
WS 13/14 20. November 2013

Frank Richter

Constraint-based Computational Semantics

Syntax and Semantics of a Higher Order Logic

Types All expressions of our higher-order language, LType, will be typed. To
keep the language simple, we will only use two basic types, e (for the basic
entities in the domain) and t (for the truth values 0 and 1).

Definition 1 Types

Type is the smallest set such that

i.) e ∈ Type,

ii.) t ∈ Type,

iii.) for each τ1 ∈ Type, for each τ2 ∈ Type, 〈τ1, τ2〉 ∈ Type.

Syntax The basic expressions of LType consist only of variables and constants.
In contrast to first order logic there is no distinction between terms and formulae.

Definition 2 Basic Expressions

i.) For each τ ∈ Type, Varτ is the smallest set such that for each n ∈ IN0,

vn,τ ∈ Varτ .

ii.) For each τ ∈ Type, Constτ is the smallest set such that for each n ∈ IN0,

cn,τ ∈ Const.

We write Var for the set of all variables,
⋃

τ∈Type

Varτ , and Const for the set of all

constants,
⋃

τ∈Type

Constτ .

The set of basic expressions of our language is the union of the set of variables
and the set of constants.

Definition 3 Meaningful Expressions

The meaningful expressions of LType are the smallest familiy (MEτ)τ∈Type such
that

i.) for each τ ∈ Type, for each n ∈ IN0, for each variable vn,τ ∈ Varτ ,

vn,τ ∈ MEτ ;

ii.) for each τ ∈ Type, for each n ∈ IN0, for each constant cn,τ ∈ Constτ ,

cn,τ ∈ MEτ ;

1

iii.) for each τ ∈ Type, for each φτ ∈ MEτ , for each ψτ ∈ MEτ ,

(φτ ≡ ψτ)t ∈ MEt;

iv.) for each φ〈τ2,τ1〉 ∈ ME〈τ2,τ1〉, for each ψτ2 ∈ MEτ2 ,
(

φ〈τ2,τ1〉 (ψτ2)
)

τ1
∈ MEτ1 ;

v.) for each τ1 ∈ Type, for each τ2 ∈ Type, for each n ∈ IN0, for each vn,τ2 ∈
Var, for each φτ1 ∈ MEτ1 ,

(λvn,τ2 .φτ1)〈τ2,τ1〉 ∈ ME〈τ2,τ1〉.

Semantics De is a set of entities, and Dt = {0, 1}. For each τ1 ∈ Type, for

each τ2 ∈ Type, D〈τ1,τ2〉 = Dτ2
Dτ1 (the set of all functions from Dτ1 to Dτ2).

Let I be a function assigning a denotation to each non-logical constant, cn,τ , of
LType from the set Dτ .
Let M = 〈De, I〉. We will call each M a model.

Let g be a function in
⋃

τ∈Type

(

Dτ

Varτ
)

which assigns an object (of the appro-

priate type) in the domain
⋃

τ∈Type

Dτ to each variable in Var. We call each g an

assignment function.
Assume that v is a variable of type τ and d is an element of Dτ . We will use the

notation g
d
v for the assignment function g′ which differs from the assignment

function g in the following way:
For each τ ∈ Type, for each v ∈ Varτ , for each x ∈ Varτ , for each d ∈ Dτ ,

g
d
v(x) =

{

d if x = v, and
g(x) otherwise.

Definition 4 Denotation

Let M be a model and g an assignment function.

i.) For each τ ∈ Type, for each n ∈ IN0, for each variable vn,τ ∈ Varτ ,

[[vn,τ]]
M,g

= g (vn,τ).

ii.) For each τ ∈ Type, for each n ∈ IN0, for each constant cn,τ ∈ Constτ ,

[[cn,τ]]
M,g = I (cn,τ).

iii.) For each τ ∈ Type, for each φτ ∈ MEτ , for each ψτ ∈ MEτ ,

[[(φτ ≡ ψτ)t]]
M,g

= 1 iff [[φτ]]
M,g

= [[ψτ]]
M,g

.

iv.) For each φ〈τ2,τ1〉 ∈ ME〈τ2,τ1〉, for each ψτ2 ∈ MEτ2 ,

[[
(

φ〈τ2,τ1〉 (ψτ2)
)

τ1
]]
M,g

= [[φ〈τ2,τ1〉]]
M,g

(

[[ψτ2]]
M,g

)

.

v.) For each τ1 ∈ Type, for each τ2 ∈ Type, for each n ∈ IN0, for each
vn,τ2 ∈ Var, for each φτ1 ∈ MEτ1 ,

[[(λvn,τ2 .φτ1)〈τ2,τ1〉]]
M,g is that function h from Dτ2 to Dτ1 such that for

each o ∈ Dτ2 , h(o) = [[φτ1]]
M,g

o

vn,τ2 .

Standard results tell us that the usual logical connectives and quantifiers can
be defined using these five clauses.

2

