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Constraint-based Computational Semantics

Syntax and Semantics of Higher Order

Intensional Logic

Types As in our previous higher-order language, all expressions of our higher-
order intensional language, LType, will be typed.

Definition 1 Types
Type is the smallest set such that

i.) e ∈ Type,

ii.) t ∈ Type,

iii.) for each τ1 ∈ Type, for each τ2 ∈ Type, 〈τ1, τ2〉 ∈ Type,

iv.) for each τ ∈ Type, 〈s, τ〉 ∈ Type.

Syntax The basic expressions of LType consist only of variables and constants.
Again there is no distinction between terms and formulae.

Definition 2 Basic Expressions

i.) For each τ ∈ Type, Varτ is the smallest set such that for each n ∈ IN0,

vn,τ ∈ Varτ .

ii.) For each τ ∈ Type, Constτ is the smallest set such that for each n ∈ IN0,

cn,τ ∈ Const.

We write Var for the set of all variables,
⋃

τ∈Type

Varτ , and Const for the set of all

constants,
⋃

τ∈Type

Constτ .

The set of basic expressions of our language is the union of the set of variables
and the set of constants.

Definition 3 Meaningful Expressions
The meaningful expressions of LType are the smallest familiy (MEτ)τ∈Type such
that

i.) for each τ ∈ Type, for each n ∈ IN0, for each variable vn,τ ∈ Varτ ,

vn,τ ∈ MEτ ;

ii.) for each τ ∈ Type, for each n ∈ IN0, for each constant cn,τ ∈ Constτ ,

cn,τ ∈ MEτ ;
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iii.) for each τ ∈ Type, for each φτ ∈ MEτ , for each ψτ ∈ MEτ ,

(φτ ≡ ψτ )t ∈ MEt;

iv.) for each φ〈τ2,τ1〉 ∈ ME〈τ2,τ1〉, for each ψτ2 ∈ MEτ2 ,
(

φ〈τ2,τ1〉 (ψτ2)
)

τ1
∈ MEτ1 ;

v.) for each φt ∈ MEt,

(¬φt)t ∈ MEt;

vi.) for each φt ∈ MEt, for each ψt ∈ MEt,

(φt ∧ ψt)t ∈ MEt;

vii.) for each φt ∈ MEt, for each ψt ∈ MEt,

(φt ∨ ψt)t ∈ MEt;

viii.) for each φt ∈ MEt, for each ψt ∈ MEt,

(φt → ψt)t ∈ MEt;

ix.) for each φt ∈ MEt, for each ψt ∈ MEt,

(φt ↔ ψt)t ∈ MEt;

x.) for each τ1 ∈ Type, for each τ2 ∈ Type, for each n ∈ IN0, for each vn,τ2 ∈
Var, for each φτ1 ∈ MEτ1 ,

(λvn,τ2 .φτ1)〈τ2,τ1〉 ∈ ME〈τ2,τ1〉;

xi.) for each φt ∈ MEt,

�φt ∈ MEt;

xii.) for each φt ∈ MEt,

⋄φt ∈ MEt;

xiii.) for each τ ∈ Type, for each φτ ∈ MEτ ,

ˆφτ ∈ ME〈s,τ〉;

xiv.) for each τ ∈ Type, for each φ〈s,τ〉 ∈ ME〈s,τ〉,

ˇφ〈s,τ〉 ∈ MEτ ;

xv.) for each τ ∈ Type, for each n ∈ IN0, for each vn,τ ∈ Var, for each φt ∈
MEt,

(∀vn,τ φt)t ∈ MEt;

xvi.) for each τ ∈ Type, for each n ∈ IN0, for each vn,τ ∈ Var, for each φt ∈
MEt,

(∃vn,τ φt)t ∈ MEt.
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Semantics D is a set of individuals, and W is a set of possible worlds. The
interpretation domain with respect to the set of individuals D and the set of
possible worlds W is then defined as De,D,W = D, Dt,D,W = {0, 1}, for each

τ1 ∈ Type, for each τ2 ∈ Type, D〈τ1,τ2〉 = Dτ2,D,W
Dτ1,D,W (the set of all functions

from Dτ1,D,W to Dτ2,D,W), and for each τ ∈ Type, D〈s,τ〉 = Dτ,D,W
W (the set of

functions from worlds to objects in the domain Dτ,D,W).
Let I be a function which assigns to each non-logical constant of type τ , cn,τ in
LType, a function which gives, for each world, the meaning of that constant in

that world. This means that I(cn,τ ) ∈ Dτ,D,W
W.

Let M = 〈D,W, I〉. We will call each M a model.

Let g be a function in
⋃

τ∈Type

(

Dτ

Varτ
)

which assigns an object (of the appro-

priate type) in the domain
⋃

τ∈Type

Dτ to each variable in Var. We call each g an

assignment function.
Assume that v is a variable of type τ and d is an element of Dτ . We will use the

notation g
d
v for the assignment function g′ which differs from the assignment

function g in the following way:
For each τ ∈ Type, for each v ∈ Varτ , for each x ∈ Varτ , for each d ∈ Dτ ,

g
d
v(x) =

{

d if x = v, and
g(x) otherwise.

Definition 4 Extension (Reference) of Meaningful Expressions in Worlds
given M and g

Let M = 〈D,W, I〉 be a model and g an assignment function.

i.) For each τ ∈ Type, for each n ∈ IN0, for each variable vn,τ ∈ Varτ , for
each w ∈ W,

[[vn,τ ]]
M,w,g

= g (vn,τ ).

ii.) For each τ ∈ Type, for each n ∈ IN0, for each constant cn,τ ∈ Constτ , for
each w ∈ W,

[[cn,τ ]]
M,w,g

= I (cn,τ ) (w).

iii.) For each τ ∈ Type, for each φτ ∈ MEτ , for each ψτ ∈ MEτ , for each
w ∈ W,

[[ (φτ ≡ ψτ )t ]]
M,w,g

= 1 iff [[φτ ]]
M,w,g

= [[ψτ ]]
M,w,g

.

iv.) For each φ〈τ2,τ1〉 ∈ ME〈τ2,τ1〉, for each ψτ2 ∈ MEτ2 , for each w ∈ W,

[[
(

φ〈τ2,τ1〉 (ψτ2)
)

τ1
]]
M,w,g

= [[φ〈τ2,τ1〉]]
M,w,g

(

[[ψτ2 ]]
M,w,g

)

.

v.) For each φt ∈ MEt, for each w ∈ W,

[[ (¬φt)t ]]
M,w,g

= 1 iff [[ (φt)t ]]
M,w,g

= 0

vi.) For each φt ∈ MEt, for each ψt ∈ MEt, for each w ∈ W,

[[ (φt ∧ ψt)t ]]
M,w,g

= 1 iff [[φt]]
M,w,g

= 1 and [[ψt]]
M,w,g

= 1.

vii.) For each φt ∈ MEt, for each ψt ∈ MEt, for each w ∈ W,

[[ (φt ∨ ψt)t ]]
M,w,g

= 1 iff [[φt]]
M,w,g

= 1 or [[ψt]]
M,w,g

= 1.
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viii.) For each φt ∈ MEt, for each ψt ∈ MEt, for each w ∈ W,

[[ (φt → ψt)t ]]
M,w,g

= 1 iff [[φt]]
M,w,g

= 0 or [[ψt]]
M,w,g

= 1.

ix.) For each φt ∈ MEt, for each ψt ∈ MEt, for each w ∈ W,

[[ (φt ↔ ψt)t ]]
M,w,g

= 1 iff [[φt]]
M,w,g

= [[ψt]]
M,w,g

.

x.) For each τ1 ∈ Type, for each τ2 ∈ Type, for each n ∈ IN0, for each
vn,τ2 ∈ Var, for each φτ1 ∈ MEτ1 , for each w ∈ W,

[[ (λvn,τ2 .φτ1)〈τ2,τ1〉 ]]
M,w,g

is that function h from Dτ2 to Dτ1 such that for

each o ∈ Dτ2 , h(o) = [[φτ1 ]]
M,w,g

o

vn,τ2 .

xi.) For each φt ∈ MEt, for each w ∈ W,

[[ � φt]]
M,w,g

= 1 iff for all w′ ∈ W, [[φt]]
M,w′,g

= 1.

xii.) For each φt ∈ MEt, for each w ∈ W,

[[ ⋄ φt]]
M,w,g

= 1 iff for at least one w′ ∈ W, [[φt]]
M,w′,g

= 1.

xiii.) For each τ ∈ Type, for each φτ ∈ MEτ , for each w ∈ W,

[[̂ φτ ]]
M,w,g is that function h ∈ Dτ,D,W

W such that for all w′ ∈ W, h(w′) =

[[φτ ]]
M,w′,g.

xiv.) For each τ ∈ Type, for each φ〈s,τ〉 ∈ MEτ , for each w ∈ W,

[[̌ φ〈s,τ〉]]
M,w,g

= [[φ〈s,τ〉]]
M,w,g

(w).

xv.) For each τ ∈ Type, for each n ∈ IN0, for each vn,τ ∈ Var, for each
φt ∈ MEt, for each w ∈ W,

[[ (∀vn,τ φt)t ]]
M,w,g = 1 iff for each o ∈ Dτ , [[φt]]

M,w,g
o

vn,τ = 1.

xvi.) For each τ ∈ Type, for each n ∈ IN0, for each vn,τ ∈ Var, for each
φt ∈ MEt, for each w ∈ W,

[[ (∃vn,τ φt)t ]]
M,w,g = 1 iff for at least one o ∈ Dτ , [[φt]]

M,w,g
o

vn,τ = 1.
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