Left-corner parsing

Laura Kassner

laura.kassner@gmx.de

Computational Linguistics Il:
Parsing

January 10th, 2007

mailto:laura.kassner@gmx.de

Left-corner parsing

Basics
Building a left-corner recognizer...
... and transforming it into a parser

Comparison to top-down and bottom-up
approaches

Left-corner parsing

What is left-corner parsing?

Top-down Bottom-up

: Basics

A

/AN

o ;

Left—corner

picture taken from Shravan Vasishth's HSP seminar slides

Left-corner parsing: Basics

* bottom-up and top-down aspects

Left-corner parsing: Basics

* bottom-up and top-down aspects

* bottom-up: rule ko -> ki... kn can only be applied
If for every ki (1 <=1<=n), a complete partial
structure has been recognized

Left-corner parsing: Basics

* bottom-up and top-down aspects

* bottom-up: rule ko -> ki... kn can only be applied
If for every ki (1 <=1<=n), a complete partial
structure has been recognized

* |eft-corner: a structure dominated by ki must
have been recognized for a rule to be applied

Left-corner parsing: Basics

* bottom-up and top-down aspects

* bottom-up: rule ko -> ki... kn can only be applied
If for every ki (1 <=1<=n), a complete partial

structure has been recognized

* |eft-corner: a structure dominated by ki must

have been recognized for a rule to be app

=> K1 is “ “ of the rule — first symbo
the right hand side

led
on

Left-corner parsing: Basics

* bottom-up and top-down aspects

* bottom-up: rule ko -> ki... kn can only be applied
If for every ki (1 <=1<=n), a complete partial

structure has been recognized

* |eft-corner: a structure dominated by ki must

have been recognized for a rule to be app

=> K1 is “ “ of the rule — first symbo
the right hand side

led
on

=> rule used to make assumptions about the
category dominating k1 and about following

constituents

Left-corner parsing: Basics

What Is a left-corner parse?

Left-corner parsing: Basics

What Is a left-corner parse?

* context-free grammar G =<N, T, S, R>

Left-corner parsing: Basics

What Is a left-corner parse?

* context-free grammar G =<N, T, S, R>
* string w

Left-corner parsing: Basics

What Is a left-corner parse?

* context-free grammar G =<N, T, S, R>
* string w

=> series of rule indices y =11 ... In which
corresponds to a derivation of string w in G

Left-corner parsing: Basics

Ordering rules:

Left-corner parsing: Basics

Ordering rules:
1 — B ist the tree structure implied by y

Left-corner parsing: Basics

Ordering rules:
1 — B ist the tree structure implied by y

2 — nodes In 3 are ordered the following way:

Left-corner parsing: Basics

Ordering rules:
1 — B ist the tree structure implied by y

2 — nodes In 3 are ordered the following way:

a) if n DD n1 ... nm, all nodes of the subtree with root
n1 are in front of n;

Left-corner parsing:

Ordering rules:

Basics

1 — B ist the tree structure implied by y

2 — nodes In B are ordered the fo

lowing way:

a) if n DD n1 ... nm, all nodes of the subtree with root

n1 are in front of n;

b) n is in front of all other nodes it dominates

Left-corner parsing:

Ordering rules:

Basics

1 — B ist the tree structure implied by y

2 — nodes In B are ordered the fo

lowing way:

a) if n DD n1 ... nm, all nodes of the subtree with root

n1 are in front of n;

b) n is in front of all other nodes it dominates

c) all nodes dominated by ni are in front of the nodes

dominated by ni+1

Left-corner parsing:

Ordering rules:

Basics

1 — B ist the tree structure implied by y

2 — nodes In B are ordered the fo

lowing way:

a) if n DD n1 ... nm, all nodes of the subtree with root

n1 are in front of n;

b) n is in front of all other nodes it dominates

c) all nodes dominated by ni are in front of the nodes

dominated by ni+1

3 — the order of rule applications described by y

does not violate these rules

Left-corner parsing: Basics

=> |norder tree traversal!!!

Left-corner parsing: Basics

An example:

Left-corner parsing: Basics

An example:
* grammar rules: 1:s->as 2:s->BB 3:A->bAA

4: A->a 5:B->b 6:B->e

Left-corner parsing: Basics

An example:
* grammar rules: 1:s->as 2:s->BB 3:A->bAA

4: A ->a 5:B->b 6: B->e
* sentence: bbaaab

Left-corner parsing: Basics

An example:

* grammar rules: 1:s->as

4: A->a

* sentence: bbaaab

2: S-> BB 3: A->bAA
5:B->b 6:B->e

Left-corner parsing: Basics

An example:
* grammar rules: 1:s->as

4: A -> a
* sentence: bbaaab

Order of nodes:
4295151016111261137
3148

2: S-> BB 3: A->bAA

5:B->b 6:B->e

Left-corner parsing: Basics

An example:
* grammar rules: 1:s->as

4: A -> a
* sentence: bbaaab

Order of nodes:
4295151016111261137
3148

TDparse: 133444265

2: S-> BB 3: A->bAA

5:B->b 6:B->e

Left-corner parsing: Basics

An example:
* grammar rules: 1:s->as

4: A -> a
* sentence: bbaaab

Order of nodes:
4295151016111261137
3148

TDparse: 133444265
BUparse:44 3436521

2: S-> BB 3: A->bAA

5:B->b 6:B->e

Left-corner parsing: Basics

An example:
* grammar rules: 1:s->as

4: A -> a
* sentence: bbaaab

Order of nodes:
4295151016111261137
3148

TDparse: 133444265
BUparse:44 3436521

2: S-> BB 3: A->bAA

5:B->b 6:B->e

Questions?

Building a left-corner recognizer

Building a left-corner recognizer

Data: CFG <N, T, S, R> Lexicon L

Building a left-corner recognizer

Data: CFG <N, T, S, R> Lexicon L
Data structures: 3 stacks

Building a left-corner recognizer

Data: CFG <N, T, S, R> Lexicon L
Data structures: 3 stacks
1) SENTENCE to be processed

Building a left-corner recognizer

Data: CFG <N, T, S, R> Lexicon L
Data structures: 3 stacks

1) SENTENCE to be processed

2) CATEGORIES to be recognized

Building a left-corner recognizer

Data: CFG <N, T, S, R> Lexicon L
Data structures: 3 stacks

1) SENTENCE to be processed

2) CATEGORIES to be recognized

3) CONSTITUENTS we are looking for

Building a left-corner recognizer

Data: CFG <N, T, S, R> Lexicon L
Data structures: 3 stacks

1) SENTENCE to be processed

2) CATEGORIES to be recognized

3) CONSTITUENTS we are looking for

Stack operations:

Building a left-corner recognizer

Data: CFG <N, T, S, R> Lexicon L
Data structures: 3 stacks

1) SENTENCE to be processed

2) CATEGORIES to be recognized

3) CONSTITUENTS we are looking for

Stack operations:
pop(STACK) push(element, STACK) first(STACK)

Building a left-corner recognizer
Procedures

Building a left-corner recognizer
Procedures

REDUCE

Building a left-corner recognizer
Procedures

REDUCE
Preconditions:

Building a left-corner recognizer
Procedures

REDUCE

Preconditions:

1) There is a rule ko -> k1 ... knIn R or k1 is part of ko for
an arbitrary lexical category ko

Building a left-corner recognizer
Procedures

REDUCE

Preconditions:

1) There is a rule ko -> k1 ... knIn R or k1 is part of ko for
an arbitrary lexical category ko

2) first(CATEGORIES) €E(NUT)

Building a left-corner recognizer
Procedures

REDUCE

Preconditions:

1) There is a rule ko -> k1 ... knIn R or k1 is part of ko for
an arbitrary lexical category ko

2) first(CATEGORIES) € (NU T)
Input:

SENTENCE with first = k1; CATEGORIES;
CONSTITUENTS

Building a left-corner recognizer
Procedures

REDUCE

Preconditions:

1) There is a rule ko -> k1 ... knIn R or k1 is part of ko for
an arbitrary lexical category ko

2) first(CATEGORIES) € (NU T)
Input:

SENTENCE with first = k1; CATEGORIES;
CONSTITUENTS

Output:

POP(SENTENCE); push(kz ... knt, CATEGORIES);
push(ko, CONSTITUENTS)

Building a left-corner recognizer

REDUCE

Procedures

=> delete first symbol from sentence (= left
corner of rule)

=> rest of right hand side of rule is pushed onto
CATEGORIES together with signal symbol for
end of rule 't'

=> CONS

UENTS keeps in mind we are

looking for ko

Building a left-corner recognizer
Procedures

MOVE

Building a left-corner recognizer
Procedures

MOVE
Preconditions:

Building a left-corner recognizer
Procedures

MOVE
Preconditions:
1) first(CATEGORIES) =t

Building a left-corner recognizer
Procedures

MOVE

Preconditions:

1) first(CATEGORIES) =t

2) first(CONSTITUENTS) =AE€ (NUT)

Building a left-corner recognizer
Procedures

MOVE

Preconditions:

1) first(CATEGORIES) =t

2) first(CONSTITUENTS) =AE€ (NUT)

Input:

SENTENCE; CATEGORIES; CONSTITUENTS

Building a left-corner recognizer
Procedures

MOVE

Preconditions:

1) first(CATEGORIES) =t

2) first(CONSTITUENTS) =AE€ (NUT)

Input:

SENTENCE; CATEGORIES; CONSTITUENTS
Output:

push(first(CONSTITUENTS), SENTENCE);
Pop(CATEGORIES); pop(CONSTITUENTS)

Building a left-corner recognizer
Procedures

MOVE

=> right-hand-side of rule whose left-hand-side is
A has been completely processed, A was
recognized

=> push A onto SENTENCE
=> remove the 't' from CATEGORIES
=> remove A from CONSTITUENTS

Building a left-corner recognizer
Procedures

REMOVE

Building a left-corner recognizer
Procedures

REMOVE
Precondition:
first(SENTENCE) = first(CATEGORIES)

Building a left-corner recognizer
Procedures

REMOVE

Precondition:

first(SENTENCE) = first(CATEGORIES)

Input:

SENTENCE; CATEGORIES; CONSTITUENTS

Building a left-corner recognizer
Procedures

REMOVE

Precondition:
first(SENTENCE) = first(CATEGORIES)

Input:
SENTENCE; CATEGORIES; CONSTITUENTS

Output:

POP(SENTENCE); pop(CATEGORIES);
CONSTITUENTS

Building a left-corner recognizer
Procedures

REMOVE

=> |s applied Iff first(SENTENCE) is a category ki,
a left corner, and this category has been
recognized

Building a left-corner recognizer
The Algorithm

Building a left-corner recognizer
The Algorithm

RECOGNIZELc

Building a left-corner recognizer
The Algorithm

RECOGNIZELc

Data;: CFGG=<N, T, S, R> Lexicon L
sentence w = w1 ... Wn, n >= 1

Building a left-corner recognizer
The Algorithm

RECOGNIZELc

Data;: CFGG=<N, T, S, R> Lexicon L
sentence w = w1 ... Wn, n >= 1

Input:

SENTENCE = [w1 ... wn]; CATEGORIES = [S];
CONSTITUENTS =[]

Building a left-corner recognizer
The Algorithm

RECOGNIZELc

Data;: CFGG=<N, T, S, R> Lexicon L
sentence w = w1 ... Wn, n >= 1

Input:

SENTENCE = [w1 ... wn]; CATEGORIES = [S];
CONSTITUENTS =[]

Output:
true / false

Building a left-corner recognizer
The Algorithm

RECOGNIZELc
Method:

If (SENTENCE == CATEGORIES ==
CONSTITUENTS ==[]) return true;

else

If (there is a procedure P € {REDUCE, MOVE,
REMOVE} whose preconditions are met)

RECOGNIZELc(P(SENTENCE, CATEGORIES,
CONSTITUENTYS));

else return false;

Building a left-corner recognizer
Example

Der Meister sucht einen Fehler

Building a left-corner recognizer
Example

Der Meister sucht einen Fehler
SENTENCE CATEGORIES CONSTITUENTS procedure
[der Meister su...] [S] [1] REDUCE

Building a left-corner recognizer

Example
Der Meister sucht einen Fehler
SENTENCE CATEGORIES CONSTITUENTS procedure
[der Meister su...] [S] [1] REDUCE

[Meister sucht...] [t S] [det] MOVE

Building a left-corner recognizer

Example
Der Meister sucht einen Fehler
SENTENCE CATEGORIES CONSTITUENTS procedure
[der Meister su...] [S] [1] REDUCE
[Meister sucht...] [t S] [det] MOVE

[det Meister su...] [S] [] REDUCE

Building a left-corner recognizer

Example
Der Meister sucht einen Fehler
SENTENCE CATEGORIES CONSTITUENTS procedure
[der Meister su...] [S] [1] REDUCE
[Meister sucht...] [t S] [det] MOVE
[det Meister su...] [S] [] REDUCE

[Meister sucht...] [ntS] [NP] REDUCE

Building a left-corner recognizer

Example
Der Meister sucht einen Fehler
SENTENCE CATEGORIES CONSTITUENTS procedure
[der Meister su...] [S] [1] REDUCE
[Meister sucht...] [t S] [det] MOVE
[det Meister su...] [S] [] REDUCE
[Meister sucht...] [ntS] [NP] REDUCE

[sucht einen F...] [tntS] [n NP] MOVE

Building a left-corner recognizer

Example

Der Meister sucht einen Fehler

SENTENCE CATEGORIES CONSTITUENTS procedure
[der Meister su...] [S] [1] REDUCE
[Meister sucht...] [t S] [det] MOVE
[det Meister su...] [S] [] REDUCE
[Meister sucht...] [ntS] [NP] REDUCE
[sucht einen F...] [tntS] [n NP] MOVE

[n suchteinenF...] [ntS] [NP] REMOVE

Building a left-corner recognizer

Example

Der Meister sucht einen Fehler

SENTENCE CATEGORIES CONSTITUENTS procedure
[der Meister su...] [S] [1] REDUCE
[Meister sucht...] [t S] [det] MOVE
[det Meister su...] [S] [] REDUCE
[Meister sucht...] [ntS] [NP] REDUCE
[sucht einen F...] [tntS] [n NP] MOVE

[n suchteinenF...] [ntS] [NP] REMOVE

[sucht einen F...] [t S] [NP] MOVE

Building a left-corner recognizer

Example

Der Meister sucht einen Fehler

SENTENCE CATEGORIES CONSTITUENTS procedure
[der Meister su...] [S] [1] REDUCE
[Meister sucht...] [t S] [det] MOVE
[det Meister su...] [S] [] REDUCE
[Meister sucht...] [ntS] [NP] REDUCE
[sucht einen F...] [tntS] [n NP] MOVE

[n suchteinenF...] [ntS] [NP] REMOVE
[sucht einen F...] [t S] [NP] MOVE

[NP sucht einen...] [S] [] REDUCE

Building a left-corner recognizer

Example

Der Meister sucht einen Fehler

SENTENCE CATEGORIES CONSTITUENTS procedure
[der Meister su...] [S] [1] REDUCE
[Meister sucht...] [t S] [det] MOVE
[det Meister su...] [S] [] REDUCE
[Meister sucht...] [ntS] [NP] REDUCE
[sucht einen F...] [tntS] [n NP] MOVE

[n suchteinenF...] [ntS] [NP] REMOVE
[sucht einen F...] [t S] [NP] MOVE
[NP sucht einen...] [S] [] REDUCE

[sucht einen F...] [VP t S] [S] REDUCE

Building a left-corner recognizer

Example

Der Meister sucht einen Fehler

SENTENCE CATEGORIES CONSTITUENTS procedure
[der Meister su...] [S] [1] REDUCE
[Meister sucht...] [t S] [det] MOVE
[det Meister su...] [S] [] REDUCE
[Meister sucht...] [ntS] [NP] REDUCE
[sucht einen F...] [tntS] [n NP] MOVE

[n suchteinenF...] [ntS] [NP] REMOVE
[sucht einen F...] [t S] [NP] MOVE
[NP sucht einen...] [S] [] REDUCE
[sucht einen F...] [VP t S] [S] REDUCE

[einen Fehler] [tVP tS] [v S] MOVE

Building a left-corner recognizer

Example

Der Meister sucht einen Fehler

SENTENCE CATEGORIES CONSTITUENTS procedure
[der Meister su...] [S] [1] REDUCE
[Meister sucht...] [t S] [det] MOVE
[det Meister su...] [S] [] REDUCE
[Meister sucht...] [ntS] [NP] REDUCE
[sucht einen F...] [tntS] [n NP] MOVE

[n suchteinenF...] [ntS] [NP] REMOVE
[sucht einen F...] [t S] [NP] MOVE
[NP sucht einen...] [S] [] REDUCE
[sucht einen F...] [VP t S] [S] REDUCE
[einen Fehler] [tVP tS] [v S] MOVE

[v einen Fehler] [VP tS] [S] REDUCE

Building a left-corner recognizer

Example

Der Meister sucht einen Fehler

SENTENCE CATEGORIES CONSTITUENTS procedure
[der Meister su...] [S] [1] REDUCE
[Meister sucht...] [t S] [det] MOVE
[det Meister su...] [S] [] REDUCE
[Meister sucht...] [ntS] [NP] REDUCE
[sucht einen F...] [tntS] [n NP] MOVE

[n suchteinenF...] [ntS] [NP] REMOVE
[sucht einen F...] [t S] [NP] MOVE
[NP sucht einen...] [S] [] REDUCE
[sucht einen F...] [VP t S] [S] REDUCE
[einen Fehler] [tVP tS] [v S] MOVE

[v einen Fehler] [VP tS] [S] REDUCE

[einen Fehler] [NPtVPtS] [VP S] REDUCE

Building a left-corner recognizer

Der Meister sucht einen Fehler

SENTENCE

[der Meister su...]
[Meister sucht...]
[det Meister su...]
[Meister sucht...]
[sucht einen F...]
[n sucht einen F...]
[sucht einen F...]
[NP sucht einen...]
[sucht einen F...]

[einen Fehler]

[v einen Fehler]

[einen Fehler]
[Fehler]

CATEGORIES
[S]

[t S]

[S]

[ntS]
[tntS]
[ntS]

[t S]

[S]

[VP t S]

[t VP tS]

[VP t S]
[NPtVPtS]
[tNPtVP tS]

Example

CONSTITUENTS

[]
[det]

[]
[NP]
[n NP]
[NP]
[NP]
[]

[S]

[v S]
[S]
[VP S]
[det VP S]

procedure

REDUCE
MOVE
REDUCE
REDUCE
MOVE
REMOVE
MOVE
REDUCE
REDUCE
MOVE
REDUCE
REDUCE
MOVE

Building a left-corner recognizer

Der Meister sucht einen Fehler

SENTENCE

[der Meister su...]
[Meister sucht...]
[det Meister su...]
[Meister sucht...]
[sucht einen F...]
[n sucht einen F...]
[sucht einen F...]
[NP sucht einen...]
[sucht einen F...]

[einen Fehler]

[v einen Fehler]

[einen Fehler]
[Fehler]
[det Fehler]

CATEGORIES
[S]

[t S]

[S]

[ntS]
[tntS]
[ntS]

[t S]

[S]

[VP t S]

[t VP tS]

[VP t S]
[NPtVPtS]
[tNPtVP tS]
[NPtVPtS]

Example

CONSTITUENTS

[]
[det]

[]
[NP]
[n NP]
[NP]
[NP]
[]

[S]

[v S]
[S]
[VP S]
[det VP S]
[VP S]

procedure

REDUCE
MOVE
REDUCE
REDUCE
MOVE
REMOVE
MOVE
REDUCE
REDUCE
MOVE
REDUCE
REDUCE
MOVE
REDUCE

Building a left-corner recognizer

Der Meister sucht einen Fehler

SENTENCE

[der Meister su...]
[Meister sucht...]
[det Meister su...]
[Meister sucht...]
[sucht einen F...]
[n sucht einen F...]
[sucht einen F...]
[NP sucht einen...]
[sucht einen F...]

[einen Fehler]
[v einen Fehler]
[einen Fehler]
[Fehler]

[det Fehler]
[Fehler]

Example
CATEGORIES CONSTITUENTS
[S] []

[t S] [det]
[S] []
[ntS] [NP]
[tntS] [n NP]
[ntS] [NP]
[t S] [NP]
[S] []

[VP t S] [S]
[t VP tS] [v S]
[VP t S] [S]
[NPtVPtS] [VP S]
[tNPtVPtS] [det VP S]
[NP t VP t S] [VP S]

[ntNPtVPtS]

[NP VP S]

procedure

REDUCE
MOVE
REDUCE
REDUCE
MOVE
REMOVE
MOVE
REDUCE
REDUCE
MOVE
REDUCE
REDUCE
MOVE
REDUCE
REDUCE

Building a left-corner recognizer

Der Meister sucht einen Fehler

SENTENCE

[der Meister su...]
[Meister sucht...]

[det Meister su...]
[Meister sucht...]

[sucht einen F...]

[n sucht einen F...]

[sucht einen F...]

[NP sucht einen...]

[sucht einen F...]
[einen Fehler]

[v einen Fehler]
[einen Fehler]
[Fehler]

[det Fehler]
[Fehler]

[]

Example
CATEGORIES CONSTITUENTS
[S] []
[t S] [det]
[S] []
[ntS] [NP]
[tntS] [n NP]
[ntS] [NP]
[t S] [NP]
[S] []
[VP t S] [S]
[t VP tS] [v S]
[VP t S] [S]
[NPtVPtS] [VP S]
[tNPtVPtS] [det VP S]
[NP t VP t S] [VP S]
[NtNPtVPtS] [NP VP S]
[tntNPtVPtS] [n NP VP S]

procedure

REDUCE
MOVE
REDUCE
REDUCE
MOVE
REMOVE
MOVE
REDUCE
REDUCE
MOVE
REDUCE
REDUCE
MOVE
REDUCE
REDUCE
MOVE

Building a left-corner recognizer
Example

Der Meister sucht einen Fehler
SENTENCE CATEGORIES CONSTITUENTS procedure
[] [tntNPtVPtS] [n NP VP S] MOVE

Building a left-corner recognizer

Example
Der Meister sucht einen Fehler
SENTENCE CATEGORIES CONSTITUENTS procedure
[] [tntNPtVPtS] [n NP VP S] MOVE

[n] [NtNPtVP tS] [NP VP S] REMOVE

Building a left-corner recognizer

Example
Der Meister sucht einen Fehler
SENTENCE CATEGORIES CONSTITUENTS procedure
[] [tntNPtVPtS] [n NP VP S] MOVE
[n] [NtNPtVPtS] [NP VP S] REMOVE

[] [EtNPtVPtS] [NP VP S] MOVE

Building a left-corner recognizer

Example
Der Meister sucht einen Fehler
SENTENCE CATEGORIES CONSTITUENTS procedure
[] [tntNPtVPtS] [n NP VP S] MOVE
[n] [NtNPtVP1tS] [NP VP S] REMOVE
[] [tNPtVP1tS] [NP VP S] MOVE

[NP] [NP t VP t S] [VP S] REMOVE

Building a left-corner recognizer

Example
Der Meister sucht einen Fehler
SENTENCE CATEGORIES CONSTITUENTS procedure
[] [tntNPtVPtS] [n NP VP S] MOVE
[n] [NtNPtVP1tS] [NP VP S] REMOVE
[] [tNPtVP1tS] [NP VP S] MOVE
[NP] [NPtVP1tS] [VP S] REMOVE

[] [t VP t S] [VP S] MOVE

Building a left-corner recognizer

Example

Der Meister sucht einen Fehler

SENTENCE CATEGORIES CONSTITUENTS procedure
[] [tntNPtVPtS] [n NP VP S] MOVE
[n] [NtNPtVP1tS] [NP VP S] REMOVE
[] [tNPtVP1tS] [NP VP S] MOVE
[NP] [NPtVP1tS] [VP S] REMOVE
[1] [t VP t S] [VP S] MOVE

[VP] [VP t S] [S] REMOVE

Building a left-corner recognizer

Example

Der Meister sucht einen Fehler

SENTENCE CATEGORIES CONSTITUENTS procedure
[] [tntNPtVPtS] [n NP VP S] MOVE
[n] [NtNPtVP1tS] [NP VP S] REMOVE
[] [tNPtVP1tS] [NP VP S] MOVE
[NP] [NPtVP1tS] [VP S] REMOVE
[1] [t VP t S] [VP S] MOVE
[VP] [VP t S] [S] REMOVE

[] [tS] [S] MOVE

Building a left-corner recognizer

Example

Der Meister sucht einen Fehler

SENTENCE CATEGORIES CONSTITUENTS procedure
[] [tntNPtVPtS] [n NP VP S] MOVE
[n] [NtNPtVP1tS] [NP VP S] REMOVE
[] [tNPtVP1tS] [NP VP S] MOVE
[NP] [NPtVP1tS] [VP S] REMOVE
[1] [t VP t S] [VP S] MOVE
[VP] [VP t S] [S] REMOVE
[] [t S] [S] MOVE

[S] [S] [] REMOVE

Building a left-corner recognizer

Example

Der Meister sucht einen Fehler

SENTENCE CATEGORIES CONSTITUENTS procedure
[] [tntNPtVPtS] [n NP VP S] MOVE
[n] [NtNPtVP1tS] [NP VP S] REMOVE
[] [tNPtVP1tS] [NP VP S] MOVE
[NP] [NPtVP1tS] [VP S] REMOVE
[1] [t VP t S] [VP S] MOVE
[VP] [VP t S] [S] REMOVE
[] [t S] [S] MOVE

[S] [S] [] REMOVE
[] [] [] true

Building a left-corner recognizer

Why Is RECOGNIZELc non-deterministic?

Building a left-corner recognizer

Why Is RECOGNIZELc non-deterministic?

* there may be several rules whose left corner is equal
to first(SENTENCE)

Building a left-corner recognizer

Why Is RECOGNIZELc non-deterministic?

* there may be several rules whose left corner is equal
to first(SENTENCE)

* there may be configurations where you could either
REDUCE or REMOVE:

Building a left-corner recognizer

Why Is RECOGNIZELc non-deterministic?

* there may be several rules whose left corner is equal
to first(SENTENCE)

* there may be configurations where you could either
REDUCE or REMOVE:

* a newly created structure can be used to
complete the structure we are working at
=> REMOVE

Building a left-corner recognizer

Why Is RECOGNIZELc non-deterministic?

* there may be several rules whose left corner is equal
to first(SENTENCE)

* there may be configurations where you could either
REDUCE or REMOVE:

* a newly created structure can be used to
complete the structure we are working at
=> REMOVE

 or it could constitute a new structure of its own
=> REDUCE

Building a left-corner recognizer

=> use breadth-first or depth-first search
to check all possible configurations

Building a left-corner recognizer
breadth-first search

RECOGNIZELc/BE

Data;: CFGG=<N, T, S, R> Lexicon L
sentence w = w1 ... Wn, n >= 1

Input:

SENTENCE = [w1 ... wn]; CATEGORIES = [S];
CONSTITUENTS =[]

Output: true / false

Structures: CONFIGS — set of configurations, null at the
beginning

Building a left-corner recognizer
breadth-first search

RECOGNIZELc/BE
Method:

If (SENTENCE == CATEGORIES ==
CONSTITUENTS ==[]) return true;

else CONFIGS = set of all configurations derivable
from the actual configuration using REMOVE,
REDUCE or MOVE

If (CONFIGS == null) return false;
else for every configuration C € CONFIGS:

RECOGNIZELciBr(SENTENCEC,
CATEGORIESc, CONSTITUENTSCc);

Questions?

A left-corner parsing algorithm

A left-corner parsing algorithm

* Introduce another stack: STRUCTURE

A left-corner parsing algorithm

* introduce another stack: STRUCTURE
* empty at the beginning; filled along the way

A left-corner parsing algorithm

* introduce another stack: STRUCTURE
* empty at the beginning; filled along the way

* return value: the structure stored in stack
STRUCTURE

A left-corner parsing algorithm
Modifying the procedures

MOVELc/sF

Preconditions:

1) first(CATEGORIES) =t

2) first(CONSTITUENTS) =AE€ (NUT)

Input:

SENTENCE; CATEGORIES; CONSTITUENTS;

Output:

push(first(CONSTITUENTS), SENTENCE);
Pop(CATEGORIES); pop(CONSTITUENTS);

A left-corner parsing algorithm
Modifying the procedures

MOVELc/eF

=> just Insert another parameter
for the structure stack

A left-corner parsing algorithm
Modifying the procedures

REDUCE.LcBF

Preconditions:

1) There is a rule ko -> k1 ... knIn R or k1 is part of ko for
an arbitrary lexical category ko

2) first(CATEGORIES) € (NU T)
Input:

SENTENCE with first = k1; CATEGORIES;
CONSTITUENTS;

Output: pop(SENTENCE); push(kz2 ... kn t,
CATEGORIES); push(ko, CONSTITUENTYS);

A left-corner parsing algorithm
Modifying the procedures

REDUCELcer - new subprocedure

A left-corner parsing algorithm
Modifying the procedures

REDUCELcer - new subprocedure
Input: STRUCTURE, symbols ko, k1 € (NU T)

A left-corner parsing algorithm
Modifying the procedures

REDUCELcer - new subprocedure

Input: STRUCTURE, sym

00

Output: modified STRUC"

U

Sko, ki€ (NUT)

RE'

A left-corner parsing algorithm
Modifying the procedures

REDUCELcer - new subprocedure

Input: STRU

Output: moc
Method:

CTURE, sym

00

Ifled STRUC

if STRUCTURE ==[] U

first(STRUC

U

Sko, ki€ (NUT)

RE'

URE) == k'a with k' != k1))

return push((ko k1), STRUCTURE)

else return(push((ko first(STRUCTURE)),
Pop(STRUCTURE)))

A left-corner parsing algorithm
Modifying the procedures

REDUCE.LcBF

=> add structure1(ko,k1,STRUCTURE) to output

structure;

=> If there Is already a structure dominated by ki,
Integrate the new symbols, else build up a new
structure description

A left-corner parsing algorithm
Modifying the procedures

REMOVELc/sF

Precondition:

first(SENTENCE) = first(CATEGORIES)

Input:

SENTENCE; CATEGORIES; CONSTITUENTS;

Output:

POP(SENTENCE); pop(CATEGORIES);
CONSTITUENTS;

A left-corner parsing algorithm
Modifying the procedures

REMOVELcsr — subprocedure

A left-corner parsing algorithm
Modifying the procedures

REMOVELcsr — subprocedure
Input: CONSTITUENTS; STRUCTURE

A left-corner parsing algorithm
Modifying the procedures
REMOVELcsr — subprocedure
Input: CONSTITUENTS; STRUCTURE
Output: modified STRUCTURE'

A left-corner parsing algorithm
Modifying the procedures
REMOVELcsr — subprocedure
Input: CONSTITUENTS; STRUCTURE
Output: modified STRUCTURE'
Method:

IF(CONSTITUENTS ==[])
return STRUCTURE

else
return(push((second(STRUCTURE) +

first(STRUCTURE)), pop(pop(STRUCTURE))))

A left-corner parsing algorithm
Modifying the procedures

REMOVELcier with subprocedure

=> |f CONSTITUENTS Is not empty, associate
the last two partial structure descriptions on
STRUCTURE

A left-corner parsing algorithm

Eva sah Adam am Morgen

SENTENCE

[Eva sah Adam...]
[sah Adam...]

[n sah Adam...]
[sah Adam...]

[NP sah Adam...]
[sah Adam...]

[Adam am Morgen]

[v Adam am Morgen] [VP t S]

[Adam am Morgen]

[am Morgen]

Example
CATEGORIES CONSTITUENTS
[S] []
[t S] [n]
[S] []
[t S] [NP]
[S] []
[VP t S] [S]
[t VP t S] [v S]

[S]

[NP PPtVPtS] [VP S]
[t NP PP tVPtS] [n VP S]

STRUCTURE

[]

[(n1)]

[(n1)]

[(NP(n1))]
[(NP(n1))]
[S(NP(n1))]
[(v2)(S(NP(n1)))]
[(v2)(S(NP(n1)))]
[(VP(v2))(S(NP...]
[(n3)(VP(v2))(S...]

Questions?

L eft-corner parsing with look-ahead

L eft-corner parsing with look-ahead

e become more efficient...

L eft-corner parsing with look-ahead

e become more efficient...

* ... by reducing number of rules that can be used
to generate next derivation

L eft-corner parsing with look-ahead

e become more efficient...

* ... by reducing number of rules that can be used
to generate next derivation

* for every nonterminal n, calculate the set of all
symbols which are left corners of constituents
reachable from n

L eft-corner parsing with look-ahead

e become more efficient...

* ... by reducing number of rules that can be used
to generate next derivation

* for every nonterminal n, calculate the set of all
symbols which are left corners of constituents
reachable from n

(19

=> relation

L eft-corner parsing with look-ahead

LINK(G)

L eft-corner parsing with look-ahead

LINK(G)

set of all ordered pairs <X, Y> with X € N and
Y € (N U T) which fulfill either of these

conditions:

L eft-corner parsing with look-ahead

LINK(G)

set of all ordered pairs <X, Y> with X € N and
Y € (N U T) which fulfill either of these

conditions:
1) X =Y (reflexivity)

L eft-corner parsing with look-ahead

LINK(G)

set of all ordered pairs <X, Y> with X € N and
Y € (N U T) which fulfill either of these

conditions:
1) X =Y (reflexivity)
2)thereisarule X->YaE€R

L eft-corner parsing with look-ahead

LINK(G)

set of all ordered pairs <X, Y> with X € N and
Y € (N U T) which fulfill either of these

conditions:
1) X =Y (reflexivity)
2)thereisarule X->YaE€R

3) <X, X'> € LINK(G) and <X",Y> € LINK(G) for an
arbitrary X' € N (transitivity)

L eft-corner parsing with look-ahead

LINK(G)

set of all ordered pairs <X, Y> with X € N and
Y € (N U T) which fulfill either of these

conditions:
1) X =Y (reflexivity)
2)thereisarule X->YaE€R

3) <X, X'> € LINK(G) and <X",Y> € LINK(G) for an
arbitrary X' € N (transitivity)

=> should be calculated before parsing

Left-corner parsing with look-ahead
Example

Grammar G with rules:
S>X2X3X4 X2->ef

X3 -> X1 X1->¢

X4 -> h

Left-corner parsing with look-ahead
Example

Grammar G with rules:
S>X2X3X4 X2->ef

X3 -> X1 X1->¢

X4 -> h

Left-corner parsing with look-ahead
Example

Grammar G with rules:
S>X2X3X4 X2->ef
X3 -> X1 X1->¢
X4 -> h
5

LINK(G) = {<S,S>, <X1, X1>, /]\
<X2, X2>, <X3, X3>, <X4, X4>, o o X
<S, X2>, <S, e>, <X2, e>, /\ ‘

1

<X1, g>, <X3, X1>, <X3, g>, P f
A
<X4, h> ‘
g

Left-corner parsing with look-ahead
Example

Grammar G with rules:
S>X2X3X4 X2->ef
X3 -> X1 X1->¢
X4 -> h
5

LINK(G) = {<S,S>, <X1, X1>, /]\
<X2, X2>, <X3, X3>, <X4, X4>, A2 2 X
<S, X2>, <S, e>, <X2, e>, /\ ‘

1

<X1, g>, <X3, X1>, <X3, g>, =z f
A
<X4, h> ‘
g

Left-corner parsing with look-ahead
Modifying the procedures

only necessary change: REDUCELc1a
Preconditions:

1) There is a rule ko-> k1 ... knin R or k1 Is part of ko for
an arbitrary lexical category ko

2) first(CATEGORIES) €E(NUT)

Input: SENTENCE with first = k1; CATEGORIES;
CONSTITUENTS; STRUCTURE

Output: pop(SENTENCE); push(kz2 ... kn t,

CATEGORIES); push(ko, CONSTITUENTS);
structure1(STRUCTURE)

Questions?

Comparison to other approaches

Comparison to other approaches

Drawback of top-down:

Comparison to other approaches

Drawback of top-down:

* ignores what the actual input string looks like most of
the time

Comparison to other approaches

Drawback of top-down:

* ignores what the actual input string looks like most of
the time

Drawback of bottom-up:

Comparison to other approaches

Drawback of top-down:

* ignores what the actual input string looks like most of
the time

Drawback of bottom-up:
* we don't know what we're trying to build at the moment

Comparison to other approaches

Drawback of top-down:

* ignores what the actual input string looks like most of
the time

Drawback of bottom-up:
* we don't know what we're trying to build at the moment

=> | eft-corner can handle these... examples follow!

Comparison to other approaches
Example TD vs LC

Comparison to other approaches
Example TD vs LC

Grammar: s->NPVP NP ->detN NP ->PN VP -> |V
det -> the N -> robber PN -> Vincent |V -> died

Comparison to other approaches
Example TD vs LC

Grammar: s->NPVP NP ->detN NP ->PN VP -> |V

det -> the N -> robber PN -> Vincent [V -> died
Input sentence: Vincent died.

Comparison to other approaches
Example TD vs LC

Grammar: s->NPVP NP ->detN NP ->PN VP -> |V

det -> the N -> robber PN -> Vincent [V -> died
Input sentence: Vincent died.

Top-down:

Comparison to other approaches
Example TD vs LC

Grammar: s->NPVP NP ->detN NP ->PN VP -> |V

det -> the N -> robber PN -> Vincent [V -> died
Input sentence: Vincent died.

Top-down: s -> NP VP

Comparison to other approaches
Example TD vs LC

Grammar: s->NPVP NP ->detN NP ->PN VP -> |V

det ->the N ->robber PN ->Vincent [V -> died
Input sentence: Vincent died.

Top-down: S -> NP VP -> det N VP

Comparison to other approaches
Example TD vs LC

Grammar: s->NPVP NP ->detN NP ->PN VP -> |V

det -> the N -> robber PN -> Vincent [V -> died
Input sentence: Vincent died.

Top-down: s -> NP VP -> det N VP ->
Vincent isn't det, det cannot be expanded
=> need to backtrack ;-(

Comparison to other approaches
Example TD vs LC

Grammar: s->NPVP NP ->detN NP ->PN VP -> |V

det -> the N -> robber PN -> Vincent [V -> died
Input sentence: Vincent died.

Top-down: s -> NP VP -> det N VP ->
Vincent isn't det, det cannot be expanded
=> need to backtrack ;-(

| eft-corner:

Comparison to other approaches
Example TD vs LC

Grammar: s->NPVP NP ->detN NP ->PN VP -> |V

det -> the N -> robber PN -> Vincent [V -> died
Input sentence: Vincent died.

Top-down: s -> NP VP -> det N VP ->
Vincent isn't det, det cannot be expanded
=> need to backtrack ;-(

Left-corner: predict S (TD)

Comparison to other approaches
Example TD vs LC

Grammar: s->NPVP NP ->detN NP ->PN VP -> |V

det -> the N -> robber PN -> Vincent [V -> died
Input sentence: Vincent died.

Top-down: s -> NP VP -> det N VP ->
Vincent isn't det, det cannot be expanded
=> need to backtrack ;-(

Left-corner: predict S (TD) -> recognize PN (BU)

Comparison to other approaches
Example TD vs LC

Grammar: s->NPVP NP ->detN NP ->PN VP -> |V

det -> the N -> robber PN -> Vincent [V -> died
Input sentence: Vincent died.

Top-down: s -> NP VP -> det N VP ->
Vincent isn't det, det cannot be expanded
=> need to backtrack ;-(

Left-corner: predict S (TD) -> recognize PN (BU) -> select rule 'NP -> PN’

Comparison to other approaches
Example TD vs LC

Grammar: s->NPVP NP ->detN NP ->PN VP -> |V

det -> the N -> robber PN -> Vincent [V -> died
Input sentence: Vincent died.

Top-down: s -> NP VP -> det N VP ->
Vincent isn't det, det cannot be expanded
=> need to backtrack ;-(

Left-corner: predict S (TD) -> recognize PN (BU) -> select rule 'NP -> PN’
-> select rule 'S -> NP VP!

Comparison to other approaches
Example TD vs LC

Grammar: s->NPVP NP ->detN NP ->PN VP -> |V

det -> the N -> robber PN -> Vincent [V -> died
Input sentence: Vincent died.

Top-down: s -> NP VP -> det N VP ->
Vincent isn't det, det cannot be expanded
=> need to backtrack ;-(

Left-corner: predict S (TD) -> recognize PN (BU) -> select rule 'NP -> PN’
-> select rule 'S -> NP VP' ->

Comparison to other approaches
Example TD vs LC

Grammar: s->NPVP NP ->detN NP ->PN VP -> |V

det -> the N -> robber PN -> Vincent [V -> died
Input sentence: Vincent died.

Top-down: s -> NP VP -> det N VP ->
Vincent isn't det, det cannot be expanded
=> need to backtrack ;-(

Left-corner: predict S (TD) -> recognize PN (BU) -> select rule 'NP -> PN’
-> select rule 'S -> NP VP' ->
-> input: died — predict VP (TD)

Comparison to other approaches
Example TD vs LC

Grammar: s->NPVP NP ->detN NP ->PN VP -> |V

det -> the N -> robber PN -> Vincent [V -> died
Input sentence: Vincent died.

Top-down: s -> NP VP -> det N VP ->
Vincent isn't det, det cannot be expanded
=> need to backtrack ;-(

Left-corner: predict S (TD) -> recognize PN (BU) -> select rule 'NP -> PN’
-> select rule 'S -> NP VP' ->
-> input: died — predict VP (TD) -> recognize IV (BU)

Comparison to other approaches
Example TD vs LC

Grammar: s->NPVP NP ->detN NP ->PN VP -> |V

det -> the N -> robber PN -> Vincent [V -> died
Input sentence: Vincent died.

Top-down: s -> NP VP -> det N VP ->
Vincent isn't det, det cannot be expanded
=> need to backtrack ;-(

Left-corner: predict S (TD) -> recognize PN (BU) -> select rule 'NP -> PN’
-> select rule 'S -> NP VP' ->
-> input: died — predict VP (TD) -> recognize IV (BU)
-> select rule 'VP -> [V

Comparison to other approaches
Example TD vs LC

Grammar: s->NPVP NP ->detN NP ->PN VP -> |V

det -> the N -> robber PN -> Vincent [V -> died
Input sentence: Vincent died.

Top-down: s -> NP VP -> det N VP ->
Vincent isn't det, det cannot be expanded
=> need to backtrack ;-(

Left-corner: predict S (TD) -> recognize PN (BU) -> select rule 'NP -> PN’
-> select rule 'S -> NP VP' ->
-> input: died — predict VP (TD) -> recognize IV (BU)
-> select rule 'VP -> V' ->

Comparison to other approaches
Example TD vs LC

Grammar: s->NPVP NP ->detN NP ->PN VP -> |V

det -> the N -> robber PN -> Vincent [V -> died
Input sentence: Vincent died.

Top-down: s -> NP VP -> det N VP ->
Vincent isn't det, det cannot be expanded
=> need to backtrack ;-(

Left-corner: predict S (TD) -> recognize PN (BU) -> select rule 'NP -> PN’
-> select rule 'S -> NP VP' ->
-> input: died — predict VP (TD) -> recognize IV (BU)
-> select rule 'VP -> V' -> =>

Comparison to other approaches
Example BU vs LC

Comparison to other approaches
Example BU vs LC

Grammar: s->NPVP NP ->detN NP->PN VP ->1IV

VP ->TV NP TV ->plant IV -> died det->the
N -> plant

Comparison to other approaches
Example BU vs LC

Grammar: s->NPVP NP ->detN NP->PN VP ->1IV

VP ->TV NP TV ->plant IV -> died det->the
N -> plant

Input sentence: the plant died

Comparison to other approaches
Example BU vs LC

Grammar: s->NPVP NP ->detN NP->PN VP ->1IV

VP ->TV NP TV ->plant IV -> died det->the
N -> plant

Input sentence: the plant died

Bottom-up:

Comparison to other approaches
Example BU vs LC

Grammar: s->NPVP NP ->detN NP->PN VP ->1IV

VP ->TV NP TV ->plant IV -> died det->the
N -> plant

Input sentence: the plant died

Bottom-up: the plant died

Comparison to other approaches
Example BU vs LC

Grammar: s->NPVP NP ->detN NP->PN VP ->1IV

VP ->TV NP TV ->plant IV -> died det->the
N -> plant

Input sentence: the plant died

Bottom-up: the plant died -> det plant died

Comparison to other approaches
Example BU vs LC

Grammar: s->NPVP NP ->detN NP->PN VP ->1IV

VP ->TV NP TV ->plant IV -> died det->the
N -> plant

Input sentence: the plant died

Bottom-up: the plant died -> det plant died -> det T died

Comparison to other approaches
Example BU vs LC

Grammar: s->NPVP NP ->detN NP->PN VP ->1IV

VP ->TV NP TV ->plant IV -> died det->the
N -> plant

Input sentence: the plant died

Bottom-up: the plant died -> det plant died -> det TV died -> det TV IV

Comparison to other approaches
Example BU vs LC

Grammar: s->NPVP NP ->detN NP->PN VP ->1IV

VP ->TV NP TV ->plant IV -> died det->the
N -> plant

Input sentence: the plant died

Bottom-up: the plant died -> det plant died -> det TV died -> det TV IV ->
det TV VP

Comparison to other approaches
Example BU vs LC

Grammar: s->NPVP NP ->detN NP->PN VP ->1IV

VP ->TV NP TV ->plant IV -> died det->the
N -> plant

Input sentence: the plant died

Bottom-up: the plant died -> det plant died -> det TV died -> det TV IV ->
det TV VP ->

Comparison to other approaches
Example BU vs LC

Grammar: s->NPVP NP ->detN NP->PN VP ->1IV

VP ->TV NP TV ->plant IV -> died det->the
N -> plant

Input sentence: the plant died

Bottom-up: the plant died -> det plant died -> det TV died -> det TV IV ->
det TV VP -> => need to backtrack ;-(

Comparison to other approaches
Example BU vs LC

Grammar: s->NPVP NP ->detN NP->PN VP ->1IV

VP ->TV NP TV ->plant IV -> died det->the
N -> plant

Input sentence: the plant died

Bottom-up: the plant died -> det plant died -> det TV died -> det TV IV ->
det TV VP -> => need to backtrack ;-(

eft-corner:

Comparison to other approaches
Example BU vs LC

Grammar: s->NPVP NP ->detN NP->PN VP ->1IV

VP ->TV NP TV ->plant IV -> died det->the
N -> plant

Input sentence: the plant died

Bottom-up: the plant died -> det plant died -> det TV died -> det TV IV ->
det TV VP -> => need to backtrack ;-(

| eft-corner: predict S (TD)

Comparison to other approaches
Example BU vs LC

Grammar: s->NPVP NP ->detN NP->PN VP ->1IV

VP ->TV NP TV ->plant IV -> died det->the
N -> plant

Input sentence: the plant died

Bottom-up: the plant died -> det plant died -> det TV died -> det TV IV ->
det TV VP -> => need to backtrack ;-(

| eft-corner: predict S (TD) -> recognize det (BU)

Comparison to other approaches
Example BU vs LC

Grammar: s->NPVP NP ->detN NP->PN VP ->1IV

VP ->TV NP TV ->plant IV -> died det->the
N -> plant

Input sentence: the plant died

Bottom-up: the plant died -> det plant died -> det TV died -> det TV IV ->
det TV VP -> => need to backtrack ;-(

Left-corner: predict S (TD) -> recognize det (BU)
-> select rule 'NP -> det N

Comparison to other approaches
Example BU vs LC

Grammar: s->NPVP NP ->detN NP->PN VP ->1IV

VP ->TV NP TV ->plant IV -> died det->the
N -> plant

Input sentence: the plant died

Bottom-up: the plant died -> det plant died -> det TV died -> det TV IV ->
det TV VP -> => need to backtrack ;-(

| eft-corner: predict S (TD) -> recognize det (BU)
-> select rule 'NP -> det N' -> recognize N (BU)

Comparison to other approaches
Example BU vs LC

Grammar: s->NPVP NP ->detN NP->PN VP ->1IV

VP ->TV NP TV ->plant IV -> died det->the
N -> plant

Input sentence: the plant died

Bottom-up: the plant died -> det plant died -> det TV died -> det TV IV ->
det TV VP -> => need to backtrack ;-(

| eft-corner: predict S (TD) -> recognize det (BU)
-> select rule 'NP -> det N' -> recognize N (BU) ->

Comparison to other approaches
Example BU vs LC

Grammar: s->NPVP NP ->detN NP->PN VP ->1IV

VP ->TV NP TV ->plant IV -> died det->the
N -> plant

Input sentence: the plant died

Bottom-up: the plant died -> det plant died -> det TV died -> det TV IV ->
det TV VP -> => need to backtrack ;-(

| eft-corner: predict S (TD) -> recognize det (BU)
-> select rule 'NP -> det N' -> recognize N (BU) ->
-> select rule 'S -> NP VP!

Comparison to other approaches
Example BU vs LC

Grammar: s->NPVP NP ->detN NP->PN VP ->1IV

VP ->TV NP TV ->plant IV -> died det->the
N -> plant

Input sentence: the plant died

Bottom-up: the plant died -> det plant died -> det TV died -> det TV IV ->
det TV VP -> => need to backtrack ;-(

| eft-corner: predict S (TD) -> recognize det (BU)
-> select rule 'NP -> det N' -> recognize N (BU) ->
-> select rule 'S -> NP VP' -> input: died — predict VP (TD)

Comparison to other approaches
Example BU vs LC

Grammar: s->NPVP NP ->detN NP->PN VP ->1IV

VP ->TV NP TV ->plant IV -> died det->the
N -> plant

Input sentence: the plant died

Bottom-up: the plant died -> det plant died -> det TV died -> det TV IV ->
det TV VP -> => need to backtrack ;-(

| eft-corner: predict S (TD) -> recognize det (BU)
-> select rule 'NP -> det N' -> recognize N (BU) ->
-> select rule 'S -> NP VP' -> input: died — predict VP (TD) ->
recognize IV (BU)

Comparison to other approaches
Example BU vs LC

Grammar: s->NPVP NP ->detN NP->PN VP ->1IV

VP ->TV NP TV ->plant IV -> died det->the
N -> plant

Input sentence: the plant died

Bottom-up: the plant died -> det plant died -> det TV died -> det TV IV ->
det TV VP -> => need to backtrack ;-(

| eft-corner: predict S (TD) -> recognize det (BU)
-> select rule 'NP -> det N' -> recognize N (BU) ->
-> select rule 'S -> NP VP' -> input: died — predict VP (TD) ->
recognize IV (BU) -> select rule 'VP -> |V!

Comparison to other approaches
Example BU vs LC

Grammar: s->NPVP NP ->detN NP->PN VP ->1IV

VP ->TV NP TV ->plant IV -> died det->the
N -> plant

Input sentence: the plant died

Bottom-up: the plant died -> det plant died -> det TV died -> det TV IV ->
det TV VP -> => need to backtrack ;-(

| eft-corner: predict S (TD) -> recognize det (BU)
-> select rule 'NP -> det N' -> recognize N (BU) ->
-> select rule 'S -> NP VP '-> input: died — predict VP (TD) ->
recognize IV (BU) -> select rule 'VP -> |V!
->

Comparison to other approaches
Example BU vs LC

Grammar: s->NPVP NP ->detN NP->PN VP ->1IV

VP ->TV NP TV ->plant IV -> died det->the
N -> plant

Input sentence: the plant died

Bottom-up: the plant died -> det plant died -> det TV died -> det TV IV ->
det TV VP -> => need to backtrack ;-(

| eft-corner: predict S (TD) -> recognize det (BU)
-> select rule 'NP -> det N' -> recognize N (BU) ->
-> select rule 'S -> NP VP' -> input: died — predict VP (TD) ->
recognize IV (BU) -> select rule 'VP -> |V!
-> =>

Comparison to other approaches
Conclusion and outlook

Comparison to other approaches
Conclusion and outlook

* |eft-corner diminishes risk of having to
backtrack after a series of wrong moves

Comparison to other approaches
Conclusion and outlook

* |eft-corner diminishes risk of having to
packtrack after a series of wrong moves

* but: also combines some of the problems TD
and BU have => hardly used in practice

Comparison to other approaches
Conclusion and outlook

* |eft-corner parsing might be
!

Comparison to other approaches
Conclusion and outlook

* |eft-corner parsing might be
!

Complexity issues:

Strategy Left-branching Center Embedding Right-branching
D O(n) O(n) O(1)

BU O(1) O(n) O(n)

table taken from Shravan Vasishth's HSP slides

Questions?

Bibliography

Naumann, Sven and Langer, Haben 1994. Parsing.
Eine Einfiihrung in die maschinelle Analyse natdirlicher
Sprache. B.G. Teubner Stuttgart

a very short section from the Grune & Jacobs book

http://www.coli.uni-saarland.de/~kris/nlp-with-
prolog/html/node53.html

Shravan Vasishth's slides for the Human Sentence
Processing seminar from last semester

http://www.coli.uni-saarland.de/~kris/nlp-with-

Thanks for your attention!

