1 Introduction

2 Corpora
 - Properties
 - Creation
 - A List of Available Corpora
 - Corpus Linguistics—Cases of Application
1 Introduction

2 Corpora
 - Properties
 - Creation
 - A List of Available Corpora
 - Corpus Linguistics—Cases of Application
What is a Corpus?

An informal definition:

In linguistics, a corpus (plural: corpora) is a large collection of texts.

- Usually, a corpus consists of smaller units which are called documents.
Corpora We Have Seen So Far

1. **Google Books Corpus**
 - http://googlebooks.byu.edu/x.asp
 - e.g., 1.3 million books (155 billion words) for American English
 - “How many books are there in the world?”
 - Software to search the books: Google NGram Viewer
 (https://books.google.com/ngrams)

2. **“The Web”**

¹ http://www.fastcompany.com/1678254/how-many-books-are-there-world
What is Corpus Linguistics?

- The objective is to **use corpora** to
 - investigate (compare) interesting linguistic phenomena
 - to find useful patterns in the data

- Usually, you differentiate between two approaches (cf. previous lecture slides)
 - Hypothesis-**testing** methods.
 - Hypothesis-**generating** methods.

- **Software** is used by linguists to **analyze corpora**.
 - The primary method applied to texts is **SEARCH**.
 - As a result, we obtain instances of the desired phenomena + **frequencies**.
Google offers specialized (exploratory) search as a corpus linguistic application for digitized books:

*Google Ngram Viewer*²

- We inspected a particular linguistic phenomenon: *thrive* vs. *thrive*
Introduction

Corpora

Niko Schenk

Corpus Linguistics
1 Introduction

2 Corpora

- Properties
- Creation
- A List of Available Corpora
- Corpus Linguistics—Cases of Application
Corpus Properties

Requirement:

- The texts should be **electronically stored** (as text(!) files).
 - → efficiently **processable by a computer** (search).
- 1. fast
- 2. space-efficient
- 3. accurate
- 4. deterministic
Corpus Properties

Requirement:

- The collection should be **large**. (What counts as “large”?)
 - → **quantitative**, instead of theoretical analysis of language.
 (you can count the phenomena that you see in the corpus)
 - We want to verify/falsify linguistic theories based on large amounts of linguistic data.
Corpus Properties

Requirement:

- The texts should contain **authentic + representative language examples**.
 - → basis for **linguistic analysis**.
 (researchers do not have to make up their own artificial examples)
Corpus Properties cont’d

- **Language**
 - mono-lingual, bilingual, multi-lingual

- **Contents, type**
 - literature, newspaper, contemporary data, spoken, written, learner data, etc.

- **Time period of the data**
 - Historical novels vs. WhatsApp chat history
 - Note that the time period of a corpus is different from the creation time of a corpus. e.g., a 17th century novel digitized by state-of-the art corpus tools.

- **Licenses, member fee**

- **Availability** (online vs. local)
Corpus Properties cont’d

- ...
- **Meta data** (title, document description, linguistic annotations such as verbs, nouns, etc.)
- **Corpus tools** (yes, no), data format
 - searchable for words, synonyms, collocations, etc.
 - export format / compatibility with other tools
- **Balanced vs. not balanced**
 - i.e. an equal amount of all different phenomena researchers are interested in.
 - (It does not make sense to collect spoken language data only from children if one is interested in an overall picture including young and old speakers.)
- **Automatically vs. manually generated**
 - automatically vs. manually post-processed
 - book scanner/character recognition involved?
1 Introduction

2 Corpora
 - Properties
 - Creation
 - A List of Available Corpora
 - Corpus Linguistics—Cases of Application
Corpus data can be collected from various sources

Figure: Books and literature...
Corpus data can be collected from various sources

In a perfect world, our school library would be able to offer everything that parents and students desire. For well budgeted schools throughout the school system, the administration would be sure they're making the best choices by looking at the needs and preferences of parents, staff, and students. Magazines like "Teen People," and "V " should not be paid for instead of educational books and publications.

The purpose of school, and school libraries, is learning. Kipling's "Tommies" initiative is based on the idea that learning should be learned through the lens of learning materials, and I believe some kids may find the more important to students besides the other sides. If the school library is to remain relevant teaching and learning goals throughout the achievement of those children, and we thrive, then we are there. The school's future will depend on the students. The most important purpose of offering students...
Corpus data can be collected from various sources.
Corpus data can be collected from various sources

Songwriters: BLAIR, PAUL EDWARD / GERMANOTTA, STEFANI J. / BRESSO, MARTIN / MONSON, NICK / ZISIS, DINO

I stand here waiting for you to bang the gong
To crash the critic saying, "is it right or is it wrong?"
If only fame had an IV, baby could I bear
Being away from you; I found the vein, put it in here

I live for the applause, applause, applause
I live for the applause-plause, live for the applause-plause
Live for the way that you cheer and scream for me
The applause, applause, applause
Run-Length Compressed Indexes Are Superior for Highly Repetitive Sequence Collections

Jouni Sirén1,*, Niko Välिमäki1,***, Veli Mäkinen1,***, and Gonzalo Navarro2,***

1 Dept. of Computer Science, Univ. of Helsinki, Finland.
 {jltsiren,navilak,makinex}@cs.helsinki.fi
2 Dept. of Computer Science, Univ. of Chile. gnnavarro@dcc.uchile.cl

Abstract. A repetitive sequence collection is one where portions of a base sequence of length \(n \) are repeated many times with small variations, forming a collection of total length \(N \). Examples of such collections are version control data and genome sequences of individuals, where the differences can be expressed by lists of basic edit operations. This paper is devoted to studying ways to store massive sets of highly repetitive sequence collections in space-efficient manner so that retrieval of the content as well as queries on the content of the sequences can be provided time-efficiently. We show that the state-of-the-art entropy-bound full-text self-indexes do not yet provide satisfactory space bounds for this specific task. We engineer some new structures that use run-length encoding and give empirical evidence that these structures are superior to the current structures.

1 Introduction

Self-indexing \([9, 5, 24, 20]\) is a new algorithmic approach to storing and retrieving sequential data. The idea is to represent the text (a.k.a. sequence or string)
Corpus data can be collected from various sources

Copy of Log-Book kept by Lewis Whiting, Hospital Steward aboard the "Virginian" in the Civil War.

May 30, 1863. Started from Abington for New York, where I arrived on the morning of Sunday, the 31st.

June 1st. Commenced service for the U.S. by reporting on board the Steamer Virginia, which went into commission June 15th. On Sunday, the 15th she received orders to proceed to sea forthwith to cruise for the Privateer Bark 'Tacony.' We cast off from the pier and Ram Roanoke at nine in the evening, but were delayed by the propeller getting foul with the stern house until three o'clock Monday morning when we proceeded to sea. Proceeded in a South-easterly direction reaching the 68th Meridian at Lat 30° N, from thence S.W. to Lat 27°, Lon. 76° W. The Bahamas bearing W and 8 20 miles. From this we proceeded for Port Royal, S.C., where we arrived Sunday June 28th. On Monday the 30th, went on shore to Hilton Head where we took the Steamer 'Gen. Hunter' for Beaufort and returned at 4 P.M. Left Port Royal for Fortress Monroe July 1st and passed Charleston about 4 P.M. the same day.

July 2. Off Wilmington—hailed by the U.S. Steamer Florida. July 4th—Arrived at Fortress
Corpus data can be collected from various sources
Corpus data can be collected from various sources
Corpus data can be collected from various sources.
Corpus data can be collected from various sources.

Figure: “Beschreibung und Geschichte der Universität und Stadt Tübingen.” as a Google Books document
Corpus data can be collected from various sources:

E.g., books, papers, letters, news feeds from the internet, spoken language, dialogues, reports, twitter data, Facebook posts, customer reviews, chat data, historical texts, homework exercises, student exams, academic literature, song lyrics, bible verses, biological data, etc.

Remember, that they need to be electronically available. Why? → Only digitized texts are efficiently searchable!
→ All of the previously introduced “text types” are interesting language data.
Goal: Generate computer-processable (electronically-stored) text files / a corpus.
Question: How would you proceed?
How are Corpora Created?—Conversion Examples

1. **electronically available**
 - text file → done
 - e.g., PDF/image → OCR → text file
 - e.g., audio file → speech-to-text → text file

2. **not electronically available**
 - manually written/printed texts
 - e.g., student essays on paper → manually typewrite / handwriting recognition → text file
 - e.g., historical books → digitize (cf. books scanner\(^5 \text{ }^6\)) → image → OCR → text file
 - spoken language
 - e.g., radio interview → manually typewrite → text file
 - e.g., phone conversation → speech-to-text → text file

\(^3\) Optical Character Recognition
\(^4\) cf. *Siri*
\(^5\) Google Books Scanner, 03:35min
\(^6\) Another scanner
Imagine you had to build up your own corpus. How would you proceed?

Some guidelines:

- Corpora should be built using (semi-)automated processes.
 - E.g., copying news feeds **manually** from the Internet is not elegant. Use web crawlers instead.
 - Cf. Twitter data corpus generation\(^7\)

- Corpora should be balanced.

- Corpora should contain real world examples.

- Corpora should be very large.

- Corpora should have a proper format. (advanced)

\(^7\)http://tools.mi.ur.de/tworpus/
1 Introduction

2 Corpora
 - Properties
 - Creation
 - A List of Available Corpora
 - Corpus Linguistics—Cases of Application
A List of Available Corpora

<table>
<thead>
<tr>
<th>Corpus</th>
<th>Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Google's N-Gram Corpus</td>
<td>English 1.024 trillion - web data</td>
</tr>
<tr>
<td>Google Books Corpus</td>
<td>AE/BE 155/34 billion 1500s-2000s historical, contemporary books</td>
</tr>
<tr>
<td>Global Web-Based English (GloWbE)</td>
<td>20 countries 1.9 billion 2012-2013 web pages</td>
</tr>
<tr>
<td>Corpus of Contemporary AE (COCA)</td>
<td>AE 450 million 1990-2012 spoken, fiction, magazines, news, academic texts</td>
</tr>
<tr>
<td>British National Corpus (BYU-BNC)</td>
<td>BE 100 million 1980s-1993 representative sample of written/spoken BE</td>
</tr>
<tr>
<td>Corpus of American Soap Operas</td>
<td>AE 100 million 2001-2012 film dialogues</td>
</tr>
<tr>
<td>Strathy Corpus</td>
<td>Canadian English 50 million 1970s-2000 spoken, fiction, magazines, newspapers, academic texts</td>
</tr>
<tr>
<td>My S-21 Facebook Corpus</td>
<td>German 50 million 2010-2013 UGC, web data</td>
</tr>
<tr>
<td>Corpus do Português</td>
<td>Portuguese 45 million 1300s-1900s newspaper academic texts</td>
</tr>
<tr>
<td>Canadian Hansard Corpus</td>
<td>English, French 26 million 1986-1987 parallel corpus, parliament debates</td>
</tr>
<tr>
<td>International Corpus of Learner English</td>
<td>English 3.7 million 2002 essays written by learners of English</td>
</tr>
</tbody>
</table>

8 (Web 1T 5-gram Version 1, only n-grams available, not the corpus itself)
More Corpora...

There exist specialized corpora for almost all commonly known languages...

- Bergen Corpus of London Teenager Language
- KidPub, (“Collection of stories written by kids from all over the planet”)
- Movie Review Corpus
- Facebook Status Messages Corpus
- Enron Email Corpus
- Japanese Speech Corpora of Major City Dialects
- The Complete Corpus of Old English
- The Blog Authorship Corpus
- CoRD, Corpus of Early English Medical Writing (CEEM)
- The York-Toronto-Helsinki Parsed Corpus of Old English Prose (YCOE)
- ...
1 Introduction

2 Corpora
 - Properties
 - Creation
 - A List of Available Corpora
 - Corpus Linguistics—Cases of Application
Typical Applications of Corpus Linguistics

Having this large collection of digitized texts, books, etc...

What can you do with it?
Typical research questions:

- Is passive tense used more often in spoken language or in academic writing?
- What properties have adjectives which co-occur with “rather” compared to those co-occurring with “fairly”?
- What are the most frequent word categories in the German Vorfeld? Is there a difference to English?
- Is the German dative -e still present in 2013? (Wie es im Buche steht.)
- Do emails contain more spelling mistakes than newspaper texts?
- Is “ain’t” more frequently used in BE or in AE?
- Topicalized vs. non-topicalized constructions (All these foreign cars I drive…)
- Comparing syntactic constructions in song texts among song writers.
Diachronic corpus data
- See how frequency of word usage changes over time.\(^9\)
- Check which syntactic constructions or word combinations become more prominent/less frequent.\(^10\)

Lexicography/language use
- Find new words which appeared recently.
- Find words and phrases which co-occur. (idiomatic expressions)
- Compare slang to formal language, etc.

Analyze word meaning
- Lookup a word and its contexts—depending on the context, a word can have different meanings.

\(^9\)https://books.google.com/ngrams/
\(^10\)http://members.unine.ch/martin.hilpert/motion.html
As a learner:

- Foreign language learning technique (Google!)
- Check which constructions are correct and which are incorrect

 - e.g., *ten items or less vs. ten items or fewer

 - e.g., make a speech vs. give a speech

 - e.g., *more strict vs. stricter
- Get to know different meanings of same word
- Get to know correct word position within the sentence ("yet")
...with a Focus on Language Learning

As a teacher:

- Is a certain construction “grammatical”? (avoid answers like: “it just sounds better...”)
- Propose appropriate synonyms for a particular word
- Make students learn most frequent constructions first (broader coverage)
- What are the most typical errors by learners of German?
As a researcher:

- Do English students (learning German) have the same problems with to-infinitives compared to native speakers of Spanish?
- What are the most prominent/problematic grammatical constructions for language learners in their 2nd year?
- Sociolinguistics, dialectology—e.g., comparison of European and Brazilian Portuguese
Authorship detection
- Which linguistic properties are relevant to identify the author of a particular text fragment? Is the average sentence length indicative of a particular author? How about the average number of noun phrases? Vocabulary? Function words?

“NSA-related”
- Email corpus: which keywords in a particular email could potentially be relevant/alarming regarding terrorism prevention.
- Email corpus: spam detection/priority inbox

Advertisement
- Which words/phrases of your Facebook status messages are relevant indicators for sending appropriate advertisement to you?
- Given your previous Google search history, what are you likely to type in/search next? (Golf fahren vs. Golf spielen)
Automated statistical methods:
- Find long repetitions (e.g., plagiarism detection\(^{11}\), biological data analysis)
- Keyword extraction, terminology detection
- Automatically find synonyms, antonyms, etc.
- Spell checkers (propose alternative/next words/\texttt{autocomplete}).
- Speech recognition, \textit{Apple’s Siri}
- Machine translation (cf. aligned corpora)
- Dialectometry
- Collocation & collostruction analysis
 - i.e. word–word and word–syntax associations
- Word clustering (Monday, Tuesday, . . . , automatically find semantically related words)
- Ontology creation (e.g., WordNet)

\(^{11}\)Gutenplag forum
Task 1: Assume, you are given a diverse set of language data, e.g.,

- a set of your homework assignments produced on the computer
- a collection of newspaper articles
- a list of student essays from your own class
- a WhatsApp history of conversations with your best friends on your mobile phone
- a political speech recorded from the radio program
- a section of the “Egyptian Book of the Dead” written on papyrus
- a collection of PDF user manuals from the automobile sector

Task: You are supposed to digitize the data. (Only this way, you can search it by means of a computer). For each item on the list, how would you proceed? Also, describe the type of language data, their characteristics and differences in closer detail.
Task 2: Read through the materials on the Google Ngram Viewer page: http://books.google.com/ngrams/info#advanced and use the software (http://books.google.com/ngrams) to come up with two linguistically interesting examples showing differences in the distributions of terms. You should come up with a detailed explanation for the trend you see.

For example, the following illustrates that math and biology have been traditional disciplines whereas computational linguistics, for example, is quite new: http://books.google.com/ngrams/graph?content=Linguistik%2CInformatik%2CBiologie%2CGermanistik%2CComputerlinguistik%2CMathematik&year_start=1800&year_end=2000&corpus=20&smoothing=3&share=

Moreover, interpret these two examples: http://books.google.com/ngrams/graph?content=Marc+Chagall&year_start=1800&year_end=2000&corpus=20&smoothing=3&share=
https://books.google.com/ngrams/graph?content=Eminem&year_start=1800&year_end=2000&corpus=15&smoothing=3&share=&direct_url=t1%3B%2CEminem%3B%2Cc0