Constraint Language for
LRS

Gerald Penn

Goethe-Uni. Oberseminar
23rd January, 2023

Semantic Underspecification in HPSG

e Historically, HPSG’s answer to semantics has been to encode the apparatus of
well-formedness constraints alongside grammar:
« Cooper storage: QSTORE [Pollard & Sag, 1994]
o Massively overgenerated
o Many other theoretical objections [Pollard & Yoo, 1998]
o FSrepresentation amounted to algorithmic storage devices, augmented with
“principles”

o Situation semantics in place of semantic typing, e.g. e -> t.

Semantic Underspecification in HPSG

e Historically, HPSG’s answer to semantics has been to encode the apparatus of

well-formedness constraints alongside grammar:
* Cooper storage: QSTORE [Pollard & Sag, 1994]
* Minimal Recursion Semantics: MRS [Egg, 1998; ERG]

©)
O
©)

O

First to separate underspecificed semantic object (logical term) from syntactic tree

Does not commit to the “real semantics” - more of a front end
Also first to think of this in terms of semantic descriptions subject to a fixed, extra-

grammatical resolution procedure (acyclicity, free variables, etc.)
No true semantic typing.

Semantic Underspecification in HPSG

e Historically, HPSG’s answer to semantics has been to encode the apparatus of

well-formedness constraints alongside grammar:

* Cooper storage: QSTORE [Pollard & Sag, 1994]

* Minimal Recursion Semantics: MRS [Egg, 1998; ERG]

* Underspecified Hole Semantics: Ty2U [Richter & Sailer, 1999]
O First to attempt a “real semantics”
O Butused FSs to explicitly represent dominance [Muskens, 1995]
O Semantic typing (hooray!) - but encoded in feature logic
O Butassumed description level and existence of extra-grammatical resolution.

Semantic Underspecification in HPSG

e Historically, HPSG’s answer to semantics has been to encode the apparatus of

well-formedness constraints alongside grammar:
* Cooper storage: QSTORE [Pollard & Sag, 1994]
* Minimal Recursion Semantics: MRS [Egg, 1998; ERG]
* Underspecified Hole Semantics: Ty2U [Richter & Sailer, 1999]
* Constraint Language for Lambda Structures: CLLS [Egg & Erk, 2001]

©)
©)
©)

©)

Has a “real semantics,” but not your semantics

Traditional A-calculus: beta-reduction instead of underspecification

No universal principles whatsoever - even so-called CLLS for HPSG [Egg &Erk, 2002]
was just phrase-structure rules with FSs

No semantic typing, but somehow seemed to feel guilty about not having it.

Lexical Resource Semantics (LRS): why bother?

* All semanticidiosyncrasies are lexical, as a matter of design
 True semantic typing - no excuses
* Inother respects, a different combination of choices on issues already under

discussion:
O (+CLLS, +Ty2U) real semantics
O (+MRS, +Ty2U) descriptions, which can be underspecific; no beta-reduction; constraint-based
O (+MRS) formerly tried using FSs, but not anymore
O (-MRS) antecedents of constraints also have access to semantics; semantic description language itself
is richer in other respects

« But this particular combination presents both challenges and opportunities:
o Extra-grammatical resolution is a Good Thing: doesn’t clutter up the grammar for linguists;
computational linguists own the resolution procedure
o Lots more potential there than just acyclicity - compatible with performing semantic inference:
o E.g., vx.Jhorse(x) = run(x)], horse(SEABISCUIT) F run(SEABISCUIT)
But even with just the basics, LRS’s use of variables not even known to be PTIME
For the rest of this talk, “Resolution” = tractably eliminating superfluous underspecification
“Real semantics” means that underspecification is a matter of convenience

O OO

Assumptions

We assume that semantic composition is built on a tripartite distinction
among:
O Internal content: nuclear contribution of semantic head

O External content: contribution of semantic head’s maximal syntactic projection
O Semantic contribution: of pieces of Ty2 terms by component signs.

« LRS assumes more than this, and so the language | am describing (CLLRS)
could encode a wider range of theories than LRS.

The CLLRS model

We augment the models that come with standard feature logic:
O @sem: U— P(Ty2)
o {pivot}: U= P(Ty2)
O “root: U= P(Ty2)
O /contributor: 7y2 — P(U)
* No extra expressive power here:
o Logical-form semantics: we model Ty2 terms, not what Ty2 models
o This could still be encoded in typed feature logic (and it is definitely not worth doing so).

The CLLRS model

We augment the standard type system for feature logic with functional types

and polymorphic variables, but only for semantic terms:
O semtype [t,f]: t.

semtype [student,book]: (s->e->t).
semtype read: (s—->e->e->t).
semtype [every,indefinite,exists]: (e->t->t->t).

semtype w: var(s).

semtype g: var (e->t->t->t).

semtype [a,e,Xx,y,2]: var(e).

semtype lambda: (var(A)->B->(A->B)).

* And, oh yeah,immediate/improper subterms.

CLLRS constraint algebra

* literal/type consistency:
literal (N,Litl, Typel) \ literal (N,Lit2,Type2)
<=> Litl=Lit2, Typel=Type2.
* pivot and root are functions:
pivot (X,N) \ pivot (X,M)
root (X,N) \ root (X,M) <=

* immediate subterm irreflexivity:
ist(N,N,) ==> fail.

°* immediate subterm unigueness:
ist (M1,N,A) \ ist(M2,N,A) <=> MI1=M2.

* subterm anti-symmetry:
st (M,N), st(N,M) <=> M=N.

* Note the lack of arity consistency: applications are explicit parts of term trees.

[2] kim walks _ O

File View Tools

Ed {je=] [Z0om: 100 %EF,;\} L;g E 2

This is what grammar gets you:

hd_sub]_ph

= CLLRS =

“ap tap(Lanbda (8], b/ (8] / (8}, o1/ ()
THATE ap(ap(exizt=2/ (8], a/ (8] 1/ (8] 21/ (8}
o/ {8y /8] ar s/ (8], ki {2)1/ 8]

Jeim/ () {aplap(ap (walk/ (

synsem
loc
caf
HEAD
CAT val
SPR
SYNSEM | LOC VAL
SUBJ <=
coMPs
CONT
CONTENT mgsat(content)
FA_STRUC coni

lexicon:kim lexiconwalks

0) This is what we need to resolve:

= CLLES =
“ap (ap(lambda/ {I' b/ {I')/ {I' L2/ II]'
SEMANTICS A apflapi(existsl/ {]I v (:l | {]' CE)/ '::'

kin/ (1) (ap(ap(ap walk/ (8], 5/ (8] /8], as {8/ (8], kim {7}11/ {8)

(Clearly, we also have a GUI problem)

1) Use the type system:

= CLLES =

~ap(ap(lambda/ (8], b/ 8]/ {8]),)/ 8]
A aplaptexists2/ (8], a/(8))/ (8], (aptap (ap (watrs/ (8] 1/ (8] 1/ 8], as (8] / (8] ,xim/ (2})1/ (8])/ {8])
kin/ (7))

SEMANTICS

Out of 153 rejected candidate pairs for combination, 124
pairs (81%) were determined because of the type system;
26 (17%) because of cyclicity.

2) Identify “modules:”

SEMANTICS

A

= CLLES =

~ap(ap(lambda/ (8], b/ 8]/ {8]),)/ 8]

ap(ap (sxists2/ (8], a/ (8])/ (8], (aptap (ap watrs (8], b/ (8} 1/ (8], as {8]))/ {8] kim/ (3])1/ (8] 7 (8],

kin/ (7]

These are characterized by subgraphs connected by
immediate subterm edges and no improper subterm edges.

3) Identify “tops” of modules:

SEMANTICS

A

kin/ (7]

= CLLES =

ARl ap (rambaas (8], v/ (8] / (8],)/ (8)
ap fexistsl/ () ,al (:') '::' ,laplap(ap(walk/ (EI:I T '::' ¥ (:' . al (:')/ (:' o im/ () Y4 ())/ (:I

Tops are the term itself and the RHS of any improper
subterm edge.

4) Identify “bottoms” of modules:

SEMANTICS

A
!

kim/ (1)

ap'i P

1l ambda

= CLLES =

(8] El 8] (8] Jc) .f c.:l

p(apm(.JB(.HH.} {ap(ap (ap[walk] n:l)

(b7 {8 B (&) (8] [imd [} 1/ {8]))/ {8);

Bottoms are located by propagating downward
from every top.

5) Non-determinately pick a top and bottom:

SEMANTICS

A

kin/ (7]

= CLLES =

~apiap(lambda/ I::' T I::')/ (:l .r."f '::'
ap(ap (exists2/ (8], as (8] / (8], taptap (ap warns (8], b/ (8])/ (8], a/ 8]/ (8]

ein/ 1]y 178D/ {8))

5) ...and speculatively combine them:

= CLIES =

SEMANTICS ~ap(ap(Lanbda/ (8) , 1/ (8))/ (8] [E} / (8]
ap (ap (existsl/ (]' L al (:' i (]' cAap(ap (ap(walk/ (IEI} L b/ {]l Y {} ,al (j y/ (j , kim/ (:.:. b (:,)/ ,::,

5) Keep doing this step:

= CLLES =

EMANTIEE b tap Wambdas (8], 5/ (&) / (&), ap (sp(esinesz (8, o/ {8h 1/ (8], tap captapiwais &)/ (&b (8), o (&)1 / (& wime {31/ &b/ (b / {a)

Intuition behind this strategy

 There are fewer modules than there are subterms

With top-bottom combinations, the number of modules strictly decreases

* Improper subterm edges are never added by inference - these are primitive
constraints added directly by grammarians, and so the grammarian has control

* Inthe background, we are still doing type-driven subterm combination, but only
when the result is determinate

 Thereis apossibility of generating many answers through speculation, but we can
count them before displaying them, and they can be undone

* There are nevertheless very simple grammars for which known determinate-only
solving does not yield a completely resolved semantic term - unacceptable

* Inthe meantime, documenting which sorts of speculation prove to be fruitful (and

determinate) is an important source of information for:
* finding new determinate constraint-solving strategies, and
* statistical inference that can guess what will work best (shortest path to resolution).

What should we do now?

+ New chat GP How do | make constraint resolution tractable in Lexical Resource Semantics?

[Efficient Constraint Res £ T

Clear conversations
Dark mode

OpenAl Discord
Updates & FAQ

>

L{Jg out ChatGPT Jan 9 Version. Free Research Preview. Our goal is to make A

systems more natural and safe to interact with. Your feedback will help us improve

What should we do now? ChatGPT knows...

Constraint resolution in Lexical Resource Semantics can be made tractable by
+ New chat

using a combination of techniques, such as:

[0 Efficient Constraint Res £ T 1. Representing constraints in a logical form that allows for efficient
reasoning, such as first-order logic or description logic.

2. Using algorithms for constraint satisfaction and optimization, such as
backtracking or branch-and-bound.

3. Utilizing efficient data structures, such as decision diagrams or constraint
networks, to represent and manipulate the constraints.

4. Applying heuristics and approximations to simplify the constraint
satisfaction problem, such as using constraint relaxation or partial solutions.

5. Using machine learning to learn constraint patterns and make better

decisions on constrains based on the learned patterns.

Clear conversations

Dark mode It's important to note that the best approach will depend on the specific

application and the nature of the constraints.

OpenAl Discord ‘= Regenerate response

Updates & FAQ -3

Log out ChatGPT Jan 9 Version. Free Research Preview. Our goal is to make Al systems more natural and safe to interact with. Your feedback will help us improve

