Introduction to Computational Linguistics

Frank Richter

fr@sfs.uni-tuebingen.de.

Seminar für Sprachwissenschaft Eberhard Karls Universität Tübingen Germany

What is in a State

Definition 4

Given a DFA M = $(\Sigma, Q, i, F, \delta)$,

a state of M is triple (x, q, y)

where $q \in Q$ and $x, y \in \Sigma^*$

The directly derives relation

Definition 5 (directly derives)

Given a DFA $(\Sigma, Q, i, F, \delta)$,

a state (x, q, y) directly derives state (x', q', y'):

$$(x,q,y) \vdash (x',q',y')$$
 iff

- 1. there is $\sigma \in \Sigma$ such that $y = \sigma y'$ and $x' = x\sigma$ (i.e. the reading head moves right one symbol σ)
- **2.** $\delta(q,\sigma)=q'$

The derives relation

Definition 6 (derives)

Given a DFA $(\Sigma, Q, i, F, \delta)$,

a state A derives state B:

$$(x,q,y) \vdash^* (x',q',y')$$
 iff

there is a sequence $S_0 \vdash S_1 \vdash \cdots \vdash S_k$

such that $A = S_{\theta}$ and $B = S_k$

Acceptance

Definition 7 (Acceptance)

Given a DFA $M=(\Sigma,Q,i,F,\delta)$ and a string $x\in\Sigma^*$, M accepts x iff

there is a $q \in F$ such that $(0, i, x) \vdash *(x, q, 0)$.

Language accepted by M

Definition 8 (Language accepted by M)

Given a DFA $M=(\Sigma,Q,i,F,\delta)$, the language L(M) accepted by M is the set of all strings accepted by M.

Example of String Acceptance

Let
$$M = (\{a,b\}, \{q_0,q_1,q_2\}, q_0, \{q_1\}, \{((q_0,a),q_1), ((q_0,b),q_1), ((q_1,a),q_2), ((q_1,b),q_2), ((q_2,a),q_2), ((q_2,b),q_2), \}).$$

Example of String Acceptance

Let
$$M = (\{a,b\}, \{q_0,q_1,q_2\}, q_0, \{q_1\}, \{((q_0,a),q_1), ((q_0,b),q_1), ((q_1,a),q_2), ((q_1,b),q_2), ((q_2,a),q_2), ((q_2,b),q_2), \}).$$

M accepts a and b and nothing else, i.e. $L(M) = \{a, b\}$, since

$$(0, q_0, a) \vdash (a, q_1, 0)$$
 and $(0, q_0, b) \vdash (b, q_1, 0)$

are the only derivations from a start state to a final state for ${\cal M}$.

More Properties of FSAs

Given the FSAs A, A_1 , and A_2 and the string w, the following properties are decidable:

Membership:
$$w \stackrel{?}{\in} L(A)$$

Emptiness:
$$L(A) \stackrel{?}{=} \varnothing$$

Totality:
$$L(A) \stackrel{?}{=} \Sigma^*$$

Subset:
$$L(A_1) \stackrel{?}{\subseteq} L(A_2)$$

Equality:
$$L(A_1) \stackrel{?}{=} L(A_2)$$

Regular Expressions and Automata (1)

Regular Expression: Ø

Automaton: q_0

Regular Expression: O

Automaton: $\left(\begin{array}{c} q_0 \end{array}\right)$

Regular Expression: a

Automaton: $q_0 \longrightarrow (q_1)$

Regular Expressions and Automata (2)

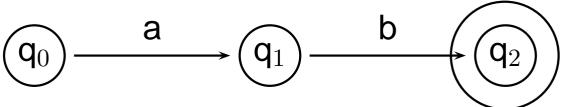
Regular Expression: [a | b]

Automaton:

 q_0 $\xrightarrow{a,b}$ q_1

Regular Expression: [a b]

Automaton:



The Finite State Utilities

The FSA Utilities toolbox:

- a collection of utilities to manipulate regular expressions, finite-state automata (and finite-state transducers)
- implemented in Prolog by Gertjan van Noord, University of Groningen
- http://odur.let.rug.nl/~vannoord/Fsa/
- command in the SfS network (on 'urobe'):
 fsa -tk

Reg. Expressions: Syntactic Extensions

```
$A contains  \$A =_{def} [?* A ?*]  for example: \$[a \mid b] denotes all strings that contain at least one a or b somewhere. A & B Intersection A - B Relative complement (minus)  \sim A  Complement (negation)
```

The Bigger Picture

Definition 9 (Regular Languages)

A language L is said to be *regular or recognizable* if the set of strings s such that $s \in L$ are accepted by a DFA.

Theorem (Kleene, 1956)

The family of regular languages over Σ^* is equal to the smallest family of languages over Σ^* that contains the empty set, the singleton sets, and that is closed under Kleene star, concatenation, and union.

 \Rightarrow The family of regular languages over Σ^* is equal to the family of languages denoted by the set of regular expressions.