WS 13/14 20. November 2013

Frank Richter

Constraint-based Computational Semantics

Syntax and Semantics of a Higher Order Logic

Types All expressions of our higher-order language, Ltype, Will be typed. To
keep the language simple, we will only use two basic types, e (for the basic
entities in the domain) and ¢ (for the truth values 0 and 1).

Definition 1 Types
Type is the smallest set such that

i.) e € Type,
i.) t € Type,
iii.) for each 11 € Type, for each T € Type, (11, 72) € Type.

Syntax The basic expressions of L1ype consist only of variables and constants.
In contrast to first order logic there is no distinction between terms and formulae.

Definition 2 Basic Expressions

i.) For each T € Type, Var, is the smallest set such that for each n € Ny,

Up,r € Var,.

ii.) For each T € Type, Const, is the smallest set such that for each n € Ny,

cn,r € Const.

We write Var for the set of all variables, |J Var,, and Const for the set of all
TEType
constants, |J Const,.
TEType
The set of basic expressions of our language is the union of the set of variables
and the set of constants.

Definition 3 Meaningful Expressions
The meaningful expressions of Ltype are the smallest familiy (ME;)
that

TEType such

i.) for each T € Type, for each n € Ny, for each variable v, . € Var,,
Un, 1 € MET;

it.) for each T € Type, for each n € Ny, for each constant ¢, » € Const,,

Cn,T € MET 7‘

iii.) for each T € Type, for each ¢. € ME., for each ¢, € ME,,
(¢r =17), € MEy;
wv.) for each ¢(r, r,y € ME(, 7.y, for each v, € ME,,,
(A(rair) (¥r)),, € ME,;
v.) for each 7 € Type, for each T € Type, for each n € Ny, for each vy, 7, €
Var, for each ¢, € ME,,,
()\Un,rg-¢n)<727ﬁ> € ME(,).

Semantics D, is a set of entities, and D; = {0,1}. For each 7, € Type, for

each T2 € Type, D¢, 7,y = Do, D, (the set of all functions from D, to D,,).
Let | be a function assigning a denotation to each non-logical constant, ¢, -, of
Ltype from the set D.

Let M = (De, I). We will call each M a model.

Var
Let g be a function in | (DT T) which assigns an object (of the appro-
TEType
priate type) in the domain |J D, to each variable in Var. We call each g an
TEType
assignment function.

Assume that v is a variable of type 7 and d is an element of D,. We will use the

d
notation gv for the assignment function ¢’ which differs from the assignment
function g in the following way:
For each 7 € Type, for each v € Var,, for each z € Var,, for each d € D,

g()_ d if z = v, and
gur) = g(x) otherwise.

Definition 4 Denotation
Let M be a model and g an assignment function.

i.) For each T € Type, for each n € Ny, for each variable v, » € Var,,

[, 1"7 = g (vn.r).

ii.) For each T € Type, for each n € Ny, for each constant ¢, . € Const,,
[en 1™ =1(enr)-

ii.) For each T € Type, for each ¢ € ME;, for each 1, € ME,,
[(6r =), 1" =14 [61™ = [

wv.) For each ¢(r, r,y € ME(, -, for each ., € ME,,,
[() (0r2)) 7 = [0 1™ (151"

v.) For each 7 € Type, for each o € Type, for each n € INy, for each
Un,r, € Var, for each ¢, € ME,,

[[()\'Un,Tz-¢Tl)<T2 "]]M,g is that function h from D., to D, such that for
each o € D,,, h(o) = [[(bﬁ]]'\/',gvn@.

Standard results tell us that the usual logical connectives and quantifiers can
be defined using these five clauses.

