEGORIES); pop(CONSTITUENTS)

Building a left-corner recognizer
Procedures

MOVE

=> right-hand-side of rule whose left-hand-side is
A has been completely processed, A was
recognized

=> push A onto SENTENCE

=> remove the 't' from CATEGORIES

=> remove A from CONSTITUENTS

Building a left-corner recognizer
Procedures

REMOVE

Building a left-corner recognizer
Procedures

REMOVE

Precondition:

first(SENTENCE) = first(CATEGORIES)

Building a left-corner recognizer
Procedures

REMOVE

Precondition:

first(SENTENCE) = first(CATEGORIES)

Input:

SENTENCE; CATEGORIES; CONSTITUENTS

Building a left-corner recognizer
Procedures

REMOVE

Precondition:

first(SENTENCE) = first(CATEGORIES)

Input:

SENTENCE; CATEGORIES; CONSTITUENTS

Output:

pop(SENTENCE); pop(CATEGORIES);
CONSTITUENTS

Building a left-corner recognizer
Procedures

REMOVE

=> is applied iff first(SENTENCE) is a category ki,
a left corner, and this category has been
recognized

Building a left-corner recognizer
The Algorithm

Building a left-corner recognizer
The Algorithm

RECOGNIZELC

Building a left-corner recognizer
The Algorithm

RECOGNIZELC

Data: CFG G = <N, T, S, R> Lexicon L
 sentence w = w1 ... wn, n >= 1

Building a left-corner recognizer
The Algorithm

RECOGNIZELC

Data: CFG G = <N, T, S, R> Lexicon L
 sentence w = w1 ... wn, n >= 1

Input:

SENTENCE = [w1 ... wn]; CATEGORIES = [S];
CONSTITUENTS = []

Building a left-corner recognizer
The Algorithm

RECOGNIZELC

Data: CFG G = <N, T, S, R> Lexicon L
 sentence w = w1 ... wn, n >= 1

Input:

SENTENCE = [w1 ... wn]; CATEGORIES = [S];
CONSTITUENTS = []

Output:

true / false

Building a left-corner recognizer
The Algorithm

RECOGNIZELC

Method:

if (SENTENCE == CATEGORIES ==
CONSTITUENTS == []) return true;

else

if (there is a procedure P Є {REDUCE, MOVE,
REMOVE} whose preconditions are met)

RECOGNIZELC(P(SENTENCE, CATEGORIES,
CONSTITUENTS));

else return false;

Building a left-corner recognizer
Example

Der Meister sucht einen Fehler

Building a left-corner recognizer
Example

Der Meister sucht einen Fehler

SENTENCE CATEGORIES CONSTITUENTS procedure

[der Meister su...] [S] [] REDUCE

Building a left-corner recognizer
Example

Der Meister sucht einen Fehler

SENTENCE CATEGORIES CONSTITUENTS procedure

[der Meister su...] [S] [] REDUCE

[Meister sucht...] [t S] [det] MOVE

Building a left-corner recognizer
Example

Der Meister sucht einen Fehler

SENTENCE CATEGORIES CONSTITUENTS procedure

[der Meister su...] [S] [] REDUCE

[Meister sucht...] [t S] [det] MOVE

[det Meister su...] [S] [] REDUCE

Building a left-corner recognizer
Example

Der Meister sucht einen Fehler

SENTENCE CATEGORIES CONSTITUENTS procedure

[der Meister su...] [S] [] REDUCE

[Meister sucht...] [t S] [det] MOVE

[det Meister su...] [S] [] REDUCE

[Meister sucht...] [n t S] [NP] REDUCE

Building a left-corner recognizer
Example

Der Meister sucht einen Fehler

SENTENCE CATEGORIES CONSTITUENTS procedure

[der Meister su...] [S] [] REDUCE

[Meister sucht...] [t S] [det] MOVE

[det Meister su...] [S] [] REDUCE

[Meister sucht...] [n t S] [NP] REDUCE

[sucht einen F...] [t n t S] [n NP] MOVE

Building a left-corner recognizer
Example

Der Meister sucht einen Fehler

SENTENCE CATEGORIES CONSTITUENTS procedure

[der Meister su...] [S] [] REDUCE

[Meister sucht...] [t S] [det] MOVE

[det Meister su...] [S] [] REDUCE

[Meister sucht...] [n t S] [NP] REDUCE

[sucht einen F...] [t n t S] [n NP] MOVE

[n sucht einen F...] [n t S] [NP] REMOVE

Building a left-corner recognizer
Example

Der Meister sucht einen Fehler

SENTENCE CATEGORIES CONSTITUENTS procedure

[der Meister su...] [S] [] REDUCE

[Meister sucht...] [t S] [det] MOVE

[det Meister su...] [S] [] REDUCE

[Meister sucht...] [n t S] [NP] REDUCE

[sucht einen F...] [t n t S] [n NP] MOVE

[n sucht einen F...] [n t S] [NP] REMOVE

[sucht einen F...] [t S] [NP] MOVE

Building a left-corner recognizer
Example

Der Meister sucht einen Fehler

SENTENCE CATEGORIES CONSTITUENTS procedure

[der Meister su...] [S] [] REDUCE

[Meister sucht...] [t S] [det] MOVE

[det Meister su...] [S] [] REDUCE

[Meister sucht...] [n t S] [NP] REDUCE

[sucht einen F...] [t n t S] [n NP] MOVE

[n sucht einen F...] [n t S] [NP] REMOVE

[sucht einen F...] [t S] [NP] MOVE

[NP sucht einen...] [S] [] REDUCE

Building a left-corner recognizer
Example

Der Meister sucht einen Fehler

SENTENCE CATEGORIES CONSTITUENTS procedure

[der Meister su...] [S] [] REDUCE

[Meister sucht...] [t S] [det] MOVE

[det Meister su...] [S] [] REDUCE

[Meister sucht...] [n t S] [NP] REDUCE

[sucht einen F...] [t n t S] [n NP] MOVE

[n sucht einen F...] [n t S] [NP] REMOVE

[sucht einen F...] [t S] [NP] MOVE

[NP sucht einen...] [S] [] REDUCE

[sucht einen F...] [VP t S] [S] REDUCE

Building a left-corner recognizer
Example

Der Meister sucht einen Fehler

SENTENCE CATEGORIES CONSTITUENTS procedure

[der Meister su...] [S] [] REDUCE

[Meister sucht...] [t S] [det] MOVE

[det Meister su...] [S] [] REDUCE

[Meister sucht...] [n t S] [NP] REDUCE

[sucht einen F...] [t n t S] [n NP] MOVE

[n sucht einen F...] [n t S] [NP] REMOVE

[sucht einen F...] [t S] [NP] MOVE

[NP sucht einen...] [S] [] REDUCE

[sucht einen F...] [VP t S] [S] REDUCE

[einen Fehler] [t VP t S] [v S] MOVE

Building a left-corner recognizer
Example

Der Meister sucht einen Fehler

SENTENCE CATEGORIES CONSTITUENTS procedure

[der Meister su...] [S] [] REDUCE

[Meister sucht...] [t S] [det] MOVE

[det Meister su...] [S] [] REDUCE

[Meister sucht...] [n t S] [NP] REDUCE

[sucht einen F...] [t n t S] [n NP] MOVE

[n sucht einen F...] [n t S] [NP] REMOVE

[sucht einen F...] [t S] [NP] MOVE

[NP sucht einen...] [S] [] REDUCE

[sucht einen F...] [VP t S] [S] REDUCE

[einen Fehler] [t VP t S] [v S] MOVE

[v einen Fehler] [VP t S] [S] REDUCE

Building a left-corner recognizer
Example

Der Meister sucht einen Fehler

SENTENCE CATEGORIES CONSTITUENTS procedure

[der Meister su...] [S] [] REDUCE

[Meister sucht...] [t S] [det] MOVE

[det Meister su...] [S] [] REDUCE

[Meister sucht...] [n t S] [NP] REDUCE

[sucht einen F...] [t n t S] [n NP] MOVE

[n sucht einen F...] [n t S] [NP] REMOVE

[sucht einen F...] [t S] [NP] MOVE

[NP sucht einen...] [S] [] REDUCE

[sucht einen F...] [VP t S] [S] REDUCE

[einen Fehler] [t VP t S] [v S] MOVE

[v einen Fehler] [VP t S] [S] REDUCE

[einen Fehler] [NP t VP t S] [VP S] REDUCE

Building a left-corner recognizer
Example

Der Meister sucht einen Fehler

SENTENCE CATEGORIES CONSTITUENTS procedure

[der Meister su...] [S] [] REDUCE

[Meister sucht...] [t S] [det] MOVE

[det Meister su...] [S] [] REDUCE

[Meister sucht...] [n t S] [NP] REDUCE

[sucht einen F...] [t n t S] [n NP] MOVE

[n sucht einen F...] [n t S] [NP] REMOVE

[sucht einen F...] [t S] [NP] MOVE

[NP sucht einen...] [S] [] REDUCE

[sucht einen F...] [VP t S] [S] REDUCE

[einen Fehler] [t VP t S] [v S] MOVE

[v einen Fehler] [VP t S] [S] REDUCE

[einen Fehler] [NP t VP t S] [VP S] REDUCE

[Fehler] [t NP t VP t S] [det VP S] MOVE

Building a left-corner recognizer
Example

Der Meister sucht einen Fehler

SENTENCE CATEGORIES CONSTITUENTS procedure

[der Meister su...] [S] [] REDUCE

[Meister sucht...] [t S] [det] MOVE

[det Meister su...] [S] [] REDUCE

[Meister sucht...] [n t S] [NP] REDUCE

[sucht einen F...] [t n t S] [n NP] MOVE

[n sucht einen F...] [n t S] [NP] REMOVE

[sucht einen F...] [t S] [NP] MOVE

[NP sucht einen...] [S] [] REDUCE

[sucht einen F...] [VP t S] [S] REDUCE

[einen Fehler] [t VP t S] [v S] MOVE

[v einen Fehler] [VP t S] [S] REDUCE

[einen Fehler] [NP t VP t S] [VP S] REDUCE

[Fehler] [t NP t VP t S] [det VP S] MOVE

[det Fehler] [NP t VP t S] [VP S] REDUCE

Building a left-corner recognizer
Example

Der Meister sucht einen Fehler

SENTENCE CATEGORIES CONSTITUENTS procedure

[der Meister su...] [S] [] REDUCE

[Meister sucht...] [t S] [det] MOVE

[det Meister su...] [S] [] REDUCE

[Meister sucht...] [n t S] [NP] REDUCE

[sucht einen F...] [t n t S] [n NP] MOVE

[n sucht einen F...] [n t S] [NP] REMOVE

[sucht einen F...] [t S] [NP] MOVE

[NP sucht einen...] [S] [] REDUCE

[sucht einen F...] [VP t S] [S] REDUCE

[einen Fehler] [t VP t S] [v S] MOVE

[v einen Fehler] [VP t S] [S] REDUCE

[einen Fehler] [NP t VP t S] [VP S] REDUCE

[Fehler] [t NP t VP t S] [det VP S] MOVE

[det Fehler] [NP t VP t S] [VP S] REDUCE

[Fehler] [n t NP t VP t S] [NP VP S] REDUCE

Building a left-corner recognizer
Example

Der Meister sucht einen Fehler

SENTENCE CATEGORIES CONSTITUENTS procedure

[der Meister su...] [S] [] REDUCE

[Meister sucht...] [t S] [det] MOVE

[det Meister su...] [S] [] REDUCE

[Meister sucht...] [n t S] [NP] REDUCE

[sucht einen F...] [t n t S] [n NP] MOVE

[n sucht einen F...] [n t S] [NP] REMOVE

[sucht einen F...] [t S] [NP] MOVE

[NP sucht einen...] [S] [] REDUCE

[sucht einen F...] [VP t S] [S] REDUCE

[einen Fehler] [t VP t S] [v S] MOVE

[v einen Fehler] [VP t S] [S] REDUCE

[einen Fehler] [NP t VP t S] [VP S] REDUCE

[Fehler] [t NP t VP t S] [det VP S] MOVE

[det Fehler] [NP t VP t S] [VP S] REDUCE

[Fehler] [n t NP t VP t S] [NP VP S] REDUCE

[] [t n t NP t VP t S] [n NP VP S] MOVE

Building a left-corner recognizer
Example

Der Meister sucht einen Fehler

SENTENCE CATEGORIES CONSTITUENTS procedure

[] [t n t NP t VP t S] [n NP VP S] MOVE

Building a left-corner recognizer
Example

Der Meister sucht einen Fehler

SENTENCE CATEGORIES CONSTITUENTS procedure

[] [t n t NP t VP t S] [n NP VP S] MOVE

[n] [n t NP t VP t S] [NP VP S] REMOVE

Building a left-corner recognizer
Example

Der Meister sucht einen Fehler

SENTENCE CATEGORIES CONSTITUENTS procedure

[] [t n t NP t VP t S] [n NP VP S] MOVE

[n] [n t NP t VP t S] [NP VP S] REMOVE

[] [t NP t VP t S] [NP VP S] MOVE

Building a left-corner recognizer
Example

Der Meister sucht einen Fehler

SENTENCE CATEGORIES CONSTITUENTS procedure

[] [t n t NP t VP t S] [n NP VP S] MOVE

[n] [n t NP t VP t S] [NP VP S] REMOVE

[] [t NP t VP t S] [NP VP S] MOVE

[NP] [NP t VP t S] [VP S] REMOVE

Building a left-corner recognizer
Example

Der Meister sucht einen Fehler

SENTENCE CATEGORIES CONSTITUENTS procedure

[] [t n t NP t VP t S] [n NP VP S] MOVE

[n] [n t NP t VP t S] [NP VP S] REMOVE

[] [t NP t VP t S] [NP VP S] MOVE

[NP] [NP t VP t S] [VP S] REMOVE

[] [t VP t S] [VP S] MOVE

Building a left-corner recognizer
Example

Der Meister sucht einen Fehler

SENTENCE CATEGORIES CONSTITUENTS procedure

[] [t n t NP t VP t S] [n NP VP S] MOVE

[n] [n t NP t VP t S] [NP VP S] REMOVE

[] [t NP t VP t S] [NP VP S] MOVE

[NP] [NP t VP t S] [VP S] REMOVE

[] [t VP t S] [VP S] MOVE

[VP] [VP t S] [S] REMOVE

Building a left-corner recognizer
Example

Der Meister sucht einen Fehler

SENTENCE CATEGORIES CONSTITUENTS procedure

[] [t n t NP t VP t S] [n NP VP S] MOVE

[n] [n t NP t VP t S] [NP VP S] REMOVE

[] [t NP t VP t S] [NP VP S] MOVE

[NP] [NP t VP t S] [VP S] REMOVE

[] [t VP t S] [VP S] MOVE

[VP] [VP t S] [S] REMOVE

[] [t S] [S] MOVE

Building a left-corner recognizer
Example

Der Meister sucht einen Fehler

SENTENCE CATEGORIES CONSTITUENTS procedure

[] [t n t NP t VP t S] [n NP VP S] MOVE

[n] [n t NP t VP t S] [NP VP S] REMOVE

[] [t NP t VP t S] [NP VP S] MOVE

[NP] [NP t VP t S] [VP S] REMOVE

[] [t VP t S] [VP S] MOVE

[VP] [VP t S] [S] REMOVE

[] [t S] [S] MOVE

[S] [S] [] REMOVE

Building a left-corner recognizer
Example

Der Meister sucht einen Fehler

SENTENCE CATEGORIES CONSTITUENTS procedure

[] [t n t NP t VP t S] [n NP VP S] MOVE

[n] [n t NP t VP t S] [NP VP S] REMOVE

[] [t NP t VP t S] [NP VP S] MOVE

[NP] [NP t VP t S] [VP S] REMOVE

[] [t VP t S] [VP S] MOVE

[VP] [VP t S] [S] REMOVE

[] [t S] [S] MOVE

[S] [S] [] REMOVE

[] [] [] true

Building a left-corner recognizer

Why is RECOGNIZELC non-deterministic?

Building a left-corner recognizer

Why is RECOGNIZELC non-deterministic?
● there may be several rules whose left corner is equal

to first(SENTENCE)

Building a left-corner recognizer

Why is RECOGNIZELC non-deterministic?
● there may be several rules whose left corner is equal

to first(SENTENCE)
● there may be configurations where you could either

REDUCE or REMOVE:

Building a left-corner recognizer

Why is RECOGNIZELC non-deterministic?
● there may be several rules whose left corner is equal

to first(SENTENCE)
● there may be configurations where you could either

REDUCE or REMOVE:
● a newly created structure can be used to

complete the structure we are working at
=> REMOVE

Building a left-corner recognizer

Why is RECOGNIZELC non-deterministic?
● there may be several rules whose left corner is equal

to first(SENTENCE)
● there may be configurations where you could either

REDUCE or REMOVE:
● a newly created structure can be used to

complete the structure we are working at
=> REMOVE

● or it could constitute a new structure of its own
=> REDUCE

Building a left-corner recognizer

=> use breadth-first or depth-first search
to check all possible configurations

Building a left-corner recognizer
breadth-first search

RECOGNIZELC/BF

Data: CFG G = <N, T, S, R> Lexicon L
 sentence w = w1 ... wn, n >= 1

Input:

SENTENCE = [w1 ... wn]; CATEGORIES = [S];
CONSTITUENTS = []

Output: true / false

Structures: CONFIGS – set of configurations, null at the
beginning

Building a left-corner recognizer
breadth-first search

RECOGNIZELC/BF

Method:

if (SENTENCE == CATEGORIES ==
CONSTITUENTS == []) return true;

else CONFIGS = set of all configurations derivable
from the actual configuration using REMOVE,
REDUCE or MOVE

if (CONFIGS == null) return false;
else for every configuration C Є CONFIGS:

RECOGNIZELC/BF(SENTENCEC,
CATEGORIESC, CONSTITUENTSC);

Questions?

A left-corner parsing algorithm

A left-corner parsing algorithm

● introduce another stack: STRUCTURE

A left-corner parsing algorithm

● introduce another stack: STRUCTURE
● empty at the beginning; filled along the way

A left-corner parsing algorithm

● introduce another stack: STRUCTURE
● empty at the beginning; filled along the way
● return value: the structure stored in stack

STRUCTURE

A left-corner parsing algorithm
Modifying the procedures

MOVELC/BF

Preconditions:

1) first(CATEGORIES) = t

2) first(CONSTITUENTS) = A Є (N U T)

Input:

SENTENCE; CATEGORIES; CONSTITUENTS;
STRUCTURE

Output:

push(first(CONSTITUENTS), SENTENCE);
pop(CATEGORIES); pop(CONSTITUENTS);
STRUCTURE

A left-corner parsing algorithm
Modifying the procedures

MOVELC/BF

=> just insert another parameter

for the structure stack

A left-corner parsing algorithm
Modifying the procedures

REDUCELC/BF

Preconditions:

1) There is a rule k0 -> k1 ... kn in R or k1 is part of k0 for
an arbitrary lexical category k0

2) first(CATEGORIES) Є (N U T)

Input:

SENTENCE with first = k1; CATEGORIES;
CONSTITUENTS; STRUCTURE

Output: pop(SENTENCE); push(k2 ... kn t,
CATEGORIES); push(k0, CONSTITUENTS);
structure1(k0, k1, STRUCTURE)

A left-corner parsing algorithm
Modifying the procedures

REDUCELC/BF – new subprocedure structure1

A left-corner parsing algorithm
Modifying the procedures

REDUCELC/BF – new subprocedure structure1

Input: STRUCTURE, symbols k0, k1 Є (N U T)

A left-corner parsing algorithm
Modifying the procedures

REDUCELC/BF – new subprocedure structure1

Input: STRUCTURE, symbols k0, k1 Є (N U T)

Output: modified STRUCTURE'

A left-corner parsing algorithm
Modifying the procedures

REDUCELC/BF – new subprocedure structure1

Input: STRUCTURE, symbols k0, k1 Є (N U T)

Output: modified STRUCTURE'

Method:

 if (STRUCTURE == [] U
 first(STRUCTURE) == k'α with k' != k1))

 return push((k0 k1), STRUCTURE)
else return(push((k0 first(STRUCTURE)),
pop(STRUCTURE)))

A left-corner parsing algorithm
Modifying the procedures

REDUCELC/BF

=> add structure1(k0,k1,STRUCTURE) to output

structure1:

=> if there is already a structure dominated by k1,
integrate the new symbols, else build up a new
structure description

A left-corner parsing algorithm
Modifying the procedures

REMOVELC/BF

Precondition:

first(SENTENCE) = first(CATEGORIES)

Input:

SENTENCE; CATEGORIES; CONSTITUENTS;
STRUCTURE

Output:

pop(SENTENCE); pop(CATEGORIES);
CONSTITUENTS; structure2(CONSTITUENTS,
STRUCTURE)

A left-corner parsing algorithm
Modifying the procedures

REMOVELC/BF – subprocedure structure2

A left-corner parsing algorithm
Modifying the procedures

REMOVELC/BF – subprocedure structure2

Input: CONSTITUENTS; STRUCTURE

A left-corner parsing algorithm
Modifying the procedures

REMOVELC/BF – subprocedure structure2

Input: CONSTITUENTS; STRUCTURE

Output: modified STRUCTURE'

A left-corner parsing algorithm
Modifying the procedures

REMOVELC/BF – subprocedure structure2

Input: CONSTITUENTS; STRUCTURE

Output: modified STRUCTURE'

Method:

if(CONSTITUENTS == [])
return STRUCTURE

else
return(push((second(STRUCTURE) +
first(STRUCTURE)), pop(pop(STRUCTURE))))

A left-corner parsing algorithm
Modifying the procedures

REMOVELC/BF with subprocedure structure2

=> if CONSTITUENTS is not empty, associate
the last two partial structure descriptions on
STRUCTURE

A left-corner parsing algorithm
Example

Eva sah Adam am Morgen

SENTENCE CATEGORIES CONSTITUENTS STRUCTURE

[Eva sah Adam...] [S] [] []

[sah Adam...] [t S] [n] [(n1)]

[n sah Adam...] [S] [] [(n1)]

[sah Adam...] [t S] [NP] [(NP(n1))]

[NP sah Adam...] [S] [] [(NP(n1))]

[sah Adam...] [VP t S] [S] [S(NP(n1))]

[Adam am Morgen] [t VP t S] [v S] [(v2)(S(NP(n1)))]

[v Adam am Morgen] [VP t S] [S] [(v2)(S(NP(n1)))]

[Adam am Morgen] [NP PP t VP t S] [VP S] [(VP(v2))(S(NP...]

[am Morgen] [t NP PP t VP t S] [n VP S] [(n3)(VP(v2))(S...]

...

(S (NP(n1)) (VP (v2) (NP(n3)) (PP (p4) (NP(n5)))))

Questions?

Left-corner parsing with look-ahead

Left-corner parsing with look-ahead

● become more efficient...

Left-corner parsing with look-ahead

● become more efficient...
● ... by reducing number of rules that can be used

to generate next derivation

Left-corner parsing with look-ahead

● become more efficient...
● ... by reducing number of rules that can be used

to generate next derivation
● for every nonterminal n, calculate the set of all

symbols which are left corners of constituents
reachable from n

Left-corner parsing with look-ahead

● become more efficient...
● ... by reducing number of rules that can be used

to generate next derivation
● for every nonterminal n, calculate the set of all

symbols which are left corners of constituents
reachable from n

=> relation “LINK“

Left-corner parsing with look-ahead

LINK(G)

Left-corner parsing with look-ahead

LINK(G)

set of all ordered pairs <X, Y> with X Є N and
Y Є (N U T) which fulfill either of these
conditions:

Left-corner parsing with look-ahead

LINK(G)

set of all ordered pairs <X, Y> with X Є N and
Y Є (N U T) which fulfill either of these
conditions:

1) X = Y (reflexivity)

Left-corner parsing with look-ahead

LINK(G)

set of all ordered pairs <X, Y> with X Є N and
Y Є (N U T) which fulfill either of these
conditions:

1) X = Y (reflexivity)

2) there is a rule X -> Yα Є R

Left-corner parsing with look-ahead

LINK(G)

set of all ordered pairs <X, Y> with X Є N and
Y Є (N U T) which fulfill either of these
conditions:

1) X = Y (reflexivity)

2) there is a rule X -> Yα Є R

3) <X, X'> Є LINK(G) and <X',Y> Є LINK(G) for an
arbitrary X' Є N (transitivity)

Left-corner parsing with look-ahead

LINK(G)

set of all ordered pairs <X, Y> with X Є N and
Y Є (N U T) which fulfill either of these
conditions:

1) X = Y (reflexivity)

2) there is a rule X -> Yα Є R

3) <X, X'> Є LINK(G) and <X',Y> Є LINK(G) for an
arbitrary X' Є N (transitivity)

=> should be calculated before parsing

Left-corner parsing with look-ahead
Example

Grammar G with rules:
S -> X2 X3 X4 X2 -> e f

X3 -> X1 X1 -> g

X4 -> h

Left-corner parsing with look-ahead
Example

Grammar G with rules:
S -> X2 X3 X4 X2 -> e f

X3 -> X1 X1 -> g

X4 -> h

Left-corner parsing with look-ahead
Example

Grammar G with rules:
S -> X2 X3 X4 X2 -> e f

X3 -> X1 X1 -> g

X4 -> h

LINK(G) = {<S,S>, <X1, X1>,

<X2, X2>, <X3, X3>, <X4, X4>,

<S, X2>, <S, e>, <X2, e>,

<X1, g>, <X3, X1>, <X3, g>,

<X4, h>

Left-corner parsing with look-ahead
Example

Grammar G with rules:
S -> X2 X3 X4 X2 -> e f

X3 -> X1 X1 -> g

X4 -> h

LINK(G) = {<S,S>, <X1, X1>,

<X2, X2>, <X3, X3>, <X4, X4>,

<S, X2>, <S, e>, <X2, e>,

<X1, g>, <X3, X1>, <X3, g>,

<X4, h>

=> strings like 'fghe' or 'hefg' needn't
be parsed at all!

Left-corner parsing with look-ahead
Modifying the procedures

only necessary change: REDUCELC/LA

Preconditions:

1) There is a rule k0 -> k1 ... kn in R or k1 is part of k0 for
an arbitrary lexical category k0

2) first(CATEGORIES) Є (N U T)

3) <first(CATEGORIES), k0> Є LINK(G)

Input: SENTENCE with first = k1; CATEGORIES;
CONSTITUENTS; STRUCTURE

Output: pop(SENTENCE); push(k2 ... kn t,
CATEGORIES); push(k0, CONSTITUENTS);
structure1(STRUCTURE)

Questions?

Comparison to other approaches

Comparison to other approaches

Drawback of top-down:

Comparison to other approaches

Drawback of top-down:
● ignores what the actual input string looks like most of

the time

Comparison to other approaches

Drawback of top-down:
● ignores what the actual input string looks like most of

the time

Drawback of bottom-up:

Comparison to other approaches

Drawback of top-down:
● ignores what the actual input string looks like most of

the time

Drawback of bottom-up:
● we don't know what we're trying to build at the moment

Comparison to other approaches

Drawback of top-down:
● ignores what the actual input string looks like most of

the time

Drawback of bottom-up:
● we don't know what we're trying to build at the moment

=> Left-corner can handle these... examples follow!

Comparison to other approaches
Example TD vs LC

Comparison to other approaches
Example TD vs LC

Grammar: S -> NP VP NP -> det N NP -> PN VP -> IV

det -> the N -> robber PN -> Vincent IV -> died

Comparison to other approaches
Example TD vs LC

Grammar: S -> NP VP NP -> det N NP -> PN VP -> IV

det -> the N -> robber PN -> Vincent IV -> died

Input sentence: Vincent died.

Comparison to other approaches
Example TD vs LC

Grammar: S -> NP VP NP -> det N NP -> PN VP -> IV

det -> the N -> robber PN -> Vincent IV -> died

Input sentence: Vincent died.

Top-down:

Comparison to other approaches
Example TD vs LC

Grammar: S -> NP VP NP -> det N NP -> PN VP -> IV

det -> the N -> robber PN -> Vincent IV -> died

Input sentence: Vincent died.

Top-down: S -> NP VP

Comparison to other approaches
Example TD vs LC

Grammar: S -> NP VP NP -> det N NP -> PN VP -> IV

det -> the N -> robber PN -> Vincent IV -> died

Input sentence: Vincent died.

Top-down: S -> NP VP -> det N VP

Comparison to other approaches
Example TD vs LC

Grammar: S -> NP VP NP -> det N NP -> PN VP -> IV

det -> the N -> robber PN -> Vincent IV -> died

Input sentence: Vincent died.

Top-down: S -> NP VP -> det N VP -> DEAD END!
Vincent isn't det, det cannot be expanded
=> need to backtrack ;-(

Comparison to other approaches
Example TD vs LC

Grammar: S -> NP VP NP -> det N NP -> PN VP -> IV

det -> the N -> robber PN -> Vincent IV -> died

Input sentence: Vincent died.

Top-down: S -> NP VP -> det N VP -> DEAD END!
Vincent isn't det, det cannot be expanded
=> need to backtrack ;-(

Left-corner:

Comparison to other approaches
Example TD vs LC

Grammar: S -> NP VP NP -> det N NP -> PN VP -> IV

det -> the N -> robber PN -> Vincent IV -> died

Input sentence: Vincent died.

Top-down: S -> NP VP -> det N VP -> DEAD END!
Vincent isn't det, det cannot be expanded
=> need to backtrack ;-(

Left-corner: predict S (TD)

Comparison to other approaches
Example TD vs LC

Grammar: S -> NP VP NP -> det N NP -> PN VP -> IV

det -> the N -> robber PN -> Vincent IV -> died

Input sentence: Vincent died.

Top-down: S -> NP VP -> det N VP -> DEAD END!
Vincent isn't det, det cannot be expanded
=> need to backtrack ;-(

Left-corner: predict S (TD) -> recognize PN (BU)

Comparison to other approaches
Example TD vs LC

Grammar: S -> NP VP NP -> det N NP -> PN VP -> IV

det -> the N -> robber PN -> Vincent IV -> died

Input sentence: Vincent died.

Top-down: S -> NP VP -> det N VP -> DEAD END!
Vincent isn't det, det cannot be expanded
=> need to backtrack ;-(

Left-corner: predict S (TD) -> recognize PN (BU) -> select rule 'NP -> PN'

Comparison to other approaches
Example TD vs LC

Grammar: S -> NP VP NP -> det N NP -> PN VP -> IV

det -> the N -> robber PN -> Vincent IV -> died

Input sentence: Vincent died.

Top-down: S -> NP VP -> det N VP -> DEAD END!
Vincent isn't det, det cannot be expanded
=> need to backtrack ;-(

Left-corner: predict S (TD) -> recognize PN (BU) -> select rule 'NP -> PN'
 -> select rule 'S -> NP VP'

Comparison to other approaches
Example TD vs LC

Grammar: S -> NP VP NP -> det N NP -> PN VP -> IV

det -> the N -> robber PN -> Vincent IV -> died

Input sentence: Vincent died.

Top-down: S -> NP VP -> det N VP -> DEAD END!
Vincent isn't det, det cannot be expanded
=> need to backtrack ;-(

Left-corner: predict S (TD) -> recognize PN (BU) -> select rule 'NP -> PN'
 -> select rule 'S -> NP VP' -> MATCH!

Comparison to other approaches
Example TD vs LC

Grammar: S -> NP VP NP -> det N NP -> PN VP -> IV

det -> the N -> robber PN -> Vincent IV -> died

Input sentence: Vincent died.

Top-down: S -> NP VP -> det N VP -> DEAD END!
Vincent isn't det, det cannot be expanded
=> need to backtrack ;-(

Left-corner: predict S (TD) -> recognize PN (BU) -> select rule 'NP -> PN'
 -> select rule 'S -> NP VP' -> MATCH!
 -> input: died – predict VP (TD)

Comparison to other approaches
Example TD vs LC

Grammar: S -> NP VP NP -> det N NP -> PN VP -> IV

det -> the N -> robber PN -> Vincent IV -> died

Input sentence: Vincent died.

Top-down: S -> NP VP -> det N VP -> DEAD END!
Vincent isn't det, det cannot be expanded
=> need to backtrack ;-(

Left-corner: predict S (TD) -> recognize PN (BU) -> select rule 'NP -> PN'
 -> select rule 'S -> NP VP' -> MATCH!
 -> input: died – predict VP (TD) -> recognize IV (BU)

Comparison to other approaches
Example TD vs LC

Grammar: S -> NP VP NP -> det N NP -> PN VP -> IV

det -> the N -> robber PN -> Vincent IV -> died

Input sentence: Vincent died.

Top-down: S -> NP VP -> det N VP -> DEAD END!
Vincent isn't det, det cannot be expanded
=> need to backtrack ;-(

Left-corner: predict S (TD) -> recognize PN (BU) -> select rule 'NP -> PN'
 -> select rule 'S -> NP VP' -> MATCH!
 -> input: died – predict VP (TD) -> recognize IV (BU)
 -> select rule 'VP -> IV'

Comparison to other approaches
Example TD vs LC

Grammar: S -> NP VP NP -> det N NP -> PN VP -> IV

det -> the N -> robber PN -> Vincent IV -> died

Input sentence: Vincent died.

Top-down: S -> NP VP -> det N VP -> DEAD END!
Vincent isn't det, det cannot be expanded
=> need to backtrack ;-(

Left-corner: predict S (TD) -> recognize PN (BU) -> select rule 'NP -> PN'
 -> select rule 'S -> NP VP' -> MATCH!
 -> input: died – predict VP (TD) -> recognize IV (BU)
 -> select rule 'VP -> IV' -> MATCH!

Comparison to other approaches
Example TD vs LC

Grammar: S -> NP VP NP -> det N NP -> PN VP -> IV

det -> the N -> robber PN -> Vincent IV -> died

Input sentence: Vincent died.

Top-down: S -> NP VP -> det N VP -> DEAD END!
Vincent isn't det, det cannot be expanded
=> need to backtrack ;-(

Left-corner: predict S (TD) -> recognize PN (BU) -> select rule 'NP -> PN'
 -> select rule 'S -> NP VP' -> MATCH!
 -> input: died – predict VP (TD) -> recognize IV (BU)
 -> select rule 'VP -> IV' -> MATCH! => successful parse

Comparison to other approaches
Example BU vs LC

Comparison to other approaches
Example BU vs LC

Grammar: S -> NP VP NP -> det N NP -> PN VP -> IV
 VP -> TV NP TV -> plant IV -> died det -> the
 N -> plant

Comparison to other approaches
Example BU vs LC

Grammar: S -> NP VP NP -> det N NP -> PN VP -> IV
 VP -> TV NP TV -> plant IV -> died det -> the
 N -> plant

Input sentence: the plant died

Comparison to other approaches
Example BU vs LC

Grammar: S -> NP VP NP -> det N NP -> PN VP -> IV
 VP -> TV NP TV -> plant IV -> died det -> the
 N -> plant

Input sentence: the plant died

Bottom-up:

Comparison to other approaches
Example BU vs LC

Grammar: S -> NP VP NP -> det N NP -> PN VP -> IV
 VP -> TV NP TV -> plant IV -> died det -> the
 N -> plant

Input sentence: the plant died

Bottom-up: the plant died

Comparison to other approaches
Example BU vs LC

Grammar: S -> NP VP NP -> det N NP -> PN VP -> IV
 VP -> TV NP TV -> plant IV -> died det -> the
 N -> plant

Input sentence: the plant died

Bottom-up: the plant died -> det plant died

Comparison to other approaches
Example BU vs LC

Grammar: S -> NP VP NP -> det N NP -> PN VP -> IV
 VP -> TV NP TV -> plant IV -> died det -> the
 N -> plant

Input sentence: the plant died

Bottom-up: the plant died -> det plant died -> det TV died

Comparison to other approaches
Example BU vs LC

Grammar: S -> NP VP NP -> det N NP -> PN VP -> IV
 VP -> TV NP TV -> plant IV -> died det -> the
 N -> plant

Input sentence: the plant died

Bottom-up: the plant died -> det plant died -> det TV died -> det TV IV

Comparison to other approaches
Example BU vs LC

Grammar: S -> NP VP NP -> det N NP -> PN VP -> IV
 VP -> TV NP TV -> plant IV -> died det -> the
 N -> plant

Input sentence: the plant died

Bottom-up: the plant died -> det plant died -> det TV died -> det TV IV ->
 det TV VP

Comparison to other approaches
Example BU vs LC

Grammar: S -> NP VP NP -> det N NP -> PN VP -> IV
 VP -> TV NP TV -> plant IV -> died det -> the
 N -> plant

Input sentence: the plant died

Bottom-up: the plant died -> det plant died -> det TV died -> det TV IV ->
 det TV VP -> DEAD END!

Comparison to other approaches
Example BU vs LC

Grammar: S -> NP VP NP -> det N NP -> PN VP -> IV
 VP -> TV NP TV -> plant IV -> died det -> the
 N -> plant

Input sentence: the plant died

Bottom-up: the plant died -> det plant died -> det TV died -> det TV IV ->
 det TV VP -> DEAD END! => need to backtrack ;-(

Comparison to other approaches
Example BU vs LC

Grammar: S -> NP VP NP -> det N NP -> PN VP -> IV
 VP -> TV NP TV -> plant IV -> died det -> the
 N -> plant

Input sentence: the plant died

Bottom-up: the plant died -> det plant died -> det TV died -> det TV IV ->
 det TV VP -> DEAD END! => need to backtrack ;-(

Left-corner:

Comparison to other approaches
Example BU vs LC

Grammar: S -> NP VP NP -> det N NP -> PN VP -> IV
 VP -> TV NP TV -> plant IV -> died det -> the
 N -> plant

Input sentence: the plant died

Bottom-up: the plant died -> det plant died -> det TV died -> det TV IV ->
 det TV VP -> DEAD END! => need to backtrack ;-(

Left-corner: predict S (TD)

Comparison to other approaches
Example BU vs LC

Grammar: S -> NP VP NP -> det N NP -> PN VP -> IV
 VP -> TV NP TV -> plant IV -> died det -> the
 N -> plant

Input sentence: the plant died

Bottom-up: the plant died -> det plant died -> det TV died -> det TV IV ->
 det TV VP -> DEAD END! => need to backtrack ;-(

Left-corner: predict S (TD) -> recognize det (BU)

Comparison to other approaches
Example BU vs LC

Grammar: S -> NP VP NP -> det N NP -> PN VP -> IV
 VP -> TV NP TV -> plant IV -> died det -> the
 N -> plant

Input sentence: the plant died

Bottom-up: the plant died -> det plant died -> det TV died -> det TV IV ->
 det TV VP -> DEAD END! => need to backtrack ;-(

Left-corner: predict S (TD) -> recognize det (BU)
 -> select rule 'NP -> det N'

Comparison to other approaches
Example BU vs LC

Grammar: S -> NP VP NP -> det N NP -> PN VP -> IV
 VP -> TV NP TV -> plant IV -> died det -> the
 N -> plant

Input sentence: the plant died

Bottom-up: the plant died -> det plant died -> det TV died -> det TV IV ->
 det TV VP -> DEAD END! => need to backtrack ;-(

Left-corner: predict S (TD) -> recognize det (BU)
 -> select rule 'NP -> det N' -> recognize N (BU)

Comparison to other approaches
Example BU vs LC

Grammar: S -> NP VP NP -> det N NP -> PN VP -> IV
 VP -> TV NP TV -> plant IV -> died det -> the
 N -> plant

Input sentence: the plant died

Bottom-up: the plant died -> det plant died -> det TV died -> det TV IV ->
 det TV VP -> DEAD END! => need to backtrack ;-(

Left-corner: predict S (TD) -> recognize det (BU)
 -> select rule 'NP -> det N' -> recognize N (BU) -> MATCH!

Comparison to other approaches
Example BU vs LC

Grammar: S -> NP VP NP -> det N NP -> PN VP -> IV
 VP -> TV NP TV -> plant IV -> died det -> the
 N -> plant

Input sentence: the plant died

Bottom-up: the plant died -> det plant died -> det TV died -> det TV IV ->
 det TV VP -> DEAD END! => need to backtrack ;-(

Left-corner: predict S (TD) -> recognize det (BU)
 -> select rule 'NP -> det N' -> recognize N (BU) -> MATCH!
 -> select rule 'S -> NP VP'

Comparison to other approaches
Example BU vs LC

Grammar: S -> NP VP NP -> det N NP -> PN VP -> IV
 VP -> TV NP TV -> plant IV -> died det -> the
 N -> plant

Input sentence: the plant died

Bottom-up: the plant died -> det plant died -> det TV died -> det TV IV ->
 det TV VP -> DEAD END! => need to backtrack ;-(

Left-corner: predict S (TD) -> recognize det (BU)
 -> select rule 'NP -> det N' -> recognize N (BU) -> MATCH!
 -> select rule 'S -> NP VP' -> input: died – predict VP (TD)

Comparison to other approaches
Example BU vs LC

Grammar: S -> NP VP NP -> det N NP -> PN VP -> IV
 VP -> TV NP TV -> plant IV -> died det -> the
 N -> plant

Input sentence: the plant died

Bottom-up: the plant died -> det plant died -> det TV died -> det TV IV ->
 det TV VP -> DEAD END! => need to backtrack ;-(

Left-corner: predict S (TD) -> recognize det (BU)
 -> select rule 'NP -> det N' -> recognize N (BU) -> MATCH!
 -> select rule 'S -> NP VP' -> input: died – predict VP (TD) ->
 recognize IV (BU)

Comparison to other approaches
Example BU vs LC

Grammar: S -> NP VP NP -> det N NP -> PN VP -> IV
 VP -> TV NP TV -> plant IV -> died det -> the
 N -> plant

Input sentence: the plant died

Bottom-up: the plant died -> det plant died -> det TV died -> det TV IV ->
 det TV VP -> DEAD END! => need to backtrack ;-(

Left-corner: predict S (TD) -> recognize det (BU)
 -> select rule 'NP -> det N' -> recognize N (BU) -> MATCH!
 -> select rule 'S -> NP VP' -> input: died – predict VP (TD) ->
 recognize IV (BU) -> select rule 'VP -> IV'

Comparison to other approaches
Example BU vs LC

Grammar: S -> NP VP NP -> det N NP -> PN VP -> IV
 VP -> TV NP TV -> plant IV -> died det -> the
 N -> plant

Input sentence: the plant died

Bottom-up: the plant died -> det plant died -> det TV died -> det TV IV ->
 det TV VP -> DEAD END! => need to backtrack ;-(

Left-corner: predict S (TD) -> recognize det (BU)
 -> select rule 'NP -> det N' -> recognize N (BU) -> MATCH!
 -> select rule 'S -> NP VP '-> input: died – predict VP (TD) ->
 recognize IV (BU) -> select rule 'VP -> IV'
 -> MATCH!

Comparison to other approaches
Example BU vs LC

Grammar: S -> NP VP NP -> det N NP -> PN VP -> IV
 VP -> TV NP TV -> plant IV -> died det -> the
 N -> plant

Input sentence: the plant died

Bottom-up: the plant died -> det plant died -> det TV died -> det TV IV ->
 det TV VP -> DEAD END! => need to backtrack ;-(

Left-corner: predict S (TD) -> recognize det (BU)
 -> select rule 'NP -> det N' -> recognize N (BU) -> MATCH!
 -> select rule 'S -> NP VP' -> input: died – predict VP (TD) ->
 recognize IV (BU) -> select rule 'VP -> IV'
 -> MATCH! => successful parse

Comparison to other approaches
Conclusion and outlook

Comparison to other approaches
Conclusion and outlook

● left-corner diminishes risk of having to
backtrack after a series of wrong moves

Comparison to other approaches
Conclusion and outlook

● left-corner diminishes risk of having to
backtrack after a series of wrong moves

● but: also combines some of the problems TD
and BU have => hardly used in practice

Comparison to other approaches
Conclusion and outlook

● left-corner parsing might be a good model for
the human parser!

Comparison to other approaches
Conclusion and outlook

● left-corner parsing might be a good model for
the human parser!

Complexity issues:

Strategy Left-branching Center Embedding Right-branching

TD O(n) O(n) O(1)

BU O(1) O(n) O(n)

LC O(1) O(n) O(1)

table taken from Shravan Vasishth's HSP slides

Questions?

Bibliography

● Naumann, Sven and Langer, Haben 1994. Parsing.
Eine Einführung in die maschinelle Analyse natürlicher
Sprache. B.G. Teubner Stuttgart

● a very short section from the Grune & Jacobs book
● http://www.coli.uni-saarland.de/~kris/nlp-with-

prolog/html/node53.html
● Shravan Vasishth's slides for the Human Sentence

Processing seminar from last semester

http://www.coli.uni-saarland.de/~kris/nlp-with-

Thanks for your attention!

