
Constraint Language for
LRS

Gerald Penn

Goethe-Uni. Oberseminar
23rd January, 2023

Semantic Underspecification in HPSG

● Historically, HPSG’s answer to semantics has been to encode the apparatus of
well-formedness constraints alongside grammar:
• Cooper storage: QSTORE [Pollard & Sag, 1994]

o Massively overgenerated
○ Many other theoretical objections [Pollard & Yoo, 1998]
○ FS representation amounted to algorithmic storage devices, augmented with

“principles”
○ Situation semantics in place of semantic typing, e.g. e -> t.

Semantic Underspecification in HPSG

● Historically, HPSG’s answer to semantics has been to encode the apparatus of
well-formedness constraints alongside grammar:
• Cooper storage: QSTORE [Pollard & Sag, 1994]
• Minimal Recursion Semantics: MRS [Egg, 1998; ERG]

o First to separate underspecificed semantic object (logical term) from syntactic tree
o Does not commit to the “real semantics” – more of a front end
o Also first to think of this in terms of semantic descriptions subject to a fixed, extra-

grammatical resolution procedure (acyclicity, free variables, etc.)
o No true semantic typing.

Semantic Underspecification in HPSG

● Historically, HPSG’s answer to semantics has been to encode the apparatus of
well-formedness constraints alongside grammar:
• Cooper storage: QSTORE [Pollard & Sag, 1994]
• Minimal Recursion Semantics: MRS [Egg, 1998; ERG]
• Underspecified Hole Semantics: Ty2U [Richter & Sailer, 1999]

o First to attempt a “real semantics”
o But used FSs to explicitly represent dominance [Muskens, 1995]
o Semantic typing (hooray!) – but encoded in feature logic
o But assumed description level and existence of extra-grammatical resolution.

Semantic Underspecification in HPSG

● Historically, HPSG’s answer to semantics has been to encode the apparatus of
well-formedness constraints alongside grammar:
• Cooper storage: QSTORE [Pollard & Sag, 1994]
• Minimal Recursion Semantics: MRS [Egg, 1998; ERG]
• Underspecified Hole Semantics: Ty2U [Richter & Sailer, 1999]
• Constraint Language for Lambda Structures: CLLS [Egg & Erk, 2001]

o Has a “real semantics,” but not your semantics
o Traditional λ-calculus: beta-reduction instead of underspecification
o No universal principles whatsoever – even so-called CLLS for HPSG [Egg &Erk, 2002]

was just phrase-structure rules with FSs
o No semantic typing, but somehow seemed to feel guilty about not having it.

Lexical Resource Semantics (LRS): why bother?

• All semantic idiosyncrasies are lexical, as a matter of design
• True semantic typing – no excuses
• In other respects, a different combination of choices on issues already under

discussion:
o (+CLLS, +Ty2U) real semantics
o (+MRS, +Ty2U) descriptions, which can be underspecific; no beta-reduction; constraint-based
o (+MRS) formerly tried using FSs, but not anymore
o (-MRS) antecedents of constraints also have access to semantics; semantic description language itself

is richer in other respects
• But this particular combination presents both challenges and opportunities:

o Extra-grammatical resolution is a Good Thing: doesn’t clutter up the grammar for linguists;
computational linguists own the resolution procedure

o Lots more potential there than just acyclicity – compatible with performing semantic inference:
o E.g., ∀x.[horse(x) ⇾ run(x)], horse(SEABISCUIT) ⊢ run(SEABISCUIT)

o But even with just the basics, LRS’s use of variables not even known to be PTIME
o For the rest of this talk, “Resolution” = tractably eliminating superfluous underspecification
o “Real semantics” means that underspecification is a matter of convenience

Assumptions

• We assume that semantic composition is built on a tripartite distinction
among:
o Internal content: nuclear contribution of semantic head
o External content: contribution of semantic head’s maximal syntactic projection
o Semantic contribution: of pieces of Ty2 terms by component signs.

• LRS assumes more than this, and so the language I am describing (CLLRS)
could encode a wider range of theories than LRS.

The CLLRS model

• We augment the models that come with standard feature logic:
o @sem: U⇾ Ƥ(Ty2)
o {pivot}: U⇾ Ƥ(Ty2)
o ^root: U⇾ Ƥ(Ty2)
o /contributor: Ty2 ⇾ Ƥ(U)

• No extra expressive power here:
o Logical-form semantics: we model Ty2 terms, not what Ty2 models
o This could still be encoded in typed feature logic (and it is definitely not worth doing so).

The CLLRS model

• We augment the standard type system for feature logic with functional types
and polymorphic variables, but only for semantic terms:
o semtype [t,f]: t.

semtype [student,book]: (s->e->t).

semtype read: (s->e->e->t).

semtype [every,indefinite,exists]: (e->t->t->t).

semtype w: var(s).

semtype q: var(e->t->t->t).

semtype [a,e,x,y,z]: var(e).

semtype lambda: (var(A)->B->(A->B)).

• And, oh yeah, immediate/improper subterms.

CLLRS constraint algebra
• literal/type consistency:

literal(N,Lit1,Type1) \ literal(N,Lit2,Type2)
<=> Lit1=Lit2, Type1=Type2.

• pivot and root are functions:
pivot(X,N) \ pivot(X,M) <=> N=M.
root(X,N) \ root(X,M) <=> N=M.

• immediate subterm irreflexivity:
ist(N,N,_) ==> fail.

• immediate subterm uniqueness:
ist(M1,N,A) \ ist(M2,N,A) <=> M1=M2.

• subterm anti-symmetry:
st(M,N), st(N,M) <=> M=N.

• Note the lack of arity consistency: applications are explicit parts of term trees.

This is what grammar gets you:

0) This is what we need to resolve:

(Clearly, we also have a GUI problem)

1) Use the type system:

Out of 153 rejected candidate pairs for combination, 124
pairs (81%) were determined because of the type system;
26 (17%) because of cyclicity.

2) Identify “modules:”

These are characterized by subgraphs connected by
immediate subterm edges and no improper subterm edges.

3) Identify “tops” of modules:

Tops are the term itself and the RHS of any improper
subterm edge.

4) Identify “bottoms” of modules:

Bottoms are located by propagating downward
from every top.

5) Non-determinately pick a top and bottom:

5) …and speculatively combine them:

5) Keep doing this step:

Intuition behind this strategy

• There are fewer modules than there are subterms
• With top-bottom combinations, the number of modules strictly decreases
• Improper subterm edges are never added by inference – these are primitive

constraints added directly by grammarians, and so the grammarian has control
• In the background, we are still doing type-driven subterm combination, but only

when the result is determinate
• There is a possibility of generating many answers through speculation, but we can

count them before displaying them, and they can be undone
• There are nevertheless very simple grammars for which known determinate-only

solving does not yield a completely resolved semantic term – unacceptable
• In the meantime, documenting which sorts of speculation prove to be fruitful (and

determinate) is an important source of information for:
• finding new determinate constraint-solving strategies, and
• statistical inference that can guess what will work best (shortest path to resolution).

What should we do now?

What should we do now? ChatGPT knows…

