
Computational Linguistics II: Parsing

Formal Languages: Context Free Languages I

Frank Richter & Jan-Philipp Söhn

fr@sfs.uni-tuebingen.de, jp.soehn@uni-tuebingen.de

November 6th, 2006

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing November 6th, 2006 1 / 11

The Big Picture

Once Again: The Big Picture

hierarchy grammar machine other

type 3 reg. grammar DFA reg. expressions
NFA

det. cf. LR(k) grammar DPDA
type 2 CFG PDA
type 1 CSG LBA
type 0 unrestricted Turing

grammar machine

DFA: Deterministic finite state automaton
(D)PDA: (Deterministic) Pushdown automaton
CFG: Context-free grammar
CSG: Context-sensitive grammar

LBA: Linear bounded automaton

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing November 6th, 2006 2 / 11

The Big Picture

Once Again: The Big Picture

hierarchy grammar machine other

type 3 reg. grammar DFA reg. expressions
NFA

det. cf. LR(k) grammar DPDA
type 2 CFG PDA
type 1 CSG LBA
type 0 unrestricted Turing

grammar machine

DFA: Deterministic finite state automaton
(D)PDA: (Deterministic) Pushdown automaton
CFG: Context-free grammar
CSG: Context-sensitive grammar

LBA: Linear bounded automaton

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing November 6th, 2006 3 / 11

From Regular to Context-Free

Form of Grammars of Type 0–3

For i ∈ {0, 1, 2, 3}, a grammar 〈N, T , P, S〉 of Type i , with N the set of
non-terminal symbols, T the set of terminal symbols (N and T disjoint,
Σ = N ∪ T), P the set of productions, and S the start symbol (S ∈ N),
obeys the following restrictions:

T3: Every production in P is of the form A → aB or A → ǫ, with
B, A ∈ N, a ∈ T .

T2: Every production in P is of the form A → x , with A ∈ N and x ∈ Σ∗.

T1: Every production in P is of the form x1Ax2 → x1yx2 , with
x1 , x2 ∈ Σ∗, y ∈ Σ+, A ∈ N and the possible exception of C → ǫ in
case C does not occur on the righthand side of a rule in P.

T0: No restrictions.

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing November 6th, 2006 4 / 11

From Regular to Context-Free

From Regular to Context-Free

The language L1 = {acbc | c=3} is regular.

Draw an FSA for it!

The language L2 = {anbn | n≥1} is not regular.

Why not? What is required?

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing November 6th, 2006 5 / 11

From Regular to Context-Free

From Regular to Context-Free

The language L1 = {acbc | c=3} is regular.

Draw an FSA for it!

The language L2 = {anbn | n≥1} is not regular.

Why not? What is required?

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing November 6th, 2006 5 / 11

From Regular to Context-Free

From Regular to Context-Free

The language L1 = {acbc | c=3} is regular.

Draw an FSA for it!

The language L2 = {anbn | n≥1} is not regular.

Why not? What is required?

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing November 6th, 2006 5 / 11

From Regular to Context-Free

From Regular to Context-Free

The language L1 = {acbc | c=3} is regular.

Draw an FSA for it!

The language L2 = {anbn | n≥1} is not regular.

Why not? What is required?

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing November 6th, 2006 5 / 11

A Model for Context-Free Languages Non-Deterministic Pushdown-Automaton

Introducing the Pushdown-Automaton

Enhancement of an FSA

Stack can store a string of any length. Functions PUSH and POP are
only allowed at the top of the stack.

By definition nondeterministic

Acceptance by final state or by empty stack (equivalence!)

A language that is recognized by an NPDA is context-free.

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing November 6th, 2006 6 / 11

A Model for Context-Free Languages Non-Deterministic Pushdown-Automaton

Introducing the Pushdown-Automaton

Enhancement of an FSA

Stack can store a string of any length. Functions PUSH and POP are
only allowed at the top of the stack.

By definition nondeterministic

Acceptance by final state or by empty stack (equivalence!)

A language that is recognized by an NPDA is context-free.

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing November 6th, 2006 6 / 11

A Model for Context-Free Languages Non-Deterministic Pushdown-Automaton

Introducing the Pushdown-Automaton

Enhancement of an FSA

Stack can store a string of any length. Functions PUSH and POP are
only allowed at the top of the stack.

By definition nondeterministic

Acceptance by final state or by empty stack (equivalence!)

A language that is recognized by an NPDA is context-free.

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing November 6th, 2006 6 / 11

A Model for Context-Free Languages Non-Deterministic Pushdown-Automaton

Introducing the Pushdown-Automaton

Enhancement of an FSA

Stack can store a string of any length. Functions PUSH and POP are
only allowed at the top of the stack.

By definition nondeterministic

Acceptance by final state or by empty stack (equivalence!)

A language that is recognized by an NPDA is context-free.

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing November 6th, 2006 6 / 11

A Model for Context-Free Languages Non-Deterministic Pushdown-Automaton

Introducing the Pushdown-Automaton

Enhancement of an FSA

Stack can store a string of any length. Functions PUSH and POP are
only allowed at the top of the stack.

By definition nondeterministic

Acceptance by final state or by empty stack (equivalence!)

A language that is recognized by an NPDA is context-free.

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing November 6th, 2006 6 / 11

A Model for Context-Free Languages Non-Deterministic Pushdown-Automaton

Defining the Pushdown-Automaton

Definition 1 (NPDA) A nondeterministic pushdown-automaton is a
septuple (Σ, Q, Γ, q0 , Z , F , δ) where

Σ is a finite set called the input alphabet,

Q is a finite set of states,

Γ is a finite set called the stack alphabet,

q0 ∈ Q is the initial state,

Z ∈ Γ is the start symbol on the stack,

F ⊆ Q the set of final states, and

δ is the transition function from Q × (Σ ∪ {ǫ}) × Γ to
Pow e(Q × Γ∗).

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing November 6th, 2006 7 / 11

A Model for Context-Free Languages Non-Deterministic Pushdown-Automaton

States of an NPDA

Example of δ:
δ(q, a, A) ∋ (q′, B1 ...Bn)

A possible state:
(q0 , abbaa, AZ)

⇒ Example of an NPDA for
L3 = {a1a2 ...anan...a2a1 |ai ∈ {a, b}}

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing November 6th, 2006 8 / 11

A Model for Context-Free Languages From a CFG to an NPDA

From a CFG to an NPDA

Write a grammar for L3 = {anbncm|n, m ≥ 1}

Together, we build an NPDA...

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing November 6th, 2006 9 / 11

A Model for Context-Free Languages From a CFG to an NPDA

From a CFG to an NPDA

Write a grammar for L3 = {anbncm|n, m ≥ 1}

Together, we build an NPDA...

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing November 6th, 2006 9 / 11

A Model for Context-Free Languages Deterministic Pushdown-Automaton

Defining the DPDA

Definition 2 (DPDA) A deterministic pushdown-automaton is a
septuple (Σ, Q, Γ, q0 , Z , F , δ) as the NPDI where

for all q ∈ Q, a ∈ Σ and A ∈ Γ holds:

|δ(q, a, A)| + |δ(q, ǫ,A)| ≤ 1

i.e. for a given state, input symbol and topmost element of a stack the
DPDA never has a choice of move.

DPDAs accept per final state and not per empty stack.
A language that is recognized by an DPDA is deterministically
context-free (i.e. all context-free languages with unambiguous
grammars).
DPDA languages lie strictly between regular and context-free
languages

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing November 6th, 2006 10 / 11

A Model for Context-Free Languages Deterministic Pushdown-Automaton

States of a DPDA

⇒ Example of a DPDA for
L4 = {a1a2 ...an$an...a2a1 |ai ∈ {a, b}}

Richter/Söhn (WS 2006/07) Computational Linguistics II: Parsing November 6th, 2006 11 / 11

