| ntroduction to Computational
L inguistics
Frank Richter

fr@sfs.uni-tuebingen.de.

Seminar flr Sprachwissenschatft
Eberhard Karls Universit at Tlbingen
Germany

Intro to CL — WS 2012/13 — p.1

Regular Relations

Regular expressions can contain two kinds of symbols:
unary symbols and symbol pairs.

s Unary symbols (a, b, etc) denote strings.

s Symbol pairs (a:b, a:0, O:b, etc.) denote pairs of
strings.

The simplest kind of regular expression contains a
single symbol. E.g., “a” denotes the set {a}.

Similarly, the regular expression “a:b” denotes the
singleton relation {(a,b)}.

A regular relation can be viewed as a mapping between
two regular languages. The a:b relation is simply the
crossproduct of the languages denoted by the
expressions a and b.

Intro to CL — WS 2012/13 — p.2

Finite-State Transducer

Definition 10 (FST) A finite-state transducer is a 6-tuple
(31,22,Q,1, F, F) where

;¢ Is a finite alphabet,
(called the input alphabet)

Y5 IS a finite alphabet,
(called the output alphabet)

Q Is a finite set of states,
i € (IS the Initial state,
F C @ the set of final states, and

ECQXx(X1"x¥s")xQ
IS the set of edges.

Intro to CL — WS 2012/13 — p.3

Constructing Regular Relations

#® Crossproduct: A .x. B

» The crossproduct operator, .X., Is used only with
expressions that denote a regular language; it
constructs a relation between them.

s |A .X. B| designates the relation that maps every
string of A to every string of B. If A contains x and B
contains y, the pair (x,y) Is included in the
crossproduct.

Intro to CL — WS 2012/13 — p.4

Constructing Regular Relations

Composition: A .0. B

s Composition is an operation on relations that yields
a new relation. [A .0. B] maps strings that are in the

upper language of A to strings that are in the lower
language of B.

s If A contains the pair (z,y) and B contains the pair
(y, z), the pair (z, z) Is in the composite relation.

Intro to CL — WS 2012/13 — p.5

Properties of Regular Relations

Regular relations in general are not closed under

complementation,
® [ntersection, and
® subtraction.

Intro to CL — WS 2012/13 — p.6

Propertiesof Transducers

A transducer is functional iff for any input there is at
most one output.

A transducer is sequential iff no state has more than
one arc with the same symbol on the input side.

Intro to CL — WS 2012/13 — p.7

Replacement Operators

Unconditional obligatory replacement:
A—B=ge [[~S[A-[]][A X B]]* ~$[A-[]]

Unconditional optional replacement:

A(=)B =g [[~S[A-TTT[A|A X B]J*
~$[A - [11]

#® Contextual obligatory replacement:
A—BJ]L_R

meaning. “Replace A by B inthe contextL _ R’

Intro to CL — WS 2012/13 — p.8

Non-deter minism of replace (1)

Example: ab — ba | x

meaning: “replace ab by ba or x

non-deterministically”
Sample input: abcdbaba

Outputs: bacdbbaa,bacdbxa,

xcdbbaa,xcdbxa

Intro to CL — WS 2012/13 — p.9

Non-deter minism of replace (2)

Example: [ab|b|balaba]—x
meaning. “replace ab or b or ba or aba by x”

Sample input: aba aba aba aba

Outputs: X a axa a X X

Intro to CL — WS 2012/13 — p.10

L ongest match, left-to-right replace

For many applications, it is useful to define another
version of replacement that in all such cases yields a
unique outcome.

#® The longest-match, left-to-right replace operator, @->,
defined in Karttunen (1996), imposes a unigue
factorization on every input.

#® The replacement sites are selected from left to right, not
allowing any overlaps.

|If there are alternate candidate strings starting at the
same location, only the longest one is replaced.

Intro to CL — WS 2012/13 — p.11

A Grammar for Date Expressions

1To9 = [1]12|3]|4|5]|6|7]|8]|9]

0To9 = [%0 | 1To9]

SP = [""]

Day = [Monday | ... | Saturday | Sunday |
Month = [January | ... | November | December]
Date = [1To9|[1]| 2] 0To9 | 3 [%0 | 1]]

Year = 1709 (0To9 (0To9 (0To9)))

DateExp Day | (Day SP) Month " " Date (SP Year)

ntro to CL — WS 2012/13 — p.12

Marking Date Expressions

A parser for date expressions can be compiled from the
following simple regular expression:
DateExp @-> %[... %]

The above expression can be compiled into a
finite-state transducer.

@-> Is a replacement operator which scans the input
from left to right and follows a longest-match.

Due to the longest match constraint, the transducer
brackets only the maximal date expressions.

The dots mean: identity with the upper string. The
whole expression means: replace DateExp by DateExp
surrounded by brackets.

Intro to CL — WS 2012/13 — p.13

Overgener ation Problem

#® The grammar for date expressions accepts illegal dates.
Example: It admits dates like “February 30, 2007".

More generally:

s |f a grammar admits strings that should not be
accepted by the grammar, the grammar is said to
overgenerate.

s |f a grammar does not admit strings that should be
accepted by the grammar, the grammar is said to
undergenerate.

Intro to CL — WS 2012/13 — p.14

Tokenizing Date Expressions

Example:

Today Is [Wednesday, August 28, 1996] because yesterday
was [Tuesday] and it was [August 27] so tomorrow must be
[Thursday, August 29] and not [August 30, 1996] as it says
on the program.

Intro to CL — WS 2012/13 — p.15

| ncremental Tokenization

Input layer one, two, and so on.
single word layer one ||, ||two ||, |[and || so||on]|. ||

multi-word layer one ||, ||two ||, ||andsoon]||. ||

Intro to CL — WS 2012/13 — p.16

Advantages of | ncremental Tokenization

® With finite-state transducers incremental tokenization iIs

9

o

Implemented by the composition operator for
transducers.

Separation of grammar specification and program code:
Each analysis level is specified in a well-defined
language of regular expressions.

Transducers for each layer can be stated independently
of each other.

Regular expressions can be compiled automatically into
(composed) finite state transducers.

Intro to CL — WS 2012/13 — p.17

	Regular Relations
	Finite-State Transducer
	Constructing Regular Relations
	Constructing Regular Relations
	Properties of Regular Relations
	Properties of Transducers
	Replacement Operators
	Non-determinism of {em replace} (1)
	Non-determinism of {em replace} (2)
	Longest match, left-to-right replace
	A Grammar for Date Expressions
	Marking Date Expressions
	Overgeneration Problem
	Tokenizing Date Expressions
	Incremental Tokenization
	Advantages of Incremental Tokenization

